1
|
Sheetal, Sharma P, Kumar A, Sharma N, Giri K, Das P. Oxalic acid as a dual C1 surrogate for heterogeneous palladium-catalyzed tandem four-component quinazolinone synthesis. Chem Commun (Camb) 2024; 60:6043-6046. [PMID: 38775278 DOI: 10.1039/d4cc01084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Herein, a heterogeneous Pd/C-catalyzed direct one-step four-component double carbonylative approach for cascade synthesis of 2-aryl quinazolinones has been reported for the first time starting from 2-iodoaniline derivatives and aryl iodides. The given reaction involves the simultaneous implementation of two different gaseous surrogates i.e., ammonium carbamate as an NH3 precursor and oxalic acid as a bi-functional reagent acting as a CO as well as a C-atom surrogate under ligand-free conditions.
Collapse
Affiliation(s)
- Sheetal
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Poonam Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ashish Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Navneet Sharma
- Department of Computational Sciences, Central University of Punjab, 15140, India
| | - Kousik Giri
- Department of Computational Sciences, Central University of Punjab, 15140, India
| | - Pralay Das
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, H.P., India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Kumar S, Padala K, Maiti B. H 2O 2-Mediated Synthesis of a Quinazolin-4(3 H)-one Scaffold: A Sustainable Approach. ACS OMEGA 2023; 8:33058-33068. [PMID: 37720769 PMCID: PMC10500651 DOI: 10.1021/acsomega.3c05162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023]
Abstract
A quinazolin-4(3H)-one ring system is a privileged heterocyclic moiety with distinctive biological properties. From this perspective, the development of an efficient strategy for the synthesis of quinazolin-4(3H)-one has always been in demand for the synthetic chemistry community. In this report, we envisaged an efficient protocol for the synthesis of quinazolin-4(3H)-one using substituted 2-amino benzamide with dimethyl sulfoxide (DMSO) as a carbon source and H2O2 as an effective oxidant. Mechanistically, the reaction proceeds through the radical approach with DMSO as one carbon source. To further substantiate the synthetic claim, the synthetic protocol has been extended to the synthesis of the anti-endotoxic active compound 3-(2-carboxyphenyl)-4-(3H)-quinazolinone.
Collapse
Affiliation(s)
- Sumit Kumar
- Department
of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu 632014, India
| | - Kishor Padala
- Department
of Chemistry, Central Tribal University
of Andhra Pradesh, Kondakarakam
Village, Cantonment area, Vizianagaram, Andhra Pradesh 535003, India
| | - Barnali Maiti
- Department
of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
3
|
Mendogralo EY, Nesterova LY, Nasibullina ER, Shcherbakov RO, Tkachenko AG, Sidorov RY, Sukonnikov MA, Skvortsov DA, Uchuskin MG. The Synthesis and Biological Evaluation of 2-(1 H-Indol-3-yl)quinazolin-4(3 H)-One Derivatives. Molecules 2023; 28:5348. [PMID: 37513221 PMCID: PMC10384628 DOI: 10.3390/molecules28145348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/03/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
The treatment of many bacterial diseases remains a significant problem due to the increasing antibiotic resistance of their infectious agents. Among others, this is related to Staphylococcus aureus, especially methicillin-resistant S. aureus (MRSA) and Mycobacterium tuberculosis. In the present article, we report on antibacterial compounds with activity against both S. aureus and MRSA. A straightforward approach to 2-(1H-indol-3-yl)quinazolin-4(3H)-one and their analogues was developed. Their structural and functional relationships were also considered. The antimicrobial activity of the synthesized compounds against Mycobacterium tuberculosis H37Rv, S. aureus ATCC 25923, MRSA ATCC 43300, Candida albicans ATCC 10231, and their role in the inhibition of the biofilm formation of S. aureus were reported. 2-(5-Iodo-1H-indol-3-yl)quinazolin-4(3H)-one (3k) showed a low minimum inhibitory concentration (MIC) of 0.98 μg/mL against MRSA. The synthesized compounds were assessed via molecular docking for their ability to bind long RSH (RelA/SpoT homolog) proteins using mycobacterial and streptococcal (p)ppGpp synthetase structures as models. The cytotoxic activity of some synthesized compounds was studied. Compounds 3c, f, g, k, r, and 3z displayed significant antiproliferative activities against all the cancer cell lines tested. Indolylquinazolinones 3b, 3e, and 3g showed a preferential suppression of the growth of rapidly dividing A549 cells compared to slower growing fibroblasts of non-tumor etiology.
Collapse
Affiliation(s)
- Elena Y Mendogralo
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| | - Larisa Y Nesterova
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | | | - Roman O Shcherbakov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| | - Alexander G Tkachenko
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Roman Y Sidorov
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva St. 13, 614081 Perm, Russia
| | - Maxim A Sukonnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Dmitry A Skvortsov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva St. 15, 614990 Perm, Russia
| |
Collapse
|
4
|
Shaifali, Sharma P, Mehara P, Das P. Supported Palladium-Catalyzed Tandem Synthesis of 2-(Alkylamino/amino)-3-arylquinazolin-4(3H)-ones Employing CO Source. Chem Asian J 2023; 18:e202201288. [PMID: 36748920 DOI: 10.1002/asia.202201288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
Herein, we demonstrated heterogeneous and recyclable polystyrene-supported palladium (Pd@PS) nanoparticles (NPs) catalyzed tandem addition and intramolecular aminocarbonylative cyclization approach for the synthesis of potentially bioactive 2-(alkylamino/amino)-3-arylquinazolin-4(3H)-one analogues from 2-iodophenylcarbodiimides employing amines as nucleophiles and oxalic acid as an ex-situ CO alternative. Various cyclic/acyclic primary and secondary amines were employed and selectively produced substituted 2-(alkylamino)-3-arylquinazolin-4(3H)-ones in good to excellent yields. In addition, we extended the developed strategy to fix two ammonium carbamate and oxalic acid as gaseous NH3 and CO sources respectively, for the synthesis of 2-amino-3-arylquinazolin-4(3H)-one derivatives. Furthermore, gram scale applicability, diverse substrate scope and high recyclability of the Pd@PS catalyst were the major achievements of the developed protocol.
