1
|
Lima AF, Justo GZ, Sousa AA. Realizing active targeting in cancer nanomedicine with ultrasmall nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1208-1226. [PMID: 39376728 PMCID: PMC11457047 DOI: 10.3762/bjnano.15.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024]
Abstract
Ultrasmall nanoparticles (usNPs) have emerged as promising theranostic tools in cancer nanomedicine. With sizes comparable to globular proteins, usNPs exhibit unique physicochemical properties and physiological behavior distinct from larger particles, including lack of protein corona formation, efficient renal clearance, and reduced recognition and sequestration by the reticuloendothelial system. In cancer treatment, usNPs demonstrate favorable tumor penetration and intratumoral diffusion. Active targeting strategies, incorporating ligands for specific tumor receptor binding, serve to further enhance usNP tumor selectivity and therapeutic performance. Numerous preclinical studies have already demonstrated the potential of actively targeted usNPs, revealing increased tumor accumulation and retention compared to non-targeted counterparts. In this review, we explore actively targeted inorganic usNPs, highlighting their biological properties and behavior, along with applications in both preclinical and clinical settings.
Collapse
Affiliation(s)
- André F Lima
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Giselle Z Justo
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| | - Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil
| |
Collapse
|
2
|
Wolff N, Beuck C, Schaller T, Epple M. Possibilities and limitations of solution-state NMR spectroscopy to analyze the ligand shell of ultrasmall metal nanoparticles. NANOSCALE ADVANCES 2024; 6:3285-3298. [PMID: 38933863 PMCID: PMC11197423 DOI: 10.1039/d4na00139g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Ultrasmall nanoparticles have a diameter between 1 and 3 nm at the border between nanoparticles and large molecules. Usually, their core consists of a metal, and the shell of a capping ligand with sulfur or phosphorus as binding atoms. While the core structure can be probed by electron microscopy, electron and powder diffraction, and single-crystal structure analysis for atom-sharp clusters, it is more difficult to analyze the ligand shell. In contrast to larger nanoparticles, ultrasmall nanoparticles cause only a moderate distortion of the NMR signal, making NMR spectroscopy a qualitative as well as a quantitative probe to assess the nature of the ligand shell. The application of isotope-labelled ligands and of two-dimensional NMR techniques can give deeper insight into ligand-nanoparticle interactions. Applications of one- and two-dimensional NMR spectroscopy to analyze ultrasmall nanoparticles are presented with suitable examples, including a critical discussion of the limitations of NMR spectroscopy on nanoparticles.
Collapse
Affiliation(s)
- Natalie Wolff
- Inorganic Chemistry, Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen 45117 Essen Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen 45117 Essen Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen 45117 Essen Germany
| | - Matthias Epple
- Inorganic Chemistry, Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen 45117 Essen Germany
| |
Collapse
|
3
|
Wagner LS, Prymak O, Schaller T, Beuck C, Loza K, Niemeyer F, Gumbiowski N, Kostka K, Bayer P, Heggen M, Oliveira CLP, Epple M. The Molecular Footprint of Peptides on the Surface of Ultrasmall Gold Nanoparticles (2 nm) Is Governed by Steric Demand. J Phys Chem B 2024; 128:4266-4281. [PMID: 38640461 DOI: 10.1021/acs.jpcb.4c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Ultrasmall gold nanoparticles were functionalized with peptides of two to seven amino acids that contained one cysteine molecule as anchor via a thiol-gold bond and a number of alanine residues as nonbinding amino acid. The cysteine was located either in the center of the molecule or at the end (C-terminus). For comparison, gold nanoparticles were also functionalized with cysteine alone. The particles were characterized by UV spectroscopy, differential centrifugal sedimentation (DCS), high-resolution transmission electron microscopy (HRTEM), and small-angle X-ray scattering (SAXS). This confirmed the uniform metal core (2 nm diameter). The hydrodynamic diameter was probed by 1H-DOSY NMR spectroscopy and showed an increase in thickness of the hydrated peptide layer with increasing peptide size (up to 1.4 nm for heptapeptides; 0.20 nm per amino acid in the peptide). 1H NMR spectroscopy of water-dispersed nanoparticles showed the integrity of the peptides and the effect of the metal core on the peptide. Notably, the NMR signals were very broad near the metal surface and became increasingly narrow in a distance. In particular, the methyl groups of alanine can be used as probe for the resolution of the NMR spectra. The number of peptide ligands on each nanoparticle was determined using quantitative 1H NMR spectroscopy. It decreased with increasing peptide length from about 100 for a dipeptide to about 12 for a heptapeptide, resulting in an increase of the molecular footprint from about 0.1 to 1.1 nm2.
