1
|
Dean AB, Mitchell DR. Late steps in cytoplasmic maturation of assembly-competent axonemal outer arm dynein in Chlamydomonas require interaction of ODA5 and ODA10 in a complex. Mol Biol Cell 2015; 26:3596-605. [PMID: 26310446 PMCID: PMC4603930 DOI: 10.1091/mbc.e15-05-0317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/18/2015] [Indexed: 11/14/2022] Open
Abstract
In humans, homologues of Chlamydomonas ciliary docking complex subunit DC2 and assembly factor ODA10 are interacting axonemal proteins needed for outer dynein arm assembly. Surprisingly, Chlamydomonas ODA10 does not interact with DC2, localizes to a proximal axonemal domain, and is needed for cytoplasmic steps in dynein assembly, not for docking. Axonemal dyneins are multisubunit enzymes that must be preassembled in the cytoplasm, transported into cilia by intraflagellar transport, and bound to specific sites on doublet microtubules, where their activity facilitates microtubule sliding-based motility. Outer dynein arms (ODAs) require assembly factors to assist their preassembly, transport, and attachment to cargo (specific doublet A-tubule sites). In Chlamydomonas, three assembly factors—ODA5, ODA8, and ODA10—show genetic interactions and have been proposed to interact in a complex, but we recently showed that flagellar ODA8 does not copurify with ODA5 or ODA10. Here we show that ODA5 and ODA10 depend on each other for stability and coexist in a complex in both cytoplasmic and flagellar extracts. Immunofluorescence and immuno–electron microscopy reveal that ODA10 in flagella localizes strictly to a proximal region of doublet number 1, which completely lacks ODAs in Chlamydomonas. Studies of the in vitro binding of ODAs to axonemal doublets reveal a role for the ODA5/ODA10 assembly complex in cytoplasmic maturation of ODAs into a form that can bind to doublet microtubules.
Collapse
Affiliation(s)
- Anudariya B Dean
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - David R Mitchell
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
2
|
Desai PB, Freshour JR, Mitchell DR. Chlamydomonas axonemal dynein assembly locus ODA8 encodes a conserved flagellar protein needed for cytoplasmic maturation of outer dynein arm complexes. Cytoskeleton (Hoboken) 2015; 72:16-28. [PMID: 25558044 PMCID: PMC4361367 DOI: 10.1002/cm.21206] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/12/2014] [Accepted: 12/19/2014] [Indexed: 12/13/2022]
Abstract
The Chlamydomonas reinhardtii oda8 mutation blocks assembly of flagellar outer dynein arms (ODAs), and interacts genetically with ODA5 and ODA10, which encode axonemal proteins thought to aid dynein binding onto axonemal docking sites. We positionally cloned ODA8 and identified the gene product as the algal homolog of vertebrate LRRC56. Its flagellar localization depends on ODA5 and ODA10, consistent with genetic interaction studies, but phylogenomics suggests that LRRC56 homologs play a role in intraflagellar transport (IFT)-dependent assembly of outer row dynein arms, not axonemal docking. ODA8 distribution between cytoplasm and flagella is similar to that of IFT proteins and about half of flagellar ODA8 is in the soluble matrix fraction. Dynein extracted in vitro from wild type axonemes will rebind efficiently to oda8 mutant axonemes, without re-binding of ODA8, further supporting a role in dynein assembly or transport, not axonemal binding. Assays comparing preassembled ODA complexes from the cytoplasm of wild type and mutant strains show that dynein in oda8 mutant cytoplasm has not properly preassembled and cannot bind normally onto oda axonemes. We conclude that ODA8 plays an important role in formation and transport of mature dynein complexes during flagellar assembly. © 2014 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paurav B Desai
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York
| | | | | |
Collapse
|
3
|
Asante D, Stevenson NL, Stephens DJ. Subunit composition of the human cytoplasmic dynein-2 complex. J Cell Sci 2014; 127:4774-87. [PMID: 25205765 PMCID: PMC4215718 DOI: 10.1242/jcs.159038] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic dynein-2 is the motor for retrograde intraflagellar transport (IFT), and mutations in dynein-2 are known to cause skeletal ciliopathies. Here, we define for the first time the composition of the human cytoplasmic dynein-2 complex. We show that the proteins encoded by the ciliopathy genes WDR34 and WDR60 are bona fide dynein-2 intermediate chains and are both required for dynein-2 function. In addition, we identify TCTEX1D2 as a unique dynein-2 light chain that is itself required for cilia function. We define several subunits common to both dynein-1 and dynein-2, including TCTEX-1 (also known as DYNLT1) and TCTEX-3 (also known as DYNLT3), roadblock-1 (also known as DYNLRB1) and roadblock-2 (also known as DYNLRB2), and LC8-1 and LC8-2 light chains (DYNLL1 and DYNLL2, respectively). We also find that NudCD3 associates with dynein-2 as it does with dynein-1. By contrast, the common dynein-1 regulators dynactin, LIS1 (also known as PAFAH1B1) and BICD2 are not found in association with dynein-2. These data explain why mutations in either WDR34 or WDR60 cause disease, as well as identifying TCTEX1D2 as a candidate ciliopathy gene.
Collapse
Affiliation(s)
- David Asante
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Nicola L Stevenson
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - David J Stephens
- Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
4
|
Dean AB, Mitchell DR. Chlamydomonas ODA10 is a conserved axonemal protein that plays a unique role in outer dynein arm assembly. Mol Biol Cell 2013; 24:3689-96. [PMID: 24088566 PMCID: PMC3842995 DOI: 10.1091/mbc.e13-06-0310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In vivo, assembly of axonemal dyneins into cilia is a multi-step process. We show that Chlamydomonas ODA10 encodes an axonemal protein required for a late step in outer arm dynein assembly. Once dynein arms have assembled, they can be extracted and the ODA10p protein is no longer required for high-affinity binding onto axonemal binding sites. Assembly of outer dynein arms (ODAs) requires multiple steps and involves multiple proteins in addition to dynein subunits. The Chlamydomonas ODA10, ODA5, and ODA8 loci genetically interact and are hypothesized to function as an axonemal accessory complex, but only ODA5p was previously characterized. We positionally cloned ODA10 and identified the gene by rescuing an oda10 mutant with a hemagglutinin-tagged cDNA. ODA10 sequence predicts a conserved coiled-coil protein homologous to mouse ccdc151. ODA10p is present in cytoplasm and flagella, remains axonemal after detergent treatment, and is extracted with 0.6 M NaCl. Both outer arm dynein and ODA10p rebound to the axonemes when desalted extracts are mixed with oda10-mutant axonemes. Sucrose gradient separation of these extracts shows that ODA10p sediments near the top of the gradient, not with 23S outer dynein arm proteins. Unexpectedly, dynein and ODA10p fractions are able to bind individually to oda10 axonemes. ODA10p is present on oda8-mutant flagella at wild-type levels. However, ODA10p does not assemble into oda5 flagella and is absent from oda5 cytoplasm, suggesting a necessity of ODA5p for stability of ODA10p in vivo. The results suggest that ODA10p does not function as a part of a traditionally defined docking complex.
Collapse
Affiliation(s)
- Anudariya B Dean
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210
| | | |
Collapse
|
5
|
Patel-King RS, Gilberti RM, Hom EFY, King SM. WD60/FAP163 is a dynein intermediate chain required for retrograde intraflagellar transport in cilia. Mol Biol Cell 2013; 24:2668-77. [PMID: 23864713 PMCID: PMC3756919 DOI: 10.1091/mbc.e13-05-0266] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Retrograde intraflagellar transport (IFT) is required for assembly of cilia. We identify a Chlamydomonas flagellar protein (flagellar-associated protein 163 [FAP163]) as being closely related to the D1bIC(FAP133) intermediate chain (IC) of the dynein that powers this movement. Biochemical analysis revealed that FAP163 is present in the flagellar matrix and is actively trafficked by IFT. Furthermore, FAP163 copurified with D1bIC(FAP133) and the LC8 dynein light chain, indicating that it is an integral component of the retrograde IFT dynein. To assess the functional role of FAP163, we generated an RNA interference knockdown of the orthologous protein (WD60) in planaria. The Smed-wd60(RNAi) animals had a severe ciliary assembly defect that dramatically compromised whole-organism motility. Most cilia were present as short stubs that had accumulated large quantities of IFT particle-like material between the doublet microtubules and the membrane. The few remaining approximately full-length cilia had a chaotic beat with a frequency reduced from 24 to ∼10 Hz. Thus WD60/FAP163 is a dynein IC that is absolutely required for retrograde IFT and ciliary assembly.