Collapse
Affiliation(s)
- Shaifali
- Chemical Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Poonam Sharma
- Chemical Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pushkar Mehara
- Chemical Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pralay Das
- Chemical Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur, 176061, H.P, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Dutta N, Dutta B, Dutta A, Sarma B, Sarma D. Room temperature ligand-free Cu 2O-H 2O 2 catalyzed tandem oxidative synthesis of quinazoline-4(3 H)-one and quinazoline derivatives. Org Biomol Chem 2023; 21:748-753. [PMID: 36602007 DOI: 10.1039/d2ob02085h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient and simple copper catalytic system has been developed for the synthesis of medicinally important 2-substituted quinazoline-4(3H)-ones from 2-aminobenzonitrile and benzyl alcohol derivatives and additionally 2-substituted quinazolines from 2-aminobenzylamine and benzaldehyde derivatives. Mild oxidant H2O2 was utilized, providing excellent product yields. The molecular structure of one of the compounds was substantiated through SC-XRD. The versatility of the protocol was demonstrated through gram-scale syntheses.
Collapse
Affiliation(s)
- Nilakshi Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India.
| | - Bidyutjyoti Dutta
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India.
| | - Apurba Dutta
- Department of Chemistry, DHSK College, Dibrugarh-786001, Assam, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Tezpur-784028, Assam, India
| | - Diganta Sarma
- Department of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India.
| |
Collapse
|
6
|
Yu X, Ma Z, Zhu W, Liu H, Zhang Z, Liu Y, Zhang M, Zhao J, Zhang P, Xia C. Tandem Reduction, Ammonolysis, Condensation, and Deamination Reaction for Synthesis of Benzothiadiazines and 1-(Phenylsulfonyl)-1 H-benzimidazoles. J Org Chem 2022; 87:14738-14752. [PMID: 36269195 DOI: 10.1021/acs.joc.2c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A novel route for a SnCl2-promoted tandem reduction, ammonolysis, condensation, and deamination reaction which uses nitrile and 2-nitro-N-phenylbenzenesulfonamide/N-(2-nitrophenyl)benzenesulfonamide to synthesize derivatives of benzothiadiazine/1-(phenylsulfonyl)-1H-benzimidazole has been developed. The method features convenient operation and good functional group tolerance. In addition, it employs unsensitive and inexpensive SnCl2/i-PrOH as the reaction reagent and provides a direct approach for the synthesis of pharmaceutically important targets.
Collapse
Affiliation(s)
- Xiao Yu
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Zhihong Ma
- Biotalk Co., Ltd., Shanghai 200092, China
| | - Wenjing Zhu
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Hongyan Liu
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Zenghui Zhang
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Yi Liu
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Mei Zhang
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Jinbo Zhao
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Chengcai Xia
- Institute of Pharmacology, Pharmacy College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| |
Collapse
|
7
|
Sohail M, Bilal M, Maqbool T, Rasool N, Ammar M, Mahmood S, Malik A, Zubair M, Abbas Ashraf G. Iron-catalyzed synthesis of N-heterocycles via intermolecular and intramolecular cyclization reactions: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
8
|
Pérez-Fehrmann M, Kesternich V, Puelles A, Quezada V, Salazar F, Christen P, Castillo J, Cárcamo JG, Castro-Alvarez A, Nelson R. Synthesis, antitumor activity, 3D-QSAR and molecular docking studies of new iodinated 4-(3 H)-quinazolinones 3 N-substituted. RSC Adv 2022; 12:21340-21352. [PMID: 35975048 PMCID: PMC9344282 DOI: 10.1039/d2ra03684c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023] Open
Abstract
A novel series of 6-iodo-2-methylquinazolin-4-(3H)-one derivatives, 3a–n, were synthesized and evaluated for their in vitro cytotoxic activity. Compounds 3a, 3b, 3d, 3e, and 3h showed remarkable cytotoxic activity on specific human cancer cell lines when compared to the anti-cancer drug, paclitaxel. Compound 3a was found to be particularly effective on promyelocytic leukaemia HL60 and non-Hodgkin lymphoma U937, with IC50 values of 21 and 30 μM, respectively. Compound 3d showed significant activity against cervical cancer HeLa (IC50 = 10 μM). The compounds 3e and 3h were strongly active against glioblastoma multiform tumour T98G, with IC50 values of 12 and 22 μM, respectively. These five compounds showed an interesting cytotoxic activity on four human cancer cell types of high incidence. The molecular docking results reveal a good correlation between experimental activity and calculated binding affinity on dihydrofolate reductase (DHFR). Docking studies proved 3d as the most potent compound. In addition, the three-dimensional quantitative structure–activity relationship (3D-QSAR) analysis exhibited activities that may indicate the existence of electron-withdrawing and lipophilic groups at the para-position of the phenyl ring and hydrophobic interactions of the quinazolinic ring in the DHFR active site. New iodinated 4-(3H)-quinazolinones 3N-substituted with antitumor activity and 3D-QSAR and molecular docking studies as dihydrofolate reductase (DHFR) inhibitors.![]()
Collapse
Affiliation(s)
- Marcia Pérez-Fehrmann
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Víctor Kesternich
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Arturo Puelles
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Víctor Quezada
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Fernanda Salazar
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| | - Philippe Christen
- School of Pharmaceutical Sciences University of Geneva 1211 Geneva 4 Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland University of Geneva 1211 Geneva 4 Switzerland
| | - Jonathan Castillo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile Campus Isla Teja Valdivia Chile