Collapse
Affiliation(s)
- Lisa-Sofie Wagner
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Christine Beuck
- Institute of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Nina Gumbiowski
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Kathrin Kostka
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Peter Bayer
- Institute of Biology and Center for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| | - Marc Heggen
- Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52428, Germany
| | | | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, Essen 45117, Germany
| |
Collapse
|
4
|
Katrivas L, Ben-Menachem A, Gupta S, Kotlyar AB. Ultrasmall ATP-Coated Gold Nanoparticles Specifically Bind to Non-Hybridized Regions in DNA. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3080. [PMID: 38132978 PMCID: PMC10745773 DOI: 10.3390/nano13243080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Here we report the synthesis of ultrasmall (2 nm in diameter) ATP-coated gold nanoparticles, ATP-NPs. ATP-NPs can be enlarged in a predictable manner by the surface-catalyzed reduction of gold ions with ascorbate, yielding uniform gold nanoparticles ranging in size from 2 to 5 nm in diameter. Using atomic force microscopy (AFM), we demonstrate that ATP-NPs can efficiently and selectively bind to a short non-hybridized 5A/5A region (composed of a 5A-nucleotide on each strand of the double helix) inserted into a circular double-stranded plasmid, Puc19. Neither small (1.4 nm in diameter) commercially available nanoparticles nor 5 nm citrate-protected ones are capable of binding to the plasmid. The unique ability to specifically target DNA regions characterized by local structural alterations of the double helix can pave the way for applications of the particles in the detection of genomic DNA regions containing mismatches and mutations that are common for cancer cells.
Collapse
Affiliation(s)
| | | | | | - Alexander B. Kotlyar
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences and Nanotechnology Center, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel; (L.K.); (A.B.-M.); (S.G.)
| |
Collapse
|
5
|
Epple M, Rotello VM, Dawson K. The Why and How of Ultrasmall Nanoparticles. Acc Chem Res 2023; 56:3369-3378. [PMID: 37966025 DOI: 10.1021/acs.accounts.3c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
ConspectusIn this Account, we describe our research into ultrasmall nanoparticles, including their unique properties, and outline some of the new opportunities they offer. We will summarize our perspective on the current state of the field and highlight what we see as key questions that remain to be solved. First, there are several nanostructure size-scale regimes, with qualitatively distinct functional biological attributes. Broadly generalized, larger particles (e.g., larger than 300 nm) tend to be more efficiently swept away by the first line of the immune system (for example macrophages). In the "middle-sized" regime (20-300 nm), nanoparticle surfaces and shapes can be recognized by energy-dependent cellular reorganizations, then organized locally in a spatial and temporally coherent way. That energy is gated and made available by specific cellular recognition processes. The relationship between particle surface design, endogenously derived nonspecific biomolecular corona, and architectural features recognized by the cell is complex and only purposefully and very precisely designed nanoparticle architectures are able to navigate to specific targets. At sufficiently small sizes (<10 nm including the ligand shell, associated with a core diameter of a few nm at most) we enter the "quasi-molecular regime" in which the endogenous biomolecular environment exchanges so rapidly with the ultrasmall particle surface that larger scale cellular and immune recognition events are often greatly simplified. As an example, ultrasmall particles can penetrate cellular and biological barriers within tissue architectures via passive diffusion, in much the same way as small molecule drugs do. An intriguing question arises: what happens at the interface of cellular recognition and ultrasmall quasi-molecular size regimes? Succinctly put, ultrasmall conjugates can evade defense mechanisms driven by larger scale cellular nanoscale recognition, enabling them to flexibly exploit molecular interaction motifs to interact with specific targets. Numerous advances in control of architecture that take advantage of these phenomena have taken place or are underway. For instance, syntheses can now be sufficiently controlled that it is possible to make nanoparticles of a few hundreds of atoms or metalloid clusters of several tens of atoms that can be characterized by single crystal X-ray structure analysis. While the synthesis of atomically precise clusters in organic solvents presents challenges, water-based syntheses of ultrasmall nanoparticles can be upscaled and lead to well-defined particle populations. The surface of ultrasmall nanoparticles can be covalently modified with a wide variety of ligands to control the interactions of these particles with biosystems, as well as drugs and fluorophores. And, in contrast to larger particles, many advanced molecular analytical and separation tools can be applied to understand their structure. For example, NMR spectroscopy allows us to obtain a detailed image of the particle surface and the attached ligands. These are considerable advantages that allow further elaboration of the level of architectural control and characterization of the ultrasmall structures required to access novel functional regimes and outcomes. The ultrasmall nanoparticle regime has a unique status and provides a potentially very interesting direction for development.