Collapse
Affiliation(s)
- Ramila S Patel-King
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | |
Collapse
|
6
|
Protein-protein interactions between intermediate chains and the docking complex of Chlamydomonas flagellar outer arm dynein. FEBS Lett 2013; 587:2143-9. [PMID: 23747306 DOI: 10.1016/j.febslet.2013.05.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 12/16/2022]
Abstract
Outer arm dynein (OAD) is bound to specific loci on outer-doublet-microtubules by interactions at two sites: via intermediate chain 1 (IC1) and the outer dynein arm docking complex (ODA-DC). Studies using Chlamydomonas mutants have suggested that the individual sites have rather weak affinities for microtubules, and therefore strong OAD attachment to microtubules is achieved by their cooperation. To test this idea, we examined interactions between IC1, IC2 (another intermediate chain) and ODA-DC using recombinant proteins. Recombinant IC1 and IC2 were found to form a 1:1 complex, and this complex associated with ODA-DC in vitro. Binding of IC1 to mutant axonemes revealed that there are specific binding sites for IC1. From these data, we propose a novel model of OAD-outer doublet association.
Collapse
|
7
|
Carbajal-González BI, Heuser T, Fu X, Lin J, Smith BW, Mitchell DR, Nicastro D. Conserved structural motifs in the central pair complex of eukaryotic flagella. Cytoskeleton (Hoboken) 2013; 70:101-120. [PMID: 23281266 PMCID: PMC3914236 DOI: 10.1002/cm.21094] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/19/2012] [Accepted: 11/21/2012] [Indexed: 11/11/2022]
Abstract
Cilia and flagella are conserved hair-like appendages of eukaryotic cells that function as sensing and motility generating organelles. Motility is driven by thousands of axonemal dyneins that require precise regulation. One essential motility regulator is the central pair complex (CPC) and many CPC defects cause paralysis of cilia/flagella. Several human diseases, such as immotile cilia syndrome, show CPC abnormalities, but little is known about the detailed three-dimensional (3D) structure and function of the CPC. The CPC is located in the center of typical [9+2] cilia/flagella and is composed of two singlet microtubules (MTs), each with a set of associated projections that extend toward the surrounding nine doublet MTs. Using cryo-electron tomography coupled with subtomogram averaging, we visualized and compared the 3D structures of the CPC in both the green alga Chlamydomonas and the sea urchin Strongylocentrotus at the highest resolution published to date. Despite the evolutionary distance between these species, their CPCs exhibit remarkable structural conservation. We identified several new projections, including those that form the elusive sheath, and show that the bridge has a more complex architecture than previously thought. Organism-specific differences include the presence of MT inner proteins in Chlamydomonas, but not Strongylocentrotus, and different overall outlines of the highly connected projection network, which forms a round-shaped cylinder in algae, but is more oval in sea urchin. These differences could be adaptations to the mechanical requirements of the rotating CPC in Chlamydomonas, compared to the Strongylocentrotus CPC which has a fixed orientation.
Collapse
Affiliation(s)
| | - Thomas Heuser
- Biology Department, Rosenstiel Center, MS029, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Xiaofeng Fu
- Biology Department, Rosenstiel Center, MS029, Brandeis University, 415 South Street, Waltham, MA 02454, USA
- Howard Hughes Medical Institute, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Jianfeng Lin
- Biology Department, Rosenstiel Center, MS029, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | - Brandon W. Smith
- Department of Cell and Developmental Biology, Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - David R. Mitchell
- Department of Cell and Developmental Biology, Upstate Medical University, 750 E. Adams St., Syracuse, NY 13210, USA
| | - Daniela Nicastro
- Biology Department, Rosenstiel Center, MS029, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
8
|
Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat Genet 2012; 44:381-9, S1-2. [PMID: 22387996 PMCID: PMC3315610 DOI: 10.1038/ng.1106] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 01/13/2012] [Indexed: 11/15/2022]
Abstract
Primary Ciliary Dyskinesia (PCD) most often arises from loss of the dynein motors that power ciliary beating. Here we show that PF22/DNAAF3, a previously uncharacterized protein, is essential for the preassembly of dyneins into complexes prior to their transport into cilia. We identified loss-of-function mutations in the human DNAAF3 gene in patients from families with situs inversus and defects in assembly of inner and outer dynein arms. Zebrafish dnaaf3 knockdown likewise disrupts dynein arm assembly and ciliary motility, causing PCD phenotypes including hydrocephalus and laterality malformations. Chlamydomonas reinhardtii PF22 is exclusively cytoplasmic, and a null mutant fails to assemble outer and some inner dynein arms. Altered abundance of dynein subunits in mutant cytoplasm suggests PF22/DNAAF3 acts at a similar stage to other preassembly proteins, PF13/KTU and ODA7/LRRC50, in the dynein preassembly pathway. These results support the existence of a conserved multi-step pathway for cytoplasmic formation of assembly-competent ciliary dynein complexes.
Collapse
|
9
|
Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 2009; 456:611-6. [PMID: 19052621 PMCID: PMC3279746 DOI: 10.1038/nature07471] [Citation(s) in RCA: 272] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 09/25/2008] [Indexed: 12/18/2022]
Abstract
Cilia/flagella are highly conserved organelles that play diverse roles in cell motility and sensing extracellular signals. Motility defects in cilia/flagella often result in primary ciliary dyskinesia (PCD). However, the mechanisms underlying cilia formation and function, and in particular the cytoplasmic assembly of dyneins that power ciliary motility, are only poorly understood. Here we report a novel gene, kintoun (ktu), involved in this cytoplasmic process. This gene was first identified in a medaka mutant, and found to be mutated in PCD patients from two affected families as well as in the pf13 mutant of Chlamydomonas. In the absence of Ktu/PF13, both outer and inner dynein arms are missing or defective in the axoneme, leading to a loss of motility. Biochemical and immunohistochemical studies show that Ktu/PF13 is one of the long-sought proteins involved in pre-assembly of dynein arm complexes in the cytoplasm before intraflagellar transport loads them for the ciliary compartment.
Collapse
|
10
|
Ahmed NT, Gao C, Lucker BF, Cole DG, Mitchell DR. ODA16 aids axonemal outer row dynein assembly through an interaction with the intraflagellar transport machinery. ACTA ACUST UNITED AC 2008; 183:313-22. [PMID: 18852297 PMCID: PMC2568026 DOI: 10.1083/jcb.200802025] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Formation of flagellar outer dynein arms in Chlamydomonas reinhardtii requires the ODA16 protein at a previously uncharacterized assembly step. Here, we show that dynein extracted from wild-type axonemes can rebind to oda16 axonemes in vitro, and dynein in oda16 cytoplasmic extracts can bind to docking sites on pf28 (oda) axonemes, which is consistent with a role for ODA16 in dynein transport, rather than subunit preassembly or binding site formation. ODA16 localization resembles that seen for intraflagellar transport (IFT) proteins, and flagellar abundance of ODA16 depends on IFT. Yeast two-hybrid analysis with mammalian homologues identified an IFT complex B subunit, IFT46, as a directly interacting partner of ODA16. Interaction between Chlamydomonas ODA16 and IFT46 was confirmed through in vitro pull-down assays and coimmunoprecipitation from flagellar extracts. ODA16 appears to function as a cargo-specific adaptor between IFT particles and outer row dynein needed for efficient dynein transport into the flagellar compartment.