| | - Juan Guillermo Cárcamo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile Campus Isla Teja Valdivia Chile.,Centro FONDAP, Interdisciplinary Center for Aquaculture Research (INCAR) Chile
| | - Alejandro Castro-Alvarez
- Laboratorio de Bioproductos Farmacéuticos y Cosméticos, Centro de Excelencia en Medicina Traslacional, Facultad de Medicina, Universidad de La Frontera Av. Francisco Salazar 01145 Temuco 4780000 Chile.,Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile Casilla 40, Correo 33 Santiago Chile
| | - Ronald Nelson
- Departamento de Química, Facultad de Ciencias, Universidad Católica del Norte Av. Angamos 0610 Antofagasta 1270709 Chile
| |
Collapse
|
9
|
Recyclable palladium-catalyzed cyclocarbonylation between benzyl chlorides and salicylic aldehydes towards coumarins. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Yu X, Bai W, Zhu J, Zhang Y, Zhang M, Wu J. Synthesis of Quinazolin-4(3 H)-ones via Ammonium Iodide-Catalyzed Dual Amination of sp 3 C—H Bonds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Wahan SK, Sharma B, Chawla PA. Medicinal perspective of quinazolinone derivatives: Recent developments and
structure–activity
relationship studies. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4382] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Bharti Sharma
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga India
| |
Collapse
|
12
|
Nomula V, Rao SN. KO tBu-BF 3.OEt 2 mediated synthesis of quinazolin-4( 3H)-ones from 2-substituted amides with nitriles and aldehydes. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1928218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Vishnuvardhan Nomula
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of scientific and innovative research(AcSIR), Ghaziabad, India
| | - Sadu Nageswara Rao
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| |
Collapse
|
13
|
Liu HL, Li XT, Tian HZ, Sun XW. Unexpected Insertion of Nitrogen into a C-C Bond: Access to 2,3-Disubstituted Quinazolinone Scaffolds. Org Lett 2021; 23:4579-4583. [PMID: 34061550 DOI: 10.1021/acs.orglett.1c01235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel, practical, highly efficient, and transition metal free nitrogen insertion reaction for the synthesis of 2,3-disubstituted quinazolinone derivatives was developed. Diverse functionalized 3-indolinone-2-carboxylates and nitrosoarenes with a wide range of substituted nitrosobenzenes, nitrosopyridines, dibenzofuranyl, or dibenzothienyl nitroso compounds worked smoothly to give 2,3-disubstituted quinazolinone derivatives in good to excellent yields (69-98%). A gram-scale reaction was achieved, and an afloqualone analogue was synthesized under the mild reaction conditions.
Collapse
Affiliation(s)
- Hui-Li Liu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xiao-Tong Li
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Heng-Zhi Tian
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xing-Wen Sun
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Rao MS, Hussain S. One-Pot, Borax-mediated synthesis of structurally diverse N, S-heterocycles in water. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Shaifali, Mehara P, Kumar A, Das P. Pd/C Catalyzed Cascade Synthesis of 2‐Arylquinazolinones from 2‐Iodoacetanilides Employing Ammonia and CO Precursors. ChemCatChem 2021. [DOI: 10.1002/cctc.202100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shaifali
- Chemical Technology Division CSIR- Institute of Himalayan Bioresource Technology Palampur H.P 176061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Pushkar Mehara
- Chemical Technology Division CSIR- Institute of Himalayan Bioresource Technology Palampur H.P 176061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ashish Kumar
- Chemical Technology Division CSIR- Institute of Himalayan Bioresource Technology Palampur H.P 176061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Pralay Das
- Chemical Technology Division CSIR- Institute of Himalayan Bioresource Technology Palampur H.P 176061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
16
|
Balaji S, Balamurugan G, Ramesh R, Semeril D. Palladium(II) N^O Chelating Complexes Catalyzed One-Pot Approach for Synthesis of Quinazolin-4(3H)-ones via Acceptorless Dehydrogenative Coupling of Benzyl Alcohols and 2-Aminobenzamide. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00814] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sundarraman Balaji
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Gunasekaran Balamurugan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - David Semeril
- Laboratoire de Chimie Inorganique et Catalyse, Institut de Chimie, Universite de Strasbourg, UMR 7177, CNRS, Strasbourg, 67070, France
| |
Collapse
|
17
|
Zhang X, Luo C, Chen X, Ma W, Li B, Lin Z, Chen X, Li Y, Xie F. Direct synthesis of quinazolinones via the carbon-supported acid-catalyzed cascade reaction of isatoic anhydrides with amides and aldehydes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
Gupta R, Arora G, Yadav P, Dixit R, Srivastava A, Sharma RK. A magnetically retrievable copper ionic liquid nanocatalyst for cyclooxidative synthesis of 2-phenylquinazolin-4(3 H)-ones. Dalton Trans 2021; 50:890-898. [PMID: 33350417 DOI: 10.1039/d0dt03634j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the present work, we report the design and fabrication of a copper-containing ionic liquid supported magnetic nanocatalyst via a convenient and straightforward synthetic approach for the formation of 2-phenylquinazolin-4(3H)-ones using o-aminobenzamide and benzaldehydes as the reaction partners. The successful formation and properties of the as-prepared catalyst have been thoroughly investigated using diverse physico-chemical techniques including FT-IR, XRD, FE-SEM, TEM, ICP, VSM, BET and TGA. Using this nanocatalytic system, a variety of 2-phenylquinazolin-4(3H)-ones are synthesized in excellent yields with operational ease and short reaction times in an environmentally preferable solvent under open air and without using any external oxidizing agent. Besides, the catalyst possessed facile magnetic recoverability and remarkable reusability for six consecutive runs without any appreciable decrease in the catalytic efficiency.
