1
|
Scholz AS, Bolte M, Virovets A, Peresypkina E, Lerner HW, Anstöter CS, Wagner M. Tetramerization of BEB-Doped Phenalenyls to Obtain (BE) 8-[16]Annulenes (E = N, O). J Am Chem Soc 2024; 146:12100-12112. [PMID: 38635878 DOI: 10.1021/jacs.4c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two (BE)8-[16]annulenes were prepared and fully characterized by experimental and quantum-chemical means (1, E = N; 2, E = O). The 1,8-naphthalenediyl-bridged diborane(6) 3 served as their common starting material, which was treated with [Al(NH3)6]Cl3 to form 1 (91% yield) or with 1,8-naphthalenediboronic acid anhydride to form 2 (93% yield). As a result, the heteroannulenes 1 and 2 are supported by four aromatic "clamps" and may also be viewed as NH- or O-bridged cyclic tetramers of BNB- or BOB-doped phenalenyls. X-ray crystallography on mono-, di-, and tetraadducts 2·thf, 2·py2, and 2·py4 showed that 2 is an oligotopic Lewis acid (thf/py: tetrahydrofuran/pyridine donor). The applicability of 2 also as a Lewis basic ligand in coordination chemistry was demonstrated by the synthesis of the mononuclear Ag+ complex [Ag(py)2(2·py4)]+ and the dinuclear Pb2+ complex 6. During the assembly of 6, the rearrangement of 2 led to the formation of two (BO)9-macrocycles linked by two BOB-phenalenyls to form a nanometer-sized cage with four negatively charged, tetracoordinated B atoms. Both 1 and 2 show several redox waves in the cathodic regions of the cyclic voltammograms. An in-depth assessment of the consequences of electron injection on the aromaticity of 1 and 2 was achieved by electronic structure calculations. 1 and 2 are proposed to exhibit aromatic switching capabilities in the [16]annulene motif.
Collapse
Affiliation(s)
- Alexander S Scholz
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Alexander Virovets
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Eugenia Peresypkina
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Cate S Anstöter
- EaStCHEM School of Chemistry, University of Edinburgh, EH8 9YLEdinburgh,U.K
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Choi S, Dong G. Rapid and Modular Access to Multifunctionalized 1,2-Azaborines via Palladium/Norbornene Cooperative Catalysis. J Am Chem Soc 2024; 146:9512-9518. [PMID: 38551167 DOI: 10.1021/jacs.4c01582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
1,2-Azaborines, a unique class of BN-isosteres of benzene, have attracted great interest across several fields. While significant advancements have been made in the postfunctionalization of 1,2-azaborines, challenges still exist for the selective functionalization of the C4 position and access to 1,2-azaborines with five or six independently installed substituents. Here we report a rapid and modular method for C3 and C4 difunctionalization of 1,2-azaborines using the palladium/norbornene (Pd/NBE) cooperative catalysis. Enabled by the C2 amide-substituted NBE, diverse 3-iodo-1,2-azaborines can be used as substrates, showing broad functional group tolerance. Besides ortho arylation, preliminary success of ortho alkylation has also been realized. In addition, a range of alkenes and nucleophiles can be employed for ipso C3 functionalization. The reaction is scalable, and various postfunctionalizations, including forming hexa-substituted 1,2-azaborines, have been achieved.
Collapse
Affiliation(s)
- Shinyoung Choi
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Deng CL, Obi AD, Tra BYE, Sarkar SK, Dickie DA, Gilliard RJ. Air- and photo-stable luminescent carbodicarbene-azaboraacenium ions. Nat Chem 2024; 16:437-445. [PMID: 38052948 DOI: 10.1038/s41557-023-01381-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023]
Abstract
Substitution of a C=C bond by an isoelectronic B-N bond is a well-established strategy to alter the electronic structure and stability of acenes. BN-substituted acenes that possess narrow energy gaps have attractive optoelectronic properties. However, they are susceptible to air and/or light. Here we present the design, synthesis and molecular structures of fully π-conjugated cationic BN-doped acenes stabilized by carbodicarbene ligands. They are luminescent in the solution and solid states and show high air and moisture stability. Compared with their neutral BN-substituted counterparts as well as the parent all-carbon acenes, these species display improved quantum yields and small optical gaps. The electronic structures of the azabora-anthracene and azabora-tetracene cations resemble higher-order acenes while possessing high photo-oxidative resistance. Investigations using density functional theory suggest that the stability and photo-physics of these conjugated systems may be ascribed to their cationic nature and the electronic properties of the carbodicarbene.
Collapse
Affiliation(s)
- Chun-Lin Deng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Akachukwu D Obi
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Bi Youan E Tra
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samir Kumar Sarkar
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Lamprecht A, Arrowsmith M, Dietz M, Fuchs S, Rempel A, Härterich M, Braunschweig H. Synthesis, reduction and C-H activation chemistry of azaborinines with redox-active organoboryl substituents. Dalton Trans 2024; 53:1004-1013. [PMID: 38088750 DOI: 10.1039/d3dt03826b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The 2,3,4,5,6-pentaphenyl-1,2-azaborinin-1-yl (PPAB) potassium complex 1 undergoes facile salt metathesis with 9,10-dibromo-9,10-dihydroboraanthracene (DBABr2), 5-bromodibenzo[b,d]borole (DBBBr), 1-chlorotetraphenylborole (TPBCl) and dibromo(phenyl)borane (BBr2Ph) to yield the corresponding N-borylated azaborinines N-DBABr-PPAB (2, which hydrolyses and dimerises to the oxo-bridged N,N'-O(DBA)2-(PPAB)2, 3), N,N'-DBA-(PPAB)2 (4), N-DBB-PPAB (5), N-PPB-PPAB (7) and N-BBrPh-PPBA (9). Stepwise reduction of 4 yields the corresponding stable radical anion 4˙- and dianion 42-. One-electron reduction of 5 with KC8 yields the purple radical anion 5˙-, which forms a highly insoluble coordination polymer. 5˙- undergoes very slow radical intramolecular ortho-C-H activation at the C4-phenyl substituent of the PPAB moiety, yielding a BN-analogue of the 5,5'-spiro-bi[dibenzoborole] anion, [6]K. Compound 7 cannot be isolated and undergoes spontaneous and diastereoselective 2,5-anti-addition of the ortho-C-H bond of the PPAB C4-phenyl substituent to yield a novel BNB-analogue of the triply fused dihydrocyclopenta[l]phenanthrene cation, compound 8. Finally the one-electron reduction of 9 results in the ortho-C-H activation of the PPAB C4-phenyl substituent at an in situ-generated dicoordinate boryl anion (10), resulting in the formation of a BNB-analogue of 9H-fluorene, the borate 11-. DFT calculations provide a rationale for the diverse C-H activations observed in these reactions.
