1
|
Kamdar A, Sykes R, Thomson CR, Mangion K, Ang D, Lee MAW, Van Agtmael T, Berry C. Vascular fibrosis and extracellular matrix remodelling in post-COVID 19 conditions. INFECTIOUS MEDICINE 2024; 3:100147. [PMID: 39649442 PMCID: PMC11621938 DOI: 10.1016/j.imj.2024.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 12/10/2024]
Abstract
Causal associations between viral infections and acute myocardial injury are not fully understood, with mechanisms potentially involving direct cardiovascular involvement or systemic inflammation. This review explores plausible mechanisms of vascular fibrosis in patients with post-COVID-19 syndrome, focusing on extracellular matrix remodelling. Despite global attention, significant mechanistic or translational breakthroughs in the management of post-viral syndromes remain limited. No effective pharmacological or non-pharmacological interventions are currently available for patients experiencing persistent symptoms following COVID-19 infection. The substantial expansion of scientific knowledge resulting from collaborative efforts by medical experts, scientists, and government organisations in undertaking COVID-19 research could inform treatment strategies for other post-viral syndromes and respiratory illnesses. There is a critical need for clinical trials to evaluate potential therapeutic candidates, providing evidence to guide treatment decisions for post-COVID-19 syndromes.
Collapse
Affiliation(s)
- Anna Kamdar
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Robert Sykes
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Cameron R. Thomson
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
| | - Kenneth Mangion
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
- Department of Cardiology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde Health Board, Glasgow G51 4TF, UK
| | - Daniel Ang
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Michelle AW Lee
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
| | - Tom Van Agtmael
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
| | - Colin Berry
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow G12 8TA, UK
- West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
- Department of Cardiology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde Health Board, Glasgow G51 4TF, UK
| |
Collapse
|
2
|
Morcos CA, Haiba NS, Bassily RW, Abu-Serie MM, El-Yazbi AF, Soliman OA, Khattab SN, Teleb M. Structure optimization and molecular dynamics studies of new tumor-selective s-triazines targeting DNA and MMP-10/13 for halting colorectal and secondary liver cancers. J Enzyme Inhib Med Chem 2024; 39:2423174. [PMID: 39513468 PMCID: PMC11552285 DOI: 10.1080/14756366.2024.2423174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
A series of triazole-tethered triazines bearing pharmacophoric features of DNA-targeting agents and non-hydroxamate MMPs inhibitors were synthesized and screened against HCT-116, Caco-2 cells, and normal colonocytes by MTT assay. 7a and 7g surpassed doxorubicin against HCT-116 cells regarding potency (IC50 = 0.87 and 1.41 nM) and safety (SI = 181.93 and 54.41). 7g was potent against liver cancer (HepG-2; IC50 = 65.08 nM), the main metastatic site of CRC with correlation to MMP-13 expression. Both derivatives induced DNA damage at 2.67 and 1.87 nM, disrupted HCT-116 cell cycle and triggered apoptosis by 33.17% compared to doxorubicin (DNA damage at 0.76 nM and 40.21% apoptosis induction). 7g surpassed NNGH against MMP-10 (IC50 = 0.205 μM) and MMP-13 (IC50 = 0.275 μM) and downregulated HCT-116 VEGF related to CRC progression by 38%. Docking and MDs simulated ligands-receptors binding modes and highlighted SAR. Their ADMET profiles, drug-likeness and possible off-targets were computationally predicted.
Collapse
Affiliation(s)
- Christine A. Morcos
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nesreen S. Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Rafik W. Bassily
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Egypt
| | - Amira F. El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Omar A. Soliman
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Sherine N. Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Faculty of Pharmacy, Alamein International University (AIU), Alamein City, Egypt
| |
Collapse
|
3
|
Rama GR, Saraiva Macedo Timmers LF, Volken de Souza CF. In Silico Strategies to Predict Anti-aging Features of Whey Peptides. Mol Biotechnol 2024; 66:2426-2440. [PMID: 37737930 DOI: 10.1007/s12033-023-00887-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
We have analysed the in silico potential of bioactive peptides from cheese whey, the most relevant by-product from the dairy industry, to bind into the active site of collagenase and elastase. The peptides generated from the hydrolysis of bovine β-lactoglobulin with three proteases (trypsin, chymotrypsin, and subtilisin) were docked onto collagenase and elastase by molecular docking. The interaction models were ranked according to their free binding energy using molecular dynamics simulations, which showed that most complexes presented favourable interactions. Interactions with elastase had significantly lower binding energies than those with collagenase. Regarding the interaction site, it was found that four bioactive peptides were positioned in collagenase's active site, while six were found in elastase's active site. Among these, the most we have found one promising collagen-binding peptide produced by chymotrypsin and two for elastase, produced by subtilisin and chymotrypsin. These in silico results can be used as a tool for designing further experiments aiming at testing the in vitro potential of the peptides found in this work.
Collapse
Affiliation(s)
- Gabriela Rabaioli Rama
- Graduate Program in Biotechnology, University of Vale do Taquari-Univates, Av. Avelino Tallini, 171, Lajeado, RS, 95914-014, Brazil
| | | | - Claucia Fernanda Volken de Souza
- Graduate Program in Biotechnology, University of Vale do Taquari-Univates, Av. Avelino Tallini, 171, Lajeado, RS, 95914-014, Brazil.
| |
Collapse
|
4
|
Sinha K, Parwez S, Mv S, Yadav A, Siddiqi MI, Banerjee D. Machine learning and biological evaluation-based identification of a potential MMP-9 inhibitor, effective against ovarian cancer cells SKOV3. J Biomol Struct Dyn 2024; 42:6823-6841. [PMID: 37504963 DOI: 10.1080/07391102.2023.2240416] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
MMP-9, also known as gelatinase B, is a zinc-metalloproteinase family protein that plays a key role in the degradation of the extracellular matrix (ECM). The normal function of MMP-9 includes the breakdown of ECM, a process that aids in normal physiological processes such as embryonic development, angiogenesis, etc. Interruptions in these processes due to the over-expression or downregulation of MMP-9 are reported to cause some pathological conditions like neurodegenerative diseases and cancer. In the present study, an integrated approach for ML-based virtual screening of the Maybridge library was carried out and their biological activity was tested in an attempt to identify novel small molecule scaffolds that can inhibit the activity of MMP-9. The top hits were identified and selected for target-based activity against MMP-9 protein using the kit (Biovision K844). Further, MTT assay was performed in various cancer cell lines such as breast (MCF-7, MDA-MB-231), colorectal (HCT119, DL-D-1), cervical (HeLa), lung (A549) and ovarian cancer (SKOV3). Interestingly, one compound viz., RJF02215 exhibited anti-cancer activity selectively in SKOV3. Wound healing assay and colony formation assay performed on SKOV3 cell line in the presence of RJF02215 confirmed that the compound had a significant inhibitory effect on this cell line. Thus, we have identified a novel molecule that can inhibit MMP-9 activity in vitro and inhibits the proliferation of SKOV3 cells. Novel molecules based on the structure of RJF02215 may become a good value addition for the treatment of ovarian cancer by exhibiting selective MMP-9 activity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Khushboo Sinha
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shahid Parwez
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shahana Mv
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ananya Yadav
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Dibyendu Banerjee
- Cancer Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
5
|
Kilic-Kurt Z, Celik A, Bakar-Ates F. Effects of pyrrolopyrimidine derivatives on cancer cells cultured in vitro and potential mechanism. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3169-3177. [PMID: 37891256 DOI: 10.1007/s00210-023-02799-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
In this study, the anticancer activities of some pyrrolopyrimidine derivatives were evaluated. Compound 3 is the most cytotoxic compound on MCF-7 cancer cells with an IC50 value of 23.42 µM. Also, compound 3 induced apoptosis and the ROS(+) cell population in MCF-7 cells. Moreover, it significantly reduced MMP-9 activity, having 42.16 ± 5.10% and 58.28 ± 1.96% inhibitory activities at 10 µM and 50 µM concentrations, respectively. Molecular docking results supported the activity, showing key hydrogen bonds with the binding site of MMP-9. Therefore, compound 3 might be a lead compound for the development of potent MMP-9 inhibitors.
