1
|
Durga Lakshmi Y, Dinesh Kumar R, Dutta M, Nagesh CR, Bansal N, Goswami S, Kumar RR, Kundu A, Rudra SG, Basavaraj YB, Gautam C, Rama Prashat G, Vinutha T. Improved nutritional and functional properties of plant protein isolate blends through steam infusion: A study on chickpea, brown rice and defatted peanut protein blends. Food Chem 2024; 464:141863. [PMID: 39522380 DOI: 10.1016/j.foodchem.2024.141863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
This study examined the impact of steam-infusion on defatted peanut (Pn), chickpea (Cp), and rice (R) protein isolates (PI) and their blends. Steam infusion significantly increased protein content (up to 83.13 % in PnPI, 75.25 % in CpPI, 76.13 % in RPI) and digestibility (98.92 % in peanut, 98.84 % in chickpea) and improved protein solubility. Steam-infused protein blends (SIPB) showed higher protein content (84.44 %), digestibility (89.61 %), improved EAA scores, and enhanced functional properties compared to non-steam infused protein blends (NSIPB). SEM revealed porous, serrated structures in SIPB, while FTIR analysis showed higher β-turn content corroborated with higher protein digestibility. Also found higher β-sheet content that enabled high emulsion protein stability as revealed by analysis of emulsion proteins by TEM and optical microscopy. Herschel-Bulkley modelling demonstrated improved rheological properties, including shear-thinning behaviour [flow index (α < 1)]. Due to enhanced protein digestibility properties, SIPB can serve as a novel plant protein ingredient in protein-food industry.
Collapse
Affiliation(s)
- Y Durga Lakshmi
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - R Dinesh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Minakshi Dutta
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - C R Nagesh
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Navitha Bansal
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Suneha Goswami
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shalini Gaur Rudra
- Division of Food Science and Postharvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Y B Basavaraj
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Chawla Gautam
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - G Rama Prashat
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - T Vinutha
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
2
|
Park J, Scheler U, Messinger RJ. Molecular-Level Understanding of Phase Stability in Phase-Change Nanoemulsions for Thermal Energy Storage by NMR Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21814-21823. [PMID: 39348334 PMCID: PMC11483738 DOI: 10.1021/acs.langmuir.4c02997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/02/2024]
Abstract
Phase change materials (PCMs) are latent heat storage materials that can store or release thermal energy while undergoing thermodynamic phase transitions. Organic PCMs can be emulsified in water in the presence of surfactants to enhance thermal conductivity and enable applications as heat transfer fluids. However, PCM nanoemulsions often become unstable during thermal cycling. To better understand the molecular origins of phase stability in PCM nanoemulsions, we designed a model PCM nanoemulsion system and studied how the molecular-level environments and dynamics of the surfactants and oil phase changed upon thermal cycling using liquid-state nuclear magnetic resonance (NMR) spectroscopy. The model system used octadecane as the oil phase, stearic acid as the surfactant, and aqueous NaOH as the continuous phase. The liquid fraction of octadecane within the nanoemulsions was quantified noninvasively during thermal cycling by liquid-state 1H single-pulse NMR measurements, revealing the extent of octadecane supercooling as a function of temperature. The mean droplet size of the PCM nanoemulsions, measured by dynamic light scattering (DLS), was correlated with the liquid content of octadecane to explain phase instability in the solid-liquid coexistence region. Quantitative 13C single-pulse NMR experiments established that the carbonyl surfactant head groups were present in multiple distinct environments during thermal cycling. After repeated thermal cycling, the 13C signal intensity of the carbonyl surfactant head groups decreased, indicating that the surfactant head groups lost molecular mobility. The results explain, in part, the origin of phase instability of PCM nanoemulsions upon thermal cycling.
Collapse
Affiliation(s)
- Jungeun Park
- Department
of Chemical Engineering, The City College
of New York, CUNY, New York, New York 10031, United States
| | - Ulrich Scheler
- Center
for Multi-Scale Characterization, Leibniz-Institut
für Polymerforschung Dresden e.V., Dresden 01069, Germany
| | - Robert J. Messinger
- Department
of Chemical Engineering, The City College
of New York, CUNY, New York, New York 10031, United States
| |
Collapse
|
3
|
Kräenbring MA, Özcan F, Segets D. Analyzing Emulsion Dynamics via Direct Visualization and Statistical Methodologies. ACS OMEGA 2024; 9:39253-39258. [PMID: 39310184 PMCID: PMC11411531 DOI: 10.1021/acsomega.4c06850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024]
Abstract
Analytical centrifugation is a powerful technique that leverages the principles of centrifugal force and optical detection to characterize emulsion droplets in a label-free and high-throughput manner. Other advantages include minimal sample preparation effort and compatibility with a wide range of emulsion formulations. However, the resulting data can be rather complex and, thus, difficult to fully understand and interpret. To tackle this, we developed two analytical methodologies that enable an easy and intuitive understanding of the data as well as an objective, quantitative analysis and validated them using six model emulsions employing different surfactants. Through their application, insights with unprecedented clarity into dynamic emulsion behavior, stability mechanisms, and emulsion-based processes can be gained, facilitating advancements in fields such as food science, pharmaceuticals, and materials engineering.
Collapse
Affiliation(s)
- Mena-Alexander Kräenbring
- Institute
for Energy and Materials Processes - Particle Science and Technology
(EMPI-PST), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Fatih Özcan
- Institute
for Energy and Materials Processes - Particle Science and Technology
(EMPI-PST), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Doris Segets
- Institute
for Energy and Materials Processes - Particle Science and Technology
(EMPI-PST), University of Duisburg-Essen, Duisburg 47057, Germany
- Center
for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| |
Collapse
|
4
|
da Hora Borges MA, Santos de Araújo JM, Pereira LC, Santos LO, Santos VV, Santos Santana L, de Souza Siqueira Quintans J, Rodrigues Marcelino H, Rambo DF, Azeredo FJ. Validation of a bioanalytical HPLC-UV method to quantify Α-Bisabolol in rat plasma applied to pharmacokinetic pilot study with the drug nanoemulsion. Biomed Chromatogr 2024; 38:e5949. [PMID: 38956820 DOI: 10.1002/bmc.5949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
α-Bisabolol (α-BIS) is a sesquiterpene alcohol present in chamomile essential oil [Chamomilla recutita (L.) Rauschert]. Despite its numerous pharmacological effects, its pharmacokinetics remain understudied. An analytical method capable of quantifying α-BIS in plasma is crucial to enable pharmacokinetic analysis. Presently, only one study has quantified it using mass spectrometry. Administering α-BIS requires a nanoemulsion for intravenous injection. This study aimed to develop and validate a bioanalytical method using high-performance liquid chromatography with an ultraviolet detector to quantify α-BIS in rat plasma. The method employed acetonitrile and ultrapure water (80:20, v/v) as the mobile phase, with a flow rate of 1 ml/min and concentrations ranging from 465 to 29.625 μg/ml. All US Food and Drug Administration-designated assays were successful, indicating the method's precision, accuracy, sensitivity and linearity in determining α-BIS in rat plasma. The developed nanoemulsion, assessed through dynamic light scattering analysis, the ensemble collection of particles and polydispersity index evaluation, proved safe and effective for intravenous administration. The pharmacokinetic parameters such as volume of distribution, clearance and half-life indicated that α-BIS tends to persist in the body. This study provides a foundation for further research to explore α-BIS's potential pharmaceutical applications in the future.
Collapse
Affiliation(s)
| | | | - Laiz Campos Pereira
- Pharmacy Graduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Luisa Oliveira Santos
- Pharmacy Graduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Valdeene Vieira Santos
- Pharmacy Graduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Lorena Santos Santana
- Department of Medicine, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | | | - Douglas Fernando Rambo
- Department of Medicine, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Francine Johansson Azeredo
- Pharmacy Graduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
5
|
Barz M, Parak WJ, Zentel R. Concepts and Approaches to Reduce or Avoid Protein Corona Formation on Nanoparticles: Challenges and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402935. [PMID: 38976560 PMCID: PMC11425909 DOI: 10.1002/advs.202402935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Indexed: 07/10/2024]
Abstract
This review describes the formation of a protein corona (or its absence) on different classes of nanoparticles, its basic principles, and its consequences for nanomedicine. For this purpose, it describes general concepts to control (guide/minimize) the interaction between artificial nanoparticles and plasma proteins to reduce protein corona formation. Thereafter, methods for the qualitative or quantitative determination of protein corona formation are presented, as well as the properties of nanoparticle surfaces, which are relevant for protein corona prevention (or formation). Thereby especially the role of grafting density of hydrophilic polymers on the surface of the nanoparticle is discussed to prevent the formation of a protein corona. In this context also the potential of detergents (surfactants) for a temporary modification as well as grafting-to and grafting-from approaches for a permanent modification of the surface are discussed. The review concludes by highlighting several promising avenues. This includes (i) the use of nanoparticles without protein corona for active targeting, (ii) the use of synthetic nanoparticles without protein corona formation to address the immune system, (iii) the recollection of nanoparticles with a defined protein corona after in vivo application to sample the blood proteome and (iv) further concepts to reduce protein corona formation.
Collapse
Affiliation(s)
- Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR), Leiden University, Leiden, NL-2333 CC, Netherlands
| | - Wolfgang J Parak
- Institut für Nanostruktur- und Festkörperphysik, Universität Hamburg, Luruper Chaussee 149, D-22761, Hamburg, Germany
| | - Rudolf Zentel
- Department of Chemistry, Johannes Gutenberg-University of Mainz, Duesbergweg 10-14, D-55128, Mainz, Germany
| |
Collapse
|
6
|
Barilyuk DV, Korol AA, Chikanova ES, Lomakina MA, Shtansky DV. Highly Hydrophilic TiO 2 Nanoparticles as Stabilizers of Pickering Emulsions with Photosensitive Lipophilic Compounds: Synthesis and Application. J Phys Chem B 2024; 128:7903-7911. [PMID: 39096291 DOI: 10.1021/acs.jpcb.4c03315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Pickering emulsions are a very promising system for encapsulating and photoprotecting active ingredients. The highest photoprotection efficiency can be achieved when bare TiO2 nanoparticles are used as stabilizers. However, the main problem when using highly hydrophilic TiO2 nanoparticles is their inability to adsorb at the oil-water interface. Here, we developed emulsions stabilized by bare, highly hydrophilic TiO2 nanoparticles for the encapsulation and photoprotection of active lipophilic compounds. Emulsion stabilization occurs due to the formation of hydrogen bonds between hydroxyl groups on the particle surface and the carbonyl groups of the oil molecules. The stability and rheological properties of emulsions are explained by the properties of the initial hydrosols. The resulting Pickering emulsions demonstrated effective UV protection of α-lipoic acid. Our results pave the way for the formulation of Pickering emulsions with a widely used cosmetic oil and show for the first time the possibility of photoprotection of a lipophilic active substance using unmodified TiO2 nanoparticles.
