1
|
Bhowmick T, Orthaber A. Main Group Pentafulvenes: Challenges and Opportunities in Heavy Main Group Isolobal Substitution of Pentafulvene. Chemphyschem 2024; 25:e202300940. [PMID: 38709950 DOI: 10.1002/cphc.202300940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Heterofulvenes based on isolobal substitution of carbon fragments by (heavier) main group motifs provide a rich source of structurally interesting building blocks with electronic situations that can vastly differ from all-carbon congeners. Group 13, heavier 14 & 16 fulvenes are rare and pose significant stability challenges, while group 15 derivatives, particularly phosphorus and arsenic, have led to many derivatives with intriguing opto-electronic properties.
Collapse
Affiliation(s)
- Toma Bhowmick
- Department of Chemistry Ångström laboratories, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry Ångström laboratories, Uppsala University, Box 523, 75120, Uppsala, Sweden
| |
Collapse
|
2
|
Chen H, Chen W, Wang D, Chen Y, Liu Z, Ye S, Tan G, Gao S. An Isolable One-Coordinate Lead(I) Radical with Strong g-Factor Anisotropy. Angew Chem Int Ed Engl 2024; 63:e202402093. [PMID: 38438306 DOI: 10.1002/anie.202402093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
Lead-based radicals in the oxidation state of +1 are elusive species and are highly challenging to isolate in the condensed phase. In this study, we present the synthesis and characterization of the first isolable free plumbylyne radical 2 bearing a one-coordinate Pb(I) atom. It reacts with an N-heterocyclic carbene (NHC) to afford a two-coordinate NHC-ligated Pb(I) radical 3. 2 and 3 represent the first isolable Pb(I)-based radicals. Theoretical calculations and electron paramagnetic resonance analysis revealed that the unpaired electron mainly resides at the Pb 6p orbital in both radicals. Owing to the unique one-coordinate nature of the Pb atom in 2, it possesses two-fold orbital pseudo-degeneracy and substantial unquenched orbital angular momentum, and exhibits hitherto strongest g-factor anisotropy (gx,y,z=1.496, 1.166, 0.683) amongst main group radicals. Preliminary investigations into the reactivity of 2 unveiled its Pb-centered radical nature, and plumbylenes were isolated as products.
Collapse
Affiliation(s)
- Haonan Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongmin Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yizhen Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zheng Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Gengwen Tan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Song Gao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
3
|
Weinert HM, Wölper C, Radović A, Cutsail GE, Siera H, Haberhauer G, Schulz S. From Neutral Diarsenes to Diarsene Radical Ions and Diarsene Dications. Chemistry 2024; 30:e202400204. [PMID: 38391392 DOI: 10.1002/chem.202400204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 02/24/2024]
Abstract
Diarsene [L(MeO)GaAs]2 (L=HC[C(Me)N(Ar)]2, Ar=2,6-iPr2C6H3, 4) reacts with MeOTf and MeNHC (MeNHC=1,3,4,5-tetra-methylimidazol-2-ylidene) to the diarsene [L(TfO)GaAs]2 (5) and the carbene-coordinated diarsene [L(MeO)GaAsAs(MeNHC)Ga(OMe)L] (6). The NHC-coordination results in an inversion of the redox properties of the diarsene 4, which shows only a reversible reduction event at E1/2=-2.06 V vs Fc0/+1, whereas the carbene-coordinated diarsene 6 shows a reversible oxidation event at E1/2=-1.31 V vs Fc0/+1. Single electron transfer reactions of 4 and 6 yielded [K[2.2.2.]cryp][L(MeO)GaAs]2 (8) and [L(MeO)GaAsAs(MeNHC)-Ga(OMe)L][B(C6F5)4] (9) containing the radical anion [L(MeO)GaAs]2⋅- (8⋅-) and the NHC-coordinated radical cation [L(MeO)GaAsAs(MeNHC)Ga(OMe)L]⋅+ (9⋅+), respectively, while the salt-elimination reaction of the triflate-coordinated diarsene 5 with Na[B(C6F5)4] gave [LGaAs]2[B(C6F5)4]2 (11) containing the dication [LGaAs]2 2+ (112+). Compounds 1-11 were characterized by 1H and 13C NMR, EPR (8, 9), IR, and UV-Vis spectroscopy and by single crystal X-ray diffraction (sc-XRD). DFT calculations provided a detailed understanding of the electronic nature of the diarsenes (4, 6) and the radical ions (8⋅-, 9⋅+), respectively.
Collapse
Affiliation(s)
- Hanns Micha Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Aleksa Radović
- Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, 45470, Mülheim a. d. Ruhr, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, 45470, Mülheim a. d. Ruhr, Germany
| | - Hannah Siera
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| |
Collapse
|
4
|
Liu S, Li Y, Lin J, Ke Z, Grützmacher H, Su CY, Li Z. Sequential radical and cationic reactivity at separated sites within one molecule in solution. Chem Sci 2024; 15:5376-5384. [PMID: 38577367 PMCID: PMC10988588 DOI: 10.1039/d4sc00201f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Distonic radical cations (DRCs) with spatially separated charge and radical sites are expected to show both radical and cationic reactivity at different sites within one molecule. However, such "dual" reactivity has rarely been observed in the condensed phase. Herein we report the isolation of crystalline 1λ2,3λ2-1-phosphonia-3-phosphinyl-cyclohex-4-enes 2a,b˙+, which can be considered delocalized DRCs and were completely characterized by crystallographic, spectroscopic, and computational methods. These DRCs contain a radical and cationic site with seven and six valence electrons, respectively, which are both stabilized via conjugation, yet remain spatially separated. They exhibit reactivity that differs from that of conventional radical cations (CRCs); specifically they show sequential radical and cationic reactivity at separated sites within one molecule in solution.
Collapse
Affiliation(s)
- Shihua Liu
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Yinwu Li
- School of Materials Science and Engineering, Sun Yat-Sen University 510006 Guangzhou China
| | - Jieli Lin
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, Sun Yat-Sen University 510006 Guangzhou China
| | - Hansjörg Grützmacher
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
- Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 Zürich 8093 Switzerland
| | - Cheng-Yong Su
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| | - Zhongshu Li
- LIFM, IGCME, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
5
|
Chen H, Chen Y, Li T, Wang D, Xu L, Tan G. Synthesis and Reactivity of N-Heterocyclic Carbene Coordinated Formal Germanimidoyl-Phosphinidenes. Inorg Chem 2023; 62:20906-20912. [PMID: 38095884 DOI: 10.1021/acs.inorgchem.3c03353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Treatment of N-heterocyclic carbene (NHC) ligated germylidenylphosphinidene MsFluidtBu-GeP(NHCiPr) (where MsFluidtBu is a bulky hydrindacene substituent, and NHCiPr is 1,3-diisopropyl-4,5-dimethyl-imidazolin-2-ylidene) with mesityl azide and 4-tertbutylphenyl azide afforded NHC coordinated formal germanimidoyl-phosphinidenes, which represent the first compounds bearing both Ge═N double bond and phosphinidene functionalities. Studies of the chemical properties revealed that the reactions preferred to occur at the Ge═N double bond, which underwent [2 + 2] cycloadditions with CO2 and ethyl isocyanate, and coordinated with coinage metals through the nitrogen atom.
