1
|
Liu Q, Jin B, Li Q, Yang H, Luo Y, Li X. Self-sorting assembly of artificial building blocks. SOFT MATTER 2022; 18:2484-2499. [PMID: 35266949 DOI: 10.1039/d2sm00153e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Self-assembly to build high-level structures, which is ubiquitous in living systems, has captured the imagination of scientists, striving to emulate the intricacy, homogeneity and versatility of the naturally occurring systems, and to pursue a similar level of organization in artificial building blocks. In particular, self-sorting assembly in multicomponent systems, based on the spontaneous recognition and consequent spatial aggregation of the same or interactive building units, is able to realize very complicated assembly behaviours, and usually results in multiple well-ordered products or hierarchical structures in a one-step manner. This highly efficient assembly strategy has attracted tremendous research attention in recent years, and numerous examples have been reported in artificial systems, particularly with supramolecular and polymeric building blocks. In the current review, we summarize the progress in recent years, and classify them into five main categories, based on their working mechanisms or principles. With the review of these strategies, we hope to provide not only some deep insights into this field, but also and more importantly, useful thoughts in the design and fabrication of self-sorting systems in the future.
Collapse
Affiliation(s)
- Qianwei Liu
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Bixin Jin
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Qin Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Huanzhi Yang
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
| | - Yunjun Luo
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
| | - Xiaoyu Li
- School of Material Science and Engineering, Beijing Institute of China, Beijing 100081, People's Republic of China.
- Key Laboratory of High Energy Density Materials, Ministry of Education, Beijing Institute of China, Beijing 100081, People's Republic of China
- Experimental Centre of Advanced Materials, Beijing Institute of China, Beijing 100081, People's Republic of China
| |
Collapse
|
2
|
Biliz F, Cakici M. Regioselective Synthesis of 4,7,12,15‐Tetrasubstituted [2.2]Paracyclophanes: A Modular Route Involving Optical Resolution. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fatmanur Biliz
- Faculty of Science Department of Chemistry Ataturk University 25240 Erzurum Turkey
| | - Murat Cakici
- Faculty of Science Department of Chemistry Ataturk University 25240 Erzurum Turkey
| |
Collapse
|
3
|
Yoshigoe Y, Suzaki Y, Osakada K. Cyclic Diplatinum Complex with a Tröger's Base Ligand and Reductive Elimination of a Highly Strained Ring Molecule. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuke Yoshigoe
- Research Laboratory of Chemistry and Life Science Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- Tokyo University of Science 1–3 Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Yuji Suzaki
- Research Laboratory of Chemistry and Life Science Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
| | - Kohtaro Osakada
- Research Laboratory of Chemistry and Life Science Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku Yokohama 226-8503 Japan
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi Tsukuba 305-8565 Japan
| |
Collapse
|
4
|
Suko N, Itamoto H, Okayasu Y, Okura N, Yuasa J. Helix-mediated over 1 nm-range chirality recognition by ligand-to-ligand interactions of dinuclear helicates. Chem Sci 2021; 12:8746-8754. [PMID: 34257874 PMCID: PMC8246085 DOI: 10.1039/d1sc01611c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
Long-range chirality recognition between the two chiral guest ligands can be tuned based on the helix distances (dLn–Ln = 11.5 and 14.0 Å) of bis-diketonate bridged dinuclear lanthanide complexes (2Th and 3Th, respectively) used as mediators. Both 2Th and 3Th form one-dimensional (1D) helical structures upon terminal binding of two chiral guest co-ligands (LR or LS). Long-range chiral self-recognition is achieved in self-assembly of 2Th with LR and LS to preferentially form homochiral assemblies, 2Th-LR·LR and 2Th-LS·LS, whereas there is no direct molecular interaction between the two guest ligands at the terminal edges. X-ray crystal structure analysis and density functional theory studies reveal that long-range chiral recognition is achieved by terminal ligand-to-ligand interactions between the bis-diketonate ligands and chiral guest co-ligands. Conversely, in self-assembly of 3Th with a longer helix length, statistical