Collapse
Affiliation(s)
- Radhika Gupta
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Gunjan Arora
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Priya Yadav
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi-110007, India. and Department of Chemistry, Hindu College, University of Delhi, Delhi-110007, India
| | - Ranjana Dixit
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi-110007, India.
| | - Anju Srivastava
- Department of Chemistry, Hindu College, University of Delhi, Delhi-110007, India
| | - Rakesh Kumar Sharma
- Green Chemistry Network Centre, Department of Chemistry, University of Delhi, Delhi-110007, India.
| |
Collapse
|
19
|
Chen J, Liang E, Shi J, Wu Y, Wen K, Yao X, Tang X. Metal-free synthesis of 1,4-benzodiazepines and quinazolinones from hexafluoroisopropyl 2-aminobenzoates at room temperature. RSC Adv 2021; 11:4966-4970. [PMID: 35424458 PMCID: PMC8694548 DOI: 10.1039/d1ra00324k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 11/29/2022] Open
Abstract
Herein, we describe the novel reactivity of hexafluoroisopropyl 2-aminobenzoates. The metal-free synthesis of 1,4-benzodiazepines and quinazolinones from hexafluoroisopropyl 2-aminobenzoates has been developed at room temperature. These procedures feature good functional group tolerance, mild reaction conditions, and excellent yields. The newly formed products can readily be converted to other useful N-heterocycles. Moreover, the products and their derivatives showed potent anticancer activities in vitro by MTT assay. A metal-free synthesis of 1,4-benzodiazepines and quinazolinones from hexafluoroisopropyl 2-aminobenzoates has been developed at room temperature.![]()
Collapse
Affiliation(s)
- Jiewen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - En Liang
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Jie Shi
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Yinrong Wu
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening
- School of Pharmaceutical Sciences
- Southern Medical University
- Guangzhou 510515
- P. R. China
| |
Collapse
|
20
|
Tian Q, Zhang J, Xu L, Wei Y. Synthesis of quinazolin-4(3H)-ones via electrochemical decarboxylative cyclization of α‑keto acids with 2-aminobenzamides. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Xing Z, Wu W, Miao Y, Tang Y, Zhou Y, Zheng L, Fu Y, Song Z, Peng Y. Recent advances in quinazolinones as an emerging molecular platform for luminescent materials and bioimaging. Org Chem Front 2021. [DOI: 10.1039/d0qo01425g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarized recent advances relating to the luminescence properties of quinazolinones and their applications in fluorescent probes, biological imaging and luminescent materials. Their future outlook is also included.
Collapse
Affiliation(s)
- Zhiming Xing
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Wanhui Wu
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yongxiang Miao
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yingqun Tang
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Youkang Zhou
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Lifang Zheng
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yang Fu
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Zhibin Song
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| |
Collapse
|
22
|
Thorve PR, Maji B. Aerobic primary and secondary amine oxidation cascade by a copper amine oxidase inspired catalyst. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01764g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A CAO inspired catalyst catalyzed the cascade aerobic oxidation of primary and secondary amines for the synthesis of quinazolin-4(3H)-one core in high yields. Like the natural CAOs, a copper ion improves the o-quinone cofactor's catalytic activity.
Collapse
Affiliation(s)
- Pradip Ramdas Thorve
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Biplab Maji
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| |
Collapse
|
23
|
Chen W, Liu M, Li HJ, Wu YC. Switchable and efficient conversion of 2-amido-aryl oxazolines to quinazolin-4(3 H)-ones and N-(2-chloroethyl)benzamides. Org Chem Front 2021. [DOI: 10.1039/d0qo01368d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Switchable chemoselective conversion of 2-amido-aryl oxazolines to quinazolin-4(3H)-ones or N-(2-chloroethyl)benzamides is achieved.
Collapse
Affiliation(s)
- Weiqiang Chen
- School of Marine Science and Technology
- Weihai Marine Organism & Medical Technology Research Institute
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
| | - Mei Liu
- China Building Material Test & Certification Group Zibo Co
- Ltd
- Zibo 255000
- P. R. China
| | - Hui-Jing Li
- School of Marine Science and Technology
- Weihai Marine Organism & Medical Technology Research Institute
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
| | - Yan-Chao Wu
- School of Marine Science and Technology
- Weihai Marine Organism & Medical Technology Research Institute
- Harbin Institute of Technology
- Weihai 264209
- P. R. China
| |
Collapse
|
24
|
Maji M, Panja D, Borthakur I, Kundu S. Recent advances in sustainable synthesis of N-heterocycles following acceptorless dehydrogenative coupling protocol using alcohols. Org Chem Front 2021. [DOI: 10.1039/d0qo01577f] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this review, we have summarized various aspects of homogeneous and heterogeneously catalyzed recent advancements in the synthesis of heterocycles following the ADC approach.
Collapse
Affiliation(s)
- Milan Maji
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Dibyajyoti Panja
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ishani Borthakur
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sabuj Kundu
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
25
|
Wang D, Xiao F, Zhang F, Huang H, Deng G. Copper‐Catalyzed
Aerobic Oxidative Ring Expansion of Isatins: A Facile Entry to
Isoquinolino‐Fused
Quinazolinones. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dahan Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Feng Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
- School of Chemistry and Materials Science Hunan Agricultural University Changsha Hunan 410128 China
| | - Huawen Huang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| | - Guo‐Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application College of Chemistry, Xiangtan University Xiangtan Hunan 411105 China
| |
Collapse
|
26
|
Yang H, Wang L, Wang W, Chen Z, Wu X. Palladium‐Catalyzed Cascade Carbonylative Cyclization Reaction of Trifluoroacetimidoyl Chlorides and 2‐Iodoanilines: Toward 2‐(Trifluoromethyl)quinazolin‐4(3H)‐ones Synthesis. ChemistrySelect 2020. [DOI: 10.1002/slct.202003269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hefei Yang
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Le‐Cheng Wang
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Wei‐Feng Wang
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
| | - Xiao‐Feng Wu
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock Albert-Einstein-Straβe 29a 18059 Rostock Germany
| |
Collapse
|
27
|
Samim SA, Roy BC, Nayak S, Kundu S. Cobalt-Catalyzed Tandem Transformation of 2-Aminobenzonitriles to Quinazolinones Using Hydration and Dehydrogenative Coupling Strategy. J Org Chem 2020; 85:11359-11367. [PMID: 32786628 DOI: 10.1021/acs.joc.0c01307] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A tandem synthesis of quinazolinones from 2-aminobenzonitriles is demonstrated here by using an aliphatic alcohol-water system. For this transformation, a cheap and easily available cobalt salt and P(CH2CH2PPh2)3 (PP3) ligand were employed. The substrate scope, scalability, and synthesis of natural products exhibited the vitality of this protocol.