Collapse
Affiliation(s)
- Noveera T Ahmed
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | |
Collapse
|
11
|
Ishikawa T, Sakakibara H, Oiwa K. The architecture of outer dynein arms in situ. J Mol Biol 2007; 368:1249-58. [PMID: 17391698 DOI: 10.1016/j.jmb.2007.02.072] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 02/15/2007] [Accepted: 02/16/2007] [Indexed: 10/23/2022]
Abstract
Outer dynein arms, the force generators for axonemal motion, form arrays on microtubule doublets in situ, although they are bouquet-like complexes with separated heads of multiple heavy chains when isolated in vitro. To understand how the three heavy chains are folded in the array, we reconstructed the detailed 3D structure of outer dynein arms of Chlamydomonas flagella in situ by electron cryo-tomography and single-particle averaging. The outer dynein arm binds to the A-microtubule through three interfaces on two adjacent protofilaments, two of which probably represent the docking complex. The three AAA rings of heavy chains, seen as stacked plates, are connected in a striking manner on microtubule doublets. The tail of the alpha-heavy chain, identified by analyzing the oda11 mutant, which lacks alpha-heavy chain, extends from the AAA ring tilted toward the tip of the axoneme and towards the inside of the axoneme at 50 degrees , suggesting a three-dimensional power stroke. The neighboring outer dynein arms are connected through two filamentous structures: one at the exterior of the axoneme and the other through the alpha-tail. Although the beta-tail seems to merge with the alpha-tail at the internal side of the axoneme, the gamma-tail is likely to extend at the exterior of the axoneme and join the AAA ring. This suggests that the fold and function of gamma-heavy chain are different from those of alpha and beta-chains.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Department of Biology, ETH Zürich (Swiss Federal Institute of Technology, Zurich), HPK F7 ETH Hönggerberg, CH8093 Zürich, Switzerland.
| | | | | |
Collapse
|
12
|
Freshour J, Yokoyama R, Mitchell DR. Chlamydomonas flagellar outer row dynein assembly protein ODA7 interacts with both outer row and I1 inner row dyneins. J Biol Chem 2007; 282:5404-12. [PMID: 17194703 PMCID: PMC3321484 DOI: 10.1074/jbc.m607509200] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously found that a mutation at the ODA7 locus in Chlamydomonas prevents axonemal outer row dynein assembly by blocking association of heavy chains and intermediate chains in the cytoplasm. We have now cloned the ODA7 locus by walking in the Chlamydomonas genome from nearby molecular markers, confirmed the identity of the gene by rescuing the mutant phenotype with genomic clones, and identified the ODA7 gene product as a 58-kDa leucine-rich repeat protein unrelated to outer row dynein LC1. Oda7p is missing from oda7 mutant flagella but is present in flagella of other outer row or inner row dynein assembly mutants. However, Oda7 levels are greatly reduced in flagella that lack both outer row dynein and inner row I1 dynein. Biochemical fractionation and rebinding studies support a model in which Oda7 participates in a previously uncharacterized structural link between inner and outer row dyneins.
Collapse
Affiliation(s)
- Judy Freshour
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | |
Collapse
|
13
|
Ahmed NT, Mitchell DR. ODA16p, a Chlamydomonas flagellar protein needed for dynein assembly. Mol Biol Cell 2005; 16:5004-12. [PMID: 16093345 PMCID: PMC1237099 DOI: 10.1091/mbc.e05-07-0627] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 08/02/2005] [Accepted: 08/03/2005] [Indexed: 11/11/2022] Open
Abstract
Dynein motors of cilia and flagella function in the context of the axoneme, a very large network of microtubules and associated proteins. To understand how dyneins assemble and attach to this network, we characterized two Chlamydomonas outer arm dynein assembly (oda) mutants at a new locus, ODA16. Both oda16 mutants display a reduced beat frequency and altered swimming behavior, similar to previously characterized oda mutants, but only a partial loss of axonemal dyneins as shown by both electron microscopy and immunoblots. Motility studies suggest that the remaining outer arm dyneins on oda16 axonemes are functional. The ODA16 locus encodes a 49-kDa WD-repeat domain protein. Homologues were found in mammalian and fly databases, but not in yeast or nematode databases, implying that this protein is only needed in organisms with motile cilia or flagella. The Chlamydomonas ODA16 protein shares 62% identity with its human homologue. Western blot analysis localizes more than 90% of ODA16p to the flagellar matrix. Because wild-type axonemes retain little ODA16p but can be reactivated to a normal beat in vitro, we hypothesize that ODA16p is not an essential dynein subunit, but a protein necessary for dynein transport into the flagellar compartment or assembly onto the axoneme.
Collapse
Affiliation(s)
- Noveera T Ahmed
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
14
|
DiBella LM, Gorbatyuk O, Sakato M, Wakabayashi KI, Patel-King RS, Pazour GJ, Witman GB, King SM. Differential light chain assembly influences outer arm dynein motor function. Mol Biol Cell 2005; 16:5661-74. [PMID: 16195342 PMCID: PMC1289411 DOI: 10.1091/mbc.e05-08-0732] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tctex1 and Tctex2 were originally described as potential distorters/sterility factors in the non-Mendelian transmission of t-haplotypes in mice. These proteins have since been identified as subunits of cytoplasmic and/or axonemal dyneins. Within the Chlamydomonas flagellum, Tctex1 is a subunit of inner arm I1. We have now identified a second Tctex1-related protein (here termed LC9) in Chlamydomonas. LC9 copurifies with outer arm dynein in sucrose density gradients and is missing only in those strains completely lacking this motor. Zero-length cross-linking of purified outer arm dynein indicates that LC9 interacts directly with both the IC1 and IC2 intermediate chains. Immunoblot analysis revealed that LC2, LC6, and LC9 are missing in an IC2 mutant strain (oda6-r88) that can assemble outer arms but exhibits significantly reduced flagellar beat frequency. This defect is unlikely to be due to lack of LC6, because an LC6 null mutant (oda13) exhibits only a minor swimming abnormality. Using an LC2 null mutant (oda12-1), we find that although some outer arm dynein components assemble in the absence of LC2, they are nonfunctional. In contrast, dyneins from oda6-r88, which also lack LC2, retain some activity. Furthermore, we observed a synthetic assembly defect in an oda6-r88 oda12-1 double mutant. These data suggest that LC2, LC6, and LC9 have different roles in outer arm assembly and are required for wild-type motor function in the Chlamydomonas flagellum.
Collapse
Affiliation(s)
- Linda M DiBella
- Department of Molecular, Microbial, and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
DiBella LM, Smith EF, Patel-King RS, Wakabayashi KI, King SM. A Novel Tctex2-related Light Chain Is Required for Stability of Inner Dynein Arm I1 and Motor Function in the Chlamydomonas Flagellum. J Biol Chem 2004; 279:21666-76. [PMID: 15020587 DOI: 10.1074/jbc.m313540200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tctex1 and Tctex2 were originally described in mice as putative distorters/sterility factors involved in the non-Mendelian transmission of t haplotypes. Subsequently, these proteins were found to be light chains of both cytoplasmic and axonemal dyneins. We have now identified a novel Tctex2-related protein (Tctex2b) within the Chlamydomonas flagellum. Tctex2b copurifies with inner arm I1 after both sucrose gradient centrifugation and anion exchange chromatography. Unlike the Tctex2 homologue within the outer dynein arm, analysis of a Tctex2b-null strain indicates that this protein is not essential for assembly of inner arm I1. However, a lack of Tctex2b results in an unstable dynein particle that disassembles after high salt extraction from the axoneme. Cells lacking Tctex2b swim more slowly than wild type and exhibit a reduced flagellar beat frequency. Furthermore, using a microtubule sliding assay we observed that dynein motor function is reduced in vitro. These data indicate that Tctex2b is required for the stability of inner dynein arm I1 and wild-type axonemal dynein function.