Collapse
Affiliation(s)
- Anna Lamprecht
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sonja Fuchs
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Anna Rempel
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Marcel Härterich
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
5
|
Baranac-Stojanović M, Aleksić J, Stojanović M. Theoretical investigation of tautomerism of 2- and 4-pyridones: origin, substituent and solvent effects. Org Biomol Chem 2023; 22:144-158. [PMID: 38051113 DOI: 10.1039/d3ob01588b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Computational investigation at the BHandHLYP/6-311+G(d,p) level of theory of the gas-phase tautomerism of 2- and 4-pyridones confirmed the slight prevalence of lactim in the case of the former, but its dominance in the case of the latter, as shown previously. Examination of aromaticity by using HOMA, EDDB, NBOdel, NICS and AICD led to the conclusion that tautomerization of 4-pyridone results in greater aromaticity gain. It is also driven by the Pauli repulsion relief, which was revealed by the tautomerization energy decomposition analysis. By contrast, in the case of 2-pyridone, lactim is favoured by orbital and electrostatic interactions and disfavoured by the Pauli repulsion. Aromaticity gain in this case is smaller. The position of the tautomeric equilibrium can be modulated by substituent inductive effects (Cl and F), inductive and resonance effects (NH2 and NO2), hydrogen bonding (NO2), and medium polarity, the increase of which increases lactam population.
Collapse
Affiliation(s)
- Marija Baranac-Stojanović
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P. O. Box 158, 11000 Belgrade, Serbia.
| | - Jovana Aleksić
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P. O. Box 473, 11000 Belgrade, Serbia
| | - Milovan Stojanović
- University of Belgrade - Institute of Chemistry, Technology and Metallurgy - Center for Chemistry, Njegoševa 12, P. O. Box 473, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Kothavale S, Iqbal SA, Hanover EL, Gupta AK, Zysman-Colman E, Ingleson MJ. Borylation-Reduction-Borylation for the Formation of 1,4-Azaborines. Org Lett 2023; 25:8912-8916. [PMID: 38055858 PMCID: PMC10729022 DOI: 10.1021/acs.orglett.3c03731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Given the current interest in materials containing 1,4-azaborine units, the development of new routes to these structures is important. Carbonyl directed electrophilic borylation using BBr3 is a facile method for the ortho-borylation of N,N-diaryl-amide derivatives. Subsequent addition of Et3SiH results in carbonyl reduction and then formation of 1,4-azaborines that can be protected in situ using a Grignard reagent. Overall, borylation-reduction-borylation is a one-pot methodology to access 1,4-azaborines from simple precursors.
Collapse
Affiliation(s)
- Shantaram
S. Kothavale
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Saqib A. Iqbal
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| | - Emily L. Hanover
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
- Organic
Semiconductor Centre and EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Abhishek K. Gupta
- Organic
Semiconductor Centre and EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Eli Zysman-Colman
- Organic
Semiconductor Centre and EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Michael J. Ingleson
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
7
|
H. El-Demerdash S, F. Gad S, M. El-Mehasseb I, E. El-Kelany K. Isosterism in pyrrole via azaboroles substitution, a theoretical investigation for electronic structural, stability and aromaticity. Heliyon 2023; 9:e20542. [PMID: 37810871 PMCID: PMC10551570 DOI: 10.1016/j.heliyon.2023.e20542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/26/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
This work uses ab-initio CBS-QB3 and density functional theory (B3LYP) to analyze the structure, stability, and aromaticity of all isosteric nitrogen-boron pyrroles. The mono-NB unit substituted group of the isosteric NB pyrrole has four isosteres, whereas the multi-NB unit substituted group has two isosteres. These two groups make up all isosteric NB pyrrole. For structural, energetic, magnetic, and electron delocalization criteria, the results highlight the predominance of the PN3B2 isostere and its greater stability over other conformers. In addition, the global reactivity indices, ESP, HOMO-LUMO, and NBO charges have all been estimated to forecast the active side's electron donation and acceptance. These isosteres are categorized as weak electrophiles and marginal nucleophiles. NB-isosteres have poorer stability, HOMO-LUMO gap, and aromaticity than the parent (pyrrole). In general, NB compounds with more ring sharing are less aromatic than NB molecules with less ring sharing. The current study is anticipated to help in understanding of the chemistry of NB substituted molecules and their experimental identification and characterization.
Collapse
Affiliation(s)
| | - Shaimaa F. Gad
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Kafr el-Sheikh, Egypt
| | - Ibrahim M. El-Mehasseb
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Kafr el-Sheikh, Egypt
| | - Khaled E. El-Kelany
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, 33516, Kafr el-skiekh, Egypt
| |
Collapse
|
8
|
Lindl F, Lamprecht A, Arrowsmith M, Khitro E, Rempel A, Dietz M, Wellnitz T, Bélanger-Chabot G, Stoy A, Paprocki V, Prieschl D, Lenczyk C, Ramler J, Lichtenberg C, Braunschweig H. Aromatic 1,2-Azaborinin-1-yls as Electron-Withdrawing Anionic Nitrogen Ligands for Main Group Elements. Chemistry 2023; 29:e202203345. [PMID: 36412126 DOI: 10.1002/chem.202203345] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/23/2022]
Abstract
The 2-aryl-3,4,5,6-tetraphenyl-1,2-azaborinines 1-EMe3 and 2-EMe3 (E=Si, Sn; aryl=Ph (1), Mes (=2,4,6-trimethylphenyl, 2)) were synthesized by ring-expansion of borole precursors with N3 EMe3 -derived nitrenes. Desilylative hydrolysis of 1- and 2-SiMe3 yielded the corresponding N-protonated azaborinines, which were deprotonated with nBuLi or MN(SiMe3 )2 (M=Na, K) to the corresponding group 1 salts, 1-M and 2-M. While the lithium salts crystallized as monomeric Lewis base adducts, the potassium salts formed coordination polymers or oligomers via intramolecular K⋅⋅⋅aryl π interactions. The reaction of 1-M or 2-M with CO2 yielded N-carboxylate salts, which were derivatized by salt metathesis to methyl and silyl esters. Salt metathesis of 1-M or 2-M with methyl triflate, [Cp*BeCl] (Cp*=C5 Me5 ), BBr2 Ar (Ar=Ph, Mes, 2-thienyl), ECl3 (E=B, Al, Ga) and PX3 (X=Cl, Br) afforded the respective group 2, 13 and 15 1,2-azaborinin-2-yl complexes. Salt metathesis of 1-K with BBr3 resulted not only in N-borylation but also Ph-Br exchange between the endocyclic and exocyclic boron atoms. Solution 11 B NMR data suggest that the 1,2-azaborinin-2-yl ligand is similarly electron-withdrawing to a bromide. In the solid state the endocyclic bond length alternation and the twisting of the C4 BN ring increase with the sterics of the substituents at the boron and nitrogen atoms, respectively. Regression analyses revealed that the downfield shift of the endocyclic 11 B NMR resonances is linearly correlated to both the degree of twisting of the C4 BN ring and the tilt angle of the N-substituent. Calculations indicate that the 1,2-azaborinin-1-yl ligand has no sizeable π-donor ability and that the aromaticity of the ring can be subtly tuned by the electronics of the N-substituent.