Collapse
Affiliation(s)
- Haonan Chen
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yizhen Chen
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tong Li
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Dongmin Wang
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lei Xu
- Jiangsu Key Lab of Data Engineering and Knowledge Service, Key Laboratory of Data Intelligence and Interdisciplinary Innovation, Nanjing University, Nanjing 210023, China
| | - Gengwen Tan
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Key Laboratory of Bioinorganicand Synthetic Chemistry of Ministry of Education, Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
6
|
Kaymak P, Yang M, Benkő Z. A quest for stable phosphonyl radicals: limitations and possibilities of carbocyclic backbones and bulky substituents. Dalton Trans 2023; 52:13930-13945. [PMID: 37753839 DOI: 10.1039/d3dt02658b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Although phosphonyl radicals play an important role as transient species in many chemical transformations, such as photoinitiated polymerisation reactions, permanently stable phosphonyl radicals are yet to be discovered. In this computational study, we aim at a conceptual understanding of the electronic effects influencing the stabilities of phosphonyl radicals through computing radical stabilisation energies (RSEs) for a large set of phosphonyl radicals with carbocyclic backbones. The studied radicals exhibit ring sizes varying from 3- to 7-membered with full saturation or different grades of unsaturation adjacent to the P-centre in an endo or exocyclic fashion. To gain deeper insight into the stabilisation effects and delocalisation, the geometrical aspects, electronic structures, and spin distributions of the radicals were scrutinised. The five-membered, fully unsaturated ring (phospholyl oxide), which has a planar structure, offers the most substantial electronic stabilisation. By embedding this ring into a more extended π-system, the possibility of gaining further stabilisation was also explored. To screen the effect of steric congestion on the stabilities of previously selected radicals toward dimerisation, a large number of bulky substituents with different sizes and shapes were systematically investigated. Our results outline that stable phosphonyl radicals seem accessible, provided that the electronic stabilisation effects are supplemented by well-designed bulky substituents.
Collapse
Affiliation(s)
- Pelin Kaymak
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
| | - Meng Yang
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
| | - Zoltán Benkő
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary.
- HUN-REN-BME Computation Driven Chemistry Research Group, H-1111 Budapest, Hungary
| |
Collapse
|
7
|
Sharma MK, Weinert HM, Li B, Wölper C, Henthorn JT, Cutsail GE, Haberhauer G, Schulz S. Syntheses and Structures of 5-Membered Heterocycles Featuring 1,2-Diphospha-1,3-Butadiene and Its Radical Anion. Angew Chem Int Ed Engl 2023; 62:e202309466. [PMID: 37582227 DOI: 10.1002/anie.202309466] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
LGa(P2 OC)cAAC 2 features a 1,2-diphospha-1,3-butadiene unit with a delocalized π-type HOMO and a π*-type LUMO according to DFT calculations. [LGa(P2 OC)cAAC][K(DB-18-c-6)] 3[K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene radical anion 3⋅- was isolated from the reaction of 2 with KC8 and dibenzo-18-crown-6. 3 reacted with [Fc][B(C6 F5 )4 ] (Fc=ferrocenium) to 2 and with TEMPO to [L-H Ga(P2 OC)cAAC][K(DB-18-c-6)] 4[K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene anion 4- . The solid state structures of 2, 3K(DB-18-c-6], and 4[K(DB-18-c-6] were determined by single crystal X-ray diffraction (sc-XRD).
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Hanns M Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Bin Li
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Justin T Henthorn
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - George E Cutsail
- Max Planck Institute for Chemical Energy Conversion (MPI-CEC), Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141, Essen, Germany
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| |
Collapse
|
8
|
Zhang P, Nabi R, Staab JK, Chilton NF, Demir S. Taming Super-Reduced Bi 23- Radicals with Rare Earth Cations. J Am Chem Soc 2023; 145:9152-9163. [PMID: 37043770 PMCID: PMC10141245 DOI: 10.1021/jacs.3c01058] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Indexed: 04/14/2023]
Abstract
Here, we report the synthesis of two new sets of dibismuth-bridged rare earth molecules. The first series contains a bridging diamagnetic Bi22- anion, (Cp*2RE)2(μ-η2:η2-Bi2), 1-RE (where Cp* = pentamethylcyclopentadienyl; RE = Gd (1-Gd), Tb (1-Tb), Dy (1-Dy), Y (1-Y)), while the second series comprises the first Bi23- radical-containing complexes for any d- or f-block metal ions, [K(crypt-222)][(Cp*2RE)2(μ-η2:η2-Bi2•)]·2THF (2-RE, RE = Gd (2-Gd), Tb (2-Tb), Dy (2-Dy), Y (2-Y); crypt-222 = 2.2.2-cryptand), which were obtained from one-electron reduction of 1-RE with KC8. The Bi23- radical-bridged terbium and dysprosium congeners, 2-Tb and 2-Dy, are single-molecule magnets with magnetic hysteresis. We investigate the nature of the unprecedented lanthanide-bismuth and bismuth-bismuth bonding and their roles in magnetic communication between paramagnetic metal centers, through single-crystal X-ray diffraction, ultraviolet-visible/near-infrared (UV-vis/NIR) spectroscopy, SQUID magnetometry, DFT and multiconfigurational ab initio calculations. We find a πz* ground SOMO for Bi23-, which has isotropic spin-spin exchange coupling with neighboring metal ions of ca. -20 cm-1; however, the exchange coupling is strongly augmented by orbitally dependent terms in the anisotropic cases of 2-Tb and 2-Dy. As the first examples of p-block radicals beneath the second row bridging any metal ions, these studies have important ramifications for single-molecule magnetism, main group element, rare earth metal, and coordination chemistry at large.
Collapse
Affiliation(s)
- Peng Zhang
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Rizwan Nabi
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Jakob K. Staab
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Nicholas F. Chilton
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Selvan Demir
- Department
of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Wang D, Chen W, Zhai C, Zhao L, Ye S, Tan G. Monosubstituted Doublet Sn(I) Radical Featuring Substantial Unquenched Orbital Angular Momentum. J Am Chem Soc 2023; 145:6914-6920. [PMID: 36926867 DOI: 10.1021/jacs.3c00421] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Due to their intrinsic high reactivity, isolation of heavier analogues of carbynes remains a great challenge. Here, we report the synthesis and characterization of a neutral monosubstituted Sn(I) radical (2) supported by a sterically hindered hydrindacene ligand, which represents the first tin analogue of a free carbyne. Different from all Sn(I/III) species reported thus far, the presence of a sole Sn-C σ bond in 2 renders the remaining two Sn 5p orbitals energetically almost degenerate, of which one is singly occupied and the other is empty. Consequently, its S = 1/2 ground state possesses two-fold orbital pseudo-degeneracy and substantial unquenched orbital angular momentum, as evidenced by one component of its g matrix (1.957, 1.896, and 1.578) being considerably less than 2. Consistent with this unique electronic structure, 2 can bind to an N-heterocyclic carbene to afford a neutral two-coordinate Sn(I) radical and initiate a one-electron transfer to benzophenone to furnish a Sn(II)-ketyl radical anion adduct. As a manifestation of its Sn-centered radical nature, 2 reacts with diphenyl diselenide and p-benzoquinone to form Sn-S and Sn-O bonds, respectively.