binding of LR and LS occurs, forming heterochiral (3Th-LR·LS) and homochiral (3Th-LR·LR and 3Th-LS·LS) assemblies in an almost 1 : 1 ratio. When phenyl side arms of the chiral guest co-ligands are replaced by isopropyl groups (L′R and L′S), chiral self-recognition is also achieved in the self-assembly process of 3Th with the longer helix length to generate homochiral (3Th-L′R·L′R and 3Th-L′S·L′S) assemblies as the favored products. Thus, subtle modification of the chiral guests is capable of achieving over 1.4 nm-range chirality recognition. Long-range chirality recognition between the two chiral guest ligands can be tuned based on the helix distances (dLn–Ln = 11.5 and 14.0 Å) of bis-diketonate bridged dinuclear lanthanide complexes (2Th and 3Th, respectively).![]()
Collapse
Affiliation(s)
- Natsumi Suko
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| | - Hideki Itamoto
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| | - Yoshinori Okayasu
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| | - Naoya Okura
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science 1-3, Kagurazaka Shunjuku-ku Tokyo 162-8601 Japan
| |
Collapse
|
5
|
Spicher S, Grimme S. Single-Point Hessian Calculations for Improved Vibrational Frequencies and Rigid-Rotor-Harmonic-Oscillator Thermodynamics. J Chem Theory Comput 2021; 17:1701-1714. [DOI: 10.1021/acs.jctc.0c01306] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sebastian Spicher
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
6
|
Chen S, Zhou L, An Z, He H, Ma M, Shi Y, Wang X. Driving force balance-the "identity card" of supramolecules in a self-sorting multicomponent assembly system. SOFT MATTER 2021; 17:153-159. [PMID: 33164015 DOI: 10.1039/d0sm01405b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Contrary to the popular belief that multicomponent assembly systems will theoretically co-assemble under the same type of driving forces, two distinct assembly modes from a system composed of two chemically similar supramolecules were demonstrated in this work. Although with exactly the same driving forces, molecule-level self-sorting unexpectedly occurred in this two-component system made of polyhedral oligomeric silsesquioxane (POSS) core-based supramolecules with one and eight lysine derivative arms. From the experiments, it was concluded that instead of driving force types, driving force counterpoise plays a vital role here, which we called "identity card hypothesis". The hypothesis suggests that two highly similar components show high affinity for the same molecules through the differentiated "identity card"-like balance of driving forces induced by the difference in the molecular spatial shape, which has never been reported before.
Collapse
Affiliation(s)
- Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Iseki S, Nonomura K, Kishida S, Ogata D, Yuasa J. Zinc-Ion-Stabilized Charge-Transfer Interactions Drive Self-Complementary or Complementary Molecular Recognition. J Am Chem Soc 2020; 142:15842-15851. [PMID: 32786739 DOI: 10.1021/jacs.0c05940] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Here, we show that charge-transfer interactions determine whether donor and acceptor ditopic ligands will associate in a complementary or self-complementary fashion upon metal-ion clipping. Anthracene-based (9,10LD and 1,5LD) and anthraquinone-based (1,5LA) ditopic ligands containing two imidazole side arms as zinc coordination sites were designed. The 9,10LD and 1,5LA systems associated in a complementary fashion (LA/LD/LA) upon clipping by two zinc ions (Zn2+) to form an alternating donor-acceptor assembly [(9,10LD)(1,5LA)2-(Zn2+)2]. However, once the charge-transfer interactions were perturbed by subtle modifications of the imidazole side arms (9,10LD'(S) and 1,5LA'(S)), self-complementary association (LD'/LD'/LD'/LD' and LA'/LA'/LA'/LA') between the donor (9,10LD'(S)) and acceptor (1,5LA'(S)) ligands predominantly occurred to form homoassemblies [(9,10LD'(S))4-(Zn2+)2 and (1,5LA'(S))4-(Zn2+)2]. As in the case of a homochiral pair (9,10LD'(S) and 1,5LA'(S)), self-complementary association (narcissistic self-sorting) occurred in the Zn2+ assembly with heterochiral combinations of the donor and acceptor ligands (9,10LD'(S)/1,5LA'(R) and 9,10LD'(S)/1,5LA'(R)/1,5LA'(R)). Narcissistic self-sorting also took place between the positional isomer of the donor ligands (9,10LD and 1,5LD) to form individual homoligand assemblies [(9,10LD)4-(Zn2+)2 and (1,5LD)4-(Zn2+)2]. Conversely, statistical association took place in the Zn2L4 assembly process of an isomorphous pair of the donor and acceptor ligands (1,5LD and 1,5LA).