Collapse
Affiliation(s)
- Danil V Barilyuk
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| | - Artem A Korol
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| | - Ekaterina S Chikanova
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| | - Maria A Lomakina
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskiye Gory, 1/3, Moscow 119991, Russia
| | - Dmitry V Shtansky
- National University of Science and Technology "MISIS", Leninsky prospect 4, Moscow 119049, Russia
| |
Collapse
|
7
|
Pérez-Pérez V, Jiménez-Martínez C, González-Escobar JL, Corzo-Ríos LJ. Exploring the impact of encapsulation on the stability and bioactivity of peptides extracted from botanical sources: trends and opportunities. Front Chem 2024; 12:1423500. [PMID: 39050374 PMCID: PMC11266027 DOI: 10.3389/fchem.2024.1423500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Bioactive peptides derived from plant sources have gained significant attention for their potential use in preventing and treating chronic degenerative diseases. However, the efficacy of these peptides depends on their bioaccessibility, bioavailability, and stability. Encapsulation is a promising strategy for improving the therapeutic use of these compounds. It enhances their stability, prolongs their shelf life, protects them from degradation during digestion, and enables better release control by improving their bioaccessibility and bioavailability. This review aims to analyze the impact of various factors related to peptide encapsulation on their stability and release to enhance their biological activity. To achieve this, it is necessary to determine the composition and physicochemical properties of the capsule, which are influenced by the wall materials, encapsulation technique, and operating conditions. Furthermore, for peptide encapsulation, their charge, size, and hydrophobicity must be considered. Recent research has focused on the advancement of novel encapsulation methodologies that permit the formation of uniform capsules in terms of size and shape. In addition, it explores novel wall materials, including polysaccharides derived from unconventional sources, that allow the precise regulation of the rate at which peptides are released into the intestine.
Collapse
Affiliation(s)
- Viridiana Pérez-Pérez
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (IPN), México City, Mexico
| | - Cristian Jiménez-Martínez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Jorge Luis González-Escobar
- Instituto Tecnológico de Ciudad Valles, Tecnológico Nacional de México, Ciudad Valles, San Luis Potosí, Mexico
| | - Luis Jorge Corzo-Ríos
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional (IPN), México City, Mexico
| |
Collapse
|
8
|
Shrivastava S, Upadhyay A, Pradhan SS, Saha S, Singh A. Evolution Kinetics of Stabilizing Pickering Emulsion by Brush-Modified Janus Particles: DPD Simulation and Experimental Insights. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13920-13934. [PMID: 38809114 DOI: 10.1021/acs.langmuir.4c01083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
In the present study, we report the evolution of stabilizing Pickering emulsions using brush-modified Janus particles (JPs), utilizing the dissipative particle dynamics (DPD) simulation technique. Our results are subsequently corroborated with experimental findings. Each JP has one-half of the hydrophobic surface, with the other half embedded with hydrophilic polymer brushes grown via atom transfer radical polymerization (ATRP). Our generic simulation model analyzes the chemical kinetics of polymer brush growth on one-half of the initiator-embedded microparticle (MP) surface, resulting in the formation of JP. This involves evaluating monomer conversion and reaction rates. Our results exhibit a substantial influence of the number of JPs, grafted brush density, and brush length on oil-in-water emulsion stability. We studied the evolution kinetics and stability of emulsion formation by analyzing the growth of average domain size and corresponding scaling functions up to a late time limit. This study aims to clarify the connection between the size, quantity, and functionality of JPs and the stability of Pickering emulsions.
Collapse
Affiliation(s)
- Samiksha Shrivastava
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Ashank Upadhyay
- Department of Material Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | - Sampa Saha
- Department of Material Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
9
|
Komarova GA, Gumerov RA, Rudyak VY, Kozhunova EY, Potemkin II, Nasimova IR. Peculiarities of Emulsions Stabilized by Stimuli-Responsive Interpenetrating Polymeric Network Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9414-9425. [PMID: 38651693 DOI: 10.1021/acs.langmuir.3c03649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Emulsions have become a crucial product form in various industries in modern times. Expanding the class of substances used to stabilize emulsions can improve their stability or introduce new properties. Particularly, the use of stimuli-responsive microgels makes it possible to create "smart" emulsions whose stability can be controlled by changing any of the specified stimuli. Thus, finding new ways to stabilize emulsions may broaden their application. In this work, for the first time, we applied microgels based on interpenetrating polymeric networks (IPNs) of poly(N-isopropylacrylamide) (PNIPAM) and poly(acrylic acid) (PAA) as stabilizing agents for "oil-in-water" emulsions. We have demonstrated that emulsions stabilized by such soft particles can remain colloidally stable for an extended period, even after being heated up to 40 °C, which is above the lower critical solution temperature (LCST) of PNIPAM. On the contrary, the emulsions stabilized by PNIPAM homopolymer microgels were broken upon heating. To understand the stabilization mechanism of the emulsions, mesoscopic computer simulations were performed to study the IPN microgels at the liquid-liquid interface. The simulations demonstrated that when the first subnetwork (PNIPAM) collapses, the particle adopts a flattened core-shell morphology with a highly swollen PAA-rich shell and a collapsed PNIPAM-rich core. Unlike its PNIPAM homopolymer counterpart, the IPN microgel maintains its three-dimensional shape, which provides stability to the microgel-based emulsions over a wide range of temperatures. Our combined findings could be useful in developing new approaches to emulsions' storage, biphasic catalysis, and lubrication of mechanisms in various operating and climatic conditions.
Collapse
Affiliation(s)
- Galina A Komarova
- Physics Department, Lomonosov Moscow State University, Leninskie gory 1-2, 119991 Moscow, Russian Federation
| | - Rustam A Gumerov
- Physics Department, Lomonosov Moscow State University, Leninskie gory 1-2, 119991 Moscow, Russian Federation
| | - Vladimir Yu Rudyak
- Department of Condensed Matter, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elena Yu Kozhunova
- Physics Department, Lomonosov Moscow State University, Leninskie gory 1-2, 119991 Moscow, Russian Federation
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Leninskie gory 1-2, 119991 Moscow, Russian Federation
| | - Irina R Nasimova
- Physics Department, Lomonosov Moscow State University, Leninskie gory 1-2, 119991 Moscow, Russian Federation
| |
Collapse
|
10
|
Liu J, Sun C, Lun Z, Li Y, Tang X, Zhang Q, Yang P. Study on the kinetics of formation process of emulsion of heavy oil and its functional group components. Sci Rep 2024; 14:8916. [PMID: 38632310 PMCID: PMC11024184 DOI: 10.1038/s41598-024-59637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
Enhanced oil recovery (EOR) by in situ formation of oil-in-water emulsion in heavy oil cold production technology has received growing interest from the petroleum industry. We present an experimental study of emulsification of model oils prepared by heavy oil and its functional group compositions dissolved into toluene brought into contact with a surfactant solution. The effects of functional group composition, emulsifier concentration, temperature, pH and stirring speed on the emulsification rate of heavy oil was investigated. A second-order kinetic model characterizing the temporal variation of conductivity during the emulsification has been established. The results show that acidic and amphoteric fractions exhibit higher interfacial activity, larger emulsification rate constant and faster emulsification rate. With the increase of emulsifier concentration, the emulsification rate constant increase to the maximum value at a concentration of 0.05 mol/L before decreasing. Temperature increase benefits the emulsification rate and the activation energy of the emulsification process is 40.28 kJ/mol. Higher pH and stirring speed indicate faster emulsification rate. The heterogeneity of emulsions limits the accuracy of dynamic characterization of the emulsification process and the determination method of emulsification rate has always been controversial. The conductivity method we proposed can effectively evaluates the emulsification kinetics. This paper provides theoretical guidance for an in-depth understanding of the mechanism and application of cold recovery technology for heavy oil.
Collapse
Affiliation(s)
- Jinhe Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, China.
| | - Chengdi Sun
- Petroleum Engineering Technology Research Institute, Sinopec Shengli Oilfield Company, Dongying, China
| | - Zengmin Lun
- Experimental Research Center, Sinopec Petroleum Exploration and Production Research Institute, Beijing, China
| | - Yao Li
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Xinyu Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Qingxuan Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Pujiang Yang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, China
| |
Collapse
|
11
|
Hosny M, Mubarak MF, El-Sheshtawy HS, Hosny R. Break oily water emulsion during petroleum enhancing production processes using green approach for the synthesis of SnCuO@FeO nanocomposite from microorganisms. Sci Rep 2024; 14:8406. [PMID: 38600150 PMCID: PMC11006871 DOI: 10.1038/s41598-024-56495-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024] Open
Abstract
The aim of this work was to synthesize a green nanoparticle SnCuO@FeO nanocomposite core-shell to break oily water emulsions during petroleum-enhancing production processes as an alternative to chemical and physical processes. In this study, eight bacterial isolates (MHB1-MHB8) have been isolated from tree leaves, giant reeds, and soil samples. The investigation involved testing bacterial isolates for their ability to make FeO nanoparticles and choosing the best producers. The selected isolate (MHB5) was identified by amplification and sequencing of the 16S rRNA gene as Bacillus paramycoides strain OQ878685. MHB5 produced the FeO nanoparticles with the smallest particle size (78.7 nm) using DLS. XRD, FTIR, and TEM were used to characterize the biosynthesized nanoparticles. The jar experiment used SnCuO@FeO with different ratios of Sn to CuO (1:1, 2:1, and 3:1) to study the effect of oil concentration, retention time, and temperature. The most effective performance was observed with a 1:1 ratio of Sn to CuO, achieving an 85% separation efficiency at a concentration of 5 mg/L, for a duration of 5 min, and at a temperature of 373 K. Analysis using kinetic models indicates that the adsorption process can be accurately described by both the pseudo-first-order and pseudo-second-order models. This suggests that the adsorption mechanism likely involves a combination of film diffusion and intraparticle diffusion. Regarding the adsorption isotherm, the Langmuir model provides a strong fit for the data, while the D-R model indicates that physical interactions primarily govern the adsorption mechanism. Thermodynamic analysis reveals a ∆H value of 18.62 kJ/mol, indicating an exothermic adsorption process. This suggests that the adsorption is a favorable process, as energy is released during the process. Finally, the synthesized green SnCuO@FeO nanocomposite has potential for use in advanced applications in the oil and gas industry to help the industry meet regulatory compliance, lower operation costs, reduce environmental impact, and enhance production efficiency.
Collapse
Affiliation(s)
- M Hosny
- Processes Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt
| | - Mahmoud F Mubarak
- Petroleum Applications Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt.
| | - H S El-Sheshtawy
- Processes Development Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt.
| | - R Hosny
- Production Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, 11727, Cairo, Egypt
| |
Collapse
|
12
|
Fang W, Tao Z, Li H, Ma Y, Yin S, Xu T, Wong T, Huang Y. Characteristics of Oil-in-Oil Emulsions under AC Electric Fields. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2268-2277. [PMID: 38221735 DOI: 10.1021/acs.langmuir.3c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Emulsions have been applied in a number of industries such as pharmaceutics, cosmetics, and food, which are also of great scientific interest. Although aqueous emulsions are commonly used in our daily life, oil-in-oil (o/o) emulsions also play an irreplaceable role in view of their unique physics and complementary applications. In this paper, we investigate typical behaviors of organic droplets surrounded by organic medium (o/o emulsions) with different functional groups controlled by the AC electric field. Droplet behaviors can be catalogued into five types: namely, "no effect", "movement", "deformation", "interface rupture", and "disorder". We identify the key dimensionless number Wee·Ca, combined with the channel geometry, for characterizing the typical behaviors in silicon oil/1,6-hexanediol diacrylate and mineral oil/1,6-hexanediol diacrylate emulsions. Unlike aqueous emulsion, the Maxwell-Wagner relaxation inhibits the electric effect and leads to an effective frequency, ranging from 0.5 to 3 kHz. The increasing viscosity of the droplet facilitates the escalation by promoting the shearing effect under the same flow conditions. Ethylene glycol droplets primarily show the efficient coalescence even at a low Wee·Ca, which is attributed to the attraction of free charges induced by the increasing conductivity. In 1,6-hexanediol diacrylate/silicon oil emulsion, the droplet tends to form a liquid film that expands into the entire channel due to the affinity of the droplet to the channel wall. A variety of elongated columns are observed to oscillate between the electrodes at high voltages. These findings can contribute to understanding the electrohydrodynamic physics in o/o emulsion and controlling droplet behaviors in a fast response, programmable, and high-throughput way. We expect that this droplet manipulation technology can be widely adopted in a broad range of chemical synthesis and biological and material science.