Collapse
Affiliation(s)
- Zuhal Kilic-Kurt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, 06560, Ankara, Turkey.
| | - Aybuke Celik
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, 06560, Ankara, Turkey
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Yenimahalle, 06560, Ankara, Turkey
| |
Collapse
|
6
|
Khalil HH, El-Sheshtawy MM, Khattab SN, Abu-Serie MM, Shehat MG, Teleb M, Haiba NS. Chemosensitization of non-small cell lung cancer to sorafenib via non-hydroxamate s-triazinedione-based MMP-9/10 inhibitors. Bioorg Chem 2024; 144:107155. [PMID: 38306827 DOI: 10.1016/j.bioorg.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Non-small cell lung cancer (NSCLC) continues to be a leading cause of cancer death. Its fatality is associated with angiogenesis and metastasis. While VEGFR inhibitors are expected to be the central pillar for halting lung cancer, several clinical reports declared their subpar activities as monotherapy. These results directed combination studies of VEGFR inhibitors, especially sorafenib (Nexavar®), with various chemotherapeutic agents. Matrix metalloproteinase (MMP) inhibitors are seldom utilized in such combinations despite the expected complementary therapeutic outcome. This could be attributed to the clinical unsuitability of MMP inhibitors from the hydroxamate family. Herein, we report new non-hydroxamate s-triazinedione-based inhibitors of MMP-9 (6b; IC50 = 0.112 μM), and MMP-10 (6e; IC50 = 0.076 μM) surpassing the hydroxamate inhibitor NNGH for chemosensitization of NSCLC to sorafenib. MMPs inhibition profiling of the hits revealed MMP-9 over -2 and MMP-10 over -13 selectivity. 6b and 6e were potent (IC50 = 0.139 and 0.136 µM), safe (SI up to 6.77) and superior to sorafenib (IC50 = 0.506 µM, SI = 6.27) against A549 cells. When combined with sorafenib, the studied MMP inhibitors enhanced its cytotoxic efficacy up to 26 folds as confirmed by CI and DRI values for 6b (CI = 0.160 and DRI = 22.175) and 6e (CI = 0.096 and DRI = 29.060). 6b and 6e exerted anti-invasive activities in A549 cells as single agents (22.66 and 39.67 %) and in sorafenib combinations (29.96 and 91.83 %) compared to untreated control. Both compounds downregulated VEGF in A549 cells by approximately 70 % when combined with sorafenib, highlighting enhanced anti-angiogenic activities. Collectively, combinations of 6b and 6e with sorafenib demonstrated synergistic NSCLC cytotoxicity with pronounced anti-invasive and anti-angiogenic activities introducing a promising start point for preclinical studies.
Collapse
Affiliation(s)
- Hosam H Khalil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Mohamed M El-Sheshtawy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Nesreen S Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University, Egypt
| |
Collapse
|
7
|
Polz A, Morshed K, Drop B, Polz-Dacewicz M. Could MMP3 and MMP9 Serve as Biomarkers in EBV-Related Oropharyngeal Cancer. Int J Mol Sci 2024; 25:2561. [PMID: 38473807 DOI: 10.3390/ijms25052561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The high incidence of, and mortality from, head and neck cancers (HNCs), including those related to Epstein-Barr virus (EBV), constitute a major challenge for modern medicine, both in terms of diagnosis and treatment. Therefore, many researchers have made efforts to identify diagnostic and prognostic factors. The aim of this study was to evaluate the diagnostic usefulness of matrix metalloproteinase 3 (MMP 3) and matrix metalloproteinase 9 (MMP 9) in EBV positive oropharyngeal squamous cell carcinoma (OPSCC) patients. For this purpose, the level of these MMPs in the serum of patients with EBV-positive OPSCC was analyzed in relation to the degree of histological differentiation and TNM classification. Our research team's results indicate that the level of both MMPs is much higher in the EBV positive OPSCC patients compared to the EBV negative and control groups. Moreover, their levels were higher in more advanced clinical stages. Considering the possible correlation between the level of MMP 3, MMP 9 and anti-EBV antibodies, and also viral load, after statistical analysis using multiple linear regression, their high correlation was demonstrated. The obtained results confirm the diagnostic accuracy for MMP 3 and MMP 9. Both MMPs may be useful in the diagnosis of EBV positive OPSCC patients.
Collapse
Affiliation(s)
| | - Kamal Morshed
- Department of Otolaryngology Head and Neck Cancer, University of Technology and Humanities in Radom, 26-600 Radom, Poland
| | - Bartłomiej Drop
- Department of Computer Science and Medical Statistics with e-health Laboratory, Medical University of Lublin, 20-090 Lublin, Poland
| | - Małgorzata Polz-Dacewicz
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
8
|
Vo HVT, Nguyen YT, Kim N, Lee HJ. Vitamin A, D, E, and K as Matrix Metalloproteinase-2/9 Regulators That Affect Expression and Enzymatic Activity. Int J Mol Sci 2023; 24:17038. [PMID: 38069361 PMCID: PMC10707015 DOI: 10.3390/ijms242317038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Fat-soluble vitamins (vitamin A, D, E, and K) assume a pivotal role in maintaining human homeostasis by virtue of their enzymatic functions. The daily inclusion of these vitamins is imperative to the upkeep of various physiological processes including vision, bone health, immunity, and protection against oxidative stress. Current research highlights fat-soluble vitamins as potential therapeutics for human diseases, especially cancer. Fat-soluble vitamins exert their therapeutic effects through multiple pathways, including regulation of matrix metalloproteinases' (MMPs) expression and enzymatic activity. As MMPs have been reported to be involved in the pathology of various diseases, such as cancers, cardiovascular diseases, and neurological disorders, regulating the expression and/or activity of MMPs could be considered as a potent therapeutic strategy. Here, we summarize the properties of fat-soluble vitamins and their potential as promising candidates capable of effectively modulating MMPs through multiple pathways to treat human diseases.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
| | - Yen Thi Nguyen
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, Gongju 32588, Republic of Korea;
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, Gongju 32588, Republic of Korea;
- Kongju National University Institute of Science Education, Kongju National University, Gongju 32588, Republic of Korea
- Kongju National University’s Physical Fitness for Health Research Lab (KNUPFHR), Kongju National University, Gongju 32588, Republic of Korea
| |
Collapse
|
9
|
Cuffaro D, Di Leo R, Ciccone L, Nocentini A, Supuran CT, Nuti E, Rossello A. New isoxazolidinyl-based N-alkylethanolamines as new activators of human brain carbonic anhydrases. J Enzyme Inhib Med Chem 2023; 38:2164574. [PMID: 36630083 PMCID: PMC9848372 DOI: 10.1080/14756366.2022.2164574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Carbonic anhydrases (CAs) are widespread metalloenzymes which catalyse the reversible hydration of carbon dioxide (CO2) to bicarbonate (HCO3-) and a proton, relevant in many physiological processes. In the last few years, the involvement of CA activation in different metabolic pathways in the human brain addressed the research to the discovery of novel CA activators. Here, a new series of isoxazoline-based amino alcohols as CA activators was investigated. The synthesis and the CA activating effects towards four human CA isoforms expressed in the human brain, that are hCAs I, II, IV and VII, were reported. The best results were obtained for the (methyl)-isoxazoline-amino alcohols 3 and 5 with KA values in the submicromolar range (0.52-0.86 µM) towards hCA VII, and a good selectivity over hCA I. Being hCA VII involved in brain function and metabolism, the newly identified CA activators might be promising hit compounds with potential therapeutic applications in ageing, epilepsy or neurodegeneration.
Collapse
Affiliation(s)
| | | | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Alessio Nocentini
- Department of Neurofarba, University of Florence, Sesto Fiorentino, Italy,CONTACT Alessio Nocentini Physical address Department of Neurofarba, University of Florence, Sesto Fiorentino, Italy
| | - Claudiu T. Supuran
- Department of Neurofarba, University of Florence, Sesto Fiorentino, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Pisa, Italy,Elisa Nuti Physical address Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
10
|
Werner RM, Soffa AN. Considerations for the development of a field-based medical device for the administration of adjunctive therapies for snakebite envenoming. Toxicon X 2023; 20:100169. [PMID: 37661997 PMCID: PMC10474190 DOI: 10.1016/j.toxcx.2023.100169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023] Open
Abstract
The timely administration of antivenom is the most effective method currently available to reduce the burden of snakebite envenoming (SBE), a neglected tropical disease that most often affects rural agricultural global populations. There is increasing interest in the development of adjunctive small molecule and biologic therapeutics that target the most problematic venom components to bridge the time-gap between initial SBE and the administration antivenom. Unique combinations of these therapeutics could provide relief from the toxic effects of regional groupings of medically relevant snake species. The application a PRISMA/PICO literature search methodology demonstrated an increasing interest in the rapid administration of therapies to improve patient symptoms and outcomes after SBE. Advice from expert interviews and considerations regarding the potential routes of therapy administration, anatomical bite location, and species-specific venom delivery have provided a framework to identify ideal metrics and potential hurdles for the development of a field-based medical device that could be used immediately after SBE to deliver adjunctive therapies. The use of subcutaneous (SC) or intramuscular (IM) injection were identified as potential routes of administration of both small molecule and biologic therapies. The development of a field-based medical device for the delivery of adjunctive SBE therapies presents unique challenges that will require a collaborative and transdisciplinary approach to be successful.