Collapse
Affiliation(s)
- Sk Abdus Samim
- Department of Chemistry, IIT Kanpur, Kanpur 208016, UP, India
| | | | - Sourav Nayak
- Department of Chemistry, IIT Kanpur, Kanpur 208016, UP, India
| | - Sabuj Kundu
- Department of Chemistry, IIT Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
28
|
Dhameliya TM, Donga HA, Vaghela PV, Panchal BG, Sureja DK, Bodiwala KB, Chhabria MT. A decennary update on applications of metal nanoparticles (MNPs) in the synthesis of nitrogen- and oxygen-containing heterocyclic scaffolds. RSC Adv 2020; 10:32740-32820. [PMID: 35516511 PMCID: PMC9056690 DOI: 10.1039/d0ra02272a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Heterocycles have been found to be of much importance as several nitrogen- and oxygen-containing heterocycle compounds exist amongst the various USFDA-approved drugs. Because of the advancement of nanotechnology, nanocatalysis has found abundant applications in the synthesis of heterocyclic compounds. Numerous nanoparticles (NPs) have been utilized for several organic transformations, which led us to make dedicated efforts for the complete coverage of applications of metal nanoparticles (MNPs) in the synthesis of heterocyclic scaffolds reported from 2010 to 2019. Our emphasize during the coverage of catalyzed reactions of the various MNPs such as Ag, Au, Co, Cu, Fe, Ni, Pd, Pt, Rh, Ru, Si, Ti, and Zn has not only been on nanoparticles catalyzed synthetic transformations for the synthesis of heterocyclic scaffolds, but also provide an inherent framework for the reader to select a suitable catalytic system of interest for the synthesis of desired heterocyclic scaffold.
Collapse
Affiliation(s)
- Tejas M Dhameliya
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Hiren A Donga
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Punit V Vaghela
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Bhoomi G Panchal
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Dipen K Sureja
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Kunjan B Bodiwala
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| | - Mahesh T Chhabria
- L. M. College of Pharmacy Navrangpura Ahmedabad 380 009 Gujarat India +91 79 2630 4865 +91 79 2630 2746
| |
Collapse
|
29
|
Latha G, Devarajan N, Suresh P. Framework Copper Catalyzed Oxidative Synthesis of Quinazolinones: A Benign Approach Using Cu
3
(BTC)
2
MOF as an Efficient and Reusable Catalyst. ChemistrySelect 2020. [DOI: 10.1002/slct.202002661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ganesapandian Latha
- Supramolecular and Catalysis Lab Dept. of Natural Products Chemistry School of Chemistry Madurai Kamaraj University Madurai 625021 India
| | - Nainamalai Devarajan
- Supramolecular and Catalysis Lab Dept. of Natural Products Chemistry School of Chemistry Madurai Kamaraj University Madurai 625021 India
| | - Palaniswamy Suresh
- Supramolecular and Catalysis Lab Dept. of Natural Products Chemistry School of Chemistry Madurai Kamaraj University Madurai 625021 India
| |
Collapse
|
30
|
Jang Y, Lee SB, Hong J, Chun S, Lee J, Hong S. Synthesis of 2-aryl quinazolinones via iron-catalyzed cross-dehydrogenative coupling (CDC) between N-H and C-H bonds. Org Biomol Chem 2020; 18:5435-5441. [PMID: 32633314 DOI: 10.1039/d0ob00866d] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Herein, we describe the direct synthesis of quinazolinones via cross-dehydrogenative coupling between methyl arenes and anthranilamides. The C-H functionalization of the benzylic sp3 carbon is achieved by di-t-butyl peroxide under air, and the subsequent amination-aerobic oxidation process completes the annulation process. Iron catalyzed the whole reaction process and various kinds of functional groups were tolerated under the reaction conditions, providing 31 examples of 2-aryl quinazolinones using methyl arene derivatives in yields of 57-95%. The synthetic potential has been demonstrated by the additional synthesis of aryl-containing heterocycles.
Collapse
Affiliation(s)
- Yoonkyung Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Junhwa Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Jeeyeon Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
31
|
Tao S, Liu R, Zhou J, Zhu Y. Palladium‐Catalyzed One‐Pot Coupling / Cyclization through Mo(CO)
6
as the Carbon Monoxide Donor: Synthesis of Quinazolinones. ChemistrySelect 2020. [DOI: 10.1002/slct.202002111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shou‐Wei Tao
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Rui‐Qing Liu
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Jing‐Ya Zhou
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| | - Yong‐Ming Zhu
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 China
| |
Collapse
|
32
|
Mishra S, Das D, Sahu A, Patil S, Agarwal RK, Gajbhiye A. Transition Metal-free Approach for the Synthesis of 2-substituted Quinazolin-4(3H)-one via Anhydrous Magnesium Perchlorate. CURRENT ORGANOCATALYSIS 2020. [DOI: 10.2174/2213337207666200220101535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
A convenient and efficient methodology for the synthesis of quinazolin-
4(3H)-ones from simple and readily available 2-amino benzamides and aromatic aldehydes in ethanol
using Magnesium perchlorate are being reported in the present study. Good to excellent isolated yields
(68-95%) of the corresponding 2-substituted quinazolinones were obtained under mild reaction conditions
with excellent functional group tolerance. The affordability of the catalyst, the wide availability
of the starting materials, transition metal free synthesis and the simplicity of the procedure renders the
present methodology useful in organic synthesis.