Collapse
Affiliation(s)
- Weidong Fang
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
| | - Zhi Tao
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
| | - Haiwang Li
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
| | - Yuqian Ma
- University of California Irvine, Irvine 92697, California, United States
| | - Shuai Yin
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Tiantong Xu
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
| | - Teckneng Wong
- School of Mechanical and Aerospace Engineering, Nanyang Technological University. 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yi Huang
- National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
| |
Collapse
|
13
|
Zhang Z, Peng B, Zhang Y, Xiong J, Li J, Liu J. Switchable Pickering Emulsions Stabilized via Synergistic Nanoparticles-Superamphiphiles Effects and Rapid Response to CO 2/N 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1604-1612. [PMID: 38183283 DOI: 10.1021/acs.langmuir.3c02206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2024]
Abstract
A CO2/N2-responsive emulsion provides milder reaction conditions, nontoxicity, and economic feasibility compared to other switchable surfactants. In this study, CO2/N2-responsive pickering emulsions were fabricated by using a compounded dispersion containing SiO2 nanoparticles (NPs) and superamphiphiles as the emulsifying agents. The synergistic effects of the SiO2 NPs and superamphiphiles significantly stabilized the emulsion at all of the tested concentrations and prevented complete phase separation of oil and water. The electrostatic interaction between the SiO2 NPs and superamphiphiles was disrupted after bubbling with CO2 for 30 s, resulting in the breaking of the emulsion. However, the dispersion recovered its interfacial activity after the introduction of N2 and again emulsified the emulsion. This reversible switching behavior was validated through three consecutive cycles of bubbling CO2/N2. The protonation and deprotonation of the SiO2 NPs and superamphiphiles in response to CO2/N2 facilitated reversible assembly and disassembly, which enabled the switching of the emulsions between inactive and active forms. The novel highly stable Pickering emulsions demonstrated rapid demulsification and emulsification in response to CO2/N2 and are promising for a wide range of applications.
Collapse
Affiliation(s)
- Zhenghao Zhang
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Bo Peng
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yupeng Zhang
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiaxin Xiong
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jingwei Li
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jianwei Liu
- Beijing Key Laboratory for Greenhouse Gas Storage and CO2-EOR, Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
14
|
Khosravi H, Thaker AH, Donovan J, Ranade V, Unnikrishnan S. Artificial intelligence and classic methods to segment and characterize spherical objects in micrographs of industrial emulsions. Int J Pharm 2024; 649:123633. [PMID: 37995822 DOI: 10.1016/j.ijpharm.2023.123633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
The stability of emulsions is a critical concern across multiple industries, including food products, agricultural formulations, petroleum, and pharmaceuticals. Achieving prolonged emulsion stability is challenging and depends on various factors, with particular emphasis on droplet size, shape, and spatial distribution. Addressing this issue necessitates an effective investigation of these parameters and finding solutions to enhance emulsion stability. Image analysis offers a powerful tool for researchers to explore these characteristics and advance our understanding of emulsion instability in different industries. In this review, we highlight the potential of state-of-the-art deep learning-based approaches in computer vision and image analysis to extract relevant features from emulsion micrographs. A comprehensive summary of classic and cutting-edge techniques employed for characterizing spherical objects, including droplets and bubbles observed in micrographs of industrial emulsions, has been provided. This review reveals significant deficiencies in the existing literature regarding the investigation of highly concentrated emulsions. Despite the practical importance of these systems, limited research has been conducted to understand their unique characteristics and stability challenges. It has also been identified that there is a scarcity of publications in multimodal analysis and a lack of a complete automated in-line emulsion characterization system. This review critically evaluates the existing challenges and presents prospective directions for future advancements in the field, aiming to address the current gaps and contribute to the scientific progression in this area.
Collapse
Affiliation(s)
- Hanieh Khosravi
- Faculty of Engineering & Design, Atlantic Technological University (ATU), Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland; Center of Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University (ATU), Sligo, Ireland
| | - Abhijeet H Thaker
- Department Of Chemical Science, Faculty Of Science & Engineering, University of Limerick, Ireland
| | - John Donovan
- Faculty of Engineering & Design, Atlantic Technological University (ATU), Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland; Center of Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University (ATU), Sligo, Ireland
| | - Vivek Ranade
- Department Of Chemical Science, Faculty Of Science & Engineering, University of Limerick, Ireland
| | - Saritha Unnikrishnan
- Faculty of Engineering & Design, Atlantic Technological University (ATU), Ash Ln, Ballytivnan, Sligo, F91 YW50, Ireland; Center of Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University (ATU), Sligo, Ireland.
| |
Collapse
|
15
|
Jo M, Kim SH, Kim HE, Lee YY, Kim E, Ban C, Choi YJ. Retrograded octenylsuccinylated maize starch-based emulgels for a promising oral delivery system of curcumin. Carbohydr Polym 2023; 322:121341. [PMID: 37839845 DOI: 10.1016/j.carbpol.2023.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 10/17/2023]
Abstract
Emulgels are a type of soft solid delivery system that exploit the merits of both emulsions and gels, namely, bioactive encapsulability and structural stability, respectively. We utilized retrograded/octenylsuccinylated maize starch (ROMS) to fabricate the curcumin-loaded emulgel. Emulgels (oil volume fraction, 0.20) prepared with 1-4 % w/w ROMS exhibited fluid-like behaviors while emulgels with 5-8 % w/w ROMS exhibited a gel-like consistency. Compared to a fluidic emulsion stabilized with 3 % w/w octenylsuccinylated maize starch, the emulgels showed more sustained lipolysis and controlled curcumin release patterns. These results were attributed to rigid ROMS structures at the outer layer of oil droplets, hindering the lipase approach onto the oil/water interface and curcumin diffusion from the interface. Additionally, the bioaccessibility of curcumin in ROMS-stabilized emulgels was enhanced >9.6-fold compared to that of a curcumin solution. Furthermore, emulgels prepared with 8 % w/w ROMS exhibited a high yield stress (376.4 Pa) and maintained appearance and droplet size for 60 days of storage at 4 °C. Consequently, this emulgel has potential as a lipophilic bioactive-containing soft gel with sustained digestion and controlled release properties. Our findings may provide insights into rational delivery system designs.
Collapse
Affiliation(s)
- Myeongsu Jo
- Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul 08826, Republic of Korea
| | - Sung Hyun Kim
- Binggrae Co. Ltd., Namyangjusi, Gyeonggido 12253, Republic of Korea
| | - Ha Eun Kim
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul 08826, Republic of Korea
| | - You Young Lee
- Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul 08826, Republic of Korea
| | - Eunghee Kim
- Smart Food Manufacturing Project Group, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Choongjin Ban
- Department of Environmental Horticulture, University of Seoul, Dongdaemungu, Seoul 02504, Republic of Korea.
| | - Young Jin Choi
- Center for Food and Bioconvergence, Seoul National University, Gwanakgu, Seoul 08826, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Gwanakgu, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Gwanakgu, Seoul 08826, Republic of Korea.
| |
Collapse
|
16
|
Petrovic SM, Barbinta-Patrascu ME. Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds' Delivery: State-of-the Art and Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7550. [PMID: 38138692 PMCID: PMC10744464 DOI: 10.3390/ma16247550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
"Green" strategies to build up novel organic nanocarriers with bioperformance are modern trends in nanotechnology. In this way, the valorization of bio-wastes and the use of living systems to develop multifunctional organic and biogenic nanocarriers (OBNs) have revolutionized the nanotechnological and biomedical fields. This paper is a comprehensive review related to OBNs for bioactives' delivery, providing an overview of the reports on the past two decades. In the first part, several classes of bioactive compounds and their therapeutic role are briefly presented. A broad section is dedicated to the main categories of organic and biogenic nanocarriers. The major challenges regarding the eco-design and the fate of OBNs are suggested to overcome some toxicity-related drawbacks. Future directions and opportunities, and finding "green" solutions for solving the problems related to nanocarriers, are outlined in the final of this paper. We believe that through this review, we will capture the attention of the readers and will open new perspectives for new solutions/ideas for the discovery of more efficient and "green" ways in developing novel bioperformant nanocarriers for transporting bioactive agents.
Collapse
Affiliation(s)
- Sanja M. Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 1600 Leskovac, Serbia;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Măgurele, Romania
| |
Collapse
|
17
|
Dhakal S, Mondal M, Mirzazadeh A, Banerjee S, Ghosh A, Rangachari V. α-Synuclein emulsifies TDP-43 prion-like domain-RNA liquid droplets to promote heterotypic amyloid fibrils. Commun Biol 2023; 6:1227. [PMID: 38052886 PMCID: PMC10697960 DOI: 10.1038/s42003-023-05608-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Many neurodegenerative diseases including frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD), multiple system atrophy (MSA), etc., show colocalized deposits of TDP-43 and α-synuclein (αS) aggregates. To understand whether these colocalizations are driven by specific molecular interactions between the two proteins, we previously showed that the prion-like C-terminal domain of TDP-43 (TDP-43PrLD) and αS synergistically interact to form neurotoxic heterotypic amyloids in homogeneous buffer conditions. However, it remains unclear if αS can modulate TDP-43 present within liquid droplets and biomolecular condensates called stress granules (SGs). Here, using cell culture and in vitro TDP-43PrLD - RNA liquid droplets as models along with microscopy, nanoscale AFM-IR spectroscopy, and biophysical analyses, we uncover the interactions of αS with phase-separated droplets. We learn that αS acts as a Pickering agent by forming clusters on the surface of TDP-43PrLD - RNA droplets. The aggregates of αS on these clusters emulsify the droplets by nucleating the formation of heterotypic TDP-43PrLD amyloid fibrils, structures of which are distinct from those derived from homogenous solutions. Together, these results reveal an intriguing property of αS to act as a Pickering agent while interacting with SGs and unmask the hitherto unknown role of αS in modulating TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Malay Mondal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Azin Mirzazadeh
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Siddhartha Banerjee
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, 35401, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL, 35401, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
18
|
Saber S, Zargartalebi M, Kazemi A, Sinton D. Pickering phase change slurries. J Colloid Interface Sci 2023; 651:1028-1042. [PMID: 37597365 DOI: 10.1016/j.jcis.2023.07.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/29/2023] [Accepted: 07/28/2023] [Indexed: 08/21/2023]
Abstract
HYPOTHESIS Phase change slurries (PCS) have emerged as a promising class of oil-in-water emulsions for energy applications, but stability remains an issue. Pickering phase change slurries (PPCS) stabilized solely by nanoparticles could offer enhanced stability. We hypothesize that stability in PPCS can be achieved by tuning environmental variables of salinity and temperature. EXPERIMENTS A paraffin-based PPCS stabilized using fumed silica nanoparticles was developed and assessed under varying NaCl concentrations (up to 150 mM) and temperatures (up to 70 °C). Extended-DLVO modeling, confocal, and cryogenic electron microscopy analyzed the silica-paraffin interactions. Rheological experiments examined the impact of effective volume fraction, thermal expansion, and salinity on the viscosity and shear stability of PPCS. The stability of the resulting formulation was assessed under high pressure and temperature conditions. FINDINGS Increased salinity did not change the packing density of the silica at the oil-water interface (82% ± 6%) but did increase the adsorbed layer thickness and network formation, enhancing the formulation's resistance to shear-induced instability. A critical volume fraction of 0.51 ± 0.01 was identified, beyond which viscosity increased significantly. The resulting formulations remained stable under high pressures and temperatures, regardless of salinity. These findings offer insights into the variables affecting PPCS properties, assisting in designing stable PPCS formulations for diverse applications.