Collapse
|
11
|
Shoari A, Khalili-Tanha G, Coban MA, Radisky ES. Structure and computation-guided yeast surface display for the evolution of TIMP-based matrix metalloproteinase inhibitors. Front Mol Biosci 2023; 10:1321956. [PMID: 38074088 PMCID: PMC10702220 DOI: 10.3389/fmolb.2023.1321956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
The study of protein-protein interactions (PPIs) and the engineering of protein-based inhibitors often employ two distinct strategies. One approach leverages the power of combinatorial libraries, displaying large ensembles of mutant proteins, for example, on the yeast cell surface, to select binders. Another approach harnesses computational modeling, sifting through an astronomically large number of protein sequences and attempting to predict the impact of mutations on PPI binding energy. Individually, each approach has inherent limitations, but when combined, they generate superior outcomes across diverse protein engineering endeavors. This synergistic integration of approaches aids in identifying novel binders and inhibitors, fine-tuning specificity and affinity for known binding partners, and detailed mapping of binding epitopes. It can also provide insight into the specificity profiles of varied PPIs. Here, we outline strategies for directing the evolution of tissue inhibitors of metalloproteinases (TIMPs), which act as natural inhibitors of matrix metalloproteinases (MMPs). We highlight examples wherein design of combinatorial TIMP libraries using structural and computational insights and screening these libraries of variants using yeast surface display (YSD), has successfully optimized for MMP binding and selectivity, and conferred insight into the PPIs involved.
Collapse
Affiliation(s)
| | | | | | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
12
|
Akter T, Aziz MA, Islam MS, Sarwar MS. Association of MMP1 gene polymorphisms with breast cancer risk: A narrative review. Health Sci Rep 2023; 6:e1607. [PMID: 37841939 PMCID: PMC10570771 DOI: 10.1002/hsr2.1607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Background and Aims Breast cancer is a multifactorial malignancy with different clinicopathological and molecular characteristics. It is the most frequent cancer in women in terms of both incidence and mortality. Matrix metallopeptidase 1 or MMP1 is a zinc-dependent endopeptidase associated with several physiological processes through the modification of the extracellular matrix and tumor microenvironment. However, previous results did not suggest any concluding remarks on the correlation between MMP1 gene polymorphisms and the risk of breast cancer. Methods A comprehensive literature search was performed in PubMed database to retrieve relevant articles and extract data from suitable ones. The literature written only in English was selected for this review. Results A total of 26 articles were included in the present narrative review. From the available studies, it is observed that MMP1 is upregulated in breast cancer tissues and found to be correlated with metastasis and invasion. The expression of MMP1 gene is mediated by numerous factors, including polymorphisms which act as a potential risk factor for the progression of breast cancer. To establish the correlation between genetic polymorphisms in MMP1 and the risk of breast cancer, several case-control studies, as well as genetic analyses, have been carried out in different ethnicities. The association of genetic polymorphisms in MMP1 with the risk and survival of breast cancer in different populations has been reviewed in this study. Moreover, the structural domain of MMP1 and the role of MMP1 in breast cancer metastasis and invasion are also discussed which will help to understand the potential impact of MMP1 as a genetic biomarker. Conclusions This review provides an overview of the MMP1 gene polymorphisms in breast cancer. However, we recommend future studies concentrating on combined analysis of multiple SNPs, gene-gene interactions, and analysis of epigenetics, proteomics, and posttranscriptional modifications that will provide the best outcome.
Collapse
Affiliation(s)
- Tahmina Akter
- Department of Pharmacy, Faculty of ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md. Abdul Aziz
- Department of PharmacyState University of BangladeshDhakaBangladesh
| | - Mohammad Safiqul Islam
- Department of Pharmacy, Faculty of ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
| | - Md. Shahid Sarwar
- Department of Pharmacy, Faculty of ScienceNoakhali Science and Technology UniversityNoakhaliBangladesh
- Departement of Pharmaceutics, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
13
|
Bapat RA, Libat R, Yuin OS, Parolia A, Ilyas MS, Khan AS, Kay MK, Pichika MR, Saxena K, Seow LL, Sidhu P, Daood U. Antimicrobial FiteBac® K21 promotes antimicrobial Potency and wound healing. Heliyon 2023; 9:e19282. [PMID: 37664740 PMCID: PMC10469996 DOI: 10.1016/j.heliyon.2023.e19282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Objectives Successful root canal therapy is dependent on the efficacy of complete instrumentation and adequate use of chemical irrigant to eliminate the biofilm from dentin surface. The aim of the study was to examine antibiofilm and antimicrobial effectiveness of newly formulated Quaternary ammonium silane (QAS/also codenamed K21; against Fusobacterium nucleatum (F. nucleatum) and Enterococcus faecalis (E. faecalis) biofilm on radicular dentin with evaluation of the anti-inflammatory consequence in vivo. Methods Fourier Transform Infrared Spectroscopy (FTIR) was performed after complete hydrolysis of K21 solution. Human teeth were inoculated with biofilms for 7-days followed by treatment with various irrigants. The irrigant groups were Sodium hypochlorite [NaOCl (6%)], Chlorhexidine [CHX (2%)], K21 (0.5%), K21 (1%) and Saline. Scanning electron microscopy (SEM) was performed for biofilm and resin-dentin penetration. Transmission Electron Microscopy (TEM) of biofilms was done to evaluate application of K21. For in vivo evaluation, Albino wistar rats were injected subcutaneously and sections were stained with haematoxylin/eosin. Macrophage, M1/M2 expression were evaluated along with molecular simulation. Raman measurements were done on dried biofilms. Results FTIR K21 specimens demonstrated presence of ethanol/silanol groups. Raman band at 1359 cm-1 resemble to -CH2- wagging displaying 29Si atoms in Nuclear Magnetic Resonance (NMR). 0.5%K21 showed cells exhibiting folded membranes. SEM showed staggering amount of resin tags with 0.5% K21 group. TEM showed membrane disruption in K21-groups. K21 groups were initially irritant, which subsided completely afterwards showing increased CD68. K21 and MMP/collagen complex was thermodynamically favourable. Conclusion K21 root canal irrigant was able to penetrate bacterial wall and can serve as a potential irrigant for therapeutic benefits. Expression of M2 polarized subsets showed K21 can serve in resolving inflammation and potentiate tissue repair.
Collapse
Affiliation(s)
- Ranjeet Ajit Bapat
- Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Rikan Libat
- Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Ong Shu Yuin
- Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Abhishek Parolia
- Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | | | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University; Dammam, Saudi Arabia
| | - Mak Kit Kay
- Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Kirti Saxena
- Clinical Oral Health Sciences Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Liang Lin Seow
- Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Preena Sidhu
- Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Umer Daood
- Restorative Division, School of Dentistry, International Medical University Kuala Lumpur, 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Almutairi S, Kalloush HM, Manoon NA, Bardaweel SK. Matrix Metalloproteinases Inhibitors in Cancer Treatment: An Updated Review (2013-2023). Molecules 2023; 28:5567. [PMID: 37513440 PMCID: PMC10384300 DOI: 10.3390/molecules28145567] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/09/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are identifiable members of proteolytic enzymes that can degrade a wide range of proteins in the extracellular matrix (ECM). MMPs can be categorized into six groups based on their substrate specificity and structural differences: collagenases, gelatinases, stromelysins, matrilysins, metalloelastase, and membrane-type MMPs. MMPs have been linked to a wide variety of biological processes, such as cell transformation and carcinogenesis. Over time, MMPs have been evaluated for their role in cancer progression, migration, and metastasis. Accordingly, various MMPs have become attractive therapeutic targets for anticancer drug development. The first generations of broad-spectrum MMP inhibitors displayed effective inhibitory activities but failed in clinical trials due to poor selectivity. Thanks to the evolution of X-ray crystallography, NMR analysis, and homology modeling studies, it has been possible to characterize the active sites of various MMPs and, consequently, to develop more selective, second-generation MMP inhibitors. In this review, we summarize the computational and synthesis approaches used in the development of MMP inhibitors and their evaluation as potential anticancer agents.