Objective:
A maneuver methodology developed for the synthesis of quinazolin-4(3H)-ones via using
Magnesium perchlorate from 2-amino benzamides and aromatic aldehydes in ethanol.
Methods:
10% mol anhydrous Magnesium perchlorate in presence of ethanol give to simply rapid
formation of Quinazolin-4(3H)-ones from 1 mole of 2-amino benzamides and 1 mole of aromatic aldehydes.
Results:
Screening results of Anti-leishmanial showed that out of the synthesized series of 12 compounds,
compounds 3c, 3d, 3g, 3h and 3i showed significant antileishmanial activities (L. donavani)
with IC50 values 8.39, 9.37, 9.43, 7.1 and 8.7 μM.
Conclusion:
In summary, we have developed convenient synthesis of quinazolin-4(3H)-one, from
simple and easily available precursor employing anhydrous Mg(ClO4)2 under green conditions.
Collapse
Affiliation(s)
- Shweta Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Viswavidyalaya, Sagar, MP, India
| | - Debashree Das
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Viswavidyalaya, Sagar, MP, India
| | - Adarsh Sahu
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Viswavidyalaya, Sagar, MP, India
| | - Shailendra Patil
- Faculty of Pharmacy, Swami Vivekanand University, Sagar (M.P), India
| | - Ram Kishor Agarwal
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Viswavidyalaya, Sagar, MP, India
| | - Asmita Gajbhiye
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Viswavidyalaya, Sagar, MP, India
| |
Collapse
|
33
|
Hao W, Xu Z, Zhou Z, Cai M. Recyclable Heterogeneous Palladium-Catalyzed Cyclocarbonylation of 2-Iodoanilines with Acyl Chlorides in the Biomass-Derived Solvent 2-Methyltetrahydrofuran. J Org Chem 2020; 85:8522-8532. [PMID: 32475119 DOI: 10.1021/acs.joc.0c00887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A highly efficient, green palladium-catalyzed cyclocarbonylation of 2-iodoanilines with acyl chlorides has been developed that proceeds smoothly in a biomass-derived solvent 2-methyltetrahydrofuran with N,N-diisopropylethylamine as base at 100 °C under 20 bar of carbon monoxide using an 2-aminoethylamino-modified MCM-41-anchored palladium acetate complex [2N-MCM-41-Pd(OAc)2] as a heterogeneous catalyst, yielding a wide variety of 2-substituted 4H-3,1-benzoxazin-4-one derivatives in good to excellent yields. This supported palladium catalyst could be facilely obtained by a two-step procedure from easily available starting materials and readily recovered via a simple filtration process and recycled at least 8 times without any apparent decrease in catalytic efficiency. The developed methodology not only avoids the use of toxic solvents such as tetrahydrofuran and dimethylformamide but also solves the basic problem of expensive palladium catalyst recovery and reuse and prevents effectively palladium contamination of the desired product.
Collapse
Affiliation(s)
- Wenyan Hao
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Zhaotao Xu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Zebiao Zhou
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Mingzhong Cai
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
34
|
Zhou X, Ding Y, Huang H. Palladium‐Catalyzed Carbonylative Difunctionalization of C=N Bond of Azaarenes or Imines to Quinazolinones. Chem Asian J 2020; 15:1678-1682. [DOI: 10.1002/asia.202000359] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/01/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Xibing Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular SynthesisChinese Academy of SciencesUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Yongzheng Ding
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular SynthesisChinese Academy of SciencesUniversity of Science and Technology of China Hefei 230026 P. R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of ChemistryCenter for Excellence in Molecular SynthesisChinese Academy of SciencesUniversity of Science and Technology of China Hefei 230026 P. R. China
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
35
|
Ghosh P, Ganguly B, Das S. C–H functionalization of quinazolinones by transition metal catalysis. Org Biomol Chem 2020; 18:4497-4518. [DOI: 10.1039/d0ob00742k] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quinazolinone and its derivatives are an important class of heterocyclic scaffolds in pharmaceuticals and natural products. This review provides the recent research advances in the transition metal catalyzed selective C–H bond functionalization of quinazolinone.