Collapse
Affiliation(s)
- Felix Lindl
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anna Lamprecht
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Merle Arrowsmith
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Eugen Khitro
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anna Rempel
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Maximilian Dietz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Tim Wellnitz
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | | | - Andreas Stoy
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Valerie Paprocki
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Dominik Prieschl
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Carsten Lenczyk
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jacqueline Ramler
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Crispin Lichtenberg
- Chemistry Department - FB 15, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032, Marburg, Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
9
|
Chen C, Du C, Wang X. The Rise of 1,4-BN-Heteroarenes: Synthesis, Properties, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200707. [PMID: 35419988 PMCID: PMC9259729 DOI: 10.1002/advs.202200707] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/25/2022] [Indexed: 05/09/2023]
Abstract
BN-heteroarenes, which employ both boron and nitrogen in aromatic hydrocarbons, have gained great attention in the fields of organic chemistry and materials science. Nevertheless, the extensive studies on BN-heteroarenes are largely limited to 1,2-azaborine-based compounds with B-N covalent bonds, whereas 1,3- and 1,4-BN-heteroarenes are relatively rare due to their greater challenge in the synthesis. Recently, significant progresses have been achieved in the synthesis and applications of BN-heteroarenes featuring 1,4-azaborines, especially driven by their significant potential as multiresonant thermally activated delayed fluorescence (MR-TADF) materials. Therefore, it is timely to review these advances from the chemistry perspective. This review summarizes the synthetic methods and recent achievements of 1,4-azaborine-based BN-heteroarenes and discusses their unique properties and potential applications of this emerging class of materials, highlighting the value of 1,4-BN-heteroarenes beyond MR-TADF materials. It is hoped that this review would stimulate the conversation and cooperation between chemists who are interested in azaborine chemistry and materials scientists working in the fields of organic optoelectronics, metal catalysis, and carbon-based nanoscience etc.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Elemento‐Organic ChemistryCollege of ChemistryNankai UniversityTianjin300071China
| | - Cheng‐Zhuo Du
- State Key Laboratory of Elemento‐Organic ChemistryCollege of ChemistryNankai UniversityTianjin300071China
| | - Xiao‐Ye Wang
- State Key Laboratory of Elemento‐Organic ChemistryCollege of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
10
|
Crumbach M, Bachmann J, Fritze L, Helbig A, Krummenacher I, Braunschweig H, Helten H. Dithiophene‐Fused Oxadiborepins and Azadiborepins: A New Class of Highly Fluorescent Heteroaromatics. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Merian Crumbach
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jonas Bachmann
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Lars Fritze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andreas Helbig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB) Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
11
|
Crumbach M, Bachmann J, Fritze L, Helbig A, Krummenacher I, Braunschweig H, Helten H. Dithiophene-Fused Oxadiborepins and Azadiborepins: A New Class of Highly Fluorescent Heteroaromatics. Angew Chem Int Ed Engl 2021; 60:9290-9295. [PMID: 33522053 PMCID: PMC8252115 DOI: 10.1002/anie.202100295] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Access to dithiophene-fused oxadiborepins and the first azadiborepins attained via a modular synthesis route are presented. The new compounds emit intense blue light, some of which demonstrate fluorescence quantum yields close to unity. Cyclic voltammetry (CV) revealed electrochemically reversible one-electron reduction processes. The weak aromatic character of the novel 1,2,7-azadiborepin ring is demonstrated with in-depth theoretical investigations using nucleus-independent chemical shift (NICS) scans and anisotropy of the induced current density (ACID) calculations.