Collapse
Affiliation(s)
- Shriefa Almutairi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Hanin Moh'd Kalloush
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Nour A Manoon
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
15
|
Mazmanian K, Grauffel C, Dudev T, Lim C. Protein Ca 2+-Sites Prone to Sr 2+ Substitution: Implications for Strontium Therapy. J Phys Chem B 2023. [PMID: 37327495 DOI: 10.1021/acs.jpcb.3c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Strontium (Sr), an alkali metal with properties similar to calcium, in the form of soluble salts is used to treat osteoporosis. Despite the information accumulated on the role of Sr2+ as a Ca2+ mimetic in biology and medicine, there is no systematic study of how the outcome of the competition between the two dications depends on the physicochemical properties of (i) the metal ions, (ii) the first- and second-shell ligands, and (iii) the protein matrix. Specifically, the key features of a Ca2+-binding protein that enable Sr2+ to displace Ca2+ remain unclear. To address this, we studied the competition between Ca2+ and Sr2+ in protein Ca2+-binding sites using density functional theory combined with the polarizable continuum model. Our findings indicate that Ca2+-sites with multiple strong charge-donating protein ligands, including one or more bidentately bound Asp-/Glu- that are relatively buried and rigid are protected against Sr2+ attack. On the other hand, Ca2+-sites crowded with multiple protein ligands may be prone to Sr2+ displacement if they are solvent-exposed and flexible enough so that an extra backbone ligand from the outer shell can bind to Sr2+. In addition, solvent-exposed Ca2+ sites with only a few weak charge-donating ligands that can rearrange to fit the strontium's coordination requirements are susceptible to Sr2+ displacement. We provide the physical basis of these results and discuss potential novel protein targets of therapeutic Sr2+.
Collapse
Affiliation(s)
- Karine Mazmanian
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Todor Dudev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
16
|
Cui M, Nguyen D, Gaillez MP, Heiden S, Lin W, Thompson M, Reddavide FV, Chen Q, Zhang Y. Trio-pharmacophore DNA-encoded chemical library for simultaneous selection of fragments and linkers. Nat Commun 2023; 14:1481. [PMID: 36932079 PMCID: PMC10023787 DOI: 10.1038/s41467-023-37071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
The split-and-pool method has been widely used to synthesize chemical libraries of a large size for early drug discovery, albeit without the possibility of meaningful quality control. In contrast, a self-assembled DNA-encoded chemical library (DEL) allows us to construct an m x n-member library by mixing an m-member and an n-member pre-purified sub-library. Herein, we report a trio-pharmacophore DEL (T-DEL) of m x l x n members through assembling three pre-purified and validated sub-libraries. The middle sub-library is synthesized using DNA-templated synthesis with different reaction mechanisms and designed as a linkage connecting the fragments displayed on the flanking two sub-libraries. Despite assembling three fragments, the resulting compounds do not exceed the up-to-date standard of molecular weight regarding drug-likeness. We demonstrate the utility of T-DEL in linker optimization for known binding fragments against trypsin and carbonic anhydrase II and by de novo selections against matrix metalloprotease-2 and -9.
Collapse
Affiliation(s)
- Meiying Cui
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | - Michelle Patino Gaillez
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | - Weilin Lin
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | | | - Qinchang Chen
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, China.
- School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Yixin Zhang
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
17
|
Christopoulou ME, Papakonstantinou E, Stolz D. Matrix Metalloproteinases in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:ijms24043786. [PMID: 36835197 PMCID: PMC9966421 DOI: 10.3390/ijms24043786] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/01/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade proteins of the extracellular matrix and the basement membrane. Thus, these enzymes regulate airway remodeling, which is a major pathological feature of chronic obstructive pulmonary disease (COPD). Furthermore, proteolytic destruction in the lungs may lead to loss of elastin and the development of emphysema, which is associated with poor lung function in COPD patients. In this literature review, we describe and appraise evidence from the recent literature regarding the role of different MMPs in COPD, as well as how their activity is regulated by specific tissue inhibitors. Considering the importance of MMPs in COPD pathogenesis, we also discuss MMPs as potential targets for therapeutic intervention in COPD and present evidence from recent clinical trials in this regard.
Collapse
Affiliation(s)
- Maria-Elpida Christopoulou
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Eleni Papakonstantinou
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital, 4031 Basel, Switzerland
| | - Daiana Stolz
- Department of Pneumology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital, 4031 Basel, Switzerland
- Correspondence: ; Tel.: +49-(0)-761-270-37050
| |
Collapse
|
18
|
He L, Kang Q, Chan KI, Zhang Y, Zhong Z, Tan W. The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer. Front Immunol 2023; 13:1093990. [PMID: 36776395 PMCID: PMC9910179 DOI: 10.3389/fimmu.2022.1093990] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 01/22/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are an important class of enzymes in the body that function through the extracellular matrix (ECM). They are involved in diverse pathophysiological processes, such as tumor invasion and metastasis, cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta, and diseases of the central nervous system. MMPs participate in the occurrence and development of numerous cancers and are closely related to immunity. In the present study, we review the immunomodulatory role of MMPs in colitis-associated cancer (CAC) and discuss relevant clinical applications. We analyze more than 300 pharmacological studies retrieved from PubMed and the Web of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their corresponding mechanisms are elaborated. MMPs are involved in cell proliferation, cell differentiation, angiogenesis, ECM remodeling, and the inflammatory response in CAC. They also affect the immune system by modulating differentiation and immune activity of immune cells, recruitment of macrophages, and recruitment of neutrophils. Herein we describe the immunomodulatory role of MMPs in CAC to facilitate treatment of this special type of colon cancer, which is preceded by detectable inflammatory bowel disease in clinical populations.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Ka Iong Chan
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China,*Correspondence: Zhangfeng Zhong, ; Wen Tan,
| |
Collapse
|
19
|
Devel L, Guedeney N, Bregant S, Chowdhury A, Jean M, Legembre P. Role of metalloproteases in the CD95 signaling pathways. Front Immunol 2022; 13:1074099. [PMID: 36544756 PMCID: PMC9760969 DOI: 10.3389/fimmu.2022.1074099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
CD95L (also known as FasL or CD178) is a member of the tumor necrosis family (TNF) superfamily. Although this transmembrane ligand has been mainly considered as a potent apoptotic inducer in CD95 (Fas)-expressing cells, more recent studies pointed out its role in the implementation of non-apoptotic signals. Accordingly, this ligand has been associated with the aggravation of inflammation in different auto-immune disorders and in the metastatic occurrence in different cancers. Although it remains to decipher all key factors involved in the ambivalent role of this ligand, accumulating clues suggest that while the membrane bound CD95L triggers apoptosis, its soluble counterpart generated by metalloprotease-driven cleavage is responsible for its non-apoptotic functions. Nonetheless, the metalloproteases (MMPs and ADAMs) involved in the CD95L shedding, the cleavage sites and the different stoichiometries and functions of the soluble CD95L remain to be elucidated. To better understand how soluble CD95L triggers signaling pathways from apoptosis to inflammation or cell migration, we propose herein to summarize the different metalloproteases that have been described to be able to shed CD95L, their cleavage sites and the biological functions associated with the released ligands. Based on these new findings, the development of CD95/CD95L-targeting therapeutics is also discussed.