Collapse
Affiliation(s)
- Shuta Iseki
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kohei Nonomura
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sakura Kishida
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Daiji Ogata
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
8
|
Jarzebski A, Schnakenburg G, Lützen A. Chiral Self-Sorting Effects in the Self-Assembly of Metallosupramolecular Aggregates Comprising Ligands Derived from Tröger's Base. Chempluschem 2020; 85:1455-1464. [PMID: 32644289 DOI: 10.1002/cplu.202000387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/23/2020] [Indexed: 01/20/2023]
Abstract
Five ligands with either nitrile or isonitrile metal binding motifs have been synthesized based on the 2,8- or 3,9-disubstituted Tröger's base scaffold, respectively. These ligands self-assemble into dinuclear cyclic metallosupramolecular aggregates upon coordination to [(dppp)Pd(OTf)2 ] in a highly diastereoselective manner, by heterochiral self-sorting in a chiral self-discriminating manner as shown by ESI mass spectrometry, NMR spectroscopy, and single crystal XRD analysis. This observation is in contrast to earlier studies with ligands derived from Tröger's base that have larger metal binding motifs and bis(nitrile) and bis(isonitrile) ligands based on other rigid dissymmetric cores such as [2.2]paracyclophanes. Thus, the combination of these slim metal binding motifs with the rigid v-shaped 2,8- or 3,9-disubstituted Tröger's base scaffolds seems to be especially well preorganized to ensure high-fidelity social self-sorting behavior.
Collapse
Affiliation(s)
- Andreas Jarzebski
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Gregor Schnakenburg
- University of Bonn, Institute of Inorganic Chemistry, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Arne Lützen
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
9
|
Volbach L, Struch N, Bohle F, Topić F, Schnakenburg G, Schneider A, Rissanen K, Grimme S, Lützen A. Influencing the Self-Sorting Behavior of [2.2]Paracyclophane-Based Ligands by Introducing Isostructural Binding Motifs. Chemistry 2020; 26:3335-3347. [PMID: 31815311 PMCID: PMC7154700 DOI: 10.1002/chem.201905070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 11/30/2022]
Abstract
Two isostructural ligands with either nitrile (Lnit ) or isonitrile (Liso ) moieties directly connected to a [2.2]paracyclophane backbone with pseudo-meta substitution pattern have been synthesized. The ligand itself (Lnit ) or its precursors (Liso ) were resolved by HPLC on a chiral stationary phase and the absolute configuration of the isolated enantiomers was assigned by XRD analysis and/or by comparison of quantum-chemical simulated and experimental electronic circular dichroism (ECD) spectra. Surprisingly, the resulting metallosupramolecular aggregates formed in solution upon coordination of [(dppp)Pd(OTf)2 ] differ in their composition: whereas Lnit forms dinuclear complexes, Liso exclusively forms trinuclear ones. Furthermore, they also differ in their chiral self-sorting behavior as (rac)-Liso undergoes exclusive social self-sorting leading to a heterochiral assembly, whereas (rac)-Liso shows a twofold preference for the formation of homochiral complexes in a narcissistic self-sorting manner as proven by ESI mass spectrometry and NMR spectroscopy. Interestingly, upon crystallization, these discrete aggregates undergo structural transformation to coordination polymers, as evidenced by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Lucia Volbach
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk Strasse 153121BonnGermany
| | - Niklas Struch
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk Strasse 153121BonnGermany
- current address: Arlanxeo Netherlands B.V.Urmonderbaan 246167 RDGeleenThe Netherlands
| | - Fabian Bohle
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstrasse 453115BonnGermany
| | - Filip Topić
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
- current address: Department of ChemistryMcGill University801 Sherbrooke St. WestMontrealQcH3A 0B8Canada
| | - Gregor Schnakenburg
- Institute of Inorganic ChemistryUniversity of BonnGerhard-Domagk Strasse 153121BonnGermany
| | - Andreas Schneider
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk Strasse 153121BonnGermany
| | - Kari Rissanen
- Department of ChemistryUniversity of JyväskyläP.O. Box 3540014JyväskyläFinland
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryUniversity of BonnBeringstrasse 453115BonnGermany
| | - Arne Lützen
- Kekulé-Institute of Organic Chemistry and BiochemistryUniversity of BonnGerhard-Domagk Strasse 153121BonnGermany
| |
Collapse
|
10
|
Ogata D, Yuasa J. Remarkable self-sorting selectivity in covalently linked homochiral and heterochiral pairs driven by Pd 2L 4 helicate formation. Chem Commun (Camb) 2020; 56:8679-8682. [PMID: 32613974 DOI: 10.1039/d0cc03539d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Imidazole-based ditopic ligands bearing two chiral alkyl groups (LRR, LSS, and LRS) were synthesized. The ligands formed Pd2L4 helicates with palladium ions (Pd2+). Self-sorting occurred between LRR and LRS to form (Pd2+)2(LRR)4 and (Pd2+)2(LRS)4 homoligand assemblies, whereas mixing of LRR and LSS with Pd2+ gave a near statistical mixture.
Collapse
Affiliation(s)
- Daiji Ogata
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Junpei Yuasa
- Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. and Department of Chemistry, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|