Collapse
Affiliation(s)
- Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Vincent M Rotello
- Charles A. Goessmann Professor of Chemistry and University Distinguished Professor, Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01002, United States
| | - Kenneth Dawson
- UCD School of Chemistry, Science Centre South, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Mondal A, Pandit S, Sahoo J, Subramaniam Y, De M. Post-functionalization of sulfur quantum dots and their aggregation-dependent antibacterial activity. NANOSCALE 2023; 15:18624-18638. [PMID: 37975185 DOI: 10.1039/d3nr04287a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Sulfur quantum dots (SQDs) have emerged as an intriguing class of luminescent nanomaterial due to their exceptional physiochemical and optoelectronic properties. However, their biomedical application is still in its infancy due to the limited scope of their surface functionalization. Herein, we explored the surface functionalization of SQDs through different thiol ligands with tuneable functionality and tested their antibacterial efficacy. Notably, very high antibacterial activity of functionalized SQDs (10-25 ng ml-1) was noted, which is 105 times higher compared to that of nonfunctionalized SQDs. Moreover, a rare phenomenon of the reverse trend of antibacterial activity through surface modification was observed, with increasing surface hydrophobicity of various nanomaterials as the antibacterial activity increased. However, we also noted that as the surface hydrophobicity increased, the SQDs tended to exhibit a propensity for aggregation, which consequently decreased their antibacterial efficacy. This identical pattern was also evident in in vivo assessments. Overall, this study illuminates the importance of surface modifications of SQDs and the role of surface hydrophobicity in the development of antibacterial agents.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Subrata Pandit
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
7
|
Wolff N, Loza K, Heggen M, Schaller T, Niemeyer F, Bayer P, Beuck C, Oliveira CLP, Prymak O, Weidenthaler C, Epple M. Ultrastructure and Surface Composition of Glutathione-Terminated Ultrasmall Silver, Gold, Platinum, and Alloyed Silver-Platinum Nanoparticles (2 nm). Inorg Chem 2023; 62:17470-17485. [PMID: 37820300 DOI: 10.1021/acs.inorgchem.3c02879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Alloyed ultrasmall silver-platinum nanoparticles (molar ratio Ag:Pt = 50:50) were prepared and compared to pure silver, platinum, and gold nanoparticles, all with a metallic core diameter of 2 nm. They were surface-stabilized by a layer of glutathione (GSH). A comprehensive characterization by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), differential centrifugal sedimentation (DCS), and UV spectroscopy showed their size both in the dry and in the water-dispersed state (hydrodynamic diameter). Solution NMR spectroscopy (1H, 13C, COSY, HSQC, HMBC, and DOSY) showed the nature of the glutathione shell including the number of GSH ligands on each nanoparticle (about 200 with a molecular footprint of 0.063 nm2 each). It furthermore showed that there are at least two different positions for the GSH ligand on the gold nanoparticle surface. Platinum strongly reduced the resolution of the NMR spectra compared to silver and gold, also in the alloyed nanoparticles. X-ray photoelectron spectroscopy (XPS) showed that silver, platinum, and silver-platinum particles were at least partially oxidized to Ag(+I) and Pt(+II), whereas the gold nanoparticles showed no sign of oxidation. Platinum and gold nanoparticles were well crystalline but twinned (fcc lattice) despite the small particle size. Silver was crystalline in electron diffraction but not in X-ray diffraction. Alloyed silver-platinum nanoparticles were almost fully amorphous by both methods, indicating a considerable internal disorder.