Collapse
Affiliation(s)
- Linda M DiBella
- Department of Biochemistry, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3305, USA
| | | | | | | | | |
Collapse
|
16
|
Susalka SJ, Nikulina K, Salata MW, Vaughan PS, King SM, Vaughan KT, Pfister KK. The roadblock light chain binds a novel region of the cytoplasmic Dynein intermediate chain. J Biol Chem 2002; 277:32939-46. [PMID: 12077152 DOI: 10.1074/jbc.m205510200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytoplasmic dynein is the major minus-end directed microtubule-based motor in eukaryotic cells. It is composed of a number of different subunits including three light chain families: Tctex1, LC8, and roadblock. The incorporation of the roadblock light chains into the cytoplasmic dynein complex had not been determined. There are two roadblock genes in mammals, ROBL-1 and ROBL-2. We find that both members of the roadblock family bind directly to all of the intermediate chain isoforms of mammalian cytoplasmic dynein. This was determined with three complementary approaches. A yeast two-hybrid assay demonstrated that both roadblock light chains interact with intermediate chain isoforms from the IC74-1 and IC74-2 genes in vivo. This was confirmed in vitro with both a solid phase blot overlay assay and a solution-binding assay. The roadblock-binding domain on the intermediate chain was mapped to an approximately 72 residue region. The binding domain is downstream of each of the two alternative splice sites in the intermediate chains. This location is consistent with the finding that both roadblock-1 and roadblock-2 show no binding specificity for a single IC74-1 or IC74-2 intermediate chain isoform. In addition, this roadblock-binding domain is significantly downstream from both the Tctex1- and LC8-binding sites, supporting the hypothesis that multiple light chain family members can bind to the same intermediate chain.
Collapse
Affiliation(s)
- Stephen J Susalka
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Smith EF. Regulation of flagellar dynein by calcium and a role for an axonemal calmodulin and calmodulin-dependent kinase. Mol Biol Cell 2002; 13:3303-13. [PMID: 12221134 PMCID: PMC124160 DOI: 10.1091/mbc.e02-04-0185] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2002] [Revised: 06/01/2002] [Accepted: 06/21/2002] [Indexed: 11/11/2022] Open
Abstract
Ciliary and flagellar motility is regulated by changes in intraflagellar calcium. However, the molecular mechanism by which calcium controls motility is unknown. We tested the hypothesis that calcium regulates motility by controlling dynein-driven microtubule sliding and that the central pair and radial spokes are involved in this regulation. We isolated axonemes from Chlamydomonas mutants and measured microtubule sliding velocity in buffers containing 1 mM ATP and various concentrations of calcium. In buffers with pCa > 8, microtubule sliding velocity in axonemes lacking the central apparatus (pf18 and pf15) was reduced compared with that of wild-type axonemes. In contrast, at pCa4, dynein activity in pf18 and pf15 axonemes was restored to wild-type level. The calcium-induced increase in dynein activity in pf18 axonemes was inhibited by antagonists of calmodulin and calmodulin-dependent kinase II. Axonemes lacking the C1 central tubule (pf16) or lacking radial spoke components (pf14 and pf17) do not exhibit calcium-induced increase in dynein activity in pCa4 buffer. We conclude that calcium regulation of flagellar motility involves regulation of dynein-driven microtubule sliding, that calmodulin and calmodulin-dependent kinase II may mediate the calcium signal, and that the central apparatus and radial spokes are key components of the calcium signaling pathway.
Collapse
Affiliation(s)
- Elizabeth F Smith
- Dartmouth College, Department of Biological Sciences, Hanover, New Hampshire 03755, USA.
| |
Collapse
|
18
|
Abstract
Because cytoplasmic dynein plays numerous critical roles in eukaryotic cells, determining the subunit composition and the organization and functions of the subunits within dynein are important goals. This has been difficult partly because of accessory polypeptide heterogeneity of dynein populations. The motor domain containing heavy chains of cytoplasmic dynein are associated with multiple intermediate, light intermediate, and light chain accessory polypeptides. We examined the organization of these subunits within cytoplasmic dynein by separating the molecule into two distinct subcomplexes. These subcomplexes were competent to reassemble into a molecule with dynein-like properties. One subcomplex was composed of the dynein heavy and light intermediate chains whereas the other subcomplex was composed of the intermediate and light chains. The intermediate and light chain subcomplex could be further separated into two pools, only one of which contained dynein light chains. The two pools had distinct intermediate chain compositions, suggesting that intermediate chain isoforms have different light chain-binding properties. When the two intermediate chain pools were characterized by analytical velocity sedimentation, at least four molecular components were seen: intermediate chain monomers, intermediate chain dimers, intermediate chain monomers with bound light chains, and a mixture of intermediate chain dimers with assorted bound light chains. These data provide new insights into the compositional heterogeneity and assembly of the cytoplasmic dynein complex and suggest that individual dynein molecules have distinct molecular compositions in vivo.
Collapse
Affiliation(s)
- Stephen J King
- Department of Biology, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
19
|
Zariwala M, Noone PG, Sannuti A, Minnix S, Zhou Z, Leigh MW, Hazucha M, Carson JL, Knowles MR. Germline mutations in an intermediate chain dynein cause primary ciliary dyskinesia. Am J Respir Cell Mol Biol 2001; 25:577-83. [PMID: 11713099 DOI: 10.1165/ajrcmb.25.5.4619] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal recessive disorder caused by abnormal ciliary ultrastructure and function, characterized clinically by oto-sino-pulmonary disease. Mutations in an intermediate chain dynein (DNAI1; IC78) have recently been described in PCD patients, with outer dynein arm (ODA) defects. The aims of the current study were to test for novel DNAI1 mutations in 13 PCD patients with ODA defects (from 7 unrelated families) and to assess genotype/phenotype correlations in patients and family members. A previously reported mutation (219+3insT) was detected in three PCD patients from two families. The opposite allele had the novel missense mutation G1874C (W568S) in both affected individuals from one family, and a nonsense mutation G1875A (W568X) in an affected individual from another family. The tryptophan at position 568 is a highly conserved residue in the WD-repeat region, and a mutation is predicted to lead to abnormal folding of the protein and loss of function. None of these mutations were found in 32 other PCD patients with miscellaneous ciliary defects. Mutations in DNAI1 are causative for PCD with ODA defects, and are likely the genetic origin of clinical disease in some PCD patients with ultrastructural defects in the ODA.
Collapse
Affiliation(s)
- M Zariwala
- Department of Medicine, University of North Carolina at Chapel Hill, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Boylan K, Serr M, Hays T. A molecular genetic analysis of the interaction between the cytoplasmic dynein intermediate chain and the glued (dynactin) complex. Mol Biol Cell 2000; 11:3791-803. [PMID: 11071907 PMCID: PMC15037 DOI: 10.1091/mbc.11.11.3791] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The microtubule motor cytoplasmic dynein performs multiple cellular functions; however, the regulation and targeting of the motor to different cargoes is not well understood. A biochemical interaction between the dynein intermediate chain subunit and the p150-Glued component of the dynein regulatory complex, dynactin, has supported the hypothesis that the intermediate chain is a key modulator of dynein attachment to cellular cargoes. In this report, we identify multiple intermediate chain polypeptides that cosediment with the 19S dynein complex and two differentially expressed transcripts derived from the single cytoplasmic dynein intermediate chain (Cdic) gene that differ in the 3' untranslated region sequence. These results support previous observations of multiple Cdic gene products that may contribute to the specialization of dynein function. Most significantly, we provide genetic evidence that the interaction between the dynein intermediate chain and p150-Glued is functionally relevant. We use a genomic Cdic transgene to show that extra copies of the dynein intermediate chain gene act to suppress the rough eye phenotype of the mutant Glued(1), a mutation in the p150-Glued subunit of dynactin. Furthermore, we show that the interaction between the dynein intermediate chain and p150-Glued is dependent on the dosage of the Cdic gene. This result suggests that the dynein intermediate chain may be a limiting component in the assembly of the dynein complex and that the regulation of the interaction between the dynein intermediate chain and dynactin is critical for dynein function.