Collapse
Affiliation(s)
- Dongmin Wang
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wang Chen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Zhai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Gengwen Tan
- Innovation Center for Chemical Sciences, Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Sharma MK, Chabbra S, Wölper C, Weinert HM, Reijerse EJ, Schnegg A, Schulz S. Modulating the frontier orbitals of L(X)Ga-substituted diphosphenes [L(X)GaP] 2 (X = Cl, Br) and their facile oxidation to radical cations. Chem Sci 2022; 13:12643-12650. [PMID: 36519043 PMCID: PMC9645402 DOI: 10.1039/d2sc04207j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/11/2022] [Indexed: 09/19/2023] Open
Abstract
Modulating the electronic structures of main group element compounds is crucial to control their chemical reactivity. Herein we report on the synthesis, frontier orbital modulation, and one-electron oxidation of two L(X)Ga-substituted diphosphenes [L(X)GaP]2 (X = Cl 2a, Br 2b; L = HC[C(Me)N(Ar)]2, Ar = 2,6-i-Pr2C6H3). Photolysis of L(Cl)GaPCO 1 gave [L(Cl)GaP]22a, which reacted with Me3SiBr with halide exchange to [L(Br)GaP]22b. Reactions with MeNHC (MeNHC = 1,3,4,5-tetramethylimidazol-2-ylidene) gave the corresponding carbene-coordinated complexes L(X)GaPP(MeNHC)Ga(X)L (X = Cl 3a, Br 3b). DFT calculations revealed that the carbene coordination modulates the frontier orbitals (i.e. HOMO/LUMO) of diphosphenes 2a and 2b, thereby affecting the reactivity of 3a and 3b. In marked contrast to diphosphenes 2a and 2b, the cyclic voltammograms (CVs) of the carbene-coordinated complexes each show one reversible redox event at E 1/2 = -0.65 V (3a) and -0.36 V (3b), indicating their one-electron oxidation to the corresponding radical cations as was confirmed by reactions of 3a and 3b with the [FeCp2][B(C6F5)4], yielding the radical cations [L(X)GaPP(MeNHC)Ga(X)L]B(C6F5)4 (X = Cl 4a, Br 4b). The unpaired spin in 4a (79%) and 4b (80%) is mainly located at the carbene-uncoordinated phosphorus atoms as was revealed by DFT calculations and furthermore experimentally proven in reactions with n Bu3SnH, yielding the diphosphane cations [L(X)GaPHP(MeNHC)Ga(X)L]B(C6F5)4 (X = Cl 5a, Br 5b). Compounds 2-5 were fully characterized by NMR and IR spectroscopy as well as by single crystal X-ray diffraction (sc-XRD), and compounds 4a and 4b were further studied by EPR spectroscopy, while their bonding nature was investigated by DFT calculations.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Sonia Chabbra
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Hanns M Weinert
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
| | - Edward J Reijerse
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion Stiftstrasse 34-36 Mülheim an der Ruhr D-45470 Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen Universitätsstraße 5-7, D-45141 Essen Germany https://www.uni-due.de/ak_schulz/index_en.php
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Carl-Benz-Straße 199 47057 Duisburg Germany
| |
Collapse
|
11
|
Budnikova YH. Phosphorus-Centered Radicals: Synthesis, Properties, and Applications. A Review. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822600353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
12
|
Roberts NJ, Johnson ER, Chitnis SS. Dispersion Stabilizes Metal–Metal Bonds in the 1,8-Bis(silylamido)naphthalene Ligand Environment. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas J. Roberts
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd, Halifax, Nova Scotia B3H 4R2, Canada
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd, Halifax, Nova Scotia B3H 4R2, Canada
| | - Saurabh S. Chitnis
- Department of Chemistry, Dalhousie University, 6274 Coburg Rd, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
13
|
|
14
|
Lim LF, Judd M, Vasko P, Gardiner MG, Pantazis DA, Cox N, Hicks J. Crystalline Germanium(I) and Tin(I) Centered Radical Anions. Angew Chem Int Ed Engl 2022; 61:e202201248. [PMID: 35266609 PMCID: PMC9401049 DOI: 10.1002/anie.202201248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Indexed: 01/03/2023]
Affiliation(s)
- Li Feng Lim
- Research School of Chemistry Australian National University Acton ACT, 2601 Australia
| | - Martyna Judd
- Research School of Chemistry Australian National University Acton ACT, 2601 Australia
| | - Petra Vasko
- Department of Chemistry University of Helsinki P.O. Box 55 00014 Helsinki Finland
| | - Michael G. Gardiner
- Research School of Chemistry Australian National University Acton ACT, 2601 Australia
| | - Dimitrios A. Pantazis
- Max-Planck Institut für Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr Germany
| | - Nicholas Cox
- Research School of Chemistry Australian National University Acton ACT, 2601 Australia
| | - Jamie Hicks
- Research School of Chemistry Australian National University Acton ACT, 2601 Australia
| |
Collapse
|
15
|
Krüger J, Haak J, Wölper C, Cutsail GE, Haberhauer G, Schulz S. Single-Electron Oxidation of Carbene-Coordinated Pnictinidenes-Entry into Heteroleptic Radical Cations and Metalloid Clusters. Inorg Chem 2022; 61:5878-5884. [PMID: 35333051 DOI: 10.1021/acs.inorgchem.2c00249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stable heavy main group element radicals are challenging synthetic targets. Although several strategies have been developed to stabilize such odd-electron species, the number of heavier pnictogen-centered radicals is limited. We report on a series of two-coordinated pnictogen-centered radical cations [(MecAAC)EGa(Cl)L][B(C6F5)4] (MecAAC = [H2C(CMe2)2NDipp]C; Dipp = 2,6-i-Pr2C6H3; E = As 1, Sb 2, Bi 3; L = HC[C(Me)NDipp]2) synthesized by one-electron oxidation of L(Cl)Ga-substituted pnictinidenes (MecAAC)EGa(Cl)L (E = As I, Sb II, Bi III). 1-3 were characterized by electron paramagnetic resonance (EPR) spectroscopy and single crystal X-ray diffraction (sc-XRD) (1, 2), while quantum chemical calculations support their description as carbene-coordinated pnictogen-centered radical cations. The low thermal stability of 3 enables access to metalloid bismuth clusters as shown by formation of [{LGa(Cl)}3Bi6][B(C6F5)4] (4).