Collapse
Affiliation(s)
- Merian Crumbach
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jonas Bachmann
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Lars Fritze
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Andreas Helbig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
12
|
Palomino‐Ruiz L, Rodríguez‐González S, Fallaque JG, Márquez IR, Agraït N, Díaz C, Leary E, Cuerva JM, Campaña AG, Martín F, Millán A, González MT. Single‐Molecule Conductance of 1,4‐Azaborine Derivatives as Models of BN‐doped PAHs. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lucía Palomino‐Ruiz
- Departamento de Química Orgánica Facultad de Ciencias Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ) Universidad de Granada 18071 Granada Spain
- Fundación IMDEA Nanociencia 28049 Madrid Spain
| | - Sandra Rodríguez‐González
- Departamento de Química, Módulo 13 Universidad Autónoma de Madrid 28049 Madrid Spain
- Present address: Departamento de Química Física Facultad de Ciencias Universidad de Málaga 29071 Málaga Spain
| | | | - Irene R. Márquez
- Departamento de Química Orgánica Facultad de Ciencias Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ) Universidad de Granada 18071 Granada Spain
- Centro de Instrumentación Científica Universidad de Granada 18071 Granada Spain
| | - Nicolás Agraït
- Fundación IMDEA Nanociencia 28049 Madrid Spain
- Departamento de Física de la Materia Condensada Universidad Autónoma de Madrid 28049 Madrid Spain
- Condensed Matter Physics Center (IFIMAC) Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Cristina Díaz
- Departamento de Química, Módulo 13 Universidad Autónoma de Madrid 28049 Madrid Spain
- Present address: Departamento de Química Física Facultad de CC. Químicas Universidad Complutense de Madrid 28040 Madrid Spain
| | | | - Juan M. Cuerva
- Departamento de Química Orgánica Facultad de Ciencias Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ) Universidad de Granada 18071 Granada Spain
| | - Araceli G. Campaña
- Departamento de Química Orgánica Facultad de Ciencias Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ) Universidad de Granada 18071 Granada Spain
| | - Fernando Martín
- Fundación IMDEA Nanociencia 28049 Madrid Spain
- Departamento de Química, Módulo 13 Universidad Autónoma de Madrid 28049 Madrid Spain
- Condensed Matter Physics Center (IFIMAC) Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Alba Millán
- Departamento de Química Orgánica Facultad de Ciencias Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ) Universidad de Granada 18071 Granada Spain
| | | |
Collapse
|
13
|
Palomino-Ruiz L, Rodríguez-González S, Fallaque JG, Márquez IR, Agraït N, Díaz C, Leary E, Cuerva JM, Campaña AG, Martín F, Millán A, González MT. Single-Molecule Conductance of 1,4-Azaborine Derivatives as Models of BN-doped PAHs. Angew Chem Int Ed Engl 2021; 60:6609-6616. [PMID: 33348468 DOI: 10.1002/anie.202014194] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Indexed: 01/06/2023]
Abstract
The single-molecule conductance of a series of BN-acene-like derivatives has been measured by using scanning tunneling break-junction techniques. A strategic design of the target molecules has allowed us to include azaborine units in positions that unambiguously ensure electron transport through both heteroatoms, which is relevant for the development of customized BN-doped nanographenes. We show that the conductance of the anthracene azaborine derivative is comparable to that of the pristine all-carbon anthracene compound. Notably, this heteroatom substitution has also allowed us to perform similar measurements on the corresponding pentacene-like compound, which is found to have a similar conductance, thus evidencing that B-N doping could also be used to stabilize and characterize larger acenes for molecular electronics applications. Our conclusions are supported by state-of-the-art transport calculations.
Collapse
Affiliation(s)
- Lucía Palomino-Ruiz
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain.,Fundación IMDEA Nanociencia, 28049, Madrid, Spain
| | - Sandra Rodríguez-González
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Present address: Departamento de Química Física, Facultad de Ciencias, Universidad de Málaga, 29071, Málaga, Spain
| | | | - Irene R Márquez
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain.,Centro de Instrumentación Científica, Universidad de Granada, 18071, Granada, Spain
| | - Nicolás Agraït
- Fundación IMDEA Nanociencia, 28049, Madrid, Spain.,Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Cristina Díaz
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Present address: Departamento de Química Física, Facultad de CC. Químicas, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Edmund Leary
- Fundación IMDEA Nanociencia, 28049, Madrid, Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Araceli G Campaña
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | - Fernando Martín
- Fundación IMDEA Nanociencia, 28049, Madrid, Spain.,Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Alba Millán
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, 18071, Granada, Spain
| | | |
Collapse
|
14
|
Appiarius Y, Stauch T, Lork E, Rusch P, Bigall NC, Staubitz A. From a 1,2-azaborinine to large BN-PAHs via electrophilic cyclization: synthesis, characterization and promising optical properties. Org Chem Front 2021. [DOI: 10.1039/d0qo00723d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A synthetic approach towards boron-nitrogen substituted polycyclic aromatic hydrocarbons (BN-PAHs) via electrophilic cyclization is described and it is shown that the variation of the rings' connectivity may tune the emission wavelengths effectively.
Collapse
Affiliation(s)
- Yannik Appiarius
- University of Bremen
- Institute for Analytical and Organic Chemistry
- D-28359 Bremen
- Germany
- MAPEX Center for Materials and Processes
| | - Tim Stauch
- MAPEX Center for Materials and Processes
- D-28359 Bremen
- Germany
- University of Bremen
- Institute for Physical and Theoretical Chemistry
| | - Enno Lork
- University of Bremen
- Institute for Physical and Theoretical Chemistry
- D-28359 Bremen
- Germany
- University of Bremen
| | - Pascal Rusch
- Bremen Center for Computational Materials Science
- D-28359 Bremen
- Germany
- Leibniz University Hannover
- Institute for Physical Chemistry and Electrochemistry
| | - Nadja C. Bigall
- Bremen Center for Computational Materials Science
- D-28359 Bremen
- Germany
- Leibniz University Hannover
- Institute for Physical Chemistry and Electrochemistry
| | - Anne Staubitz
- University of Bremen
- Institute for Analytical and Organic Chemistry
- D-28359 Bremen
- Germany
- MAPEX Center for Materials and Processes
| |
Collapse
|
15
|
Ota K, Kinjo R. Aromatic nature of neutral and dianionic 1,4-diaza-2,3,5,6-tetraborinine derivatives. RSC Adv 2020; 11:592-598. [PMID: 35423032 PMCID: PMC8691108 DOI: 10.1039/d0ra09040a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
The aromatically relevant parameters of boron-rich inorganic benzenes-neutral and dianionic 1,4-diaza-2,3,5,6-tetraborinine derivatives (B4N2R6)-have been computationally estimated and evaluated from geometric, electronic, magnetic, and energetic points of view. The majority of the criteria (ASE, NICSzz, ELF, and PDI) indicate that the aromaticity of the neutral B4N2 benzene analogue stabilized by Lewis bases lies in between those of benzene and borazine. On the other hand, the aromaticity of the dianionic B4N2 benzene analogue 4' is controversial. The pronounced aromatic nature of 4' is supported by ELFπ, PDI, and NICSπzz, but ASE, the FiPC-NICS plot, and ACID oppose this. These data confirm that even with the same B4N2-skeletal framework of a 6π-system, the aromatic feature varies depending on the overall charge of the B4N2 systems.