Collapse
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| | - Bhaskar Ganguly
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| | - Sajal Das
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| |
Collapse
|
36
|
Ram S, Shaifali, Chauhan AS, Sheetal, Sharma AK, Das P. Polystyrene‐Supported Palladium (Pd@PS)‐Catalyzed Carbonylative Annulation of Aryl Iodides Using Oxalic Acid as a Sustainable CO Source for the Synthesis of 2‐Aryl Quinazolinones. Chemistry 2019; 25:14506-14511. [DOI: 10.1002/chem.201902776] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Shankar Ram
- Natural Product Chemistry & Process Development Division CSIR-Institute of Himalayan Bioresource Technology Palampur 176061 HP India
- Academy of Scientific & Innovative Research, CSIR-IHBT Palampur- 176061 H.P India
| | - Shaifali
- Natural Product Chemistry & Process Development Division CSIR-Institute of Himalayan Bioresource Technology Palampur 176061 HP India
- Academy of Scientific & Innovative Research, CSIR-IHBT Palampur- 176061 H.P India
| | - Arvind Singh Chauhan
- Natural Product Chemistry & Process Development Division CSIR-Institute of Himalayan Bioresource Technology Palampur 176061 HP India
- Academy of Scientific & Innovative Research, CSIR-IHBT Palampur- 176061 H.P India
| | - Sheetal
- Natural Product Chemistry & Process Development Division CSIR-Institute of Himalayan Bioresource Technology Palampur 176061 HP India
- Academy of Scientific & Innovative Research, CSIR-IHBT Palampur- 176061 H.P India
| | - Ajay Kumar Sharma
- Natural Product Chemistry & Process Development Division CSIR-Institute of Himalayan Bioresource Technology Palampur 176061 HP India
- Academy of Scientific & Innovative Research, CSIR-IHBT Palampur- 176061 H.P India
| | - Pralay Das
- Natural Product Chemistry & Process Development Division CSIR-Institute of Himalayan Bioresource Technology Palampur 176061 HP India
- Academy of Scientific & Innovative Research, CSIR-IHBT Palampur- 176061 H.P India
| |
Collapse
|
37
|
Yan N, You C, Cai M. A practical synthesis of quinazolinones via intermolecular cyclization between 2-halobenzamides and benzylamines catalyzed by copper(I) immobilized on MCM-41. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Wang Q, Lv M, Liu J, Li Y, Xu Q, Zhang X, Cao H. Efficient Synthesis of Quinazolinones by Transition-Metal-Free Direct Aerobic Oxidative Cascade Annulation of Alcohols with o-Aminoarylnitriles. CHEMSUSCHEM 2019; 12:3043-3048. [PMID: 30791215 DOI: 10.1002/cssc.201900265] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/20/2019] [Indexed: 06/09/2023]
Abstract
A mild and atom-economic method was developed for direct and efficient synthesis of quinazolinones through a transition-metal-free aerobic oxidative cascade annulation reaction of widely available o-aminoarylnitriles and alcohols. Air could be employed as an effective oxidant under mild conditions, generating water as the only byproduct. Possibly owing to the "cesium effect", the water-soluble base CsOH was found to be crucial in all key steps of the reaction mechanism. Because a wide range of substrates can be used to prepare substituted quinazolinones without contamination by transition-metal residues, this method may be of interest for application in pharmaceutical synthesis. Possible reaction paths were also proposed according to control reactions.
Collapse
Affiliation(s)
- Qi Wang
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
| | - Miao Lv
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
| | - Jianping Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Yang Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Qing Xu
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P.R. China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
| | - Hongen Cao
- School of Chemistry and Chemical Engineering, Institute of Pesticide of School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, 225002, P.R. China
| |
Collapse
|
39
|
Liang Y, Tan Z, Jiang H, Zhu Z, Zhang M. Copper-Catalyzed Oxidative Multicomponent Annulation Reaction for Direct Synthesis of Quinazolinones via an Imine-Protection Strategy. Org Lett 2019; 21:4725-4728. [PMID: 31184195 DOI: 10.1021/acs.orglett.9b01608] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Via an imine-protection strategy, we herein present an unprecedented copper-catalyzed oxidative multicomponent annulation reaction for direct synthesis of quinazolinones. The construction of various products is achieved via formation of three C-N and one C-C bonds in conjunction with the benzylic functionalization. The merits of easily available feedstocks, naturally abundant catalyst, good functional group and substrate compatibility, and release of H2O as the byproduct make the developed chemistry a practical way to access quinazolinones.
Collapse
Affiliation(s)
- Yantang Liang
- Key Lab of Functional Molecular Engineering of Guangdong Province and Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510640 , P. R. China
| | - Zhenda Tan
- Key Lab of Functional Molecular Engineering of Guangdong Province and Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510640 , P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province and Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510640 , P. R. China
| | - Zhibo Zhu
- Integrated Hospital of Traditional Chinese Medicine , Southern Medical University , 13# Shiliugang Road, Haizhu district , Guangzhou 510315 , China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province and Guangdong Engineering Research Center for Green Fine Chemicals, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou , 510640 , P. R. China
| |
Collapse
|
40
|
Abdullaha M, Mohammed S, Ali M, Kumar A, Vishwakarma RA, Bharate SB. Discovery of Quinazolin-4(3 H)-ones as NLRP3 Inflammasome Inhibitors: Computational Design, Metal-Free Synthesis, and in Vitro Biological Evaluation. J Org Chem 2019; 84:5129-5140. [PMID: 30896160 DOI: 10.1021/acs.joc.9b00138] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
NLRP3 inflammasome is an important therapeutic target for a number of human diseases. Herein, computationally designed series of quinazolin-4(3 H)-ones were synthesized using iodine-catalyzed coupling of arylalkynes (or styrenes) with O-aminobenzamides. The key event in this transformation involves the oxidative cleavage of the C-C triple/double bond and the release of formaldehyde. The reaction relies on the C-N bond formation along with the C-C bond cleavage under metal-free conditions. The nitro-substituted quinazolin-4(3 H)-one 2k inhibited NLRP3 inflammasome (IC50 5 μM) via the suppression of IL-1β release from ATP-stimulated J774A.1 cells.
Collapse
|
41
|
Roy BC, Samim SA, Panja D, Kundu S. Tandem synthesis of quinazolinone scaffolds from 2-aminobenzonitriles using aliphatic alcohol–water system. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01094g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Functionalized bipyridine based Ru(II) complex catalyzed tandem synthesis of quinazolinones from 2-aminobenzonitriles is reported here utilizing aliphatic alcohol–water system.
Collapse
Affiliation(s)
| | | | | | - Sabuj Kundu
- Department of Chemistry
- IIT Kanpur
- Kanpur 208016
- India
| |
Collapse
|
42
|
A highly efficient heterogeneous palladium-catalyzed carbonylative annulation of 2-aminobenzamides with aryl iodides leading to quinazolinones. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
43
|
Copper-catalyzed synthesis of 2,3-disubstituted quinazolin-4(3H)-ones from benzyl-substituted anthranilamides. HETEROCYCL COMMUN 2018. [DOI: 10.1515/hc-2018-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
An efficient, practical approach to the copper-catalyzed synthesis of 2,3-disubstituted quinazolin-4(3H)-one derivatives is described. The preparation involves treatment of benzyl amines with benzyl anthranilamides in the presence of Cu(OAc)2 and tetra-n-butylammonium bromide (TBAB).