Collapse
Affiliation(s)
- Sepehr Saber
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Mohammad Zargartalebi
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Amin Kazemi
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
| |
Collapse
|
19
|
Moni SS, Abdelwahab SI, Jabeen A, Elmobark ME, Aqaili D, Ghoal G, Oraibi B, Farasani AM, Jerah AA, Alnajai MMA, Mohammad Alowayni AMH. Advancements in Vaccine Adjuvants: The Journey from Alum to Nano Formulations. Vaccines (Basel) 2023; 11:1704. [PMID: 38006036 PMCID: PMC10674458 DOI: 10.3390/vaccines11111704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Vaccination is a groundbreaking approach in preventing and controlling infectious diseases. However, the effectiveness of vaccines can be greatly enhanced by the inclusion of adjuvants, which are substances that potentiate and modulate the immune response. This review is based on extensive searches in reputable databases such as Web of Science, PubMed, EMBASE, Scopus, and Google Scholar. The goal of this review is to provide a thorough analysis of the advances in the field of adjuvant research, to trace the evolution, and to understand the effects of the various adjuvants. Historically, alum was the pioneer in the field of adjuvants because it was the first to be approved for use in humans. It served as the foundation for subsequent research and innovation in the field. As science progressed, research shifted to identifying and exploiting the potential of newer adjuvants. One important area of interest is nano formulations. These advanced adjuvants have special properties that can be tailored to enhance the immune response to vaccines. The transition from traditional alum-based adjuvants to nano formulations is indicative of the dynamism and potential of vaccine research. Innovations in adjuvant research, particularly the development of nano formulations, are a promising step toward improving vaccine efficacy and safety. These advances have the potential to redefine the boundaries of vaccination and potentially expand the range of diseases that can be addressed with this approach. There is an optimistic view of the future in which improved vaccine formulations will contribute significantly to improving global health outcomes.
Collapse
Affiliation(s)
- Sivakumar S. Moni
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | | | - Aamena Jabeen
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | - Mohamed Eltaib Elmobark
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (A.J.)
| | - Duaa Aqaili
- Physiology Department, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Gassem Ghoal
- Department of Pediatrics, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Bassem Oraibi
- Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia (B.O.)
| | | | - Ahmed Ali Jerah
- College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Mahdi Mohammed A. Alnajai
- General Directorate of Health Services and University Hospital, Jazan University, Jazan 45142, Saudi Arabia;
| | | |
Collapse
|
20
|
Ma J, Haider OM, Chang CC, Grzesiak KA, Squires TM, Walker LM. Solvent Quality and Aggregation State of Asphaltenes on Interfacial Mechanics and Jamming Behavior at the Oil/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15238-15248. [PMID: 37862270 PMCID: PMC10620990 DOI: 10.1021/acs.langmuir.3c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/02/2023] [Indexed: 10/22/2023]
Abstract
The formation of highly stable water-in-oil emulsions results in complications in both upstream and downstream processing. Emulsion stability in these systems has been connected to the adsorption of surface-active asphaltenes that are assumed to form a rigidified film at the oil/water (o/w) interface. Full characterization of this behavior is needed to allow for engineered solutions for enhanced oil recovery. Interfacial properties, such as surface pressure and interfacial elasticity, are implicated in the stabilizing mechanism for these observed films. Asphaltenes are known to be interfacially active in both good solvents (aromatics) and poor solvents (high ratio of aliphatic to aromatic). However, due to inherent complexities present in asphaltene studies, the details of the mechanical properties of the interface remain poorly understood. Despite the widely accepted perception that asphaltenes form persistent rigid films at fluid-fluid interfaces, the connection between bulk solution properties and interfacial mechanics has not been resolved. Here, the effects of solvent quality on the interfacial properties of asphaltene dispersions are determined by using a well-defined asphaltene/solvent system. Interfacial rigidity is observed only under poor solvent conditions, while the good solvent system remains fluid-like. The interfacial rheology under good and poor solvent conditions is measured simultaneously with surface pressure measurements to track interfacial development. It is shown that surface pressure and dilatational modulus measurements are not indicators of whether an interface demonstrates rigid behavior under large compressions. Finally, conditions required for asphaltene-coated interfaces to exhibit the mechanical behavior associated with a rigidified interface are defined. This work provides a framework for quantifying the impact of the aggregation state of asphaltenes on the stability and mechanics at the o/w interface.
Collapse
Affiliation(s)
- Junchi Ma
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Olivia M. Haider
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Chih-Cheng Chang
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | | | - Todd M. Squires
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Lynn M. Walker
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
21
|
Lan J, Shi L, Xiao W, Zhang X, Wang S. A Rapid Self-Pumping Organohydrogel Dressing with Hydrophilic Fractal Microchannels to Promote Burn Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301765. [PMID: 37318249 DOI: 10.1002/adma.202301765] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/01/2023] [Indexed: 06/16/2023]
Abstract
Burn wounds pose great challenges for conventional dressings because massive exudates oversecreted from swollen tissues and blisters seriously delay wound healing. Herein, a self-pumping organohydrogel dressing with hydrophilic fractal microchannels is reported that can rapidly drain excessive exudates with ≈30 times enhancement in efficiency compared with the pure hydrogel, and effectively promote burn wound healing. A creaming-assistant emulsion interfacial polymerization approach is proposed to create the hydrophilic fractal hydrogel microchannels in the self-pumping organohydrogel through a dynamic floating-colliding-coalescing process of organogel precursor droplets. In a murine burn wound model, the rapid self-pumping organohydrogel dressings can markedly reduce dermal cavity by ≈42.5%, accelerate blood vessel regeneration by ≈6.6 times, and hair follicle regeneration by ≈13.5 times, compared with the commercial dressing (Tegaderm). This study paves an avenue for designing high-performance functional burn wound dressings.
Collapse
Affiliation(s)
- Jinze Lan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lianxin Shi
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Qingdao Casfuture Research Institute Co. Ltd, Qingdao, 266109, P. R. China
| | - Wuyi Xiao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaobin Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
22
|
Dhakal S, Mondal M, Mirzazadeh A, Banerjee S, Ghosh A, Rangachari V. α-Synuclein emulsifies TDP-43 prion-like domain - RNA liquid droplets to promote heterotypic amyloid fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554502. [PMID: 37662377 PMCID: PMC10473755 DOI: 10.1101/2023.08.23.554502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Many neurodegenerative diseases including frontotemporal lobar degeneration (FTLD), Lewy body disease (LBD), multiple system atrophy (MSA), etc., show colocalized deposits of TDP-43 and α-synuclein (αS) aggregates. To understand whether these colocalizations are driven by specific molecular interactions between the two proteins, we previously showed that the prion-like C-terminal domain of TDP-43 (TDP-43PrLD) and αS synergistically interact to form neurotoxic heterotypic amyloids in homogeneous buffer conditions. However, it remains unclear whether and how αS modulates TDP-43 present within liquid droplets and biomolecular condensates called stress granules (SGs). Here, using cell culture and in vitro TDP-43PrLD - RNA liquid droplets as models along with microscopy, nanoscale spatially-resolved spectroscopy, and other biophysical analyses, we uncover the interactions of αS with phase-separated droplets. We learn that αS acts as a Pickering agent by forming clusters on the surface of TDP-43PrLD - RNA droplets and emulsifying them. The 'hardening' of the droplets that follow by αS aggregates on the periphery, nucleates the formation of heterotypic TDP-43PrLD amyloid fibrils with structures distinct from those derived from homogenous solutions. Together, these results reveal an intriguing property of αS as a Pickering agent in interacting with SGs and unmask the hitherto unknown role of αS in modulating TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Shailendra Dhakal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
| | - Malay Mondal
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
| | - Azin Mirzazadeh
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
| | - Siddhartha Banerjee
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Ayanjeet Ghosh
- Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, AL 35401, USA
| | - Vijayaraghavan Rangachari
- Department of Chemistry and Biochemistry, School of Mathematics and Natural Sciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
- Center for Molecular and Cellular Biosciences, University of Southern Mississippi, Hattiesburg MS 39406, USA
| |
Collapse
|
23
|
Ren Z, Fu L, Chen W, Qiu X, Chen L, Liao K, Wei M, Shao M. Emulsions synergistic-stabilized by a hydroxyl sulfobetaine surfactant and SiO 2 nanoparticles and their potential application for enhanced oil recovery. RSC Adv 2023; 13:25518-25528. [PMID: 37636500 PMCID: PMC10450575 DOI: 10.1039/d3ra03427e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023] Open
Abstract
The emulsions formed by conventional surfactants have poor stability in high temperature and high salinity reservoirs, which limits the fluidity control ability of emulsion flooding systems. Hydroxyl sulfobetaine surfactants have excellent emulsifying properties and can maintain good activity under high temperature and high salinity conditions. In this study, an emulsion synergistic-stabilized by hydroxyl sulfobetaine surfactant LHSB and SiO2 nanoparticles was reported for the first time, and the feasibility of its enhanced oil recovery was investigated. The results show that the stability, temperature and salt resistance of the emulsion were significantly improved after adding nanoparticles, which positively affected the exploitation of harsh reservoirs. The synergistic-stabilized mechanism between LHSB and SiO2 nanoparticles was revealed by the measurements of zeta potential, surface tension and contact angle. Moreover, core flooding experiments reflect the emulsion synergistic-stabilized by LHSB and SiO2 nanoparticles can effectively enhance oil recovery by 11.41%. This study provides an emulsion flooding system with excellent performance for enhanced oil recovery in harsh reservoirs.