Collapse
Affiliation(s)
- Natalie Wolff
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Marc Heggen
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Peter Bayer
- Structural and Medicinal Biochemistry, University of Duisburg-Essen, Essen 45117, Germany
| | - Christine Beuck
- Structural and Medicinal Biochemistry, University of Duisburg-Essen, Essen 45117, Germany
| | | | - Oleg Prymak
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45117, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Matthias Epple
- Inorganic Chemistry and Centre for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen 45117, Germany
| |
Collapse
|
8
|
Lau ECHT, Åhlén M, Cheung O, Ganin AY, Smith DGE, Yiu HHP. Gold-iron oxide (Au/Fe3O4) magnetic nanoparticles as the nanoplatform for binding of bioactive molecules through self-assembly. Front Mol Biosci 2023; 10:1143190. [PMID: 37051321 PMCID: PMC10083301 DOI: 10.3389/fmolb.2023.1143190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Nanomedicine plays a crucial role in the development of next-generation therapies. The use of nanoparticles as drug delivery platforms has become a major area of research in nanotechnology. To be effective, these nanoparticles must interact with desired drug molecules and release them at targeted sites. The design of these “nanoplatforms” typically includes a functional core, an organic coating with functional groups for drug binding, and the drugs or bioactive molecules themselves. However, by exploiting the coordination chemistry between organic molecules and transition metal centers, the self-assembly of drugs onto the nanoplatform surfaces can bypass the need for an organic coating, simplifying the materials synthesis process. In this perspective, we use gold-iron oxide nanoplatforms as examples and outline the prospects and challenges of using self-assembly to prepare drug-nanoparticle constructs. Through a case study on the binding of insulin on Au-dotted Fe3O4 nanoparticles, we demonstrate how a self-assembly system can be developed. This method can also be adapted to other combinations of transition metals, with the potential for scaling up. Furthermore, the self-assembly method can also be considered as a greener alternative to traditional methods, reducing the use of chemicals and solvents. In light of the current climate of environmental awareness, this shift towards sustainability in the pharmaceutical industry would be welcomed.
Collapse
Affiliation(s)
- Elizabeth C. H. T. Lau
- Institute of Chemical Science, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michelle Åhlén
- Division of Nanotechnology and Functional Materials, Department of Material Sciences and Engineering, Uppsala University, Uppsala, Sweden
| | - Ocean Cheung
- Division of Nanotechnology and Functional Materials, Department of Material Sciences and Engineering, Uppsala University, Uppsala, Sweden
| | - Alexey Y. Ganin
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - David G. E. Smith
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Humphrey H. P. Yiu
- Institute of Chemical Science, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- *Correspondence: Humphrey H. P. Yiu,
| |
Collapse
|
9
|
Perez Schmidt P, Pagano K, Lenardi C, Penconi M, Ferrando RM, Evangelisti C, Lay L, Ragona L, Marelli M, Polito L. Photo-Induced Microfluidic Production of Ultrasmall Glyco Gold Nanoparticles. Angew Chem Int Ed Engl 2023; 62:e202210140. [PMID: 36321387 PMCID: PMC10100350 DOI: 10.1002/anie.202210140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/23/2022]
Abstract
Ultra-small gold nanoparticles (UAuNPs) are extremely interesting for applications in nanomedicine thanks to their good stability, biocompatibility, long circulation time and efficient clearance pathways. UAuNPs engineered with glycans (Glyco-UAuNPs) emerged as excellent platforms for many applications since the multiple copies of glycans can mimic the multivalent effect of glycoside clusters. Herein, we unravel a straightforward photo-induced synthesis of Glyco-UAuNPs based on a reliable and robust microfluidic approach. The synthesis occurs at room temperature avoiding the use of any further chemical reductant, templating agents or co-solvents. Exploiting 1 H NMR spectroscopy, we showed that the amount of thiol-ligand exposed on the UAuNPs is linearly correlated to the ligand concentration in the initial mixture. The results pave the way towards the development of a programmable synthetic approach, enabling an accurate design of the engineered UAuNPs or smart hybrid nano-systems.