Collapse
Affiliation(s)
- Kei Ota
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Rei Kinjo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
16
|
Valadbeigi Y. Effects of intramolecular hydrogen bond and electron delocalization on the basicity of proton sponges and superbases with benzene, pyridine, pyrazine and pyrimidine scaffolds. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Valadbeigi Y. Proton sponges and superbases with nitrogen, phosphorus, arsenic, oxygen, sulfur, and selenium as proton acceptor sites. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Effect of heteroatoms on aromaticity analyzed by geometric, magnetic, and electronic criteria. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Su P, Tang Z, Wu W. Generalized Kohn‐Sham energy decomposition analysis and its applications. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering Xiamen University Xiamen China
| | - Zhen Tang
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering Xiamen University Xiamen China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering Xiamen University Xiamen China
| |
Collapse
|
20
|
Li J, Daniliuc CG, Mück-Lichtenfeld C, Kehr G, Erker G. Multi-Component Synthesis of Rare 1,3-Dihydro-1,3-azaborinine Derivatives: Application of a Bora-Nazarov Type Reaction. Angew Chem Int Ed Engl 2019; 58:15377-15380. [PMID: 31418990 DOI: 10.1002/anie.201909530] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 11/09/2022]
Abstract
The twofold hydroboration products of (Fmes)BH2 ⋅SMe2 with a series of alkynes (2-butyne, arylethynes) react with two molar equiv of 2,6-dimethylphenyl isocyanide (CN-Xyl) at 80 °C to give rare examples of 1,3-azaborinine derivatives. A mechanistic study revealed a reaction course involving insertion of one isonitrile followed by a bora-Nazarov type ring-closure reaction and subsequent isonitrile insertion to give the respective 1,3-dihydro-1,3-azaborinines 5.
Collapse
Affiliation(s)
- Jun Li
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 40, 48149, Münster, Germany
| |
Collapse
|
21
|
Baranac-Stojanović M. Triplet-State Structures, Energies, and Antiaromaticity of BN Analogues of Benzene and Their Benzo-Fused Derivatives. J Org Chem 2019; 84:13582-13594. [PMID: 31538474 DOI: 10.1021/acs.joc.9b01858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well known that benzene is aromatic in the ground state (the Hückel's rule) and antiaromatic in the first triplet (T1) excited state (the Baird's rule). Whereas its BN analogues, the three isomeric dihydro-azaborines, have been shown to have various degrees of aromaticity in their ground state, almost no data are available for their T1 states. Thus, the purpose of this work is to theoretically [B3LYP/6-311+G(d,p)] predict structures, energies, and antiaromaticity of T1 dihydro-azaborines and some benzo-fused derivatives. Conclusions are based on spin density analysis, isogyric and hydrogenation reactions, HOMA, NICS, and ACID calculations. The results suggest that singlet-triplet energy gaps, antiaromaticity, and related excited-state properties of benzene, naphthalene, and anthracene could be tuned and controlled by the BN substitution pattern. While all studied compounds remain (nearly) planar upon excitation, the spin density distribution in T1 1,4-dihydro-azaborine induces a conformational change by which the two co-planar C-H bonds in the ground state become perpendicular to each other in the excited state. This predicted change in geometry could be of interest for the design of new photomechanical materials. Excitation of B-CN/N-NH2 1,4-azaborine would have a few effects: intramolecular charge transfer, aromaticity reversal, rotation, and stereoelectronic Umpolung of the amino group.
Collapse
Affiliation(s)
- Marija Baranac-Stojanović
- Faculty of Chemistry , University of Belgrade , Studentski trg 12-16 , P.O.Box 158, 11000 Belgrade , Serbia
| |
Collapse
|
22
|
Li J, Daniliuc CG, Mück‐Lichtenfeld C, Kehr G, Erker G. Multi‐Component Synthesis of Rare 1,3‐Dihydro‐1,3‐azaborinine Derivatives: Application of a Bora‐Nazarov Type Reaction. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Li
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraβe 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraβe 40 48149 Münster Germany
| | - Christian Mück‐Lichtenfeld
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraβe 40 48149 Münster Germany
| | - Gerald Kehr
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraβe 40 48149 Münster Germany
| | - Gerhard Erker
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraβe 40 48149 Münster Germany
| |
Collapse
|
23
|
Brown PA, Martin CD, Shuford KL. Aromaticity of unsaturated BEC 4 heterocycles (E = N, P, As, Sb, O, S, Se, Te). Phys Chem Chem Phys 2019; 21:18458-18466. [PMID: 31250870 DOI: 10.1039/c9cp02387a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A compendium of pnictogen and chalcogen substituted boron heterocycles were assessed for their aromatic character by first principles density functional theory. Group-15 and Group-16 elements were placed at the ortho-, meta-, and para-positions of six-membered rings relative to boron to assess their impact on the aromaticity of the unsaturated heterocycles. Aromaticity was analyzed by a multidimensional approach using nuclear independent chemical shifts, gauge-including magnetically induced current, as well as natural bond orbital and natural resonance theory analyses. Based on these methods, we observe a general decline of aromaticity in heavier pnictaborines while the chalcogen analogues maintain relatively strong aromatic character. These general trends result from complementary π-π* natural bond order interactions that sustain resonance within the ring of each heterocycle establishing a pattern of cyclic delocalization. Consequently, natural resonance theory displays strong resonance, which is corroborated with the signed modulus of ring current, toroidal vortices of current maps, and elevated average induced current throughout the ring. The 1,3-configurations for pnictaborines and chalcogenaborines are generally more aromatic compared to the 1,2- and 1,4-isomers, which contain π-holes that limit diatropism within the heterocycles. However, an energetic trend favors the 1,2-heterocycles in both groups, with a few exceptions driven in large-part by π-donation of the lone pair on the heteroatom to the pz orbital on the adjacent boron resulting in stabilization. The importance of planarity for high aromaticity is demonstrated, especially in the pnictaborine isomers where pyramidalization at the pnictogen is favored, while bond regularity seems a less important criterion.
Collapse
Affiliation(s)
- Paul A Brown
- Department of Chemistry & Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798-7348, USA.
| | | | | |
Collapse
|
24
|
Sun T, Guo P, Xie Q, Zhao L, Zhu J. Bonded to Carbon or Nitrogen? This is a Question on the Regioselectivity in Hyperconjugative Aromaticity. J Org Chem 2019; 84:3881-3886. [PMID: 30821452 DOI: 10.1021/acs.joc.8b02996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In chemistry, regioselectivity is the preference of one direction of chemical bond making or breaking over all other possible directions. Although it has been extensively investigated in various reactions, the regioselectivity of hyperconjugative aromaticity on either main group systems or transition metal ones remains elusive due to the challenge of synthesizing the target products. Here we report a joint theoretical and experimental study on this issue. Theoretical calculations predicted that electron-withdrawing groups prefer an attachment to the sp3-hybridized carbon atom rather than the nitrogen atom in indoliums. For the electron-donating groups, the two isomers bonded to the sp3-hybridized carbon or nitrogen atom are almost isoenergetic. When both sp2- and sp3-hybridized carbon and nitrogen atoms in the five-membered ring of indoliums are considered, the isomer with the polyaurated substituents bonded to the sp3-hybridized carbon atom is thermodynamically more stable than that with the polyaurated substituents bonded to the sp3-hybridized nitrogen atom. This prediction is reasonably verified by experimental observation. Bond dissociation energy is found to be more important than aromaticity in rationalizing such a preference. Our findings could help experimentalists to design and realize more novel hyperconjugative aromatics.