Collapse
Affiliation(s)
- Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Nicolas Guedeney
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Sarah Bregant
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Animesh Chowdhury
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Mickael Jean
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Patrick Legembre
- CRIBL UMR CNRS 7276 INSERM 1262, Université de Limoges, Rue Marcland, Limoges, France,*Correspondence: Patrick Legembre,
| |
Collapse
|
20
|
Bapat RA, Parolia A, Chaubal T, Yang HJ, Kesharwani P, Phaik KS, Lin SL, Daood U. Recent Update on Applications of Quaternary Ammonium Silane as an Antibacterial Biomaterial: A Novel Drug Delivery Approach in Dentistry. Front Microbiol 2022; 13:927282. [PMID: 36212832 PMCID: PMC9539660 DOI: 10.3389/fmicb.2022.927282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Quaternary ammonium silane [(QAS), codename – k21] is a novel biomaterial developed by sol-gel process having broad spectrum antimicrobial activities with low cytotoxicity. It has been used in various concentrations with maximum antimicrobial efficacy and biocompatibility. The antimicrobial mechanism is displayed via contact killing, causing conformational changes within the bacterial cell membrane, inhibiting Sortase-A enzyme, and causing cell disturbances due to osmotic changes. The compound can attach to S1' pockets on matrix metalloproteinases (MMPs), leading to massive MMP enzyme inhibition, making it one of the most potent protease inhibitors. Quaternary ammonium silane has been synthesized and used in dentistry to eliminate the biofilm from dental tissues. QAS has been tested for its antibacterial activity as a cavity disinfectant, endodontic irrigant, restorative and root canal medication, and a nanocarrier for drug delivery approaches. The review is first of its kind that aims to discuss applications of QAS as a novel antibacterial biomaterial for dental applications along with discussions on its cytotoxic effects and future prospects in dentistry.
Collapse
Affiliation(s)
- Ranjeet Ajit Bapat
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Abhishek Parolia
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Tanay Chaubal
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Ho Jan Yang
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Prashant Kesharwani
- School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Khoo Suan Phaik
- Division of Clinical Oral Health, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Seow Liang Lin
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
| | - Umer Daood
- Restorative Dentistry Division, School of Dentistry, International Medical University, Kuala Lumpur, Malaysia
- *Correspondence: Umer Daood
| |
Collapse
|
21
|
Gou X, Nawaz MAH, Liu C, Yang N, Ren J, Zhou H, Li Y, Zhu J, Han W, Yu C. Polypeptide induced perylene probe excimer formation and its application in the noncovalent ratiometric detection of matrix metalloproteinase activity. J Mater Chem B 2022; 10:5774-5783. [PMID: 35856878 DOI: 10.1039/d2tb00416j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are important biomarkers for a number of diseases. Thus, the precise determination of MMP activity is of crucial importance. Herein, we report a ratiometric fluorescence method for the sensitive and selective sensing of MMP activity. A number of positively charged MMP substrates (polypeptides) were designed and prepared. These polypeptides could induce aggregation of a negatively charged perylene diimide derivative (PC1). As a result, excimer fluorescence of PC1 was observed. Addition of the corresponding MMP resulted in cleavage of the polypeptide chain and dis-aggregation of PC1, which led to turning on of the PC1 monomer fluorescence. Based on the ratio of the monomer (545 nm, IM) and the excimer (680 nm, IM) fluorescence intensity changes, a ratiometric method I545/I680) was established to detect MMP activity. The enzymatic activity of a number of MMPs (MMP-1, 2, 3, 7, 9 and 13) could be determined with a limit of detection of 4.8, 2.2, 16, 6.0, 1.7 and 5.5 ng mL-1, respectively. Using MMP-2 and MMP-9 as examples, flavonoid herbal extracts as potential inhibitors were studied. It was observed that mangiferin, apigenin, quercetin and isoliquiritigenin had significant inhibiting effects on the enzyme activity. And these herbal extracts also inhibited tumor cell metastasis. Moreover, the developed strategy was also employed to determine the concentration of MMP-9 in human saliva samples. Since the method relies on only noncovalent interactions between the polypeptide and PC1, no covalent labeling of fluorescence dye on the polypeptide substrate is required, and the method is thus simple, broad-spectrum inexpensive and effective. It has the potential to be developed into a clinical test kit.
Collapse
Affiliation(s)
- Xiaoyu Gou
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
| | - Muhammad Azhar Hayat Nawaz
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China.,Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University, Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Chaoyi Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Na Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jia Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Huipeng Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yunhui Li
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China.,Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528400, China
| | - Jianwei Zhu
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528400, China
| | - Wenzhao Han
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.,University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
22
|
Nisiewicz MK, Gajda A, Kowalczyk A, Cupriak A, Kasprzak A, Bamburowicz-Klimkowska M, Grudzinski IP, Nowicka AM. Novel electrogravimetric biosensors for the ultrasensitive detection of plasma matrix metalloproteinase-2 considered a potential tumor biomarker. Anal Chim Acta 2022; 1191:339290. [PMID: 35033237 DOI: 10.1016/j.aca.2021.339290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022]
Abstract
In this study, we developed novel, simple gravimetric and voltammetric sensors for the ultrasensitive detection of active matrix metalloproteinase (MMP)-2 in plasma. The developed sensors are cost-effective, require a very less amount of reagents, and are time-saving. They detect MMP-2 based on antigen-antibody recognition and its ability to cleave glycine-leucine peptide bond. The three-dimensional bioplatform of the sensors consisted of a cationic polyethyleneimine (PEI) polymer that facilitated robust immobilization of the dipeptide labeled with anthraquinone (AQ), or antibody molecules in appropriate density, which was crucial for biosensing. Detection was performed using quartz crystal microbalance with dissipation and voltammetry. The results showed that the developed sensors were characterized by high stability, wide analytical range (2.0 pg mL-1 to 5.0 μg mL-1), and low detection limit (ca. 10 fg mL-1). They also exhibited excellent efficiency in the determination of active MMP-2 in real samples, such as blood plasma. The developed sensors may hold great promise for the early diagnosis of cancers.
Collapse
Affiliation(s)
- Monika K Nisiewicz
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664, Warsaw, Poland
| | - Aleksandra Gajda
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland
| | - Aleksandra Cupriak
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664, Warsaw, Poland
| | | | - Ireneusz P Grudzinski
- Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL-02-097, Warsaw, Poland
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland.
| |
Collapse
|
23
|
Ivanov VN, Agamennone M, Iusupov IR, Laghezza A, Novoselov AM, Manasova EV, Altieri A, Tortorella P, Shtil AA, Kurkin AV. Het(aryl)isatin to het(aryl)aminoindoline scaffold hopping: A route to selective inhibitors of matrix metalloproteinases. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
24
|
Albelwi FF, Teleb M, Abu-Serie MM, Moaty MNAA, Alsubaie MS, Zakaria MA, El Kilany Y, Aouad MR, Hagar M, Rezki N. Halting Tumor Progression via Novel Non-Hydroxamate Triazole-Based Mannich Bases MMP-2/9 Inhibitors; Design, Microwave-Assisted Synthesis, and Biological Evaluation. Int J Mol Sci 2021; 22:ijms221910324. [PMID: 34638665 PMCID: PMC8508768 DOI: 10.3390/ijms221910324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are key signaling modulators in the tumor microenvironment. Among MMPs, MMP-2 and MMP-9 are receiving renewed interest as validated druggable targets for halting different tumor progression events. Over the last decades, a diverse range of MMP-2/9 inhibitors has been identified starting from the early hydroxamic acid-based peptidomimetics to the next generation non-hydroxamates. Herein, focused 1,2,4-triazole-1,2,3-triazole molecular hybrids with varying lengths and decorations, mimicking the thematic features of non-hydroxamate inhibitors, were designed and synthesized using efficient protocols and were alkylated with pharmacophoric amines to develop new Mannich bases. After full spectroscopic characterization the newly synthesized triazoles tethering Mannich bases were subjected to safety assessment via MTT assay against normal human fibroblasts, then evaluated for their potential anticancer activities against colon (Caco-2) and breast (MDA-MB 231) cancers. The relatively lengthy bis-Mannich bases 15 and 16 were safer and more potent than 5-fluorouracil with sub-micromolar IC50 and promising selectivity to the screened cancer cell lines rather than normal cells. Both compounds upregulated p53 (2–5.6-fold) and suppressed cyclin D expression (0.8–0.2-fold) in the studied cancers, and thus, induced apoptosis. 15 was superior to 16 in terms of cytotoxic activities, p53 induction, and cyclin D suppression. Mechanistically, both were efficient MMP-2/9 inhibitors with comparable potencies to the reference prototype hydroxamate-based MMP inhibitor NNGH at their anticancer IC50 concentrations. 15 (IC50 = 0.143 µM) was 4-fold more potent than NNGH against MMP-9 with promising selectivity (3.27-fold) over MMP-2, whereas 16 was comparable to NNGH. Concerning MMP-2, 16 (IC50 = 0.376 µM) was 1.2-fold more active than 15. Docking simulations predicted their possible binding modes and highlighted the possible structural determinants of MMP-2/9 inhibitory activities. Computational prediction of their physicochemical properties, ADMET, and drug-likeness metrics revealed acceptable drug-like criteria.