Collapse
Affiliation(s)
- Patricia Perez Schmidt
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”SCITEC-CNRVia G. Fantoli 16/1520138MilanoItaly
| | - Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”SCITEC-CNRVia A. Corti 1220131MilanoItaly
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA)Department of PhysicsUniversità degli Studi di MilanoVia Celoria 1620133MilanoItaly
- Fondazione UNIMIViale Ortles 22/420139MilanoItaly
| | - Marta Penconi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”SCITEC-CNRVia G. Fantoli 16/1520138MilanoItaly
| | - Ruth Mateu Ferrando
- Department of ChemistryUniversità degli Studi di Milanovia C. Golgi 1920133MilanoItaly
| | - Claudio Evangelisti
- Institute of Chemistry of Organo Metallic CompoundsICCOM-CNRVia G. Moruzzi 156124PisaItaly
| | - Luigi Lay
- Department of ChemistryUniversità degli Studi di Milanovia C. Golgi 1920133MilanoItaly
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”SCITEC-CNRVia A. Corti 1220131MilanoItaly
| | - Marcello Marelli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”SCITEC-CNRVia G. Fantoli 16/1520138MilanoItaly
| | - Laura Polito
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”SCITEC-CNRVia G. Fantoli 16/1520138MilanoItaly
| |
Collapse
|
10
|
Perez Schmidt P, Pagano K, Lenardi C, Penconi M, Ferrando RM, Evangelisti C, Lay L, Ragona L, Marelli M, Polito L. Photo‐Induced Microfluidic Production of Ultrasmall Glyco Gold Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Patricia Perez Schmidt
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR Via G. Fantoli 16/15 20138 Milano Italy
| | - Katiuscia Pagano
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR Via A. Corti 12 20131 Milano Italy
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMAINA) Department of Physics Università degli Studi di Milano Via Celoria 16 20133 Milano Italy
- Fondazione UNIMI Viale Ortles 22/4 20139 Milano Italy
| | - Marta Penconi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR Via G. Fantoli 16/15 20138 Milano Italy
| | - Ruth Mateu Ferrando
- Department of Chemistry Università degli Studi di Milano via C. Golgi 19 20133 Milano Italy
| | - Claudio Evangelisti
- Institute of Chemistry of Organo Metallic Compounds ICCOM-CNR Via G. Moruzzi 1 56124 Pisa Italy
| | - Luigi Lay
- Department of Chemistry Università degli Studi di Milano via C. Golgi 19 20133 Milano Italy
| | - Laura Ragona
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR Via A. Corti 12 20131 Milano Italy
| | - Marcello Marelli
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR Via G. Fantoli 16/15 20138 Milano Italy
| | - Laura Polito
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” SCITEC-CNR Via G. Fantoli 16/15 20138 Milano Italy
| |
Collapse
|
11
|
Panahi Z, Ren T, Halpern JM. Nanostructured Cyclodextrin-Mediated Surface for Capacitive Determination of Cortisol in Multiple Biofluids. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42374-42387. [PMID: 35918826 PMCID: PMC9504479 DOI: 10.1021/acsami.2c07701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The aim of this work is to develop a reusable polypropylene glycol (PPG):β-cyclodextrin (βCD) biosensor for cortisol detection. To achieve the most stable support for βCD, we developed two PPG surfaces. The first surface is based on a gold surface modified with SAM of 3-mercaptopropionic acid (3MPA), and the second surface is based on a glassy carbon surface grafted with 4-carboxyphenyl diazonium salt. We characterized both surfaces by EIS, XPS, and ATR-FTIR and evaluated the stability and reusability of each surface. We found the GC-carboxyphenyl-PPG:βCD is stable for at least 1 month. We have also demonstrated the reusability of the surface up to 10 times. In detecting cortisol, we used a nonfaradaic electrochemical impedance capacitive model to interpret the surface confirmation changes. We achieved sensitive detection of cortisol in PBS buffer, urine, and saliva with limit of detection of 2.13, 1.29, and 1.33 nM, respectively.