Collapse
Affiliation(s)
- Zhangkun Ren
- School of Petroleum Engineering, Changzhou University Changzhou 213164 PR China
| | - Lipei Fu
- School of Petroleum Engineering, Changzhou University Changzhou 213164 PR China
| | - Wenzheng Chen
- China Petroleum Technology & Development Corporation Chaoyang District Beijing 100028 PR China
| | - Xinxin Qiu
- School of Petroleum Engineering, Changzhou University Changzhou 213164 PR China
| | - Lifeng Chen
- School of Petroleum Engineering, Yangtze University Wuhan 434023 PR China
| | - Kaili Liao
- School of Petroleum Engineering, Changzhou University Changzhou 213164 PR China
| | - Meng Wei
- School of Petroleum Engineering, Changzhou University Changzhou 213164 PR China
| | - Minglu Shao
- School of Petroleum Engineering, Changzhou University Changzhou 213164 PR China
| |
Collapse
|
24
|
Zhou Y, Luo X, Wang Z, McClements DJ, Huang W, Fu H, Zhu K. Dual role of polyglycerol vitamin E succinate in emulsions: An efficient antioxidant emulsifier. Food Chem 2023; 416:135776. [PMID: 36889015 DOI: 10.1016/j.foodchem.2023.135776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023]
Abstract
α-Tocopherol, as an oil-soluble vitamin with strong antioxidant activity. It is the most naturally abundant and biologically active form of vitamin E in humans. In this study, a novel emulsifier (PG20-VES) was synthesized by attaching hydrophilic twenty-polyglycerol (PG20) to hydrophobic vitamin E succinate (VES). This emulsifier was shown to have a relatively low critical micelle concentration (CMC = 3.2 μg/mL). The antioxidant activities and emulsification properties of PG20-VES were compared with those of a widely used commercial emulsifier: D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS). PG20-VES exhibited a lower interfacial tension, stronger emulsifying capacity and similar antioxidant property to TPGS. An in vitro digestion study showed that lipid droplets coated by PG20-VES were digested under simulated small intestine conditions. This study showed that PG20-VES is an efficient antioxidant emulsifier, which may have applications in the formulation of bioactive delivery systems in the food, supplement, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yanyan Zhou
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Xiang Luo
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China; Zhejiang Engineering Research Center of Fat-soluble Vitamin, School of Chemistry and Chemical Engineering, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Zhixin Wang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - David Julian McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Wenna Huang
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Hongliang Fu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China
| | - Kewu Zhu
- Center for Drug Delivery System Research, School of Medicine, Shaoxing University, 900 Chengnan Avenue, Shaoxing, Zhejiang 312000, China.
| |
Collapse
|
25
|
Raynel G, Marques DS, Al-Thabet M. The influence of water droplet packing on crude oil emulsion. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:53. [PMID: 37450063 DOI: 10.1140/epje/s10189-023-00311-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
To assure a smooth and cost-efficient flow of crude oil emulsion from wells to a production facility, the oil industry relies heavily on the prediction of viscosity in pipe. The physical expression of this viscosity depends on a subjective estimate of a maximum packing volume fraction (compacity), ranging between 58 and 74 vol%. This inaccurate practice can lead to catastrophic loss of pump efficiency. Two new concepts were defined to describe the emulsion: its compacity; and the occupancy of water droplets at the oil-water interface. This development leads to a better understanding of the formation and disappearance of a suspension, and can assist in building a reliable phenomenological model of the sedimentation and coalescence of an emulsion. Theoretical and experimental approaches were conducted to investigate the packing of water droplets in emulsions. A 3D packing model was developed to explain the observations made during emulsification experiments. It was found that below a water volume fraction of 34 vol%, water droplets settle, under the effect of gravity, in a loose-packed zone; and then sediment in a dense-packed zone (DPZ). The DPZ exists between a water volume fraction of 34 vol% and 60 vol%. The maximum compacity is the upper limit of this zone; and has a value of 60.46%. Knowing this objective value, other parameters affecting the viscosity can be better studied.
Collapse
Affiliation(s)
- Guillaume Raynel
- Saudi Aramco, Research and Development Center, Dhahran, Saudi Arabia.
| | | | | |
Collapse
|
26
|
Synergistic effect of lecithin and alginate, CMC, or PVP in stabilizing curcumin and its potential mechanism. Food Chem 2023; 413:135634. [PMID: 36780858 DOI: 10.1016/j.foodchem.2023.135634] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/05/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
This work aims to advance the understanding of the synergistic mechanism of lecithin and polymers (alginate, CMC, and PVP) in stabilizing curcumin, with a major focus on understanding the nanocomplex formation process and the main binding energy between molecules. It is demonstrated that lecithin and polymers have a synergistic effect in increasing the thermal acid, light, and digestion stability of curcumin. The potential mechanism is that the hydrophobic parts of curcumin molecules are first anchored at the region of the hydrophobic cavity of lecithin by van der Waals, while the hydrophilic parts are outward and are further encapsulated by hydrophilic polymers by van der Waals and electrostatic interaction to form a protective shell. This study contributes to our understanding of the synergistic mechanism of lecithin, polymers, and hydrophobic compounds, which can promote the synergistic use of lecithin and polymers to prepare nanocomplexes as an important tool for delivering bioactive compounds.
Collapse
|
27
|
Badruddoza AZM, Yeoh T, Shah JC, Walsh T. Assessing and Predicting Physical Stability of Emulsion-Based Topical Semisolid Products: A Review. J Pharm Sci 2023; 112:1772-1793. [PMID: 36966902 DOI: 10.1016/j.xphs.2023.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The emulsion-based topical semisolid dosage forms present a high degree of complexity due to their microstructures which is apparent from their compositions comprising at least two immiscible liquid phases, often times of high viscosity. These complex microstructures are thermodynamically unstable, and the physical stability of such preparations is governed by formulation parameters such as phase volume ratio, type of emulsifiers and their concentration, HLB value of the emulsifier, as well as by process parameters such as homogenizer speed, time, temperature etc. Therefore, a detailed understanding of the microstructure in the DP and critical factors that influence the stability of emulsions is essential to ensure the quality and shelf-life of emulsion-based topical semisolid products. This review aims to provide an overview of the main strategies used to stabilize pharmaceutical emulsions contained in semisolid products and various characterization techniques and tools that have been utilized so far to evaluate their long-term stability. Accelerated physical stability assessment using dispersion analyzer tools such as an analytical centrifuge to predict the product shelf-life has been discussed. In addition, mathematical modeling for phase separation rate for non-Newtonian systems like semisolid emulsion products has also been discussed to guide formulation scientists to predict a priori stability of these products.
Collapse
Affiliation(s)
- Abu Zayed Md Badruddoza
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA.
| | - Thean Yeoh
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA
| | - Jaymin C Shah
- Drug Product Design, Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA
| | - Taylor Walsh
- Eurofins Lancaster Laboratories Professional Scientific Services, 2425 New Holland Pike, Lancaster, PA 17601, USA
| |
Collapse
|
28
|
Perrin L, Desobry-Banon S, Gillet G, Desobry S. Phase Diagram of Pickering Emulsions Stabilized by Cellulose Nanocrystals. Polymers (Basel) 2023; 15:2783. [PMID: 37447429 DOI: 10.3390/polym15132783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Cellulose is a promising renewable and biocompatible biopolymer for stabilizing Pickering emulsions (PEs). In the present study, PEs were produced by low-frequency ultrasounds with cellulose nanocrystals (CNCs) and caprylic/capric triglycerides. Phase diagrams allowed to understand mechanisms of formation and long-term stabilization of PEs. Emulsion type, continuous phase viscosity, and yield of oil incorporation were studied after PEs formation. Droplet size, oil release, and stability were measured weekly up to 56 days of storage. Results showed that oil mass fraction above 70% w/w led to unstable W/O PEs. Lower oil mass fraction formed O/W PEs of stability depending on CNC content and oil mass fraction. Droplet size stability increased with CNCs/oil ratio. A very low CNCs/oil ratio led to phase separation and oil release. High CNC content stabilized oil droplets surface, increased aqueous phase viscosity, and prevented creaming. Highly stable PEs were produced for CNC content above 3% (w/w) and oil mass fraction below 50% (w/w). Mechanisms for PEs formation and stabilization were proposed for various CNC contents and oil mass fractions.
Collapse
Affiliation(s)
- Louise Perrin
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy Cedex, France
- SAS GENIALIS Route d'Achères, 18250 Henrichemont, France
| | - Sylvie Desobry-Banon
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy Cedex, France
| | | | - Stephane Desobry
- Laboratoire d'Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy Cedex, France
| |
Collapse
|
29
|
Alharbi G, Abdulhamid MA. Optimization of water/oil emulsion preparation: Impact of time, speed, and homogenizer type on droplet size and dehydration efficiency. CHEMOSPHERE 2023; 335:139136. [PMID: 37290522 DOI: 10.1016/j.chemosphere.2023.139136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023]
Abstract
Due to their distinctive physical and chemical properties, emulsions are widely used in various industries such as pharmaceuticals, cosmetics, food, energy, and oil. Emulsion preparation differs from one application to another due to the effect of multiple parameters that can control droplet size and stability. However, there is a lack of fundamental understanding of the effect of emulsion preparation on its stability and performance. The emulsion preparation protocols can directly affect dehydration efficiency and stability. Herein, we report the influence of preparation conditions on the properties of the formed emulsions; we investigated the effect of mixing time, speed, and mixer type on the synthetic crude oil emulsion's droplet size and dehydration efficiency.
Collapse
Affiliation(s)
- Ghadeer Alharbi
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering & Geosciences (CPG), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia; Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Mahmoud A Abdulhamid
- Sustainable and Resilient Materials Lab, Center for Integrative Petroleum Research (CIPR), College of Petroleum Engineering & Geosciences (CPG), King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
30
|
Liu Y, He H, Zhang TJ, Zhang TC, Wang Y, Yuan S. A biomimetic beetle-like membrane with superoleophilic SiO 2-induced oil coalescence on superhydrophilic CuC 2O 4 nanosheet arrays for effective O/W emulsion separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131142. [PMID: 36893603 DOI: 10.1016/j.jhazmat.2023.131142] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
It is highly attractive to develop highly efficient oil-in-water (O/W) emulsion separation technologies for promoting the oily wastewater treatment. Herein, a novel inversely Stenocara beetle-like hierarchical structure of superhydrophobic SiO2 nanoparticle-decorated CuC2O4 nanosheet arrays were prepared on copper mesh membrane by bridging polydopamine (PDA) to make a SiO2/PDA@CuC2O4 membrane for substantially enhanced separation of O/W emulsions. The superhydrophobic SiO2 particles on the as-prepared SiO2/PDA@CuC2O4 membranes were served as localized active sites to induce coalescence of small-size oil droplets in oil-in-water (O/W) emulsions. Such innovated membrane delivered outstanding demulsification ability of O/W emulsion with a high separation flux of 2.5 kL⋅m-2⋅h-1 and its filtrate's chemical oxygen demand (COD) being 30 and 100 mg⋅L-1 for surfactant-free emulsion (SFE) and surfactant-stabilized emulsion (SSE), respectively, and also exhibited a good anti-fouling performance in cycling tests. The innovative design strategy developed in this work broadens the application of superwetting materials for oil-water separation and presents a promising prospect in practical oily wastewater treatment applications.