Collapse
Affiliation(s)
- K Boylan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, St. Paul, Minnesota 55108, USA.
| | | | | |
Collapse
|
21
|
Nakamura K, Wilkerson CG, Witman GB. Functional interaction between Chlamydomonas outer arm dynein subunits: the gamma subunit suppresses the ATPase activity of the alpha beta dimer. CELL MOTILITY AND THE CYTOSKELETON 2000; 37:338-45. [PMID: 9258506 DOI: 10.1002/(sici)1097-0169(1997)37:4<338::aid-cm5>3.0.co;2-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The alpha beta dimer and the gamma subunit of the Chlamydomonas outer arm dynein were solubilized by treating isolated axonemes with 0.6 M KCI, and purified by sucrose density gradient centrifugation. The axonemes were from an ida1 mutant to eliminate contamination of outer arm subunits by inner arm dynein 11, and the axonemes were pre-extracted with 0.6 M CH3COOK to remove non-dynein protein that might otherwise contaminate outer arm dynein fractions in the sucrose gradient. In addition, purer fractions of outer arm dynein subunits were obtained by modifying the centrifugation conditions to take advantage of the propensity of the dynein to dissociate under high hydrostatic pressure in the presence of Mg2+. When sucrose gradient fractions containing the gamma subunit were added to a fraction containing the purified alpha beta dimer under conditions expected to promote reassociation of the subunits to form a trimeric outer arm dynein complex [Takada et al., 1992: J. Biochem, 111:758-762], the total ATPase activity of the mixture was suppressed to a level lower than that of the original alpha beta dimer fraction. The inhibition paralleled the distribution of gamma subunit in the sucrose gradient, was saturable, and was maximum at an approximately equimolar ratio of the gamma subunit to the alpha beta dimer. These results indicate that when the gamma subunit interacts with the alpha beta dimer, the latter's ATPase activity is modulated downward. Previous results showed that interaction of the alpha subunit with the beta subunit suppressed the beta subunit's ATPase activity [Pfister and Witman, 1984: J. Biol. Chem. 259:12072-12080]. Thus, the total ATPase activity of the outer arm dynein is dependent upon communication between all three subunits within the arm.
Collapse
Affiliation(s)
- K Nakamura
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | | | |
Collapse
|
22
|
Mitchell DR, Brown KS. Sequence analysis of the Chlamydomonas reinhardtii flagellar alpha dynein gene. CELL MOTILITY AND THE CYTOSKELETON 2000; 37:120-6. [PMID: 9186009 DOI: 10.1002/(sici)1097-0169(1997)37:2<120::aid-cm4>3.0.co;2-c] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Flagellar outer row dynein ATPases have been used extensively as model systems for studies of microtubule-based motility. Previously full-length sequences were only available for two of the three catalytic heavy-chain subunits (DHCs) of this enzyme. We have completed the sequence of an 18-kb genomic region encoding the Chlamydomonas reinhardtii flagellar outer row dynein alpha heavy chain. Unlike the beta- and gamma-subunits, DHC alpha is not required for assembly of other outer row dynein proteins, except for a tightly associated light chain, and thus occupies a unique position within this enzyme complex. The predicted 4,499 residue protein retains sequence homology to other dynein heavy chains throughout its central and C-terminal regions but lacks homology to any other dyneins in the first 1,000 amino acids, which may account for its unusual assembly properties. This N-terminal domain of DHC alpha contains a repetitive sequence rich in alanines, prolines, and glutamic acids. Within the more homologous C-terminal region, which includes the catalytic domain, three short sequences unique to DHC alpha may account for its specific catalytic properties and in vivo phosphorylation pattern.
Collapse
Affiliation(s)
- D R Mitchell
- Department of Anatomy and Cell Biology, SUNY Health Science Center, Syracuse 13210, USA
| | | |
Collapse
|
23
|
Pazour GJ, Koutoulis A, Benashski SE, Dickert BL, Sheng H, Patel-King RS, King SM, Witman GB. LC2, the chlamydomonas homologue of the t complex-encoded protein Tctex2, is essential for outer dynein arm assembly. Mol Biol Cell 1999; 10:3507-20. [PMID: 10512883 PMCID: PMC25620 DOI: 10.1091/mbc.10.10.3507] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tctex2 is thought to be one of the distorter genes of the mouse t haplotype. This complex greatly biases the segregation of the chromosome that carries it such that in heterozygous +/t males, the t haplotype is transmitted to >95% of the offspring, a phenomenon known as transmission ratio distortion. The LC2 outer dynein arm light chain of Chlamydomonas reinhardtii is a homologue of the mouse protein Tctex2. We have identified Chlamydomonas insertional mutants with deletions in the gene encoding LC2 and demonstrate that the LC2 gene is the same as the ODA12 gene, the product of which had not been identified previously. Complete deletion of the LC2/ODA12 gene causes loss of all outer arms and a slow jerky swimming phenotype. Transformation of the deletion mutant with the cloned LC2/ODA12 gene restores the outer arms and rescues the motility phenotype. Therefore, LC2 is required for outer arm assembly. The fact that LC2 is an essential subunit of flagellar outer dynein arms allows us to propose a detailed mechanism whereby transmission ratio distortion is explained by the differential binding of mutant (t haplotype encoded) and wild-type dyneins to the axonemal microtubules of t-bearing or wild-type sperm, with resulting differences in their motility.
Collapse
Affiliation(s)
- G J Pazour
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Myster SH, Knott JA, Wysocki KM, O'Toole E, Porter ME. Domains in the 1alpha dynein heavy chain required for inner arm assembly and flagellar motility in Chlamydomonas. J Cell Biol 1999; 146:801-18. [PMID: 10459015 PMCID: PMC2156140 DOI: 10.1083/jcb.146.4.801] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1999] [Accepted: 07/20/1999] [Indexed: 11/22/2022] Open
Abstract
Flagellar motility is generated by the activity of multiple dynein motors, but the specific role of each dynein heavy chain (Dhc) is largely unknown, and the mechanism by which the different Dhcs are targeted to their unique locations is also poorly understood. We report here the complete nucleotide sequence of the Chlamydomonas Dhc1 gene and the corresponding deduced amino acid sequence of the 1alpha Dhc of the I1 inner dynein arm. The 1alpha Dhc is similar to other axonemal Dhcs, but two additional phosphate binding motifs (P-loops) have been identified in the NH(2)- and COOH-terminal regions. Because mutations in Dhc1 result in motility defects and loss of the I1 inner arm, a series of Dhc1 transgenes were used to rescue the mutant phenotypes. Motile cotransformants that express either full-length or truncated 1alpha Dhcs were recovered. The truncated 1alpha Dhc fragments lacked the dynein motor domain, but still assembled with the 1beta Dhc and other I1 subunits into partially functional complexes at the correct axoneme location. Analysis of the transformants has identified the site of the 1alpha motor domain in the I1 structure and further revealed the role of the 1alpha Dhc in flagellar motility and phototactic behavior.
Collapse
Affiliation(s)
- Steven H. Myster
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Julie A. Knott
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Katrina M. Wysocki
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Eileen O'Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309-0347
| | - Mary E. Porter
- Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| |
Collapse
|
25
|
Bowman AB, Patel-King RS, Benashski SE, McCaffery JM, Goldstein LS, King SM. Drosophila roadblock and Chlamydomonas Lc7. J Cell Biol 1999. [DOI: 10.1083/jcb.146.1.165] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eukaryotic organisms utilize microtubule-dependent motors of the kinesin and dynein superfamilies to generate intracellular movement. To identify new genes involved in the regulation of axonal transport in Drosophila melanogaster, we undertook a screen based upon the sluggish larval phenotype of known motor mutants. One of the mutants identified in this screen, roadblock (robl), exhibits diverse defects in intracellular transport including axonal transport and mitosis. These defects include intra-axonal accumulations of cargoes, severe axonal degeneration, and aberrant chromosome segregation. The gene identified by robl encodes a 97–amino acid polypeptide that is 57% identical (70% similar) to the 105–amino acid Chlamydomonas outer arm dynein–associated protein LC7, also reported here. Both robl and LC7 have homology to several other genes from fruit fly, nematode, and mammals, but not Saccharomyces cerevisiae. Furthermore, we demonstrate that members of this family of proteins are associated with both flagellar outer arm dynein and Drosophila and rat brain cytoplasmic dynein. We propose that roadblock/LC7 family members may modulate specific dynein functions.
