1
|
Mancebo JG, Sack K, Hartford J, Dominguez S, Balcarcel-Monzon M, Chartier E, Nguyen T, Cole AR, Sperotto F, Harrild DM, Polizzotti BD, Everett AD, Packard AB, Dearling J, Nedder AG, Warfield S, Yang E, Lidov HGW, Kheir JN, Peng Y. Systemically injected oxygen within rapidly dissolving microbubbles improves the outcomes of severe hypoxaemia in swine. Nat Biomed Eng 2024; 8:1396-1411. [PMID: 39420063 PMCID: PMC11584390 DOI: 10.1038/s41551-024-01266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/21/2024] [Indexed: 10/19/2024]
Abstract
Acute respiratory failure can cause profound hypoxaemia that leads to organ injury or death within minutes. When conventional interventions are ineffective, the intravenous administration of oxygen can rescue patients from severe hypoxaemia, but at the risk of microvascular obstruction and of toxicity of the carrier material. Here we describe polymeric microbubbles as carriers of high volumes of oxygen (350-500 ml of oxygen per litre of foam) that are stable in storage yet quickly dissolve following intravenous injection, reverting to their soluble and excretable molecular constituents. In swine with profound hypoxaemia owing to acute and temporary (12 min) upper-airway obstruction, the microbubble-mediated delivery of oxygen led to: the maintenance of critical oxygenation, lowered burdens of cardiac arrest, improved survival, and substantially improved neurologic and kidney function in surviving animals. Our findings underscore the importance of maintaining a critical threshold of oxygenation and the promise of injectable oxygen as a viable therapy in acute and temporary hypoxaemic crises.
Collapse
Affiliation(s)
- Julia Garcia Mancebo
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kristen Sack
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Jay Hartford
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Saffron Dominguez
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Tien Nguyen
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Alexis R Cole
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Francesca Sperotto
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - David M Harrild
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Brian D Polizzotti
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Allen D Everett
- Department of Pediatrics, Blalock-Taussig-Thomas Congenital Heart Center, Johns Hopkins University, Baltimore, MD, USA
| | - Alan B Packard
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Jason Dearling
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Arthur G Nedder
- Animal Resources at Children's Hospital, Boston Children's Hospital, Boston, MA, USA
| | - Simon Warfield
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - John N Kheir
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| | - Yifeng Peng
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Li E, Siniard KM, Yang Z, Dai S. Porous liquids: an integrated platform for gas storage and catalysis. Chem Sci 2024:d4sc04288c. [PMID: 39430938 PMCID: PMC11487929 DOI: 10.1039/d4sc04288c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Porous liquids (PLs) represent a new frontier in materials design, combining the unique features of fluidity in liquids and permanent porosity in solids. By engineering well-defined pores into liquids via designed structure modification techniques, the greatly improved free volume significantly enhances the gas transport and storage capability of PL sorbents. Triggered by the promising applications of PLs in gas separation, PLs are further explored in catalysis particularly to integrate the gas storage and catalytic transformation procedure. This emerging field has demonstrated promising progress to advance catalytic procedures using PLs as catalysts, with performance surpassing that of the pure liquid and porous host counterparts. In this perspective article, the recent discoveries and progress in the field of integrated gas storage and catalysis by leveraging the PL platforms will be summarized, particularly compared with the traditional homogeneous or heterogeneous catalytic procedures. The unique features of PLs endow them with combined merits from liquid and solid catalysts and beyond which will be illustrated first. This will be followed by the unique techniques being utilized to probe the porosity and active sites in PLs and the structural evolution during the catalytic procedures. The catalytic application of PLs will be divided by the reaction categories, including CO2-involving transformation, O2-involving reaction, H2S conversion, hydrogenation reaction, and non-gas involving cascade reactions. In each reaction type, the synthesis approaches and structure engineering techniques of PLs, structure characterization, catalytic performance evaluation, and reaction mechanism exploration will be discussed, highlighting the structure-performance relationship and the advancement benefiting from the unique features of PLs.
Collapse
Affiliation(s)
- Errui Li
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| | - Kevin M Siniard
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee Knoxville TN 37996 USA
| |
Collapse
|
3
|
Mandel RM, Lotlikar PS, Keasler KT, Chen EY, Wilson JJ, Milner PJ. Gas Delivery Relevant to Human Health using Porous Materials. Chemistry 2024; 30:e202402163. [PMID: 38949770 PMCID: PMC11443428 DOI: 10.1002/chem.202402163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
Gases are essential for various applications relevant to human health, including in medicine, biomedical imaging, and pharmaceutical synthesis. However, gases are significantly more challenging to safely handle than liquids and solids. Herein, we review the use of porous materials, such as metal-organic frameworks (MOFs), zeolites, and silicas, to adsorb medicinally relevant gases and facilitate their handling as solids. Specific topics include the use of MOFs and zeolites to deliver H2S for therapeutic applications, 129Xe for magnetic resonance imaging, O2 for the treatment of cancer and hypoxia, and various gases for use in organic synthesis. This Perspective aims to bring together the organic, inorganic, medicinal, and materials chemistry communities to inspire the design of next-generation porous materials for the storage and delivery of medicinally relevant gases.