Collapse
Affiliation(s)
- Yajie Liu
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huaqiang He
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Tie-Jun Zhang
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Tian C Zhang
- Civil and Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA
| | - Yuan Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
31
|
Lee S, Jo K, Jeong SKC, Choi YS, Jung S. Strategies for modulating the lipid digestion of emulsions in the gastrointestinal tract. Crit Rev Food Sci Nutr 2023; 64:9740-9755. [PMID: 37267158 DOI: 10.1080/10408398.2023.2215873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The structural changes in emulsion products can be used to control the bioavailability of fatty acids and lipophilic compounds. After ingestion, lipid droplets undergo breakdown and structural changes as they pass through the gastrointestinal tract. The oil-water interface plays a critical role in modulating the digestive behavior of lipid droplets because changes in the interfacial layer control the adsorption of lipase and bile salts and determine the overall rate and extent of lipid digestion. Therefore, lipid digestibility can be tuned by selecting the appropriate types and levels of stabilizers. The stabilizer can change the lipase accessibility and exposure of lipid substrates, resulting in variable digestion rates. However, emulsified lipids are not only added to food matrixes but are also co-ingested from other dietary components. Therefore, overall consumption behaviors can affect the digestion rate and digestibility of emulsified lipids. Although designing an emulsion structure is challenging, controlling lipid digestion can improve the health benefits of products. Therefore, a thorough understanding of the process of emulsified lipid digestion is required to develop food products that enable specific physiological responses. The targeted or delayed release of lipophilic molecules and fatty acids through emulsion systems has significant applications in healthcare and pharmaceuticals.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Seul-Ki-Chan Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Korea
| |
Collapse
|
32
|
Zhang Z, Wang Y, Ding M, Mao D, Chen M, Han Y, Liu Y, Xue X. Effects of viscosification, ultra-low interfacial tension, and emulsification on heavy oil recovery by combination flooding. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
33
|
Ansaribaranghar N, Romero-Zerón L, Marica F, Balcom BJ. Measurement of crude oil emulsion instability using magnetic resonance and magnetic resonance imaging. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
34
|
Hamedi H, Zendehboudi S, Rezaei N, Azizi A, Shahhoseini F. Application of Functionalized Fe 3O 4 Magnetic Nanoparticles Using CTAB and SDS for Oil Separation from Oil-in-Water Nanoemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37256995 DOI: 10.1021/acs.langmuir.2c03266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Using magnetic nanoparticles (MNPs) for emulsified oil separation from wastewater is becoming increasingly widespread. This study aims to synthesize MNPs using amphiphilic coatings to stabilize the MNPs and prevent their agglomeration for efficiently breaking oil-in-water nanoemulsions. We coat two different sizes of Fe3O4 nanoparticles (15-20 and 50-100 nm) using cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) with surfactant-to-MNP mass ratios of 0.4 and 0.8. We study the effect of various variables on the demulsification performance, including the MNP size and concentration, coating materials, and MNP loading. Based on the oil-water separation analysis, the smaller size MNPs (MNP-S) show a better demulsification performance than the larger ones (MNP-L ) for a 1000 ppm dodecane-in-water emulsion containing nanosized oil droplets (250-300 nm). For smaller MNPs (MNP-S) and at low dosage level of 0.5 g/L, functionalizing with surfactant-to-MNP mass ratio of 0.4, the functionalization increases the separation efficiency (SE) from 57.5% for bare MNP-S to 86.1% and 99.8 for the SDS and CTAB coatings, respectively. The highest SE for MNP-S@CTAB and the zeta potential measurements imply that electrostatic attraction between negatively charged oil droplets (-55.9 ± 2.44 mV) and positively charged MNP-S@CTAB (+35.8 ± 0.34 mV) is the major contributor to a high SE. Furthermore, the reusability tests for MNP-S@CTAB reveal that after 10 cycles, the amount of oil adsorption capacity decreases slightly, from 20 to 19 mg/g, indicating an excellent stability of synthesized nanoparticles. In conclusion, functionalized MNPs with tailored functional groups feature a high oil SE that could be effectively used for oil separation from emulsified oily wastewater streams.
Collapse
Affiliation(s)
- Hamideh Hamedi
- Department of Process Engineering, Memorial University, St. John's A1B 3X9, Newfoundland, Canada
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's A1B 3X9, Newfoundland, Canada
| | - Nima Rezaei
- Department of Process Engineering, Memorial University, St. John's A1B 3X9, Newfoundland, Canada
- Department of Separation Science, Lappeenranta-Lahti University of Technology, Lappeenranta 53850, Finland
| | - Ali Azizi
- Department of Chemistry, Memorial University, St. John's A1C 5S7, Newfoundland, Canada
| | - Fereshteh Shahhoseini
- Department of Chemistry, Memorial University, St. John's A1C 5S7, Newfoundland, Canada
| |
Collapse
|
35
|
Ma S, Zhang G, Shi C, Dong Q, Ji T. Achieving Practical Venue Recycle of Waste Oil-Based Drilling Fluids with Vacuum Distillation Technology. ACS OMEGA 2023; 8:16306-16314. [PMID: 37179625 PMCID: PMC10173441 DOI: 10.1021/acsomega.3c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/15/2023]
Abstract
Drilling fluids are essential operating additives for extracting oil and shale gas. Thus, their pollution control and recycling utilization are significant to petrochemical development. Vacuum distillation technology was used in this research to handle waste oil-based drilling fluids and achieve reutilization. Briefly, recycled oil and recovered solids can be obtained from waste oil-based drilling fluids whose density is 1.24-1.37 g/cm3 by vacuum distillation under the condition of an external heat transfer oil temperature of 270 ± 5 °C and a reaction pressure below 5 × 103 Pa. Meanwhile, recycled oil has excellent apparent viscosity (AV, 21 mPa·s) and plastic viscosity (PV, 14 mPa·s), which could be used as a substitute for 3# white oil. Furthermore, PF-ECOSEAL prepared by recycled solids exhibited better rheological properties (27.5 mPa·s AV, 18.5 mPa·s PV, and 9 Pa yield point) and plugging performance (32 mL V0, 1.90 mL/min1/2Vsf) than drilling fluids prepared with the conventional plugging agent PF-LPF. Our work confirmed that vacuum distillation is a valid technology in innocuity treatment and resource utilization of drilling fluids and has great value in industrial applications.
Collapse
|
36
|
D'Agostino C, Preziosi V, Caiazza G, Maiorino MV, Fridjonsson E, Guido S. Effect of surfactant concentration on diffusion and microstructure in water-in-oil emulsions studied by low-field benchtop NMR and optical microscopy. SOFT MATTER 2023; 19:3104-3112. [PMID: 37039250 DOI: 10.1039/d3sm00113j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Emulsions are ubiquitous in many consumer products, including food, cosmetics and pharmaceuticals. Whilst their macroscopic characterisation is well-established, understanding their microscopic behaviour is very challenging. In our previous work we investigated oil-in-water emulsions by studying the effect of water on structuring and dynamics of such systems. In the present work, we investigate the effect of surfactant concentration on microstructure and diffusion within the water-in-oil emulsion system by using low-field pulsed-field gradient (PFG) NMR studies carried out with a benchtop NMR instrument, in conjunction with optical imaging. The results reveal that at high surfactant concentration the formation of smaller droplets gives rise to a third component in the PFG NMR attenuation plot, which is mostly attributed to restricted diffusion near the droplet boundaries. In addition, structuring effects due to increase in surfactant concentration at the boundaries could also contribute to further slowing down water diffusion at the boundaries. As the surfactant concentration decreases, the average droplet size becomes larger and both restriction and structuring effects at the droplet boundaries become less significant, as suggested by the PFG NMR plot, whereby the presence of a third diffusion component becomes less pronounced.
Collapse
Affiliation(s)
- Carmine D'Agostino
- Department of Chemical Engineering and Analytical Science, The University of Manchester, The Mill, Sackville Street, Manchester, M13 9PL, UK.
- Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali (DICAM), Alma Mater Studiorum - Università di Bologna, Via Terracini, 28, 40131 Bologna, Italy
| | - Valentina Preziosi
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, UdR INSTM, Piazzale Tecchio, 80, 80125, Napoli, Italy.
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| | - Giuseppina Caiazza
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, UdR INSTM, Piazzale Tecchio, 80, 80125, Napoli, Italy.
| | - Maria Vittoria Maiorino
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, UdR INSTM, Piazzale Tecchio, 80, 80125, Napoli, Italy.
| | - Einar Fridjonsson
- Department of Chemical Engineering, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, UdR INSTM, Piazzale Tecchio, 80, 80125, Napoli, Italy.
- CEINGE, Advanced Biotechnologies, Via Gaetano Salvatore 486, 80145 Napoli, Italy
| |
Collapse
|
37
|
Vale M, Orišková S, Mariquito A, Reis L, Pinto M, Marques AC. Multicomponent oxide microspheres with designed macroporosity (MICROSCAFS®): a customized platform for chemicals immobilization. RSC Adv 2023; 13:12951-12965. [PMID: 37114025 PMCID: PMC10128106 DOI: 10.1039/d3ra00895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
A novel versatile, easily recoverable, and recyclable material platform is herein presented, consisting of multicomponent oxide microspheres, of silica-titania and silica-titania-hafnia composition, with tailored interconnected macroporosity (MICROSCAFS®). When functionalized or loaded with desired species, they are potential enablers of emerging applications in environmental remediation, among other fields. We combine emulsion templating for the spherical shape of the particles, with an adapted sol-gel technique involving polymerization-induced phase separation by spinodal decomposition. An advantage of our method regards the employed mix of precursors, which prevents the use of specific gelation additives and porogens and allows a high reproducibility of MICROSCAFS®. We present insight into their formation mechanism using cryo-scanning electron microscopy, and a systematic study of the effect of multiple synthesis parameters on the MICROSCAFS® size and porosity. The composition of the silicon precursors has the most significant effect on fine-tuning the pores size, ranging from the nanometer to the micron scale. Mechanical properties are correlated with morphological features. Larger macroporosity (68% open porosity, estimated by X-ray computed tomography) leads to less stiffness, higher elastic recovery, and compressibility values up to 42%. We believe this study creates a base for consistent custom MICROSCAFS® production, with a design for various future applications.
Collapse
Affiliation(s)
- Mário Vale
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Sofia Orišková
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - António Mariquito
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Luís Reis
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Moisés Pinto
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Ana C Marques
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| |
Collapse
|
38
|
Lal DK, Kumar B, Saeedan AS, Ansari MN. An Overview of Nanoemulgels for Bioavailability Enhancement in Inflammatory Conditions via Topical Delivery. Pharmaceutics 2023; 15:pharmaceutics15041187. [PMID: 37111672 PMCID: PMC10145625 DOI: 10.3390/pharmaceutics15041187] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The anti-inflammatory drugs that are generally available possess the disadvantage of hydrophobicity, which leads to poor permeability and erratic bioavailability. Nanoemulgels (NEGs) are novel drug delivery systems that aim to improve the solubility and permeability of drugs across the biological membrane. The nano-sized droplets in the nanoemulsion enhance the permeation of the formulation, along with surfactants and co-surfactants that act as permeation enhancers and can further improve permeability. The hydrogel component of NEG helps to increase the viscosity and spreadability of the formulation, making it ideal for topical application. Moreover, oils that have anti-inflammatory properties, such as eucalyptus oil, emu oil and clove oil, are used as oil phases in the preparation of the nanoemulsion, which shows a synergistic effect with active moiety and enhances its overall therapeutic profile. This leads to the creation of hydrophobic drugs that possess enhanced pharmacokinetic and pharmacodynamic properties, and simultaneously avoid systemic side effects in individuals with external inflammatory disorders. The nanoemulsion's effective spreadability, ease of application, non-invasive administration, and subsequent ability to achieve patient compliance make it more suitable for topical application in the combat of many inflammatory disorders, such as dermatitis, psoriasis, rheumatoid arthritis, osteoarthritis and so on. Although the large-scale practical application of NEG is limited due to problems regarding its scalability and thermodynamic instability, which arise from the use of high-energy approaches during the production of the nanoemulsion, these can be resolved by the advancement of an alternative nanoemulsification technique. Considering the potential advantages and long-term benefits of NEGs, the authors of this paper have compiled a review that elaborates the potential significance of utilizing nanoemulgels in a topical delivery system for anti-inflammatory drugs.