Collapse
Affiliation(s)
- Tingting Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ping Guo
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Qiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
25
|
Opie CR, Noda H, Shibasaki M, Kumagai N. All Non-Carbon B 3 NO 2 Exotic Heterocycles: Synthesis, Dynamics, and Catalysis. Chemistry 2019; 25:4648-4653. [PMID: 30770614 DOI: 10.1002/chem.201900715] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 02/03/2023]
Abstract
The B3 NO2 six-membered heterocycle (1,3-dioxa-5-aza-2,4,6-triborinane=DATB), comprising three different non-carbon period 2 elements, has been recently demonstrated to be a powerful catalyst for dehydrative condensation of carboxylic acids and amines. The tedious synthesis of DATB, however, has significantly diminished its utility as a catalyst, and thus the inherent chemical properties of the ring system have remained virtually unexplored. Here, a general and facile synthetic strategy that harnesses a pyrimidine-containing scaffold for the reliable installation of boron atoms is disclosed, giving rise to a series of Pym-DATBs from inexpensive materials in a modular fashion. The identification of a soluble Pym-DATB derivative allowed for the investigation of the dynamic nature of the B3 NO2 ring system, revealing differential ring-closing and -opening behaviors depending on the medium. Readily accessible Pym-DATBs proved their utility as efficient catalysts for dehydrative amidation with broad substrate scope and functional-group tolerance, offering a general and practical catalytic alternative to reagent-driven amidation.
Collapse
Affiliation(s)
- Christopher R Opie
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Hidetoshi Noda
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Masakatsu Shibasaki
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Naoya Kumagai
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| |
Collapse
|
26
|
Baranac-Stojanović M, Stojanović M. The effect of two types of dibenzoannulation of pentalene on molecular energies and magnetically induced currents. Phys Chem Chem Phys 2019; 21:3250-3263. [PMID: 30681696 DOI: 10.1039/c8cp07875k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The effect of two types of dibenzo-fusion of pentalene in the singlet and triplet states on its molecular energies and magnetically induced ring currents was examined via density functional calculations. The isomerization energy decomposition analysis (IEDA) together with the calculated aromaticity indices (NICS(1)zz, HOMA and FLUπ), estimation of resonance energies (RE) and extra cyclic resonance energies (ECRE) via the NBO method, and the NICS-XY-scans revealed that the π-electronic system is the most important factor controlling the molecular energies. The [a,f] topology features greater delocalization, which results in two opposing effects: larger ECRE, but weaker π-bonding. The latter is mainly responsible for the higher energy of [a,f]-dibenzopentalene (DBP) (ΔEiso = 21.7 kcal mol-1), with the other effects being σ-orbital and electrostatic interactions. The reversal of energetic stability in the triplet states (ΔEiso = -10.8 kcal mol-1) mainly comes from the reduced Pauli repulsion in [a,f]-DBP, which stabilizes the unpaired spin density over the central trimethylenemethane subunit vs. the central pentalene subunit in [a,e]-DBP. Although the [a,e] topology only reduces the diatropic and paratropic currents of the elementary subunits, benzene and pentalene, the [a,f] topology also creates strong global paratropicity involving the benzene rings. Both DBP isomers are characterized by global and smaller semi-global and local diatropic currents in the triplet state.
Collapse
Affiliation(s)
- Marija Baranac-Stojanović
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P.O. Box 158, 11000 Belgrade, Serbia.
| | | |
Collapse
|
27
|
van de Wouw HL, Klausen RS. BN Polystyrenes: Emerging Optical Materials and Versatile Intermediates. J Org Chem 2019; 84:1117-1125. [PMID: 30620583 DOI: 10.1021/acs.joc.8b02921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BN polystyrenes are an emerging class of polyolefins functionalized with aromatic side chains in which at least one CC bond is replaced with a BN bond. This class of structures exhibits unusual photophysical properties relative to organic polymers. BN polystyrenes serve as intermediates in the preparation of functional polymers, including stereoregular polar polyolefins. The consequences of BN for CC bond substitution on reactivity and properties are highlighted.
Collapse
Affiliation(s)
- Heidi L van de Wouw
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Rebekka S Klausen
- Department of Chemistry , Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| |
Collapse
|
28
|
Baranac-Stojanović M, Stojanović M. Does aromaticity account for an enhanced thermodynamic stability? The case of monosubstituted azaborines and the stereoelectronic chameleonism of the NH 2 group. Phys Chem Chem Phys 2019; 21:9465-9476. [PMID: 31016295 DOI: 10.1039/c9cp01011d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work was initiated by the increasing interest in BN/CC isosterism and by the long-lasting interest in the concepts of aromaticity and substituent effects. We have theoretically examined the aromaticity and stability of monosubstituted BN isosters of benzene, the three isomeric azaborines. The results provide insight into the effect of substitution on two basic molecular properties, which are influenced, here, by the substituent effects and by the B/N relationship in the ring. The results, along with other examples in the literature, also warn chemists that the general belief that aromaticity accounts for enhanced thermodynamic stability is not always true. The stability of cyclic, conjugated compounds depends on several effects, and only one of them is aromaticity. In addition, our calculations predict a switching of electronic properties of the NH2 group from the usual p-electron donor to a π-electron acceptor when it is moved from the B/C atoms to the nitrogen atom in all isomers, or C6 in 1,3-azaborine. This is the result of the conformational change that places the NLP in the plane of the ring and the NH bonds in a favourable spatial position to act as acceptors of π-electron density.