Collapse
Affiliation(s)
- Fawzia Faleh Albelwi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (M.R.A.)
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt;
| | - Marwa M. Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Mohamed Nabil Abd Al Moaty
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Mai S. Alsubaie
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Mohamed A. Zakaria
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Yeldez El Kilany
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (M.R.A.)
| | - Mohamed Hagar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (M.N.A.A.M.); (M.S.A.); (M.A.Z.); (Y.E.K.)
- Correspondence: (M.H.); (N.R.)
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia; (F.F.A.); (M.R.A.)
- Correspondence: (M.H.); (N.R.)
| |
Collapse
|
25
|
Yue L, Shi Y, Su X, Ouyang L, Wang G, Ye T. Matrix metalloproteinases inhibitors in idiopathic pulmonary fibrosis: Medicinal chemistry perspectives. Eur J Med Chem 2021; 224:113714. [PMID: 34315043 DOI: 10.1016/j.ejmech.2021.113714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 02/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disease with limited therapeutic options and a particularly poor prognosis. Matrix metalloproteinases (MMPs), promising targets for the treatment of IPF, have been identified as playing a pivotal role in IPF. Although the pathological processes of MMPs and IPF have been verified, there are no MMP inhibitors for the treatment of IPF in the clinic. In this review, we will present the latest developments in MMP inhibitors, including pharmacophores, binding modes, selectivity and optimization strategies. In addition, we will also discuss the future development direction of MMP inhibitors based on emerging tools and techniques.
Collapse
Affiliation(s)
- Lin Yue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yaojie Shi
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xingping Su
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liang Ouyang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guan Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
26
|
Gutiérrez JM, Albulescu LO, Clare RH, Casewell NR, Abd El-Aziz TM, Escalante T, Rucavado A. The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins (Basel) 2021; 13:451. [PMID: 34209691 PMCID: PMC8309910 DOI: 10.3390/toxins13070451] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 12/28/2022] Open
Abstract
A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors. Natural inhibitors include compounds isolated from plants, animal sera, and mast cells, whereas synthetic inhibitors comprise a wide range of molecules of a variable chemical nature. Some of the most promising inhibitors, especially SVMP and PLA2 inhibitors, have been developed for other diseases and are being repurposed for snakebite envenoming. In addition, the search for drugs aimed at controlling endogenous processes generated in the course of envenoming is being pursued. The present review summarizes some of the most promising developments in this field and discusses issues that need to be considered for the effective translation of this knowledge to improve therapies for tackling snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Rachel H. Clare
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Teresa Escalante
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Alexandra Rucavado
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| |
Collapse
|
27
|
Das S, Amin SA, Jha T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur J Med Chem 2021; 223:113623. [PMID: 34157437 DOI: 10.1016/j.ejmech.2021.113623] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are collectively known as gelatinases whereas MMP-2 is gelatinase-A and MMP-9 is termed as gelatinase-B. Gelatinases and other matrix metalloproteinases (MMPs) have long been associated with solid tumor invasion, metastasis and angiogenesis. However, there is paucity of data available regarding the role of gelatinases in hematological malignancies. Recent studies have shown that gelatinases activities or functions are correlated with hematological malignancies. Strategies for designing more specific gelatinase inhibitors like catalytic (CAT) domain inhibitors and hemopexin (PEX) domain inhibitors as well as signaling pathway based or gelatinase expression inhibitors had been reported against hematologic malignant cells. Several substrate based non-selective to non-substrate based relatively selective synthetic matrix metalloproteinase inhibitors (MMPIs) had been developed. Few MMPIs had reached in clinical trials during the period of 1990s-2000s. Unfortunately the anti-tumor and anti-metastatic efficacies of these MMPIs were not justified with patients having several advanced stage solid tumor cancers in any substantial number of clinical trials. Till date not a single MMPI passed phase III clinical trials designed for advanced metastatic cancers due to adverse events as well as lack of ability to show uniformity in disease prolongation. With the best of our knowledge no clinical trial study has been reported with small molecule synthetic inhibitors against hematological malignancies. This review looks at the outcome of clinical trials of MMPIs for advanced stage solid tumors. This can therefore, act as a learning experience for future development of successful gelatinase inhibitors for the management of hematological malignancies.
Collapse
Affiliation(s)
- Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
28
|
Niranjan R, Kishor S, Kumar A. Matrix metalloproteinases in the pathogenesis of dengue viral disease: Involvement of immune system and newer therapeutic strategies. J Med Virol 2021; 93:4629-4637. [PMID: 33634515 DOI: 10.1002/jmv.26903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/17/2022]
Abstract
Globally, the burden due to dengue infection is increasing with a recent estimate of 96 million progressing to the disease every year. Dengue pathogenesis and the factors influencing it are not completely known. It is now widely speculated that there is an important role of matrix metalloproteinases (MMPs) in the initiation and progression of dengue pathogenesis; however, their exact roles are not fully understood. Overactivation of matrix metalloproteinases may contribute to the severity of dengue pathogenesis. Cytokines and various other mediators of inflammation interact with the vascular endothelium and matrix metalloproteinases may be one of the components among them. Extensive plasma leakage into tissue spaces may result in a shock. It is evident in the literature that MMP2 and MMP9 increase in dengue patients is correlated with the severity of the disease; however, the underlying mechanism is still unknown. Activation of innate cells and adaptive immune cells which include, B and T cells, macrophages or monocytes and dendritic cells also contribute to the dengue pathology. Newer therapeutic strategies include microRNAs, such as miR-134 (targets MMP3 and MMP1) and MicroRNA-320d, (targets MMP/TIMP proteolytic system). The use of antibodies-based therapeutics like (Andecaliximab; anti-matrix metalloproteinase-9 antibody) is also suggested against MMPs in dengue. In this review, we summarize some recent developments associated with the involvement of immune cells and their mediators associated with the matrix metalloproteinases mediated dengue pathogenesis. We highlight that, there is still very little knowledge about the MMPs in dengue pathogenesis which needs attention and extensive investigations.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Immunology Laboratory, ICMR-Vector Control Research Center, Puducherry, India
| | - Sumitha Kishor
- Immunology Laboratory, ICMR-Vector Control Research Center, Puducherry, India
| | - Ashwani Kumar
- Immunology Laboratory, ICMR-Vector Control Research Center, Puducherry, India
| |
Collapse
|
29
|
Polymerizable Matrix Metalloproteinases' Inhibitors with Potential Application for Dental Restorations. Biomedicines 2021; 9:biomedicines9040366. [PMID: 33807479 PMCID: PMC8065691 DOI: 10.3390/biomedicines9040366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/21/2022] Open
Abstract
Collagen cleavage by matrix metalloproteinase (MMP) is considered a major cause of dental resins long term failure. Most MMP inhibitors display significant toxicity and are unsuitable for dental resins’ applications. Here we report a study of a new class of inhibitors that display the unique property of being co-polymerizable with other vinyl compounds present in commercial dental resins, limiting their release and potential toxicity. Computational affinity towards the active site of different MMP-1; -2; -8; -9 and -13 of several compounds showed interesting properties and were synthesized. These free compounds were tested concerning their toxicity upon contact with two different cell types, with no substantial decrease in cell viability at high concentrations. Even so, compound’s safety can be further improved upon copolymerization with commercial dental resins, limiting their release.
Collapse
|
30
|
D'Amico F, Candido S, Libra M. Interaction between matrix metalloproteinase-9 (MMP-9) and neutrophil gelatinase-associated lipocalin (NGAL): A recent evolutionary event in primates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103933. [PMID: 33245981 DOI: 10.1016/j.dci.2020.103933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/30/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Matrix metalloproteases are known to represent an early step in the evolution of the immune system. Similarly, neutrophil gelatinase-associated lipocalin is known to be a key effector in immune response. MMP-9 interacts with NGAL, but their interaction mechanisms remain unclear. Functional interaction between proteins is ensured by coevolution. Protein coevolution was inferred by calculating the linear correlation coefficients between inter-protein distance matrices using MirrorTree. Among examined mammal species, we found a robust signal of MMP-9/NGAL coevolution exclusively within Primates (R = 0.96, p < 1e-06). Owing to the high conservation of these proteins among Mammals, we chose to utilize a recent version of Blocks in Sequences (BIS2) algorithm implemented in BIS2Analyzer webserver. Coevolution clusters between the two proteins were identified in MMP-9 fibronectin and hemopexin domains. Our results suggest that MMP-9/NGAL interaction is a recent evolutionary acquisition in Primates. Furthermore, MMP-9 hemopexin domain would represent a promising target for drug design against these molecules.