Collapse
Affiliation(s)
- Aaron B. Bowman
- Howard Hughes Medical Institute, Division of Cellular and Molecular Medicine, Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0683
| | - Ramila S. Patel-King
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032-3305
| | - Sharon E. Benashski
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032-3305
| | - J. Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | - Lawrence S.B. Goldstein
- Howard Hughes Medical Institute, Division of Cellular and Molecular Medicine, Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0683
| | - Stephen M. King
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032-3305
| |
Collapse
|
26
|
Fowkes ME, Mitchell DR. The role of preassembled cytoplasmic complexes in assembly of flagellar dynein subunits. Mol Biol Cell 1998; 9:2337-47. [PMID: 9725897 PMCID: PMC25499 DOI: 10.1091/mbc.9.9.2337] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previous work has revealed a cytoplasmic pool of flagellar precursor proteins capable of contributing to the assembly of new flagella, but how and where these components assemble is unknown. We tested Chlamydomonas outer-dynein arm subunit stability and assembly in the cytoplasm of wild-type cells and 11 outer dynein arm assembly mutant strains (oda1-oda11) by Western blotting of cytoplasmic extracts, or immunoprecipitates from these extracts, with five outer-row dynein subunit-specific antibodies. Western blots reveal that at least three oda mutants (oda6, oda7, and oda9) alter the level of a subunit that is not the mutant gene product. Immunoprecipitation shows that large preassembled flagellar complexes containing all five tested subunits (three heavy chains and two intermediate chains) exist within wild-type cytoplasm. When the preassembly of these subunits was examined in oda strains, we observed three patterns: complete coassembly (oda 1, 3, 5, 8, and 10), partial coassembly (oda7 and oda11), and no coassembly (oda2, 6, and 9) of the four tested subunits with HCbeta. Our data, together with previous studies, suggest that flagellar outer-dynein arms preassemble into a complete Mr approximately 2 x 10(6) dynein arm that resides in a cytoplasmic precursor pool before transport into the flagellar compartment.
Collapse
Affiliation(s)
- M E Fowkes
- Department of Anatomy and Cell Biology, SUNY Health Science Center, Syracuse, New York 13210, USA
| | | |
Collapse
|
27
|
Harrison A, Olds-Clarke P, King SM. Identification of the t complex-encoded cytoplasmic dynein light chain tctex1 in inner arm I1 supports the involvement of flagellar dyneins in meiotic drive. J Cell Biol 1998; 140:1137-47. [PMID: 9490726 PMCID: PMC2132707 DOI: 10.1083/jcb.140.5.1137] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/1997] [Revised: 01/06/1998] [Indexed: 02/06/2023] Open
Abstract
The cytoplasmic dynein light chain Tctex1 is a candidate for one of the distorter products involved in the non-Mendelian transmission of mouse t haplotypes. It has been unclear, however, how the t-specific mutations in this protein, which is found associated with cytoplasmic dynein in many tissues, could result in a male germ cell-specific phenotype. Here, we demonstrate that Tctex1 is not only a cytoplasmic dynein component, but is also present both in mouse sperm and Chlamydomonas flagella. Genetic and biochemical dissection of the Chlamydomonas flagellum reveal that Tctex1 is a previously undescribed component of inner dynein arm I1. Combined with the recent identification of another putative t complex distorter, Tctex2, within the outer dynein arm, these results support the hypothesis that transmission ratio distortion (meiotic drive) of mouse t haplotypes involves dysfunction of both flagellar inner and outer dynein arms but does not require the cytoplasmic isozyme.
Collapse
Affiliation(s)
- A Harrison
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032-3305, USA
| | | | | |
Collapse
|
28
|
Tharia HA, Rowe AJ, Byron O, Wells C. Physical characterization and ATPase activity of 14S dynein fractions from Tetrahymena thermophila. J Muscle Res Cell Motil 1997; 18:697-709. [PMID: 9429162 DOI: 10.1023/a:1018640007999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using anion-exchange fast protein liquid chromatography, 14S dynein was separated into four fractions (designated 1-4). These fractions were distinguished with respect to polypeptide composition, and at least four unique heavy chains were identified. Each fraction was shown to exhibit ATPase activity. Fraction 2 has a specific activity 2-3 times greater than that of fractions 1, 3, and 4; the fractions showed a consistent trend of decreasing activity in the order 2 > 3 > 1 > 4. In all cases, the specific ATPase activity was reduced by high ionic strength, in contrast to 22S dynein, which was previously shown to exhibit increased activity under identical conditions. Electron microscopy analysis revealed that the four fractions of 14S dynein were structurally distinct. Fraction 1 comprises two globular head domains interconnected via two stems; fraction 2 consists of at least two clearly different globular structures; fraction 3 is a single globular head; and fraction 4 comprises three globular head domains interconnected by three stems to a basal structure. Further structural characterization using hydrodynamic techniques enabled a determination of mass and sedimentation coefficient for each fraction. Fraction 1 had a mass of 654 kDa and a sedimentation coefficient of 20.1 S. Fraction 2 had a variable mass due to association (616-966 kDa), and a sedimentation coefficient of 16.6 S, whereas fractions 3 and 4 had variable sedimentation coefficients but were of mass 701 kDa and 527 kDa respectively. Where possible, hydrodynamic parameters were utilized, in conjunction with electron microscopy data, to construct low-resolution hydrodynamic bead models to represent the fractions. Optimal models, which were consistent with all the available data, were produced for fractions 1 and 4. Bead modelling was also carried out for 22S dynein, using previously published data, to validate the 14S dynein modelling.
Collapse
Affiliation(s)
- H A Tharia
- Department of Biochemistry, University of Leicester, UK
| | | | | | | |
Collapse
|
29
|
Benashski SE, Harrison A, Patel-King RS, King SM. Dimerization of the highly conserved light chain shared by dynein and myosin V. J Biol Chem 1997; 272:20929-35. [PMID: 9252421 DOI: 10.1074/jbc.272.33.20929] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Mr 8,000 light chain originally identified in Chlamydomonas flagellar dynein is also a component of both cytoplasmic dynein and myosin V. Furthermore, this small protein has been implicated as an inhibitor of neuronal nitric oxide synthase, suggesting that it may play multiple regulatory roles within the cell. Covalent cross-linking of both dynein and myosin V using 1,5-difluoro-2, 4-dinitrobenzene revealed that this light chain exists as a dimer in situ. This observation was confirmed using two additional amine-selective cross-linking reagents (dimethyl pimelimidate and disuccinimidyl suberate). When expressed as a C-terminal fusion with maltose-binding protein, the presence of the light chain caused the recombinant molecule to dimerize. Analysis of fusions containing truncated light chains identified the predicted amphiphilic helix (residues 14-32) as sufficient to cause dimerization; cross-linking required a second helical segment (residues 33-46). Together the data presented suggest that two light chains interact to form a parallel dimeric structure. This arrangement has significant implications for the potential functions of this highly conserved molecule and suggests a mechanism by which it might dissociate nitric oxide synthase.
Collapse
Affiliation(s)
- S E Benashski
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032-3305, USA
| | | | | | | |
Collapse
|
30
|
Koutoulis A, Pazour GJ, Wilkerson CG, Inaba K, Sheng H, Takada S, Witman GB. The Chlamydomonas reinhardtii ODA3 gene encodes a protein of the outer dynein arm docking complex. J Cell Biol 1997; 137:1069-80. [PMID: 9166407 PMCID: PMC2136212 DOI: 10.1083/jcb.137.5.1069] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/1997] [Revised: 04/04/1997] [Indexed: 02/04/2023] Open
Abstract
We have used an insertional mutagenesis/ gene tagging technique to generate new Chlamydomonas reinhardtii mutants that are defective in assembly of the uter ynein rm. Among 39 insertional oda mutants characterized, two are alleles of the previously uncloned ODA3 gene, one is an allele of the uncloned ODA10 gene, and one represents a novel ODA gene (termed ODA12). ODA3 is of particular interest because it is essential for assembly of both the outer dynein arm and the outer dynein arm docking complex (ODA-DC) onto flagellar doublet microtubules (Takada, S., and R. Kamiya. 1994. J. Cell Biol. 126:737- 745). Beginning with the inserted DNA as a tag, the ODA3 gene and a full-length cDNA were cloned. The cloned gene rescues the phenotype of oda3 mutants. The cDNA sequence predicts a novel 83. 4-kD protein with extensive coiled-coil domains. The ODA-DC contains three polypeptides; direct amino acid sequencing indicates that the largest of these polypeptides corresponds to ODA3. This protein is likely to have an important role in the precise positioning of the outer dynein arms on the flagellar axoneme.