Collapse
Affiliation(s)
- Julia Krüger
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany
| | - Julia Haak
- Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany
| | - George E Cutsail
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany.,Max Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Gebhard Haberhauer
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry, University of Duisburg-Essen, Universitätsstraße 5-7, 45141 Essen, Germany.,Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Carl-Benz-Straße 199, 47057 Duisburg, Germany
| |
Collapse
|
16
|
Lim LF, Judd M, Vasko P, Gardiner MG, Pantazis DA, Cox N, Hicks J. Crystalline Germanium(I) and Tin(I) Centered Radical Anions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Li Feng Lim
- Australian National University Research School of Chemistry Sullivans Creek Road 2601 Acton AUSTRALIA
| | - Martyna Judd
- Australian National University Research School of Chemistry Sullivans Creek Road 2601 Acton AUSTRALIA
| | - Petra Vasko
- University of Helsinki: Helsingin Yliopisto Department of Chemistry P.O. Box 55 FI-00014 Helsinki FINLAND
| | - Michael G. Gardiner
- Australian National University Research School of Chemistry Sullivans Creek Road 2601 Acton AUSTRALIA
| | - Dimitrios A. Pantazis
- Max-Planck-Institut fur Kohlenforschung Institut fur Kohlenforschung Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| | - Nicholas Cox
- Australian National University Research School of Chemistry Sullivas Creek Road 2601 Acton AUSTRALIA
| | - Jamie Hicks
- Australian National University Research School of Chemistry Sullivans Creek Road 2601 Acton AUSTRALIA
| |
Collapse
|
17
|
Sun Q, Liu M, Ruan H, Chen C, Zhao Y, Tan G, Wang X. The cis/ trans conformation approach for tuning the magnetic coupling in a diradical: isolation of pure pyridine-based diradical dianions. Chem Commun (Camb) 2022; 58:1708-1711. [PMID: 35023510 DOI: 10.1039/d1cc05661a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-electron reductions of 3,3'-bis(2,6-dimesitylpyridin-4-yl)-1,1'-biphenyl 1 with elemental potassium in the absence and presence of 18-c-6 afforded the diradical dianion salts [K+]2˙[trans-1]˙˙2- and [K(18-c-6)]+2˙[cis-1]˙˙2-, which exhibit trans and cis configurations, respectively. The transoid conformer could be converted to the cisoid one through reacting with 18-c-6.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Min Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Chao Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
18
|
Yao W, Qian Y, Chen X, Ren X. A
Blockwall‐Type
Layered Bis(dithiolato)nickelate Radical Salt Exhibiting High‐ and
Two‐Dimensional
Antiferromagnetic Coupling Feature. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wan‐Wan Yao
- State Key Laboratory of Materials‐Oriented Chemical Engineering and College of Chemistry & Molecular Engineering Nanjing Tech University Nanjing Jiangsu 211816 China
| | - Yin Qian
- State Key Laboratory of Materials‐Oriented Chemical Engineering and College of Chemistry & Molecular Engineering Nanjing Tech University Nanjing Jiangsu 211816 China
| | - Xuan‐Rong Chen
- School of Chemistry & Environmental Engineering and Instrumental Analysis Center Yancheng Teachers University Yancheng Jiangsu 224007 China
| | - Xiao‐Ming Ren
- State Key Laboratory of Materials‐Oriented Chemical Engineering and College of Chemistry & Molecular Engineering Nanjing Tech University Nanjing Jiangsu 211816 China
| |
Collapse
|
19
|
Li K, Feng Z, Ruan H, Sun Q, Zhao Y, Wang X. The catenation of a singlet diradical dication and modulation of diradical character by metal coordination. Chem Commun (Camb) 2022; 58:6457-6460. [DOI: 10.1039/d2cc01539k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A singlet bis(triarylamine) diradical dication and its zigzag 1D magnetic chain catenated by silver cations were isolated and characterized by single-crystal X-ray crystallography, EPR spectroscopy, SQUID measurements, cyclic voltammetry and...
Collapse
|
20
|
Kundu S, Das B, Makol A. Phosphorus radicals and radical ions. Dalton Trans 2022; 51:12404-12426. [DOI: 10.1039/d2dt01499h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and characterization of isolable radicals of main-group elements have been a long-pursued quest. Although there has been considerable progress in this area, particularly in isolating carbon- radicals, the isolation...
Collapse
|
21
|
Wang W, Zheng X, Zhang L, Li S, Zhao Y, Wang X. Cyclic (Amino)(Aryl)Nitrenium Cations with Lewis Acidity Controlled by Remote Substituents. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Wenqing Wang
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials Anhui Normal University Wuhu Anhui 241002 China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Xin Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
- College of Science Henan Agricultural University Zhengzhou Henan 450002 China
| | - Leran Zhang
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials Anhui Normal University Wuhu Anhui 241002 China
| | - Shunjie Li
- College of Chemistry and Material Science, Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials Anhui Normal University Wuhu Anhui 241002 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering Nanjing University Nanjing Jiangsu 210023 China
| |
Collapse
|
22
|
Weinert HM, Wölper C, Haak J, Cutsail GE, Schulz S. Synthesis, structure and bonding nature of heavy dipnictene radical anions. Chem Sci 2021; 12:14024-14032. [PMID: 34760185 PMCID: PMC8565390 DOI: 10.1039/d1sc04230k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/28/2021] [Indexed: 12/02/2022] Open
Abstract
Cyclic voltammetry (CV) studies of two L(X)Ga-substituted dipnictenes [L(R2N)GaE]2 (E = Sb, R = Me 1; E = Bi; R = Et 2; L = HC[C(Me)NDipp]2; Dipp = 2,6-i-Pr2C6H3) showed reversible reduction events. Single electron reduction of 1 and 2 with KC8 in DME in the presence of benzo-18-crown-6 (B-18-C-6) gave the corresponding dipnictenyl radical anions (DME)[K(B-18-C-6)][L(R2N)GaE]2 (E = Sb, R = Me 3; E = Bi, R = Et 4). Radical anions 3 and 4 were characterized by EPR, UV-vis and single crystal X-ray diffraction, while quantum chemical calculations gave deeper insight into the nature of the chemical bonding.