Collapse
Affiliation(s)
- Fabio D'Amico
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy.
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123, Catania, Italy
| |
Collapse
|
31
|
Neidhart B, Kowalska M, Valentin JDP, Gall FM, Ren Q, Riedl R, Pot S, Rottmar M. Tissue Inhibitor of Metalloproteinase (TIMP) Peptidomimetic as an Adjunctive Therapy for Infectious Keratitis. Biomacromolecules 2020; 22:629-639. [PMID: 33347749 DOI: 10.1021/acs.biomac.0c01473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Matrix metalloproteinase 9 (MMP-9) has a key role in many biological processes, and while it is crucial for a normal immune response, excessive release of this enzyme can lead to severe tissue damage, as evidenced by proteolytic digestion and perforation of the cornea during infectious keratitis. Current medical management strategies for keratitis mostly focus on antibacterial effects, but largely neglect the role of excess MMP activity. Here, a cyclic tissue inhibitor of metalloproteinase (TIMP) peptidomimetic, which downregulated MMP-9 expression both at the mRNA and protein levels as well as MMP-9 activity in THP-1-derived macrophages, is reported. A similar downregulating effect could also be observed on α smooth muscle actin (α-SMA) expression in fibroblasts. Furthermore, the TIMP peptidomimetic reduced Pseudomonas aeruginosa-induced MMP-9 activity in an ex vivo porcine infectious keratitis model and histological examinations demonstrated that a decrease of corneal thickness, associated with keratitis progression, was inhibited upon peptidomimetic treatment. The presented approach to reduce MMP-9 activity thus holds great potential to decrease corneal tissue damage and improve the clinical success of current treatment strategies for infectious keratitis.
Collapse
Affiliation(s)
- Berna Neidhart
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Malwina Kowalska
- Ophthalmology Section, Equine Department, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Jules D P Valentin
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Flavio Max Gall
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, ZHAW Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, ZHAW Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Simon Pot
- Ophthalmology Section, Equine Department, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
32
|
Cuffaro D, Nuti E, D’Andrea F, Rossello A. Developments in Carbohydrate-Based Metzincin Inhibitors. Pharmaceuticals (Basel) 2020; 13:ph13110376. [PMID: 33182755 PMCID: PMC7696829 DOI: 10.3390/ph13110376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/03/2023] Open
Abstract
Matrix metalloproteinases (MMPs) and A disintegrin and Metalloproteinase (ADAMs) are zinc-dependent endopeptidases belonging to the metzincin superfamily. Upregulation of metzincin activity is a major feature in many serious pathologies such as cancer, inflammations, and infections. In the last decades, many classes of small molecules have been developed directed to inhibit these enzymes. The principal shortcomings that have hindered clinical development of metzincin inhibitors are low selectivity for the target enzyme, poor water solubility, and long-term toxicity. Over the last 15 years, a novel approach to improve solubility and bioavailability of metzincin inhibitors has been the synthesis of carbohydrate-based compounds. This strategy consists of linking a hydrophilic sugar moiety to an aromatic lipophilic scaffold. This review aims to describe the development of sugar-based and azasugar-based derivatives as metzincin inhibitors and their activity in several pathological models.
Collapse
|
33
|
Fischer T, Riedl R. Challenges with matrix metalloproteinase inhibition and future drug discovery avenues. Expert Opin Drug Discov 2020; 16:75-88. [PMID: 32921161 DOI: 10.1080/17460441.2020.1819235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Matrix metalloproteinases have been in the scope of pharmaceutical drug discovery for decades as promising targets for drug development. Until present, no modulator of the enzyme class survived clinical trials, all failing for various reasons. Nevertheless, the target family did not lose its attractiveness and there is ever more evidence that MMP modulators are likely to overcome the hurdles and result in successful clinical therapies. AREAS COVERED This review provides an overview of past efforts that were taken in the development of MMP inhibitors and insight into promising strategies that might enable drug discovery in the field in the future. Small molecule inhibitors as well as biomolecules are reviewed. EXPERT OPINION Despite the lack of successful clinical trials in the past, there is ongoing research in the field of MMP modulation, proving the target class has not lost its appeal to pharmaceutical research. With ever-growing insights from different scientific fields that shed light on previously unknown correlations, it is now time to use synergies deriving from biological knowledge, chemical structure generation, and clinical application to reach the ultimate goal of bringing MMP derived drugs on a broad front for the benefit of patients into therapeutic use.
Collapse
Affiliation(s)
- Thomas Fischer
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW , 8820 Wädenswil, Switzerland
| | - Rainer Riedl
- Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW , 8820 Wädenswil, Switzerland
| |
Collapse
|
34
|
Zipfel P, Rochais C, Baranger K, Rivera S, Dallemagne P. Matrix Metalloproteinases as New Targets in Alzheimer's Disease: Opportunities and Challenges. J Med Chem 2020; 63:10705-10725. [PMID: 32459966 DOI: 10.1021/acs.jmedchem.0c00352] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although matrix metalloproteinases (MMPs) are implicated in the regulation of numerous physiological processes, evidence of their pathological roles have also been obtained in the last decades, making MMPs attractive therapeutic targets for several diseases. Recent discoveries of their involvement in central nervous system (CNS) disorders, and in particular in Alzheimer's disease (AD), have paved the way to consider MMP modulators as promising therapeutic strategies. Over the past few decades, diverse approaches have been undertaken in the design of therapeutic agents targeting MMPs for various purposes, leading, more recently, to encouraging developments. In this article, we will present recent examples of inhibitors ranging from small molecules and peptidomimetics to biologics. We will also discuss the scientific knowledge that has led to the development of emerging tools and techniques to overcome the challenges of selective MMP inhibition.
Collapse
Affiliation(s)
- Pauline Zipfel
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| |
Collapse
|
35
|
Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int J Mol Sci 2020; 21:ijms21113946. [PMID: 32486345 PMCID: PMC7313469 DOI: 10.3390/ijms21113946] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases responsible for tissue remodeling and degradation of extracellular matrix (ECM) proteins. MMPs may modulate various cellular and signaling pathways in atherosclerosis responsible for progression and rupture of atherosclerotic plaques. The effect of MMPs polymorphisms and the expression of MMPs in both the atherosclerotic plaque and plasma was shown. They are independent predictors of atherosclerotic plaque instability in stable coronary heart disease (CHD) patients. Increased levels of MMPs in patients with advanced cardiovascular disease (CAD) and acute coronary syndrome (ACS) was associated with future risk of cardiovascular events. These data confirm that MMPs may be biomarkers in plaque instability as they target in potential drug therapies for atherosclerosis. They provide important prognostic information, independent of traditional risk factors, and may turn out to be useful in improving risk stratification.
Collapse
|
36
|
Laronha H, Carpinteiro I, Portugal J, Azul A, Polido M, Petrova KT, Salema-Oom M, Caldeira J. Challenges in Matrix Metalloproteinases Inhibition. Biomolecules 2020; 10:biom10050717. [PMID: 32380782 PMCID: PMC7277161 DOI: 10.3390/biom10050717] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Matrix metalloproteinases are enzymes that degrade the extracellular matrix. They have different substrates but similar structural organization. Matrix metalloproteinases are involved in many physiological and pathological processes and there is a need to develop inhibitors for these enzymes in order to modulate the degradation of the extracellular matrix (ECM). There exist two classes of inhibitors: endogenous and synthetics. The development of synthetic inhibitors remains a great challenge due to the low selectivity and specificity, side effects in clinical trials, and instability. An extensive review of currently reported synthetic inhibitors and description of their properties is presented.
Collapse
Affiliation(s)
- Helena Laronha
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
- UCIBIO and LAQV, Requimte, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Inês Carpinteiro
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
| | - Jaime Portugal
- Faculdade de Medicina Dentária Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| | - Ana Azul
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
| | - Mário Polido
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
| | - Krasimira T. Petrova
- UCIBIO and LAQV, Requimte, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Madalena Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
- UCIBIO and LAQV, Requimte, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Jorge Caldeira
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal; (H.L.); (I.C.); (A.A.); (M.P.); (M.S.-O.)