Collapse
Affiliation(s)
- Diwya Kumar Lal
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Bhavna Kumar
- Faculty of Pharmacy, DIT University, Dehradun 248009, Uttarakhand, India
| | - Abdulaziz S Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
39
|
Lan J, Shi L, Xiao W, Zhang X, Wang Y, Wang S. An enhanced fractal self-pumping dressing with continuous drainage for accelerated burn wound healing. Front Bioeng Biotechnol 2023; 11:1188782. [PMID: 37082216 PMCID: PMC10110875 DOI: 10.3389/fbioe.2023.1188782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/22/2023] Open
Abstract
Massive exudates oversecreted from burn wounds always delay the healing process, accompanied by undesired adhesion, continuous inflammation, and high infection risk. Conventional dressings with limited draining ability cannot effectively remove the excessive exudates but constrain them in the wetted dressings immersing the wound bed. Herein, we fabricate an enhanced fractal self-pumping dressing by floating and accumulating hollow glass microspheres in the hydrogel precursor, that can continuously drain water at a non-declining high speed and effectively promote burn wound healing. Small hollow glass microspheres can split the fractal microchannels into smaller ones with higher fractal dimensions, resulting in higher absorption efficiency. In an in vivo burn wound model on the dorsum of murine, the enhanced fractal self-pumping dressing can significantly reduce the appearance of the wound area and alleviate tissue edema along the healing process. This study sheds light on designing high-efficiency and continuous-draining dressings for clinical applications.
Collapse
Affiliation(s)
- Jinze Lan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lianxin Shi
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, China
- Qingdao Casfuture Research Institute Co. Ltd., Qingdao, China
| | - Wuyi Xiao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobin Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuzhe Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Qingdao Casfuture Research Institute Co. Ltd., Qingdao, China
| |
Collapse
|
40
|
Baptista S, Baptista F, Freitas F. Development of Emulsions Containing L-Ascorbic Acid and α-Tocopherol Based on the Polysaccharide FucoPol: Stability Evaluation and Rheological and Texture Assessment. COSMETICS 2023. [DOI: 10.3390/cosmetics10020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The main function of vitamin C, as an antioxidant, is to combat free radicals and prevent premature aging, smoothing wrinkles and expression lines. In addition, it acts directly on depigmentation and prevention of blemishes on the skin. In this study, natural oils (30 wt.%) and α-tocopherol (2.5 wt.%) containing oil-in-water (O/W) emulsions stabilized with the bacterial fucose-rich polysaccharide FucoPol were formulated, adding L-ascorbic acid as an antioxidant. The optimized formulations were obtained with 8.0 wt.% L-ascorbic acid for the Olea europaea oil formulation (C1) with a ƞ value of 2.71 Pa.s (measured at shear rate of 2.3 s−1) and E24 = 96% and with 15 wt.% L-ascorbic acid for the Prunus amygdalus dulcis formulation (C2) with a ƞ value of 5.15 Pa.s (at a shear rate of 2.3 s−1) and E24 = 99%. The stability of the FucoPol-based formulations was investigated over 45 days at 4 °C, 20 °C, and 30 °C. The results showed that all formulations maintained the organoleptic characteristics, with pH variations (5.7–6.8 for C1, and 5.5–6.03 for C2) within the regulations for cosmetic products (4 ≤ pH ≤ 7). The accelerated stability tests proved the formulations’ stability at 4 °C with EI = 95% for C1 and EI = 100% for C2. The rheological assessment demonstrated that the formulation presents a shear-thinning and liquid-like behavior. Regarding textural parameters, formulations C1 and C2 displayed an increase in firmness and consistency with similar spreadability during the shelf life. These findings further demonstrate FucoPol’s functional properties, acting as an emulsifier and stabilizer polysaccharide in cosmetic formulations containing L-ascorbic acid.
Collapse
|
41
|
Sharma D, Singh D, Sukhbir-Singh GM, Karamchandani BM, Aseri GK, Banat IM, Satpute SK. Biosurfactants: Forthcomings and Regulatory Affairs in Food-Based Industries. Molecules 2023; 28:molecules28062823. [PMID: 36985795 PMCID: PMC10055102 DOI: 10.3390/molecules28062823] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The terms discussed in this review-biosurfactants (BSs) and bioemulsifiers (BEs)-describe surface-active molecules of microbial origin which are popular chemical entities for many industries, including food. BSs are generally low-molecular-weight compounds with the ability to reduce surface tension noticeably, whereas BEs are high-molecular-weight molecules with efficient emulsifying abilities. Some other biomolecules, such as lecithin and egg yolk, are useful as natural BEs in food products. The high toxicity and severe ecological impact of many chemical-based surfactants have directed interest towards BSs/BEs. Interest in food surfactant formulations and consumer anticipation of "green label" additives over synthetic or chemical-based surfactants have been steadily increasing. BSs have an undeniable prospective for replacing chemical surfactants with vast significance to food formulations. However, the commercialization of BSs/BEs production has often been limited by several challenges, such as the optimization of fermentation parameters, high downstream costs, and low yields, which had an immense impact on their broader adoptions in different industries, including food. The foremost restriction regarding the access of BSs/BEs is not their lack of cost-effective industrial production methods, but a reluctance regarding their potential safety, as well as the probable microbial hazards that may be associated with them. Most research on BSs/BEs in food production has been restricted to demonstrations and lacks a comprehensive assessment of safety and risk analysis, which has limited their adoption for varied food-related applications. Furthermore, regulatory agencies require extensive exploration and analysis to secure endorsements for the inclusion of BSs/BEs as potential food additives. This review emphasizes the promising properties of BSs/BEs, trailed by an overview of their current use in food formulations, as well as risk and toxicity assessment. Finally, we assess their potential challenges and upcoming future in substituting chemical-based surfactants.
Collapse
Affiliation(s)
- Deepansh Sharma
- Department of Life Sciences, J. C Bose University of Science & Technology, YMCA Faridabad-Haryana, Haryana 121006, India
| | - Deepti Singh
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur 303002, India
| | | | | | - Gajender Kumar Aseri
- Amity Institute of Microbial Technology, Amity University Rajasthan, Jaipur 303002, India
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life and Health Sciences, University of Ulster, Coleraine BT52 1SA, UK
| | - Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
42
|
Zhao L, Shu M, Shi K, Tang S, Li Z. Novel use of graphene oxide quantum dots in a pickering emulsion as a Chlamydia trachomatis vaccine adjuvant. Int Immunopharmacol 2023; 118:110035. [PMID: 36958212 DOI: 10.1016/j.intimp.2023.110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/25/2023]
Abstract
Graphene oxide quantum dots (GOQDs), which are graphene-based nanoparticles, are potential surfactant substitutes for stabilizing Pickering emulsions, due to their high surface area, biodegradability, and reasonable biocompatibility. In the present study, GOQDs stabilized Pickering emulsion (GQPE) was prepared by simple sonication and then used as an adjuvant to enhance immune responses to the Chlamydia trachomatis Pgp3 recombinant vaccine. Immunization of mice showed that GQPE robustly activates adaptive immunity by efficiently stimulating IgG, sIgA, IFN-γ, IL-4, and TNF-α production. Controlled release repository of antigens both in vivo and in vitro prolonged the immune response. In addition, GQPE enhanced dendritic cell recruitment at the injection site, ensuring rapid and efficient innate immunity. Safety assessment revealed that GQPE does not cause liver, kidney, and myocardial damage in mice, suggesting its favorable biocompatibility. This study provides evidence for the use of GOPE as a facile, effective, and safe strategy to enhance the immune response to Pgp3 recombinant vaccines.
Collapse
Affiliation(s)
- Lanhua Zhao
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, the School of Nuring, University of South China, Hengyang, 421001 Hunan, PR China
| | - Mingyi Shu
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, the School of Nuring, University of South China, Hengyang, 421001 Hunan, PR China
| | - Keliang Shi
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, the School of Nuring, University of South China, Hengyang, 421001 Hunan, PR China
| | - Shuangyang Tang
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, the School of Nuring, University of South China, Hengyang, 421001 Hunan, PR China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, the School of Nuring, University of South China, Hengyang, 421001 Hunan, PR China.
| |
Collapse
|
43
|
Daglish J, Blacker AJ, de Boer G, Crampton A, Hose DRJ, Parsons AR, Kapur N. Determining Phase Separation Dynamics with an Automated Image Processing Algorithm. Org Process Res Dev 2023; 27:627-639. [PMID: 37122340 PMCID: PMC10127267 DOI: 10.1021/acs.oprd.2c00357] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 03/15/2023]
Abstract
The problems of extracting products efficiently from reaction workups are often overlooked. Issues such as emulsions and rag layer formation can cause long separation times and slow production, thus resulting in manufacturing inefficiencies. To better understand science within this area and to support process development, an image processing methodology has been developed that can automatically track the interface between liquid-liquid phases and provide a quantitative measure of the separation rate of two immiscible liquids. The algorithm is automated and has been successfully applied to 29 cases. Its robustness has been demonstrated with a variety of different liquid mixtures that exhibit a wide range of separation behavior-making such an algorithm suited to high-throughput experimentation. The information gathered from applying the algorithm shows how issues resulting from poor separations can be detected early in process development.
Collapse
Affiliation(s)
- James Daglish
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - A. John Blacker
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Gregory de Boer
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Alex Crampton
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - David R. J. Hose
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Anna R. Parsons
- Chemical Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Nikil Kapur
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
44
|
Chitosan nanocarriers containing essential oils as a green strategy to improve the functional properties of chitosan: A review. Int J Biol Macromol 2023; 236:123954. [PMID: 36898453 DOI: 10.1016/j.ijbiomac.2023.123954] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/02/2023] [Accepted: 03/04/2023] [Indexed: 03/12/2023]
Abstract
Large amounts of agricultural waste, especially marine product waste, are produced annually. These wastes can be used to produce compounds with high-added value. Chitosan is one such valuable product that can be obtained from crustacean wastes. Various biological activities of chitosan and its derivatives, especially antimicrobial, antioxidant, and anticancer properties, have been confirmed by many studies. The unique characteristics of chitosan, especially chitosan nanocarriers, have led to the expansion of using chitosan in various sectors, especially in biomedical sciences and food industries. On the other hand, essential oils, known as volatile and aromatic compounds of plants, have attracted the attention of researchers in recent years. Like chitosan, essential oils have various biological activities, including antimicrobial, antioxidant, and anticancer. In recent years, one of the ways to improve the biological properties of chitosan is to use essential oils encapsulated in chitosan nanocarriers. Among the various biological activities of chitosan nanocarriers containing essential oils, most studies conducted in recent years have been in the field of antimicrobial activity. It was documented that the antimicrobial activity was increased by reducing the size of chitosan particles in the nanoscale. In addition, the antimicrobial activity was intensified when essential oils were in the structure of chitosan nanoparticles. Essential oils can increase the antimicrobial activity of chitosan nanoparticles with synergistic effects. Using essential oils in the structure of chitosan nanocarriers can also improve the other biological properties (antioxidant and anticancer activities) of chitosan and increase the application fields of chitosan. Of course, using essential oils in chitosan nanocarriers for commercial use requires more studies, including stability during storage and effectiveness in real environments. This review aims to overview recent studies on the biological effects of essential oils encapsulated in chitosan nanocarriers, with notes on their biological mechanisms.