Collapse
Affiliation(s)
- Hanns M Weinert
- Institute for Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
| | - Julia Haak
- Institute for Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
- Max Planck Institute for Chemical Energy Conversion (CEC) Stiftstraße 34-36 45470 Mülheim a. d. Ruhr Germany
| | - George E Cutsail
- Institute for Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
- Max Planck Institute for Chemical Energy Conversion (CEC) Stiftstraße 34-36 45470 Mülheim a. d. Ruhr Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen Universitätsstraße 5-7 45117 Essen Germany
| |
Collapse
|
23
|
Cui H, Hu ZB, Chen C, Ruan H, Fang Y, Zhang L, Zhao Y, Tan G, Song Y, Wang X. A high-spin diradical dianion and its bridged chemically switchable single-molecule magnet. Chem Sci 2021; 12:9998-10004. [PMID: 34377394 PMCID: PMC8317668 DOI: 10.1039/d1sc01932e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Triplet diradicals have attracted tremendous attention due to their promising application in organic spintronics, organic magnets and spin filters. However, very few examples of triplet diradicals with singlet–triplet energy gaps (ΔEST) over 0.59 kcal mol−1 (298 K) have been reported to date. In this work, we first proved that the dianion of 2,7-di-tert-butyl-pyrene-4,5,9,10-tetraone (2,7-tBu2-PTO) was a triplet ground state diradical in the magnesium complex 1 with a singlet–triplet energy gap ΔEST = 0.94 kcal mol−1 (473 K). This is a rare example of stable diradicals with singlet–triplet energy gaps exceeding the thermal energy at room temperature (298 K). Moreover, the iron analog 2 containing the 2,7-tBu2-PTO diradical dianion was isolated, which was the first single-molecule magnet bridged by a diradical dianion. When 2 was doubly reduced to the dianion salt 2K2, single-molecule magnetism was switched off, highlighting the importance of diradicals in single-molecule magnetism. We report a triplet diradical dianion in magnesium complex with ΔEST = 0.94 kcal mol−1 (473 K). Its iron analog is the first single-molecule magnet bridged by a diradical dianion, and the SMM property is switched off through two-electron reduction.![]()
Collapse
Affiliation(s)
- Haiyan Cui
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China .,Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University Nanjing 210095 China
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Chao Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Li Zhang
- Center of Materials Science and Engineering, Guangxi University of Science and Technology Liuzhou 545006 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - You Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 China
| |
Collapse
|
24
|
Feng Z, Chong Y, Tang S, Ruan H, Fang Y, Zhao Y, Jiang J, Wang X. Stable
Boron‐Containing Blue‐Photoluminescent
Radicals. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100188] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing Jiangsu 210093 China
| | - Yuanyuan Chong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing Jiangsu 210093 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing Jiangsu 210093 China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing Jiangsu 210093 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing Jiangsu 210093 China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing Jiangsu 210093 China
| |
Collapse
|
25
|
Sharma MK, Rottschäfer D, Neumann B, Stammler HG, Danés S, Andrada DM, van Gastel M, Hinz A, Ghadwal RS. Metalloradical Cations and Dications Based on Divinyldiphosphene and Divinyldiarsene Ligands. Chemistry 2021; 27:5803-5809. [PMID: 33470468 PMCID: PMC8048781 DOI: 10.1002/chem.202100213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 01/09/2023]
Abstract
Metalloradicals are key species in synthesis, catalysis, and bioinorganic chemistry. Herein, two iron radical cation complexes (3‐E)GaCl4 [(3‐E).+ = [{(IPr)C(Ph)E}2Fe(CO)3].+, E = P or As; IPr = C{(NDipp)CH}2, Dipp = 2,6‐iPr2C6H3] are reported as crystalline solids. Treatment of the divinyldipnictenes {(IPr)C(Ph)E}2 (1‐E) with Fe2(CO)9 affords [{(IPr)C(Ph)E}2Fe(CO)3] (2‐E), in which 1‐E binds to the Fe atom in an allylic (η3‐EECvinyl) fashion and functions as a 4e donor ligand. Complexes 2‐E undergo 1e oxidation with GaCl3 to yield (3‐E)GaCl4. Spin density analysis revealed that the unpaired electron in (3‐E).+ is mainly located on the Fe (52–64 %) and vinylic C (30–36 %) atoms. Further 1e oxidation of (3‐E)GaCl4 leads to unprecedented η3‐EECvinyl to η3‐ECvinylCPh coordination shuttling to form the dications (4‐E)(GaCl4)2.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Dennis Rottschäfer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Sergi Danés
- Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus C4.1, 66123, Saarbrücken, Germany
| | - Diego M Andrada
- Allgemeine und Anorganische Chemie, Universität des Saarlandes, Campus C4.1, 66123, Saarbrücken, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung Molecular Theory and Spectroscopy, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Alexander Hinz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, 76131, Karlsruhe, Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, 33615, Bielefeld, Germany
| |
Collapse
|
26
|
Fang Y, Sun Q, Chen X, Qiu Y, Chen C, Wang L, Zhao Y, Su Y, Li T, Zhang L, Wang X. Rational design and syntheses of aniline-based diradical dications: isolable congeners of quinodimethane diradicals. Org Chem Front 2021. [DOI: 10.1039/d0qo01265c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two-electron oxidation of five aniline-based compounds 4,4′′-p/m-terphenyldiamines afforded the first isolable aniline-based diradical dications 12+–52+.
Collapse
|
27
|
Chen X, Liu LL, Liu S, Grützmacher H, Li Z. A Room‐Temperature Stable Distonic Radical Cation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaodan Chen
- College of Chemistry and Materials Science Jinan University Guangzhou 510632 China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Shihua Liu
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 30071 China
| | - Hansjörg Grützmacher
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 30071 China
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog-Weg 1 Zürich 8093 Switzerland
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 30071 China
| |
Collapse
|
28
|
Chen X, Liu LL, Liu S, Grützmacher H, Li Z. A Room-Temperature Stable Distonic Radical Cation. Angew Chem Int Ed Engl 2020; 59:23830-23835. [PMID: 32914528 DOI: 10.1002/anie.202011677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 12/28/2022]
Abstract
Distonic radical cations (DRCs) with spatially separated charge and radical sites have, so far, largely been observed by gas-phase mass spectrometry and/or matrix isolation spectroscopy work. Herein, we disclose the isolation of a crystalline dicarbondiphosphide-based β-distonic radical cation salt 3.+ (BARF) (BARF=[B(3,5-(CF3 )2 C6 H3 )4 )]- ) stable at room temperature and formed by a one-electron-oxidation-induced intramolecular skeletal rearrangement reaction. Such a species has been validated by electron paramagnetic resonance (EPR) spectroscopy, single-crystal X-ray diffraction, UV/Vis spectroscopy and density functional theory (DFT) calculations. Compound 3.+ (BARF) exhibits a large majority of spin density at a two-coordinate phosphorus atom (0.74 a.u.) and a cationic charge located predominantly at the four-coordinate phosphorus atom (1.53 a.u.), which are separated by one carbon atom. This species represents an isolable entity of a phosphorus radical cation that is the closest to a genuine phosphorus DRC to date.
Collapse
Affiliation(s)
- Xiaodan Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shihua Liu
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 30071, China
| | - Hansjörg Grützmacher
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 30071, China.,Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM), School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 30071, China
| |
Collapse
|
29
|
Chen C, Hu ZB, Ruan H, Zhao Y, Zhang YQ, Tan G, Song Y, Wang X. Tuning the Single-Molecule Magnetism of Dysprosium Complexes by a Redox-Noninnocent Diborane Ligand. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Zhao-Bo Hu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - You Song
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
30
|
Helling C, Wölper C, Schulz S. Size Matters: Synthesis of Group 13 Metal‐Substituted Dipnictanes by E‐C Bond Homolysis. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000747] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christoph Helling
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Universitätsstraße 5‐7 45141 Essen Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Universitätsstraße 5‐7 45141 Essen Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Universitätsstraße 5‐7 45141 Essen Germany
| |
Collapse
|
31
|
Hirakawa F, Nakagawa H, Honda S, Ishida S, Iwamoto T. Trialkylphosphines Having a Bulky Phosphacyclopentane Backbone: Structural and Redox Properties Depending on the Exocyclic Alkyl Groups and EPR Observation of a Persistent Trialkylphosphine Radical Cation. J Org Chem 2020; 85:14634-14642. [PMID: 32700539 DOI: 10.1021/acs.joc.0c01393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bulky phosphines and their redox properties have received increased attention in the view of useful auxiliary ligands for transition metal catalysts and Lewis-base components of frustrated Lewis pairs for chemical transformations. Herein we report the synthesis, structure, and properties of a series of trialkylphosphines 2R (R = methyl, ethyl, isopropyl, tert-butyl, 1-adamantyl) that possess the bulky 2,2,5,5-tetrakis(trimethylsilyl)-1-phosphacyclopentane as a structural backbone. Among these phosphines, 2Ad, which contains an adamantyl moiety, has a very large buried volume (%Vbur) for a trialkylphosphine (62.0) and shows a quasi-reversible oxidative wave at a lower oxidation potential (-0.12 V in CH2Cl2, vs ferrocene/ferrocenium couple) by cyclic voltammetry. The reaction of 2Ad with AgPF6 afforded a cationic silver aquo complex [Ag(2Ad)(H2O)]+[PF6]-, whereas the reaction with NOSbF6 gave a persistent phosphine radical cation [2Ad]•+. Based on the EPR spectra and DFT studies, the spin and positive charge of [2Ad]•+ are localized on the phosphorus atom.