Collapse
Affiliation(s)
- Zahra Panahi
- Department
of Chemical Engineering and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Tianyu Ren
- Department
of Chemical Engineering and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Jeffrey Mark Halpern
- Department
of Chemical Engineering and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
12
|
Lin W, Yan J, Pan G, Zhang J, Wen L, Huang Q, Li T, Zhao Q, Lin X, Yi G. Diselenide‐bearing
crosslinked
micelles‐reduced
and stabilized gold nanoparticles
in‐situ. J Appl Polym Sci 2022. [DOI: 10.1002/app.51775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenjing Lin
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Jingye Yan
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Guoyi Pan
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Jieheng Zhang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Liyang Wen
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou China
| | - Quanfeng Huang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Tang Li
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Qianyi Zhao
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou China
| |
Collapse
|
13
|
Wetzel O, Prymak O, Loza K, Gumbiowski N, Heggen M, Bayer P, Beuck C, Weidenthaler C, Epple M. Water-Based Synthesis of Ultrasmall Nanoparticles of Platinum Group Metal Oxides (1.8 nm). Inorg Chem 2022; 61:5133-5147. [PMID: 35285631 DOI: 10.1021/acs.inorgchem.2c00281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ultrasmall nanoparticles of platinum group metal oxides (core diameter of about 1.8 nm) were prepared by alkaline hydrolysis of metal precursors in the presence of NaBH4 and by colloidal stabilization with tripeptide glutathione. We obtained water-dispersed nanoparticles of Rh2O3, PdO, RuO2, IrO2, Os/OsO2, and Pt/PtO. Their size was probed using high-resolution transmission electron microscopy, differential centrifugal sedimentation, small-angle X-ray scattering, and diffusion-ordered 1H NMR spectroscopy (1H DOSY). Their oxidation state was clearly determined using X-ray photoelectron spectroscopy, X-ray powder diffraction, and electron diffraction. The chemical composition of the nanoparticles, that is, the ratio of the metal oxide core and glutathione capping agent, was quantitatively determined by a combination of these methods.
Collapse
Affiliation(s)
- Oliver Wetzel
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Nina Gumbiowski
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|
14
|
Souza ML, Lima FHB. Dibenzyldithiocarbamate-Functionalized Small Gold Nanoparticles as Selective Catalysts for the Electrochemical Reduction of CO 2 to CO. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00591] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Maykon L. Souza
- Institute of Chemistry of São Carlos, University of São Paulo, Av. Trabalhador Saocarlense, 400, São Carlos, SP 13560-970, Brazil
| | - Fabio H. B. Lima
- Institute of Chemistry of São Carlos, University of São Paulo, Av. Trabalhador Saocarlense, 400, São Carlos, SP 13560-970, Brazil
| |
Collapse
|
15
|
Wetzel O, Hosseini S, Loza K, Heggen M, Prymak O, Bayer P, Beuck C, Schaller T, Niemeyer F, Weidenthaler C, Epple M. Metal-Ligand Interface and Internal Structure of Ultrasmall Silver Nanoparticles (2 nm). J Phys Chem B 2021; 125:5645-5659. [PMID: 34029093 DOI: 10.1021/acs.jpcb.1c02512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ultrasmall silver nanoparticles were prepared by reduction with NaBH4 and surface-terminated with glutathione (GSH). The particles had a solid core diameter of 2 nm as shown by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). NMR-DOSY gave a hydrodynamic diameter of 2 to 2.8 nm. X-ray photoelectron spectroscopy (XPS) showed that silver is bound to the thiol group of the central cysteine in glutathione under partial oxidation to silver(+I). In turn, the thiol group is deprotonated to thiolate. X-ray powder diffraction (XRD) together with Rietveld refinement confirmed a twinned (polycrystalline) fcc structure of ultrasmall silver nanoparticles with a lattice compression of about 0.9% compared to bulk silver metal. By NMR spectroscopy, the interaction between the glutathione ligand and the silver surface was analyzed, also with 13C-labeled glutathione. The adsorbed glutathione is fully intact and binds to the silver surface via cysteine. In situ 1H NMR spectroscopy up to 85 °C in dispersion showed that the glutathione ligand did not detach from the surface of the silver nanoparticle, i.e. the silver-sulfur bond is remarkably strong. The ultrasmall nanoparticles had a higher cytotoxicity than bigger particles in in vitro cell culture with HeLa cells with a cytotoxic concentration of about 1 μg mL-1 after 24 h incubation. The overall stoichiometry of the nanoparticles was about Ag∼250GSH∼155.