Collapse
Affiliation(s)
- Ruth M. Mandel
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Piyusha S. Lotlikar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Kaitlyn T. Keasler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Elena Y. Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
4
|
DelRe C, Hong H, Wenny MB, Erdosy DP, Cho J, Lee B, Mason JA. Design Principles for Using Amphiphilic Polymers To Create Microporous Water. J Am Chem Soc 2023; 145:19982-19988. [PMID: 37655897 DOI: 10.1021/jacs.3c06627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Aqueous dispersions of microporous nanocrystals with dry, gas-accessible pores─referred to as "microporous water"─enable high densities of gas molecules to be transported through water. For many applications of microporous water, generalizable strategies are required to functionalize the external surface of microporous particles to control their dispersibility, stability, and interactions with other solution-phase components─including catalysts, proteins, and cells─while retaining as much of their internal pore volume as possible. Here, we establish design principles for the noncovalent surface functionalization of hydrophobic metal-organic frameworks with amphiphilic polymers that render the particles dispersible in water and enhance their hydrolytic stability. Specifically, we show that block co-polymers with persistence lengths that exceed the micropore aperture size of zeolitic imidazolate frameworks (ZIFs) can dramatically enhance ZIF particle dispersibility and stability while preserving porosity and >80% of the theoretical O2 carrying capacity. Moreover, enhancements in hydrolytic stability are greatest when the polymer can form strong bonds to exposed metal sites on the external particle surface. More broadly, our insights provide guidelines for controlling the interface between polymers and metal-organic framework particles in aqueous environments to augment the properties of microporous water.
Collapse
Affiliation(s)
- Christopher DelRe
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Hyukhun Hong
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Malia B Wenny
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel P Erdosy
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Joy Cho
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
5
|
Erdosy DP, Wenny MB, Cho J, DelRe C, Walter MV, Jiménez-Ángeles F, Qiao B, Sanchez R, Peng Y, Polizzotti BD, de la Cruz MO, Mason JA. Microporous water with high gas solubilities. Nature 2022; 608:712-718. [PMID: 36002487 DOI: 10.1038/s41586-022-05029-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 06/28/2022] [Indexed: 11/09/2022]
Abstract
Liquids with permanent microporosity can absorb larger quantities of gas molecules than conventional solvents1, providing new opportunities for liquid-phase gas storage, transport and reactivity. Current approaches to designing porous liquids rely on sterically bulky solvent molecules or surface ligands and, thus, are not amenable to many important solvents, including water2-4. Here we report a generalizable thermodynamic strategy to preserve permanent microporosity and impart high gas solubilities to liquid water. Specifically, we show how the external and internal surface chemistry of microporous zeolite and metal-organic framework (MOF) nanocrystals can be tailored to promote the formation of stable dispersions in water while maintaining dry networks of micropores that are accessible to gas molecules. As a result of their permanent microporosity, these aqueous fluids can concentrate gases, including oxygen (O2) and carbon dioxide (CO2), to much higher densities than are found in typical aqueous environments. When these fluids are oxygenated, record-high capacities of O2 can be delivered to hypoxic red blood cells, highlighting one potential application of this new class of microporous liquids for physiological gas transport.
Collapse
Affiliation(s)
- Daniel P Erdosy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Malia B Wenny
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Joy Cho
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Christopher DelRe
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Miranda V Walter
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Felipe Jiménez-Ángeles
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Ricardo Sanchez
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Yifeng Peng
- Division of Basic Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Brian D Polizzotti
- Division of Basic Cardiovascular Research, Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.,Department of Physics and Astronomy, Northwestern University, Evanston, IL, USA.,Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
6
|
Vutha AK, Patenaude R, Cole A, Kumar R, Kheir JN, Polizzotti BD. A microfluidic device for real-time on-demand intravenous oxygen delivery. Proc Natl Acad Sci U S A 2022; 119:e2115276119. [PMID: 35312360 PMCID: PMC9060478 DOI: 10.1073/pnas.2115276119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/25/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceThe treatment of hypoxemia that is refractory to the current standard of care is time-sensitive and requires skilled caregivers and use of specialized equipment (e.g., extracorporeal membrane oxygenation). Most patients experiencing refractory hypoxemia will suffer organ dysfunction, and death is common in this cohort. Here, we describe a new strategy to stabilize and support patients using a microfluidic device that administers oxygen gas directly to the bloodstream in real time and on demand using a process that we call sequential shear-induced bubble breakup. If successful, the described technology may help to avoid or decrease the incidence of ventilator-related lung injury from refractory hypoxemia.