Collapse
Affiliation(s)
- A Koutoulis
- Department of Plant Science, The University of Tasmania, Hobart TAS 7001 Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
Patel-King RS, Benashski SE, Harrison A, King SM. A Chlamydomonas homologue of the putative murine t complex distorter Tctex-2 is an outer arm dynein light chain. J Cell Biol 1997; 137:1081-90. [PMID: 9166408 PMCID: PMC2136226 DOI: 10.1083/jcb.137.5.1081] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/1996] [Revised: 02/26/1997] [Indexed: 02/04/2023] Open
Abstract
Molecular analysis of a 19,000-Mr protein from the Chlamydomonas flagellum reveals that it is homologous to the t complex-encoded protein Tctex-2, which is a candidate for one of the distorter products that cause the extreme transmission ratio distortion (meiotic drive) of the murine t complex. The 19,000-Mr protein is extracted from the axoneme with 0.6 M NaCl and comigrates with the outer dynein arm in sucrose density gradients. This protein also is specifically missing in axonemes prepared from a mutant that does not assemble the outer arm. These data raise the possibility that Tctex-2 is a sperm flagellar dynein component. Combined with the recent identification of Tctex-1 (another distorter candidate) as a light chain of cytoplasmic dynein, these results lead to a biochemical model for how differential defects in spermiogenesis that result in the phenomenon of meiotic drive might be generated in wild-type vs t-bearing sperm.
Collapse
Affiliation(s)
- R S Patel-King
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032-3305, USA
| | | | | | | |
Collapse
|
32
|
Abstract
Experimental investigation has provided a wealth of structural, biochemical, and physiological information regarding the motile mechanism of eukaryotic flagella/cilia. This chapter surveys the available literature, selectively focusing on three major objectives. First, it attempts to identify those conserved structural components essential to providing motile function in eukaryotic axonemes. Second, it examines the relationship between these structural elements to determine the interactions that are vital to the mechanism of flagellar/ciliary beating. Third, the vital principles of these interactions are incorporated into a tractable theoretical model, referred to as the Geometric Clutch, and this hypothetical scheme is examined to assess its compatibility with experimental observations.
Collapse
Affiliation(s)
- C B Lindemann
- Department of Biological Sciences, Oakland University, Rochester, Michigan 48309, USA
| | | |
Collapse
|
33
|
King SM, Dillman JF, Benashski SE, Lye RJ, Patel-King RS, Pfister KK. The mouse t-complex-encoded protein Tctex-1 is a light chain of brain cytoplasmic dynein. J Biol Chem 1996; 271:32281-7. [PMID: 8943288 DOI: 10.1074/jbc.271.50.32281] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mammalian brain cytoplasmic dynein contains three light chains of Mr = 8,000, 14,000, and 22,000 (King, S. M., Barbarese, E., Dillman, J. F., III, Patel-King, R. S., Carson, J. H., and Pfister, K. K. (1996) J. Biol. Chem. 271, 19358-19366). Peptide sequence data (16/16 residues correct) implicate the Mr = 14,000 polypeptide as Tctex-1, a protein encoded within the mouse t-complex. Tctex-1 cosediments with microtubules and is eluted with ATP or salt but not with GTP as expected for a dynein subunit. The ATP-eluted protein precisely cosediments with known cytoplasmic dynein proteins in sucrose density gradients. Tctex-1 also is immunoprecipitated from brain and other tissue homogenates by a monoclonal antibody raised against the 74-kDa cytoplasmic dynein intermediate chain. Quantitative densitometry indicates that Tctex-1 is a stoichiometric component of the dynein complex. As Tctex-1 is a candidate for involvement in the transmission ratio distortion (meiotic drive) of mouse t-haplotypes, these results suggest that cytoplasmic dynein dysfunction may play an important role in non-mendelian chromosome segregation.
Collapse
Affiliation(s)
- S M King
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032-3305, USA.
| | | | | | | | | | | |
Collapse
|
34
|
King SM, Barbarese E, Dillman JF, Patel-King RS, Carson JH, Pfister KK. Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr 8,000 light chain. J Biol Chem 1996; 271:19358-66. [PMID: 8702622 DOI: 10.1074/jbc.271.32.19358] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Sequence comparisons with the Mr 8,000 light chain from Chlamydomonas outer arm dynein revealed the presence of highly conserved homologues (up to 90% identity) in the expressed sequence tag data base (King, S. M. & Patel-King, R. S. (1995a) J. Biol. Chem. 270, 11445-11452). Several of these homologous sequences were derived from organisms and/or tissues that lack motile cilia/flagella, suggesting that these proteins may function in the cytoplasm. In Drosophila, lack of the homologous protein results in embryonic lethality (Dick, T., Ray, K., Salz, H. K. & Chia, W.(1996) Mol. Cell. Biol., 16, 1966-1977). Fractionation of mammalian brain homogenates reveals three distinct cytosolic pools of the homologous protein, one of which specifically copurifies with cytoplasmic dynein following both ATP-sensitive microtubule affinity/sucrose density gradient centrifugation and immunoprecipitation with a monoclonal antibody specific for the 74-kDa intermediate chain (IC74). Quantitative densitometry indicates that there is one copy of the Mr 8,000 polypeptide per IC74. Dual channel confocal immunofluorescent microscopy revealed that the Mr 8,000 protein is significantly colocalized with cytoplasmic dynein but not with kinesin in punctate structures (many of which are associated with microtubules) within mammalian oligodendrocytes. Thus, it appears that flagellar outer arm and brain cytoplasmic dyneins share a highly conserved light chain polypeptide that, at least in Drosophila, is essential for viability.
Collapse
Affiliation(s)
- S M King
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032-3305, USA
| | | | | | | | | | | |
Collapse
|
35
|
Gagnon C, White D, Cosson J, Huitorel P, Eddé B, Desbruyères E, Paturle-Lafanechère L, Multigner L, Job D, Cibert C. The polyglutamylated lateral chain of alpha-tubulin plays a key role in flagellar motility. J Cell Sci 1996; 109 ( Pt 6):1545-53. [PMID: 8799841 DOI: 10.1242/jcs.109.6.1545] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate whether a specific isotype of tubulin is involved in flagellar motility, we have developed and screened a panel of monoclonal antibodies (mAb) generated against sea urchin sperm axonemal proteins. Antibodies were selected for their ability to block the motility of permeabilized sperm models. The antitubulin mAb B3 completely inhibited, at low concentrations, the flagellar motility of permeabilized sperm models from four sea urchin species. On immunoblots, B3 recognized predominantly alpha-tubulin in sea urchin sperm axonemes and equally well brain alpha- and beta-tubulins. Subtilisin cleavage of tubulin removed the B3 epitope, indicating that it was restricted to the last 13 amino acid residues of the C-terminal domain of alpha-tubulin. In enzyme-linked immunosorbant assays, B3 reacted with glutamylated alpha-tubulin peptides from sea urchin or mouse brain but did not bind to the unmodified corresponding peptide, indicating that it recognized polyglutamylated motifs in the C-terminal domain of alpha-tubulin. On the other hand, other tubulin antibodies directed against various epitopes of the C-terminal domain, with the exception of the antipolyglutamylated mAb GT335, had no effect on motility while having binding properties similar to that of B3. B3 and GT335 acted by decreasing the beating amplitude without affecting the flagellar beat frequency. B3 and GT335 were also capable of inhibiting the motility of flagella of Oxyrrhis marina, a 400,000,000 year old species of dinoflagellate, and those of human sperm models. Localization of the antigens recognized by B3 and GT335 by immunofluorescence techniques revealed their presence along the whole axoneme of sea urchin spermatozoa and flagella of O. marina, except for the distal tip and the cortical microtubule network of the dinoflagellate. Taken together, the data reported here indicate that the polyglutamylated lateral chain of alpha-tubulin plays a dynamic role in a dynein-based motility process.