- UCIBIO and LAQV, Requimte, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Correspondence: ; Tel.: +351-919553592
| |
Collapse
|
37
|
Laronha H, Caldeira J. Structure and Function of Human Matrix Metalloproteinases. Cells 2020; 9:cells9051076. [PMID: 32357580 PMCID: PMC7290392 DOI: 10.3390/cells9051076] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
The extracellular matrix (ECM) is a macromolecules network, in which the most abundant molecule is collagen. This protein in triple helical conformation is highly resistant to proteinases degradation, the only enzymes capable of degrading the collagen are matrix metalloproteinases (MMPs). This resistance and maintenance of collagen, and consequently of ECM, is involved in several biological processes and it must be strictly regulated by endogenous inhibitors (TIMPs). The deregulation of MMPs activity leads to development of numerous diseases. This review shows MMPs complexity.
Collapse
Affiliation(s)
- Helena Laronha
- Centro de investigação interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829 Caparica, Portugal;
- UCIBIO and LAQV Requimte Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Jorge Caldeira
- Centro de investigação interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829 Caparica, Portugal;
- UCIBIO and LAQV Requimte Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Correspondence: ; Tel.: +3519-1955-35-92
| |
Collapse
|
38
|
Ågren MS, auf dem Keller U. Matrix Metalloproteinases: How Much Can They Do? Int J Mol Sci 2020; 21:ijms21082678. [PMID: 32290531 PMCID: PMC7215854 DOI: 10.3390/ijms21082678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Zinc-dependent matrix metalloproteinases (MMPs) belong to metzincins that comprise not only 23 human MMPs but also other metalloproteinases, such as 21 human ADAMs (a disintegrin and metalloproteinase domain) and 19 secreted ADAMTSs (a disintegrin and metalloproteinase thrombospondin domain). The many setbacks from the clinical trials of broad-spectrum MMP inhibitors for cancer indications in the late 1990s emphasized the extreme complexity of the participation of these proteolytic enzymes in biology. This editorial mini-review summarizes the Special Issue, which includes four review articles and 10 original articles that highlight the versatile roles of MMPs, ADAMs, and ADAMTSs, in normal physiology as well as in neoplastic and destructive processes in tissue. In addition, we briefly discuss the unambiguous involvement of MMPs in wound healing.
Collapse
Affiliation(s)
- Magnus S. Ågren
- Digestive Disease Center and Copenhagen Wound Healing Center, Bispebjerg Hospital, University of Copenhagen, 2400 Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2400 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-3863-5954
| | - Ulrich auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| |
Collapse
|
39
|
Lindenmann U, Brand M, Gall F, Frasson D, Hunziker L, Kroslakova I, Sievers M, Riedl R. Discovery of a Class of Potent and Selective Non-competitive Sentrin-Specific Protease 1 Inhibitors. ChemMedChem 2020; 15:675-679. [PMID: 32083799 DOI: 10.1002/cmdc.202000067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 01/17/2023]
Abstract
Sentrin-specific proteases (SENPs) are responsible for the maturation of small ubiquitin-like modifiers (SUMOs) and the deconjugation of SUMOs from their substrate proteins. Studies on prostate cancer revealed an overexpression of SENP1, which promotes prostate cancer progression as well as metastasis. Therefore, SENP1 has been identified as a novel drug target against prostate cancer. Herein, we report the discovery and biological evaluation of potent and selective SENP1 inhibitors. A structure-activity relationship (SAR) of the newly identified pyridone scaffold revealed allosteric inhibitors with very attractive in vitro ADMET properties regarding plasma binding and plasma stability for this challenging target. This study also emphasizes the importance of biochemical mode of inhibition studies for de novo designed inhibitors.
Collapse
Affiliation(s)
- Urs Lindenmann
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, ZHAW Zurich University of Applied Sciences, Einsiedlerstr. 31, 8820, Wädenswil, Switzerland
| | - Michael Brand
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, ZHAW Zurich University of Applied Sciences, Einsiedlerstr. 31, 8820, Wädenswil, Switzerland
| | - Flavio Gall
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, ZHAW Zurich University of Applied Sciences, Einsiedlerstr. 31, 8820, Wädenswil, Switzerland
| | - David Frasson
- Institute of Chemistry and Biotechnology, Center of Molecular Biology, ZHAW Zurich University of Applied Sciences, Einsiedlerstr. 31, 8820, Wädenswil, Switzerland
| | - Lukas Hunziker
- Institute of Chemistry and Biotechnology, Center of Molecular Biology, ZHAW Zurich University of Applied Sciences, Einsiedlerstr. 31, 8820, Wädenswil, Switzerland
| | - Ivana Kroslakova
- Institute of Chemistry and Biotechnology, Center of Molecular Biology, ZHAW Zurich University of Applied Sciences, Einsiedlerstr. 31, 8820, Wädenswil, Switzerland
| | - Martin Sievers
- Institute of Chemistry and Biotechnology, Center of Molecular Biology, ZHAW Zurich University of Applied Sciences, Einsiedlerstr. 31, 8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, ZHAW Zurich University of Applied Sciences, Einsiedlerstr. 31, 8820, Wädenswil, Switzerland
| |
Collapse
|
40
|
The past, present and future perspectives of matrix metalloproteinase inhibitors. Pharmacol Ther 2020; 207:107465. [DOI: 10.1016/j.pharmthera.2019.107465] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
|
41
|
Virtual screening identification and chemical optimization of substituted 2-arylbenzimidazoles as new non-zinc-binding MMP-2 inhibitors. Bioorg Med Chem 2020; 28:115257. [DOI: 10.1016/j.bmc.2019.115257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 01/02/2023]
|
42
|
Fischer T, Riedl R. Inhibitory Antibodies Designed for Matrix Metalloproteinase Modulation. Molecules 2019; 24:molecules24122265. [PMID: 31216704 PMCID: PMC6631688 DOI: 10.3390/molecules24122265] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/20/2023] Open
Abstract
The family of matrix metalloproteinases (MMPs) consists of a set of biological targets that are involved in a multitude of severe pathogenic events such as different forms of cancers or arthritis. Modulation of the target class with small molecule drugs has not led to the anticipated success until present, as all clinical trials failed due to unacceptable side effects or a lack of therapeutic outcome. Monoclonal antibodies offer a tremendous therapeutic potential given their high target selectivity and good pharmacokinetic profiles. For the treatment of a variety of diseases there are already antibody therapies available and the number is increasing. Recently, several antibodies were developed for the selective inhibition of single MMPs that showed high potency and were therefore investigated in in vivo studies with promising results. In this review, we highlight the progress that has been achieved toward the design of inhibitory antibodies that successfully modulate MMP-9 and MMP-14.
Collapse
Affiliation(s)
- Thomas Fischer
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center of Organic and Medicinal Chemistry, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| |
Collapse
|
43
|
Abstract
Introduction: The development of drug candidates with a defined selectivity profile and a unique molecular structure is of fundamental interest for drug discovery. In contrast to the costly screening of large substance libraries, the targeted de novo design of a drug by using structural information of either the biological target and/or structure-activity relationship data of active modulators offers an efficient and intellectually appealing alternative. Areas covered: This review provides an overview on the different techniques of de novo drug design (ligand-based drug design, structure-based drug design, and fragment-based drug design) and highlights successful examples of this targeted approach toward selective modulators of therapeutically relevant targets. Expert opinion: De novo drug design has established itself as a very efficient method for the development of potent and selective modulators for a variety of different biological target classes. The ever-growing wealth of structural data on therapeutic targets will certainly further enhance the importance of de novo design for the drug discovery process in the future. However, a consistent use of the terminology of de novo drug design in the scientific literature should be sought.
Collapse
Affiliation(s)
- Thomas Fischer
- a Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology , Zurich University of Applied Sciences ZHAW , Wädenswil , Switzerland
| | - Silvia Gazzola
- b Dipartimento di Scienza e Alta Tecnologia , Università degli Studi dell'Insubria , Como , Italy
| | - Rainer Riedl
- a Center of Organic and Medicinal Chemistry, Institute of Chemistry and Biotechnology , Zurich University of Applied Sciences ZHAW , Wädenswil , Switzerland
| |
Collapse
|