Collapse
Affiliation(s)
- Fumiya Hirakawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Hiroshi Nakagawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shunya Honda
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Shintaro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takeaki Iwamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
32
|
Helling C, Wölper C, Cutsail GE, Haberhauer G, Schulz S. A Mechanistic Study on Reactions of Group 13 Diyls LM with Cp*SbX 2 : From Stibanyl Radicals to Antimony Hydrides. Chemistry 2020; 26:13390-13399. [PMID: 32428370 PMCID: PMC7693246 DOI: 10.1002/chem.202001739] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Indexed: 01/17/2023]
Abstract
Oxidative addition of Cp*SbX2 (X=Cl, Br, I; Cp*=C5 Me5 ) to group 13 diyls LM (M=Al, Ga, In; L=HC[C(Me)N (Dip)]2 , Dip=2,6-iPr2 C6 H3 ) yields elemental antimony (M=Al) or the corresponding stibanylgallanes [L(X)Ga]Sb(X)Cp* (X=Br 1, I 2) and -indanes [L(X)In]Sb(X)Cp* (X=Cl 5, Br 6, I 7). 1 and 2 react with a second equivalent of LGa to eliminate decamethyl-1,1'-dihydrofulvalene (Cp*2 ) and form stibanyl radicals [L(X)Ga]2 Sb. (X=Br 3, I 4), whereas analogous reactions of 5 and 6 with LIn selectively yield stibanes [L(X)In]2 SbH (X=Cl 8, Br 9) by elimination of 1,2,3,4-tetramethylfulvene. The reactions are proposed to proceed via formation of [L(X)M]2 SbCp* as reaction intermediate, which is supported by the isolation of [L(Cl)Ga]2 SbCp (11, Cp=C5 H5 ). The reaction mechanism was further studied by computational calculations using two different models. The energy values for the Ga- and the In-substituted model systems showing methyl groups instead of the very bulky Dip units are very similar, and in both cases the same products are expected. Homolytic Sb-C bond cleavage yields van der Waals complexes from the as-formed radicals ([L(Cl)M]2 Sb. and Cp*. ), which can be stabilized by hydrogen atom abstraction to give the corresponding hydrides, whereas the direct formation of Sb hydrides starting from [L(Cl)M]2 SbCp* via concerted β-H elimination is unlikely. The consideration of the bulky Dip units reveals that the amount of the steric overload in the intermediate I determines the product formation (radical vs. hydride).
Collapse
Affiliation(s)
- Christoph Helling
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - George E. Cutsail
- Max Planck Institute for Chemical Energy Conversion (CEC)Stiftstrasse 34–36/45470Mülheim an der RuhrGermany
| | - Gebhard Haberhauer
- Institute of Organic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - Stephan Schulz
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| |
Collapse
|
33
|
Helling C, Schulz S. Long‐Lived Radicals of the Heavier Group 15 Elements Arsenic, Antimony, and Bismuth. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christoph Helling
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Universitätsstraße 5‐7 45141 Essen Germany
| | - Stephan Schulz
- Institute of Inorganic Chemistry and Center for Nanointegration Duisburg‐Essen (CENIDE) University of Duisburg‐Essen Universitätsstraße 5‐7 45141 Essen Germany
| |
Collapse
|
34
|
Ji L, Shi J, Wei J, Yu T, Huang W. Air-Stable Organic Radicals: New-Generation Materials for Flexible Electronics? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908015. [PMID: 32583945 DOI: 10.1002/adma.201908015] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/05/2020] [Accepted: 03/08/2020] [Indexed: 05/28/2023]
Abstract
In the last few years, air-stable organic radicals and radical polymers have attracted tremendous attention due to their outstanding performance in flexible electronic devices, including transistors, batteries, light-emitting diodes, thermoelectric and photothermal conversion devices, and among many others. The main issue of radicals from laboratory studies to real-world applications is that the number of known air-stable radicals is very limited, and the radicals that have been used as materials are even less. Here, the known and newly developed air-stable organic radicals are summarized, generalizing the way of observing air-stable radicals. The special electric and photophysical properties of organic radicals and radical polymers are interpreted, which give radicals a wide scope for various of potential applications. Finally, the exciting applications of radicals that have been achieved in flexible electronic devices are summarized. The aim herein is to highlight the recent achievements in radicals in chemistry, materials science, and flexible electronics, and further bridge the gap between these three disciplines.
Collapse
Affiliation(s)
- Lei Ji
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Junqing Shi
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Juan Wei
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Tao Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
35
|
Chen C, Ruan H, Feng Z, Fang Y, Tang S, Zhao Y, Tan G, Su Y, Wang X. Crystalline Diradical Dianions of Pyrene-Fused Azaacenes. Angew Chem Int Ed Engl 2020; 59:11794-11799. [PMID: 32304152 DOI: 10.1002/anie.202001842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 01/09/2023]
Abstract
Although diradicals and azaacenes have been greatly attractive in fundamental chemistry and functional materials, the isolable diradical dianions of azaacenes are still unknown. Herein, we describe the first isolation of pyrene-fused azaacene diradical dianion salts [(18-c-6)K(THF)2 ]+ [(18-c-6)K]+ ⋅12-.. and [(18-c-6)K(THF)]2+ ⋅22-.. by reduction of the neutral pyrene-fused azaacene derivatives 1 and 2 with excess potassium graphite in THF in the presence of 18-crown-6. Their electronic structures were investigated by various experiments, in conjunction with theoretical calculations. It was found that both dianions are open-shell singlets in the ground state and their triplet states are thermally readily accessible owing to the small singlet-triplet energy gap. This work provides the first examples of crystalline diradical dianions of azaacenes with considerable diradical character.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
36
|
Chen C, Ruan H, Feng Z, Fang Y, Tang S, Zhao Y, Tan G, Su Y, Wang X. Crystalline Diradical Dianions of Pyrene‐Fused Azaacenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Chao Chen
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Gengwen Tan
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
37
|
Helling C, Cutsail GE, Weinert H, Wölper C, Schulz S. Ligand Effects on the Electronic Structure of Heteroleptic Antimony-Centered Radicals. Angew Chem Int Ed Engl 2020; 59:7561-7568. [PMID: 32048388 PMCID: PMC7216903 DOI: 10.1002/anie.202000586] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 01/23/2023]
Abstract
We report on the structures of three unprecedented heteroleptic Sb-centered radicals [L(Cl)Ga](R)Sb. (2-R, R=B[N(Dip)CH]2 2-B, 2,6-Mes2 C6 H3 2-C, N(SiMe3 )Dip 2-N) stabilized by one electropositive metal fragment [L(Cl)Ga] (L=HC[C(Me)N(Dip)]2 , Dip=2,6-i-Pr2 C6 H3 ) and one bulky B- (2-B), C- (2-C), or N-based (2-N) substituent. Compounds 2-R are predominantly metal-centered radicals. Their electronic properties are largely influenced by the electronic nature of the ligands R, and significant delocalization of unpaired-spin density onto the ligands was observed in 2-B and 2-N. Cyclic voltammetry (CV) studies showed that 2-B undergoes a quasi-reversible one-electron reduction, which was confirmed by the synthesis of [K([2.2.2]crypt)][L(Cl)GaSbB[N(Dip)CH]2 ] ([K([2.2.2]crypt)][2-B]) containing the stibanyl anion [2-B]- , which was shown to possess significant Sb-B multiple-bonding character.