Collapse
|
44
|
Abstract
The bismuth-catalyzed oxidative condensation of aldehydes with 2-aminobenzamide under aerobic conditions is reported using ethanol as the solvent. Good to excellent isolated yields (68-95%) of the corresponding 2-substituted quinazolinones were obtained under mild reaction conditions with excellent functional group tolerance. The quinazolinones were further functionalized to afford N-allylated quinazolinones, 2-aminopyridine derivatives, and annulated polyheterocyclic compounds via transition-metal catalyzed reactions.
Collapse
Affiliation(s)
- Sandeep R. Vemula
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Dinesh Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Gandhinagar 382355, Gujarat, India
| | - Gregory R. Cook
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND 58108-6050, USA
| |
Collapse
|
45
|
Sayyad N, Cele Z, Aleti RR, Bera M, Cherukupalli S, Chandrasekaran B, Kushwaha ND, Karpoormath R. Copper-Catalyzed Self-Condensation of Benzamide: Domino Reactions towards Quinazolinones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nisar Sayyad
- Department of Pharmaceutical Chemistry; College of Health Sciences; University of KwaZulu-Natal (Westville Campus); Private Bag X54001 4000 Durban South Africa
| | - Zamani Cele
- Department of Pharmaceutical Chemistry; College of Health Sciences; University of KwaZulu-Natal (Westville Campus); Private Bag X54001 4000 Durban South Africa
| | - Rajeshwar Reddy Aleti
- Department of Pharmaceutical Chemistry; College of Health Sciences; University of KwaZulu-Natal (Westville Campus); Private Bag X54001 4000 Durban South Africa
| | - Milan Bera
- Department of Chemistry; College of Health Sciences; Indian Institute of Technology Bombay Powai; 400 076 Mumbai India
| | - Srinivasulu Cherukupalli
- Department of Pharmaceutical Chemistry; College of Health Sciences; University of KwaZulu-Natal (Westville Campus); Private Bag X54001 4000 Durban South Africa
| | - Balakumar Chandrasekaran
- Department of Pharmaceutical Chemistry; College of Health Sciences; University of KwaZulu-Natal (Westville Campus); Private Bag X54001 4000 Durban South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry; College of Health Sciences; University of KwaZulu-Natal (Westville Campus); Private Bag X54001 4000 Durban South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry; College of Health Sciences; University of KwaZulu-Natal (Westville Campus); Private Bag X54001 4000 Durban South Africa
| |
Collapse
|
46
|
An J, Wang Y, Zhang Z, Zhao Z, Zhang J, Wang F. The Synthesis of Quinazolinones from Olefins, CO, and Amines over a Heterogeneous Ru-clusters/Ceria Catalyst. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinghua An
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yehong Wang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jian Zhang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
47
|
"On-Water" Synthesis of Quinazolinones and Dihydroquinazolinones Starting from o-Bromobenzonitrile. Molecules 2018; 23:molecules23092325. [PMID: 30213061 PMCID: PMC6225144 DOI: 10.3390/molecules23092325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 01/06/2023] Open
Abstract
A versatile and practical “on-water” protocol was newly developed to synthesize quinazolinones using o-bromobenzonitrile as a novel starting material. Studies have found that air as well as water plays an important role in synthesis of quinazolinones. Further investigation indicated that dihydroquinazolinones can be prepared with this protocol under the protection of N2. The protocol can be extended to other substrates and various quinazolinones and dihydroquinazolinones were obtained. o-Bromobenzamide, o-aminobenzonitrile, and o-aminobenzamide were also evaluated as starting materials, and the results further proved the versatility of this protocol, especially towards dihydroquinazolinones.
Collapse
|
48
|
Palladium-catalyzed four-component carbonylative synthesis of 2,3-disubstituted quinazolin-4(3H)-ones: Convenient methaqualone preparation. J Catal 2018. [DOI: 10.1016/j.jcat.2018.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
An J, Wang Y, Zhang Z, Zhao Z, Zhang J, Wang F. The Synthesis of Quinazolinones from Olefins, CO, and Amines over a Heterogeneous Ru-clusters/Ceria Catalyst. Angew Chem Int Ed Engl 2018; 57:12308-12312. [DOI: 10.1002/anie.201806266] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/14/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Jinghua An
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yehong Wang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Zhixin Zhang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Zhitong Zhao
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jian Zhang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| | - Feng Wang
- State Key Laboratory of Catalysis (SKLC); Dalian National Laboratory for Clean Energy (DNL); Dalian Institute of Chemical Physics (DICP); Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
50
|
Zhang W, Meng C, Liu Y, Tang Y, Li F. Auto-Tandem Catalysis with Ruthenium: From o
-Aminobenzamides and Allylic Alcohols to Quinazolinones via
Redox Isomerization/Acceptorless Dehydrogenation. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800660] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Weikang Zhang
- School of Chemical Engineering; Nanjing University of Science & Technology; Nanjing 210094 People's Republic of China
| | - Chong Meng
- School of Chemical Engineering; Nanjing University of Science & Technology; Nanjing 210094 People's Republic of China
| | - Yan Liu
- School of Chemical Engineering; Nanjing University of Science & Technology; Nanjing 210094 People's Republic of China
| | - Yawen Tang
- School of Chemical Engineering; Nanjing University of Science & Technology; Nanjing 210094 People's Republic of China
| | - Feng Li
- School of Chemical Engineering; Nanjing University of Science & Technology; Nanjing 210094 People's Republic of China
- State Key Laboratory of Fine Chemicals; Dalian University of Technology; Dalian 116024 People's Republic of China
| |
Collapse
|