Collapse
|
45
|
Yang Y, Gupta VK, Amiri H, Pan J, Aghbashlo M, Tabatabaei M, Rajaei A. Recent developments in improving the emulsifying properties of chitosan. Int J Biol Macromol 2023; 239:124210. [PMID: 37001778 DOI: 10.1016/j.ijbiomac.2023.124210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Chitosan is one of the valuable products obtained from crustacean waste. The unique characteristics of chitosan (antimicrobial, antioxidant, anticancer, and anti-inflammatory) have increased its application in various sectors. Besides unique biological properties, chitosan or chitosan-based compounds can stabilize emulsions. Nevertheless, studies have shown that chitosan cannot be used as an efficient stabilizer because of its high hydrophilicity. Hence, this review aims to provide an overview of recent studies dealing with improving the emulsifying properties of chitosan. In general, two different approaches have been reported to improve the emulsifying properties of chitosan. The first approach tries to improve the stabilization property of chitosan by modifying its structure. The second one uses compounds such as polysaccharides, proteins, surfactants, essential oils, and polyphenols with more wettability and emulsifying properties than chitosan's particles in combination with chitosan to create complex particles. The tendency to use chitosan-based particles to stabilize Pickering emulsions has recently increased. For this reason, more studies have been conducted in recent years to improve the stabilizing properties of chitosan-based particles, especially using the electrostatic interaction method. In the electrostatic interaction method, numerous research has been conducted on using proteins and polysaccharides to increase the stabilizing property of chitosan.
Collapse
Affiliation(s)
- Yadong Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
46
|
Yeh SL, Koshani R, Sheikhi A. Colloidal aspects of calcium carbonate scaling in water-in-oil emulsions: A fundamental study using droplet-based microfluidics. J Colloid Interface Sci 2023; 633:536-545. [PMID: 36463822 DOI: 10.1016/j.jcis.2022.11.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
HYPOTHESIS As a mainstream process in the extraction and recovery of crude oil, water is injected into reservoirs in the so-called waterflooding process to facilitate the oil displacement through the wellbore, typically generating water-in-oil (W/O) emulsions. Based on economic considerations, sea water is used in the flooding process; however, the ionic incompatibility between the injected water and the formation water inside the reservoir may precipitate sparingly-soluble inorganic salts (scale). We hypothesize that calcium carbonate (CaCO3) scale dynamically interacts with cationic surfactants in W/O emulsions, resulting in (i) scale growth retardation and (ii) emulsion destabilization. EXPERIMENTS We developed stable W/O emulsions via combining droplet-based microfluidics with multifactorial optimizations to investigate the influence of emulsion properties, such as surfactant type and concentrations, temperature, and pH, as well as calcium ions on the CaCO3 scaling kinetics and emulsion stability. The CaCO3 scale was characterized based on particle size and charge, lattice structure, interactions with the surfactant, and time-dependent effects on emulsion stability. FINDINGS The interfacial interactions between the cationic surfactant (cetyltrimethylammonium bromide, CTAB) and CaCO3 retarded scale growth rate, decreased crystal size, and destabilized emulsion within hours as a result of surfactant depletion at the water-oil interface. The surfactant did not affect the crystal structure of scale, which was formed as the most thermodynamically stable crystalline polymorph, calcite, at the ambient condition. This fundamental study may open new opportunities for engineering stable W/O emulsions, e.g., for enhanced oil recovery (EOR), and developing scale-resistant multiphase flows.
Collapse
Affiliation(s)
- Shang-Lin Yeh
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Roya Koshani
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
47
|
Asmawi AA, Salim N, Abdulmalek E, Abdul Rahman MB. Size-Controlled Preparation of Docetaxel- and Curcumin-Loaded Nanoemulsions for Potential Pulmonary Delivery. Pharmaceutics 2023; 15:pharmaceutics15020652. [PMID: 36839974 PMCID: PMC9964819 DOI: 10.3390/pharmaceutics15020652] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Lung cancer is one of the deadliest pulmonary diseases in the world. Although docetaxel (DTX) has exhibited superior efficacy in lung cancer treatment, it has demonstrated numerous adverse effects and poor bioavailability. The natural product extract, curcumin (CCM), has reportedly reduced toxicity and synergistically improved DTX bioavailability. Nonetheless, the hydrophobic nature of DTX and CCM limits their clinical use. Nanoemulsion pulmonary delivery of DTX and CCM has demonstrated potential as a drug carrier to alleviate these drawbacks. The controlled preparation of inhalable DTX- and CCM-loaded nanoemulsions within the 100 to 200 nm range was explored in this study. A response surface methodology (RSM) based on a central composite design (CCD) was utilized to fabricate the desired size of the nanoemulsion under optimized conditions. Different process parameters were employed to control the size of the nanoemulsions procured through a high-energy emulsification technique. The size of the resultant nanoemulsions decreased with increasing energy input. The actual response according to the targeted sizes for DTX- and CCM-loaded nanoemulsion models exhibited excellent agreement with the predicted value at below 5% residual standard error under optimized conditions. The nanoemulsion of 100 nm particle size demonstrated better membrane permeability than their larger counterparts. Moreover, the formulations documented favorable physicochemical and aerodynamic pulmonary delivery properties and reduced toxicity in human lung fibroblast (MRC-5) cells. Hence, this tunable size of nanoemulsions could be a suitable alternative drug delivery for pulmonary diseases with increased local lung concentration.
Collapse
Affiliation(s)
- Azren Aida Asmawi
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (A.A.A.); (M.B.A.R.); Tel.: +60-397696798 (M.B.A.R.)
| | - Norazlinaliza Salim
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Emilia Abdulmalek
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Correspondence: (A.A.A.); (M.B.A.R.); Tel.: +60-397696798 (M.B.A.R.)
| |
Collapse
|
48
|
Ezzat A, Al-Lohedan HA, Tawfeek AM, Faqihi NA. One-Step Synthesis of New Amphiphilic Nonionic Surfactants Based on Alkylamine and Poly(ethylene glycol) Dimethacrylate for Demulsification of Arabian Heavy Crude Oil Emulsions. ACS OMEGA 2023; 8:6030-6039. [PMID: 36816702 PMCID: PMC9933207 DOI: 10.1021/acsomega.2c08058] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
New non-ionic surfactants based on alkylamine and poly(ethylene glycol) dimethacrylate were synthesized by one-step Aza-Michael addition reaction. The surfactants' chemical compositions, surface and interfacial activities, micellization, and zeta potential were characterized. Their surface and interfacial activities recommended the application as demulsifiers for water in Arabian heavy oil emulsions (w/o). The demulsification of this type of emulsion has attracted researchers' attention because of its high stability with water droplets in the microscale. The outcome of using the prepared surfactants showed high performance as emulsion breakers, as the demulsification efficiency reached 100% for w/o emulsions with different water to oil ratios (50:50, 30:70, and 10:90).
Collapse
Affiliation(s)
- Abdelrahman
O. Ezzat
- Department
of Chemistry, College of Sciences, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Hamad A. Al-Lohedan
- Department
of Chemistry, College of Sciences, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M. Tawfeek
- Department
of Chemistry, College of Sciences, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Noorah A. Faqihi
- Department
of Chemistry, College of Sciences, King
Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
49
|
Pevec S, Kunavar J, Budinski V, Njegovec M, Donlagic D. An All-Fiber Fabry-Pérot Sensor for Emulsion Concentration Measurements. SENSORS (BASEL, SWITZERLAND) 2023; 23:1905. [PMID: 36850505 PMCID: PMC9967868 DOI: 10.3390/s23041905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
This paper describes a Fabry-Pérot sensor-based measuring system for measuring fluid composition in demanding industrial applications. The design of the sensor is based on a two-parametric sensor, which enables the simultaneous measurement of temperature and refractive index (RI). The system was tested under real industrial conditions, and enables temperature-compensated online measurement of emulsion concentration with a high resolution of 0.03 Brix. The measuring system was equipped with filtering of the emulsion and automatic cleaning of the sensor, which proved to be essential for successful implementation of a fiber optic RI sensor in machining emulsion monitoring applications.
Collapse
Affiliation(s)
- Simon Pevec
- Laboratory for Electro Optics and Sensor Systems, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska Cesta 46, 2000 Maribor, Slovenia
| | | | - Vedran Budinski
- Laboratory for Electro Optics and Sensor Systems, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska Cesta 46, 2000 Maribor, Slovenia
| | - Matej Njegovec
- Laboratory for Electro Optics and Sensor Systems, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska Cesta 46, 2000 Maribor, Slovenia
| | - Denis Donlagic
- Laboratory for Electro Optics and Sensor Systems, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska Cesta 46, 2000 Maribor, Slovenia
| |
Collapse
|
50
|
Alsulaili AD, Refaie AA, Garcia HA. Adsorption capacity of activated carbon derived from date seeds: Characterization, optimization, kinetic and equilibrium studies. CHEMOSPHERE 2023; 313:137554. [PMID: 36528152 DOI: 10.1016/j.chemosphere.2022.137554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/19/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Agricultural wastes have the potential to be reused in applications such as water/wastewater treatment. Several studies have focused on activating organic waste, such as date seeds, to produce activated carbon. However, these studies have always assumed that all date seeds behave similarly to each other. In this study, we evaluated different types of date seeds and characterized their physical-chemical properties. The results showed variation in the seed-to-fruit weight percentage, ash content, and moisture content among different seed types. Different activation procedures were performed to find the optimum combination of physical and chemical interventions. KOH impregnation yielded better results than H3PO4 impregnation. The maximum adsorption capacity was measured for nine different types of date seeds, and the Khalas seed type yielded the highest methylene blue (MB) adsorption capacity of 165 mg of MB/g of activated date seeds (ADS), which is 71% of the capacity of commercial activated carbon (CAC). Kinetics model was fitted to the experimental data, and the pseudo-second-order model provided the best fit, indicating that the adsorption process occurred following a chemical process rather than being controlled by intraparticle diffusion only. The results showed no significant difference among the three isotherm models used to fit the experimental data. The results indicated that there is a significant difference among various types of seeds regarding adsorption performance. The application of ADS in treating synthetic produced water showed that its performance is one third that of CAC. ADS showed promising potential in comparison with CAC, mostly considering the costs involved with CAC.
Collapse
Affiliation(s)
- Abdalrahman D Alsulaili
- Civil Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box-5969, 13060, Safat, Kuwait.
| | - Abdelrahman A Refaie
- Civil Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box-5969, 13060, Safat, Kuwait
| | - Hector A Garcia
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| |
Collapse
|