Collapse
Affiliation(s)
- Christoph Helling
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - George E. Cutsail
- Max Planck Institute for Chemical Energy Conversion (CEC)Stiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Hanns Weinert
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| | - Stephan Schulz
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstraße 5–745117EssenGermany
| |
Collapse
|
38
|
Feng Z, Fang Y, Ruan H, Zhao Y, Tan G, Wang X. Stable Radical Cation and Dication of an N‐Heterocyclic Carbene Stabilized Digallene: Synthesis, Characterization and Reactivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhongtao Feng
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 P. R. China
| | - Yong Fang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 P. R. China
| | - Huapeng Ruan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 P. R. China
| | - Gengwen Tan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 P. R. China
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P. R. China
| | - Xinping Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 P. R. China
| |
Collapse
|
39
|
Feng Z, Fang Y, Ruan H, Zhao Y, Tan G, Wang X. Stable Radical Cation and Dication of an N-Heterocyclic Carbene Stabilized Digallene: Synthesis, Characterization and Reactivity. Angew Chem Int Ed Engl 2020; 59:6769-6774. [PMID: 31994317 DOI: 10.1002/anie.202000051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Indexed: 11/06/2022]
Abstract
One- and two-electron oxidation of a digallene stabilized by an N-heterocyclic carbene afforded the first stable gallium-based radical cation and dication salts, respectively. Structural analysis and theoretical calculations reveal that the oxidation occurs at the Ga=Ga double bond, leading to removal of π electrons of the double bond and a decrease of the bond order. The spin density of the radical cation mainly locates at the two gallium centers as demonstrated by EPR spectroscopy and theoretical calculations. Moreover, the reactivity of the radical cation salt toward nBu3 SnH and cyclo-S8 was studied; a digallium-hydride cation salt containing a Ga-Ga single bond and a gallium sulfide cluster bearing an unprecedented ladder-like Ga4 S4 core structure were obtained, respectively.
Collapse
Affiliation(s)
- Zhongtao Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China.,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
40
|
Helling C, Cutsail GE, Weinert H, Wölper C, Schulz S. Ligand Effects on the Electronic Structure of Heteroleptic Antimony‐Centered Radicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000586] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Christoph Helling
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-Essen Universitätsstraße 5–7 45117 Essen Germany
| | - George E. Cutsail
- Max Planck Institute for Chemical Energy Conversion (CEC) Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Hanns Weinert
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-Essen Universitätsstraße 5–7 45117 Essen Germany
| | - Christoph Wölper
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-Essen Universitätsstraße 5–7 45117 Essen Germany
| | - Stephan Schulz
- Institute for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-Essen Universitätsstraße 5–7 45117 Essen Germany
| |
Collapse
|
41
|
Sharma MK, Blomeyer S, Glodde T, Neumann B, Stammler HG, Hinz A, van Gastel M, Ghadwal RS. Isolation of singlet carbene derived 2-phospha-1,3-butadienes and their sequential one-electron oxidation to radical cations and dications. Chem Sci 2020; 11:1975-1984. [PMID: 34123292 PMCID: PMC8148328 DOI: 10.1039/c9sc05598c] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/05/2020] [Indexed: 01/05/2023] Open
Abstract
A synthetic strategy for the 2-phospha-1,3-butadiene derivatives [{(IPr)C(Ph)}P(cAACMe)] (3a) and [{(IPr)C(Ph)}P(cAACCy)] (3b) (IPr = C{(NDipp)CH}2, Dipp = 2,6-iPr2C6H3; cAACMe = C{(NDipp)CMe2CH2CMe2}; cAACCy = C{(NDipp)CMe2CH2C(Cy)}, Cy = cyclohexyl) containing a C[double bond, length as m-dash]C-P[double bond, length as m-dash]C framework has been established. Compounds 3a and 3b have a remarkably small HOMO-LUMO energy gap (3a: 5.09; 3b: 5.05 eV) with a very high-lying HOMO (-4.95 eV for each). Consequently, 3a and 3b readily undergo one-electron oxidation with the mild oxidizing agent GaCl3 to afford radical cations [{(IPr)C(Ph)}P(cAACR)]GaCl4 (R = Me 4a, Cy 4b) as crystalline solids. The main UV-vis absorption band for 4a and 4b is red-shifted with respect to that of 3a and 3b, which is associated with the SOMO related transitions. The EPR spectra of compounds 4a and 4b each exhibit a doublet due to coupling of the unpaired electron with the 31P nucleus. Further one-electron removal from the radical cations 4a and 4b is also feasible with GaCl3, affording the dications [{(IPr)C(Ph)}P(cAACR)](GaCl4)2 (R = Me 5a, Cy 5b) as yellow crystals. The molecular structures of compounds 3-5 have been determined by X-ray diffraction and analyzed by DFT calculations.
Collapse
Affiliation(s)
- Mahendra K Sharma
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Sebastian Blomeyer
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Timo Glodde
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| | - Alexander Hinz
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT) Engesserstr. 15 D-76131 Karlsruhe Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Molecular Theory and Spectroscopy Kaiser-Wilhelm-Platz 1 Mülheim an der Ruhr D-45470 Germany
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld Universitätsstrasse 25 Bielefeld D-33615 Germany
| |
Collapse
|
42
|
Cui H, Xiao D, Zhang L, Ruan H, Fang Y, Zhao Y, Tan G, Zhao L, Frenking G, Driess M, Wang X. Isolable cyclic radical cations of heavy main-group elements. Chem Commun (Camb) 2020; 56:2167-2170. [DOI: 10.1039/c9cc09582a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The first stable radical cations bearing both heavy group 14 and 15 elements have been isolated and fully characterized.