Collapse
Affiliation(s)
- Ashwin Kumar Vutha
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
| | - Ryan Patenaude
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
| | - Alexis Cole
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
| | - Rajesh Kumar
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
| | - John N. Kheir
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
| | - Brian D. Polizzotti
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
- Experimental Therapeutics Program, Dana Farber Cancer Institute/Harvard Cancer Center, Boston, MA 02215
| |
Collapse
|
7
|
Willemen NGA, Hassan S, Gurian M, Li J, Allijn IE, Shin SR, Leijten J. Oxygen-Releasing Biomaterials: Current Challenges and Future Applications. Trends Biotechnol 2021; 39:1144-1159. [PMID: 33602609 PMCID: PMC9078202 DOI: 10.1016/j.tibtech.2021.01.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/22/2022]
Abstract
Oxygen is essential for the survival, function, and fate of mammalian cells. Oxygen tension controls cellular behaviour via metabolic programming, which in turn controls tissue regeneration, stem cell differentiation, drug metabolism, and numerous pathologies. Thus, oxygen-releasing biomaterials represent a novel and unique strategy to gain control over a variety of in vivo processes. Consequently, numerous oxygen-generating or carrying materials have been developed in recent years, which offer innovative solutions in the field of drug efficiency, regenerative medicine, and engineered living systems. In this review, we discuss the latest trends, highlight current challenges and solutions, and provide a future perspective on the field of oxygen-releasing materials.
Collapse
Affiliation(s)
- Niels G A Willemen
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands; Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA
| | - Melvin Gurian
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Jinghang Li
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA; School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Iris E Allijn
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, MA 02139, USA.
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| |
Collapse
|
8
|
Feng H, Linders J, Myszkowska S, Mayer C. Capsules from synthetic diblock-peptides as potential artificial oxygen carriers. J Microencapsul 2021; 38:276-284. [PMID: 33722172 DOI: 10.1080/02652048.2021.1903594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The design of an encapsulation system consisting of a synthetic peptide which is fully biodegradable into non-toxic constituents. This system should be capable of encapsulating perfluorinated hydrocarbons and should be a promising basis for oxygen carriers to be used as artificial blood replacement. A diblock-peptide is synthesised following a phosgene-free method and characterised by 1H-NMR. Subsequently, this diblock-peptide is self-assembled with perfluorodecalin (PFD) to form PFD-filled capsules as potential artificial oxygen carriers allowing for rapid oxygen uptake and release. The diblock-peptide Bu-PAsp10-PPhe10 is successfully synthesised and used to encapsulate PFD. The capsules have a spherical shape with an average diameter of 360 nm in stable aqueous dispersion. NMR measurements prove their physical capability for reversible uptake and release of oxygen. The resulting capsules are expected to be fully biodegradable and possibly could act as oxygen carriers for artificial blood replacement.
Collapse
Affiliation(s)
- Huayang Feng
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| | - Jürgen Linders
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| | - Sascha Myszkowska
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| | - Christian Mayer
- Institute for Physical Chemistry, CeNIDE, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Hoogendijk E, Swider E, Staal AHJ, White PB, van Riessen NK, Glaßer G, Lieberwirth I, Musyanovych A, Serra CA, Srinivas M, Koshkina O. Continuous-Flow Production of Perfluorocarbon-Loaded Polymeric Nanoparticles: From the Bench to Clinic. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49335-49345. [PMID: 33086007 PMCID: PMC7645868 DOI: 10.1021/acsami.0c12020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/08/2020] [Indexed: 05/05/2023]
Abstract
Perfluorocarbon-loaded nanoparticles are powerful theranostic agents, which are used in the therapy of cancer and stroke and as imaging agents for ultrasound and 19F magnetic resonance imaging (MRI). Scaling up the production of perfluorocarbon-loaded nanoparticles is essential for clinical translation. However, it represents a major challenge as perfluorocarbons are hydrophobic and lipophobic. We developed a method for continuous-flow production of perfluorocarbon-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles using a modular microfluidic system, with sufficient yields for clinical use. We combined two slit interdigital micromixers with a sonication flow cell to achieve efficient mixing of three phases: liquid perfluorocarbon, PLGA in organic solvent, and aqueous surfactant solution. The production rate was at least 30 times higher than with the conventional formulation. The characteristics of nanoparticles can be adjusted by changing the flow rates and type of solvent, resulting in a high PFC loading of 20-60 wt % and radii below 200 nm. The nanoparticles are nontoxic, suitable for 19F MRI and ultrasound imaging, and can dissolve oxygen. In vivo 19F MRI with perfluoro-15-crown-5 ether-loaded nanoparticles showed similar biodistribution as nanoparticles made with the conventional method and a fast clearance from the organs. Overall, we developed a continuous, modular method for scaled-up production of perfluorocarbon-loaded nanoparticles that can be potentially adapted for the production of other multiphase systems. Thus, it will facilitate the clinical translation of theranostic agents in the future.
Collapse
Affiliation(s)
- Esmee Hoogendijk
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Edyta Swider
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Alexander H. J. Staal
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Paul B. White
- Institute for Molecules and Materials, Radboud University, 6525
AJ Nijmegen, The Netherlands
| | - N. Koen van Riessen
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Gunnar Glaßer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Christophe A. Serra
- Université de Strasbourg,
CNRS, Institut Charles Sadron, 23 rue du Loess, F-67000 Strasbourg, France
| | - Mangala Srinivas
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Olga Koshkina
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|