Collapse
Affiliation(s)
- Marija Baranac-Stojanović
- University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, P.O. Box 158, 11000 Belgrade, Serbia.
| | | |
Collapse
|
29
|
Donald KJ, Gillespie S, Shafi Z. Ouroboros: Heterocycles closed by dative σ bonds and stabilized by π delocalization. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
30
|
Stojanović M, Baranac-Stojanović M. Analysis of Stability and (Anti)aromaticity of BN-Dibenzo[ a
, e
]pentalenes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Milovan Stojanović
- Institute of Chemistry, Technology and Metallurgy, Center for Chemistry; University of Belgrade; Njegoševa 12 11000 Belgrade Serbia
| | | |
Collapse
|
31
|
Ohishi T, Igarashi K, Kadosono H, Kikkawa S, Azumaya I, Yokoyama A. Synthesis and structural analysis of conjugated benzoxazaborine derivatives. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Yourdkhani S, Chojecki M, Korona T. Interaction of Non-polarizable Cations with Azaborine Isomers and Their Mono-Substituted Derivatives: Position, Induction, and Non-Classical Effects Matter. Chemphyschem 2018; 19:3092-3106. [DOI: 10.1002/cphc.201800691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Sirous Yourdkhani
- Department of Chemical Physics and Optics; Faculty of Mathematics and Physics; Charles University; Ke Karlovu 3, CZ- 12116 Prague 2 Czech Republic
- Faculty of Chemistry; University of Warsaw; ul. Pasteura 1 02-093 Warsaw Poland
| | - Michał Chojecki
- Faculty of Chemistry; University of Warsaw; ul. Pasteura 1 02-093 Warsaw Poland
| | - Tatiana Korona
- Faculty of Chemistry; University of Warsaw; ul. Pasteura 1 02-093 Warsaw Poland
| |
Collapse
|
33
|
van de Wouw HL, Awuyah EC, Baris JI, Klausen RS. An Organoborane Vinyl Monomer with Styrene-like Radical Reactivity: Reactivity Ratios and Role of Aromaticity. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01368] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Heidi L. van de Wouw
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Elorm C. Awuyah
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Jodie I. Baris
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Rebekka S. Klausen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
34
|
Dey S, Manogaran D, Manogaran S, Schaefer HF. Quantification of Aromaticity of Heterocyclic Systems Using Interaction Coordinates. J Phys Chem A 2018; 122:6953-6960. [DOI: 10.1021/acs.jpca.8b05041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Soumyadeb Dey
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Dhivya Manogaran
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
| | - Sadasivam Manogaran
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, India
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
35
|
Giustra ZX, Liu SY. The State of the Art in Azaborine Chemistry: New Synthetic Methods and Applications. J Am Chem Soc 2018; 140:1184-1194. [PMID: 29314835 PMCID: PMC6190836 DOI: 10.1021/jacs.7b09446] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Boron-nitrogen heteroarenes hold great promise for practical application in many areas of chemistry. Enduring interest in realizing this potential has in turn driven perennial innovation with respect to these compounds' synthesis. This Perspective discusses in detail the most recent advances in methods pertaining to the preparation of BN-isosteres of benzene, naphthalene, and their derivatives. Additional focus is placed on the progress enabled by these syntheses toward functional utility of such BN-heterocycles in biochemistry and pharmacology, materials science, and transition-metal-based catalysis. The prospects for future research efforts in these and related fields are also assessed.
Collapse
Affiliation(s)
- Zachary X. Giustra
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
36
|
Valadbeigi Y. Comparison of effects of charge delocalization and π-electron delocalization on the stability of monocyclic compounds. J Mol Graph Model 2018; 80:104-112. [PMID: 29328991 DOI: 10.1016/j.jmgm.2017.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 11/17/2022]
Abstract
Aromaticities and stabilities of ortho, meta, and para isomers of some derivatives of benzene, C5H5- and C7H7+ were studied and compared basis on the NICS index and their relative energies. For the benzene and C7H7+ derivatives, the ortho isomers with less stability were more aromatic. This discrepancy was also observed for the molecules with conjugated and non-conjugated π-electrons. However, for the charged conjugated systems, the structures with delocalized charge were more stable. Effect of electron withdrawing (EWGs) and electron donating groups (EDGs) on the electron delocalization and stability of the neutral and charged molecules was investigated. It was observed that the EWDs and EDGs change the stability trend of the neutral systems, while in the case of charged molecules, the isomers with delocalized charge were more stable regardless of the type of substituents. Although both π-electron delocalization and charge delocalization stabilize the aromatic and conjugated systems, effect of charge delocalization on the stability is more than that of π-electron delocalization.
Collapse
Affiliation(s)
- Younes Valadbeigi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
37
|
Stojanović M, Baranac-Stojanović M. Mono BN-substituted analogues of naphthalene: a theoretical analysis of the effect of BN position on stability, aromaticity and frontier orbital energies. NEW J CHEM 2018. [DOI: 10.1039/c8nj01529e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An insight into the electronic structure changes driven by CC → BN substitution in a naphthalene system has been given by quantum chemical calculations.
Collapse
Affiliation(s)
- Milovan Stojanović
- University of Belgrade
- Institute of Chemistry
- Technology and Metallurgy – Center for Chemistry
- 11000 Belgrade
- Serbia
| | | |
Collapse
|
38
|
Valadbeigi Y. Organometallic acids with azaborine, oxaborine, azaborole and oxaborole scaffolds. NEW J CHEM 2018. [DOI: 10.1039/c8nj05151h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Organoboron compounds were used in the design of organometallic acids exhibiting a wide acidity range from weak acids to superacids.