Collapse
Affiliation(s)
- Oliver Wetzel
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Shabnam Hosseini
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Torsten Schaller
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Felix Niemeyer
- Organic Chemistry, University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| | - Claudia Weidenthaler
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstrasse 5-7, 45117 Essen, Germany
| |
Collapse
|
16
|
van der Meer SB, Seiler T, Buchmann C, Partalidou G, Boden S, Loza K, Heggen M, Linders J, Prymak O, Oliveira CLP, Hartmann L, Epple M. Controlling the Surface Functionalization of Ultrasmall Gold Nanoparticles by Sequence-Defined Macromolecules. Chemistry 2021; 27:1451-1464. [PMID: 32959929 PMCID: PMC7898849 DOI: 10.1002/chem.202003804] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Ultrasmall gold nanoparticles (diameter about 2 nm) were surface-functionalized with cysteine-carrying precision macromolecules. These consisted of sequence-defined oligo(amidoamine)s (OAAs) with either two or six cysteine molecules for binding to the gold surface and either with or without a PEG chain (3400 Da). They were characterized by 1 H NMR spectroscopy, 1 H NMR diffusion-ordered spectroscopy (DOSY), small-angle X-ray scattering (SAXS), and high-resolution transmission electron microscopy. The number of precision macromolecules per nanoparticle was determined after fluorescent labeling by UV spectroscopy and also by quantitative 1 H NMR spectroscopy. Each nanoparticle carried between 40 and 100 OAA ligands, depending on the number of cysteine units per OAA. The footprint of each ligand was about 0.074 nm2 per cysteine molecule. OAAs are well suited to stabilize ultrasmall gold nanoparticles by selective surface conjugation and can be used to selectively cover their surface. The presence of the PEG chain considerably increased the hydrodynamic diameter of both dissolved macromolecules and macromolecule-conjugated gold nanoparticles.
Collapse
Affiliation(s)
- Selina Beatrice van der Meer
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| | - Theresa Seiler
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Christin Buchmann
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Georgia Partalidou
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Sophia Boden
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| | - Marc Heggen
- Ernst Ruska-Center for Microscopy and Spectroscopy with ElectronsForschungszentrum Jülich GmbH52425JülichGermany
| | - Jürgen Linders
- Physical Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| | | | - Laura Hartmann
- Organic Chemistry and Macromolecular ChemistryHeinrich Heine-University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenUniversitätsstr. 5–745117EssenGermany
| |
Collapse
|
17
|
Ruks T, Loza K, Heggen M, Prymak O, Sehnem AL, Oliveira CLP, Bayer P, Beuck C, Epple M. Peptide-Conjugated Ultrasmall Gold Nanoparticles (2 nm) for Selective Protein Targeting. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Tatjana Ruks
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Kateryna Loza
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Marc Heggen
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| | - Andre Luiz Sehnem
- Institute of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo 05508-090, Brazil
| | - Cristiano L. P. Oliveira
- Institute of Physics, University of São Paulo, Rua do Matão 1371, São Paulo, São Paulo 05508-090, Brazil
| | - Peter Bayer
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Christine Beuck
- Department of Structural and Medicinal Biochemistry, Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, 45117 Essen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitätsstr. 5-7, 45117 Essen, Germany
| |
Collapse
|