Collapse
|
43
|
Sharma MK, Blomeyer S, Neumann B, Stammler H, van Gastel M, Hinz A, Ghadwal RS. Crystalline Divinyldiarsene Radical Cations and Dications. Angew Chem Int Ed Engl 2019; 58:17599-17603. [PMID: 31553520 PMCID: PMC6899687 DOI: 10.1002/anie.201909144] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/11/2019] [Indexed: 11/08/2022]
Abstract
The divinyldiarsene radical cations [{(NHC)C(Ph)}As]2 (GaCl4 ) (NHC=IPr: C{(NDipp)CH}2 3; SIPr: C{(NDipp)CH2 }2 4; Dipp=2,6-iPr2 C6 H3 ) and dications [{(NHC)C(Ph)}As]2 (GaCl4 )2 (NHC=IPr 5; SIPr 6) are readily accessible as crystalline solids on sequential one-electron oxidation of the corresponding divinyldiarsenes [{(NHC)C(Ph)}As]2 (NHC=IPr 1; SIPr 2) with GaCl3 . Compounds 3-6 have been characterized by X-ray diffraction, cyclic voltammetry, EPR/NMR spectroscopy, and UV/vis absorption spectroscopy as well as DFT calculations. The sequential removal of one electron from the HOMO, that is mainly the As-As π-bond, of 1 and 2 leads to successive elongation of the As=As bond and contraction of the C-As bonds from 1/2→3/4→5/6. The UV/vis spectrum of 3 and 4 each exhibits a strong absorption in the visible region associated with SOMO-related transitions. The EPR spectrum of 3 and 4 each shows a broadened septet owing to coupling of the unpaired electron with two 75 As (I=3/2) nuclei.
Collapse
Affiliation(s)
- Mahendra K. Sharma
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Sebastian Blomeyer
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Beate Neumann
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Hans‐Georg Stammler
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| | - Maurice van Gastel
- Max-Planck-Institut für KohlenforschungMolecular Theory and SpectroscopyKaiser-Wilhelm-Platz 1Mülheim an der Ruhr45470Germany
| | - Alexander Hinz
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT)Engesserstr. 1576131KarlsruheGermany
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität BielefeldUniversitätsstr. 2533615BielefeldGermany
| |
Collapse
|
44
|
Sharma MK, Blomeyer S, Neumann B, Stammler H, Gastel M, Hinz A, Ghadwal RS. Crystalline Divinyldiarsene Radical Cations and Dications. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahendra K. Sharma
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität Bielefeld Universitätsstr. 25 33615 Bielefeld Germany
| | - Sebastian Blomeyer
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität Bielefeld Universitätsstr. 25 33615 Bielefeld Germany
| | - Beate Neumann
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität Bielefeld Universitätsstr. 25 33615 Bielefeld Germany
| | - Hans‐Georg Stammler
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität Bielefeld Universitätsstr. 25 33615 Bielefeld Germany
| | - Maurice Gastel
- Max-Planck-Institut für KohlenforschungMolecular Theory and Spectroscopy Kaiser-Wilhelm-Platz 1 Mülheim an der Ruhr 45470 Germany
| | - Alexander Hinz
- Institute of Inorganic ChemistryKarlsruhe Institute of Technology (KIT) Engesserstr. 15 76131 Karlsruhe Germany
| | - Rajendra S. Ghadwal
- Anorganische Molekülchemie und KatalyseLehrstuhl für Anorganische Chemie und StrukturchemieCentrum für Molekulare MaterialienFakultät für ChemieUniversität Bielefeld Universitätsstr. 25 33615 Bielefeld Germany
| |
Collapse
|
45
|
Mondal MK, Zhang L, Feng Z, Tang S, Feng R, Zhao Y, Tan G, Ruan H, Wang X. Tricoordinate Nontrigonal Pnictogen‐Centered Radical Anions: Isolation, Characterization, and Reactivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Manas Kumar Mondal
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
- Center of Materials Science and Engineering Guangxi University of Science and Technology Liuzhou 545006 China
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Rui Feng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| |
Collapse
|
46
|
Mondal MK, Zhang L, Feng Z, Tang S, Feng R, Zhao Y, Tan G, Ruan H, Wang X. Tricoordinate Nontrigonal Pnictogen‐Centered Radical Anions: Isolation, Characterization, and Reactivity. Angew Chem Int Ed Engl 2019; 58:15829-15833. [DOI: 10.1002/anie.201910139] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/02/2019] [Indexed: 02/03/2023]
Affiliation(s)
- Manas Kumar Mondal
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
- Center of Materials Science and Engineering Guangxi University of Science and Technology Liuzhou 545006 China
| | - Zhongtao Feng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Shuxuan Tang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Rui Feng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Collaborative Innovation Center of Advanced Microstructures Nanjing University Nanjing 210023 China
| |
Collapse
|
47
|
Feng R, Zhang L, Ruan H, Zhao Y, Tan G, Wang X. A Main‐Group Element Radical Based One‐Dimensional Magnetic Chain. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rui Feng
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Huapeng Ruan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Gengwen Tan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| |
Collapse
|
48
|
Feng R, Zhang L, Ruan H, Zhao Y, Tan G, Wang X. A Main-Group Element Radical Based One-Dimensional Magnetic Chain. Angew Chem Int Ed Engl 2019; 58:6084-6088. [PMID: 30784151 DOI: 10.1002/anie.201901177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 01/03/2023]
Abstract
The first main-group element radical based one-dimensional magnetic chain (1K)n was realized by one-electron reduction of the pyridinyl functionalized borane 1 with elemental potassium in THF in the absence of 18-crown-6 (18-c-6). The electron spin density of (1K)n mainly resides at the boron centers with a considerable contribution from central benzene and pyridine moieties. The spin centers exhibit an antiferromagnetic interaction as demonstrated by magnetic measurements and theoretical calculations. In contrast, the reduction in the presence of 18-c-6 afforded the separated radical anion salt 1K(Crown), in which the potassium cation was trapped by THF and 18-c-6 molecules. Further one-electron reduction of 1K(Crown) and (1K)n led to the diamagnetic monomer and polymer, respectively.
Collapse
Affiliation(s)
- Rui Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Li Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
49
|
Feng R, Zhang L, Chen C, Fang Y, Zhao Y, Tan G, Wang X. Reversible Self-Assembling of Boryl Radical Anions to Their Diradicals with Tunable Singlet Ground States. Chemistry 2019; 25:4031-4035. [PMID: 30311286 DOI: 10.1002/chem.201804918] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/11/2018] [Indexed: 01/03/2023]
Abstract
Two novel boron-centered diradicals based on dimesitylpyridine borane (1) were synthesized by the self-assembling of the corresponding radical sodium and potassium salts, respectively. The sodium diradical was obtained by re-dissolving the crystals of the radical salt 1Na in toluene, while the potassium diradical was directly obtained by the reduction of 1 with potassium in THF. The diradicals could be converted back to their radical anions in THF solution, forming a reversible process. EPR spectroscopy and SQUID measurements, together with theoretical calculations, show that the diradicals have singlet ground states with excited triplet states. Their singlet-triplet energy gaps are tunable with metals.
Collapse
Affiliation(s)
- Rui Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Li Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Chao Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yong Fang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Gengwen Tan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
50
|
Wang L, Zhang L, Fang Y, Zhao Y, Tan G, Wang X. Orthogonal Oriented Bisanthrancene‐Bridged Bis(Triarylamine) Diradical Dications: Isolation, Characterizations and Crystal Structures. Chem Asian J 2019; 14:1708-1711. [DOI: 10.1002/asia.201801816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/20/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Li Zhang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Yong Fang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Yue Zhao
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Gengwen Tan
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| | - Xinping Wang
- State Key Laboratory of Coordination ChemistryJiangsu Key Laboratory of Advanced Organic MaterialsSchool of Chemistry and Chemical EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210023 China
| |
Collapse
|