Collapse
Affiliation(s)
- Younes Valadbeigi
- Department of Chemistry
- Faculty of Science
- Imam Khomeini International University
- Qazvin
- Iran
| |
Collapse
|
39
|
Baranac-Stojanović M. 4π-Electron B-N Monocycles: Stability and (Anti)aromaticity. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marija Baranac-Stojanović
- Faculty of Chemistry; University of Belgrade; Studentski trg 12-16, P. O. Box 158 11000 Belgrade Serbia
| |
Collapse
|
40
|
Bélanger-Chabot G, Braunschweig H, Roy DK. Recent Developments in Azaborinine Chemistry. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700562] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guillaume Bélanger-Chabot
- Institute for Inorganic Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Dipak Kumar Roy
- Institute for Inorganic Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
41
|
Rouf AM, Wu J, Zhu J. Probing a General Rule towards Thermodynamic Stabilities of Mono BN-doped Lower Polyenes. Chem Asian J 2017; 12:605-614. [PMID: 28056165 DOI: 10.1002/asia.201601753] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Indexed: 11/08/2022]
Abstract
The BN-doped organic analogues are interesting as aliphatic amineboranes for hydrogen storage, precursors for aromatic borazines and adsorbent cage azaboranes. However, BN-doped aliphatic polyenes remained undeveloped. Herein, we perform theoretical calculations on two mono BN-doped aliphatic lower polyenes, 1,3-butadiene and 1,3,5-hexatriene. A general rule is proposed, i.e., isomers with terminal nitrogen and directly BN-connected, N-B(R), in particular, are of significant thermodynamic stability as compared with their inverse analogues (where boron is at the terminal position). The N-B(R) type isomers are found to be the most stable ones in both polyenes. Isomers with terminal B and N are of intermediate stability. Highly destabilized isomers are those with one terminal methylene group and one terminal heteroatom in the butadiene series, and two terminal methylene groups in the hexatriene series. Rules established here may lead researchers to synthesize isomers with particular thermodynamic stability.
Collapse
Affiliation(s)
- Alvi Muhammad Rouf
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,Institute of Chemistry, University of the Punjab, Quaid-i-Azam (New) Campus, Box 54590, Lahore, Pakistan
| | - Jingjing Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
42
|
Unique physicochemical and catalytic properties dictated by the B3NO2 ring system. Nat Chem 2017; 9:571-577. [DOI: 10.1038/nchem.2708] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022]
|
43
|
Dixit VA, Goundry WRF, Tomasi S. CC/B–N substitution in five membered heterocycles. A computational analysis. NEW J CHEM 2017. [DOI: 10.1039/c7nj00950j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel five-membered azaboroles are aromatic, stable under neutral conditions, isomer stabilization energy is explained using σ-bond and aromatic stabilization energies.
Collapse
Affiliation(s)
- Vaibhav A. Dixit
- Department of Pharmaceutical Chemistry
- School of Pharmacy & Technology Management (SPTM)
- Shri Vile Parle Kelavani Mandal's (SVKM's)
- Narsee Monjee Institute of Management Studies (NMIMS)
- Mukesh Patel Technology Park
| | | | - Simone Tomasi
- Global Medicines Development
- Process Research and Development
- Macclesfield
- UK
| |
Collapse
|
44
|
Baranac-Stojanović M, Stojanović M, Aleksić J. Theoretical study of azido gauche effect and its origin. NEW J CHEM 2017. [DOI: 10.1039/c7nj00369b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The strength and origin of the azido gauche effect were studied by ab initio calculations and compared with the well-known fluorine gauche effect.
Collapse
Affiliation(s)
| | | | - Jovana Aleksić
- Center for Chemistry ICTM
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|
45
|
Motika SE, Wang Q, Akhmedov NG, Wojtas L, Shi X. Regioselective Amine–Borane Cyclization: Towards the Synthesis of 1,2‐BN‐3‐Cyclohexene by Copper‐Assisted Triazole/Gold Catalysis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Stephen E. Motika
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Qiaoyi Wang
- Department of Chemistry West Virginia University Morgantown WV 26505 USA
| | - Novruz G. Akhmedov
- Department of Chemistry West Virginia University Morgantown WV 26505 USA
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xiaodong Shi
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| |
Collapse
|
46
|
Motika SE, Wang Q, Akhmedov NG, Wojtas L, Shi X. Regioselective Amine–Borane Cyclization: Towards the Synthesis of 1,2‐BN‐3‐Cyclohexene by Copper‐Assisted Triazole/Gold Catalysis. Angew Chem Int Ed Engl 2016; 55:11582-6. [DOI: 10.1002/anie.201604986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Stephen E. Motika
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Qiaoyi Wang
- Department of Chemistry West Virginia University Morgantown WV 26505 USA
| | - Novruz G. Akhmedov
- Department of Chemistry West Virginia University Morgantown WV 26505 USA
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xiaodong Shi
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| |
Collapse
|
47
|
Yourdkhani S, Chojecki M, Hapka M, Korona T. Interaction of Boron–Nitrogen Doped Benzene Isomers with Water. J Phys Chem A 2016; 120:6287-302. [DOI: 10.1021/acs.jpca.6b05248] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sirous Yourdkhani
- Department
of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
- Faculty
of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Chojecki
- Faculty
of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Hapka
- Faculty
of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| | - Tatiana Korona
- Faculty
of Chemistry, University of Warsaw, ul. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
48
|
Srivastava AK, Pandey SK, Misra N. The aromaticity and electronic properties of monosubstituted benzene, borazine and diazadiborine rings: an ab initio MP2 study. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1918-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Liu X, Zhang Y, Li B, Zakharov LN, Vasiliu M, Dixon DA, Liu SY. A Modular Synthetic Approach to Monocyclic 1,4-Azaborines. Angew Chem Int Ed Engl 2016; 55:8333-7. [PMID: 27238094 DOI: 10.1002/anie.201602840] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 11/07/2022]
Abstract
A simple and general method for the synthesis of a wide range of monocyclic 1,4-azaborines, including the first examples containing B heteroatoms is described. Post-heterocycle-formation olefin isomerization was employed as a key strategy. This new synthetic method provides fundamental insight into the resonance stabilization and photophysical properties of 1,4-azaborines.
Collapse
Affiliation(s)
- Xuguang Liu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA.,College of Chemistry and Chemical Engineering, Tianjin University of Technology, China
| | - Yuanzhe Zhang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA
| | | | - Monica Vasiliu
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - David A Dixon
- Department of Chemistry, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
50
|
Liu X, Zhang Y, Li B, Zakharov LN, Vasiliu M, Dixon DA, Liu S. A Modular Synthetic Approach to Monocyclic 1,4‐Azaborines. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201602840] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xuguang Liu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
- College of Chemistry and Chemical Engineering Tianjin University of Technology China
| | - Yuanzhe Zhang
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | - Bo Li
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| | | | - Monica Vasiliu
- Department of Chemistry The University of Alabama Tuscaloosa AL 35487 USA
| | - David A. Dixon
- Department of Chemistry The University of Alabama Tuscaloosa AL 35487 USA
| | - Shih‐Yuan Liu
- Department of Chemistry Boston College Chestnut Hill MA 02467 USA
| |
Collapse
|