Collapse
Affiliation(s)
- C Gagnon
- Urology Research Laboratory, Royal Victoria Hospital, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Niclas J, Allan VJ, Vale RD. Cell cycle regulation of dynein association with membranes modulates microtubule-based organelle transport. J Biophys Biochem Cytol 1996; 133:585-93. [PMID: 8636233 PMCID: PMC2120815 DOI: 10.1083/jcb.133.3.585] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cytoplasmic dynein is a minus end-directed microtubule motor that performs distinct functions in interphase and mitosis. In interphase, dynein transports organelles along microtubules, whereas in metaphase this motor has been implicated in mitotic spindle formation and orientation as well as chromosome segregation. The manner in which dynein activity is regulated during the cell cycle, however, has not been resolved. In this study, we have examined the mechanism by which organelle transport is controlled by the cell cycle in extracts of Xenopus laevis eggs. Here, we show that photocleavage of the dynein heavy chain dramatically inhibits minus end-directed organelle transport and that purified dynein restores this motility, indicating that dynein is the predominant minus end-directed membrane motor in Xenopus egg extracts. By measuring the amount of dynein associated with isolated membranes, we find that cytoplasmic dynein and its activator dynactin detach from the membrane surface in metaphase extracts. The sevenfold decrease in membrane-associated dynein correlated well with the eightfold reduction in minus end-directed membrane transport observed in metaphase versus interphase extracts. Although dynein heavy or intermediate chain phosphorylation did not change in a cell cycle-dependent manner, the dynein light intermediate chain incorporated approximately 12-fold more radiolabeled phosphate in metaphase than in interphase extracts. These studies suggest that cell cycle-dependent phosphorylation of cytoplasmic dynein may regulate organelle transport by modulating the association of this motor with membranes.
Collapse
Affiliation(s)
- J Niclas
- Department of Pharmacology, University of California, San Francisco 94143, USA
| | | | | |
Collapse
|
37
|
Patel-King RS, Benashki SE, Harrison A, King SM. Two functional thioredoxins containg redox-senesitive vicinal dithiols from the Chlamydomonas outer dynein arm. J Biol Chem 1996; 271:6283-91. [PMID: 8626422 DOI: 10.1074/jbc.271.11.6283] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We describe here the molecular cloning and analysis of the Mr 14,000 and 16,000 outer arm dynein light chains (DLCs) from Chlamydomonas flagella. Within the outer arm, the Mr 14,000 DLC apparently is associated with the intermediate chains at the base of the soluble dynein particle; the Mr 16,000 DLC interacts directly with the a dynein heavy chain. Sequence analysis indicates that both molecules are novel members of the thioredoxin superfamily and share approximately 30% sequence identity with thioredoxin from Penicillium. Both DLCs have a perfect copy of the thioredoxin active site (WCGPCK); the Mr 16,000 DLC also contains the canonical P-loop motif (AX4GKS). There is a single gene for both DLCs within Chlamydomonas and only single messages that were upregulated more than 10-fold upon deflagellation were observed on Northern blots. Both recombinant DLCs were specifically eluted from a phenylarsine oxide matrix with beta-mercaptoethanol indicating that they contain vicinal dithiols competent to undergo reversible oxidation/reduction. Furthermore, we demonstrate that outer (but not inner) arm dynein may he purified on the basis of its affinity for phenylarsine oxide suggesting that the predicted redox-sensitive vicinal dithiols exist within the native complex.
Collapse
Affiliation(s)
- R S Patel-King
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032-3305, USA
| | | | | | | |
Collapse
|
38
|
Pfister KK, Salata MW, Dillman JF, Vaughan KT, Vallee RB, Torre E, Lye RJ. Differential expression and phosphorylation of the 74-kDa intermediate chains of cytoplasmic dynein in cultured neurons and glia. J Biol Chem 1996; 271:1687-94. [PMID: 8576170 DOI: 10.1074/jbc.271.3.1687] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The 74-kDa intermediate chains (IC74) of the cytoplasmic dynein complex are believed to be involved in the association of dynein with membranous organelles. While each dynein molecule is thought to have two or three IC74 subunits, at least six different IC74 protein isoforms were found in dynein from brain. Therefore we investigated the relationships of the brain cytoplasmic dynein IC74 isoforms and their association in the dynein complex at the cellular level. We found that cultured cortical neurons and glia express distinct IC74 isoforms. The IC74 isoform pattern observed in dynein from cortical neurons was generally similar to that found in dynein from adult brain, indicating that there are different populations of cytoplasmic dynein in neurons. Two IC74 isoforms were observed on two-dimensional gels of dynein from glia, while a single glial IC74 mRNA was detected. Metabolic labeling of glial dynein with 32P followed by treatment of the isolated dynein with phosphatase in vitro demonstrated that one of the glial IC74 isoforms is the product of the single glial IC74 mRNA and that the other is its phosphoisoform. A single mRNA product and its phosphoisoform are therefore sufficient for constitutive dynein function and regulation in glial cells.
Collapse
Affiliation(s)
- K K Pfister
- Cell Biology, Department School of Medicine, University of Virginia, Charlottesville 22908, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
King SM, Patel-King RS. Identification of a Ca(2+)-binding light chain within Chlamydomonas outer arm dynein. J Cell Sci 1995; 108 ( Pt 12):3757-64. [PMID: 8719882 DOI: 10.1242/jcs.108.12.3757] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe here the molecular cloning of the M(r) 18,000 dynein light chain from the outer arm of Chlamydomonas flagella. In vivo, this molecule is directly associated with the gamma dynein heavy chain. Sequence analysis indicates that this light chain is a novel member of the calmodulin superfamily of Ca2+ binding regulatory proteins; this molecule is 42, 37 and 36% identical to calmodulin, centrin/caltractin and troponin C, respectively, and also shows significant similarity to myosin light chains. Although four helix-loop-helix elements are evident, only two conform precisely to the EF hand consensus and are therefore predicted to bind Ca2+ in vivo. In vitro Ca2+ binding studies indicate that this dynein light chain (expressed as a C-terminal fusion with maltose binding protein) has at least one functional Ca2+ binding site with an apparent affinity for Ca2+ of approximately 3 × 10(−5) M. Within the Chlamydomonas flagellum, the transition from an assymmetric to a symmetric waveform (which implies an alteration in dynein activity) is mediated by an increase in intraflagellar Ca2+ from 10(−6) to 10(−1) M; this transition is altered in mutants that lack the outer arm. The data presented here suggest that a Ca(2+)-dependent alteration in the interaction of this dynein light chain with the motor containing heavy chain may affect outer arm function during flagellar reversal.
Collapse
Affiliation(s)
- S M King
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06030-3305, USA
| | | |
Collapse
|
40
|
King SM, Patel-King RS, Wilkerson CG, Witman GB. The 78,000-M(r) intermediate chain of Chlamydomonas outer arm dynein is a microtubule-binding protein. J Cell Biol 1995; 131:399-409. [PMID: 7593167 PMCID: PMC2199976 DOI: 10.1083/jcb.131.2.399] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A previous study (King et al., 1991. J. Biol. Chem. 266:8401-8407) showed that the 78,000-M(r) intermediate chain (IC78) from the Chlamydomonas outer arm dynein is in direct contact with alpha-tubulin in situ, suggesting that this protein may be involved in binding the dynein to the doublet microtubules. Molecular genetic analysis of this chain recently demonstrated that it is a WD repeat protein essential for outer arm assembly (Wilkerson et al., 1995.J. Cell Biol. 129:169-178). We have now transcribed and translated IC78 in vitro, and demonstrate that this molecule binds axonemes and microtubules, whereas a homologous protein (the 69,000-M(r) intermediate chain [IC69] of Chlamydomonas outer arm dynein) does not. Thus, IC78 is a bona fide microtubule-binding protein. Taken together with the previous results, these findings indicate that IC78 is likely to provide at least some of the adhesive force that holds the dynein to the doublet microtubule, and support the general hypothesis that the dynein intermediate chains are involved in targeting different dyneins to the specific cell organelles with which they associate. Analysis of the binding activities of various IC78 deletion constructs translated in vitro identified discrete regions of IC78 that affected the binding to microtubules; two of these regions are specifically missing in IC69. Previous studies also showed that IC78 is in direct contact with IC69; the current work indicates that the region of IC78 that mediates this interaction is coincident with two of IC78's WD repeats. This supports the hypothesis that these repeats are involved in protein-protein interactions within the dynein complex.
Collapse
Affiliation(s)
- S M King
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032, USA
| | | | | | | |
Collapse
|
41
|
Ogawa K, Kamiya R, Wilkerson CG, Witman GB. Interspecies conservation of outer arm dynein intermediate chain sequences defines two intermediate chain subclasses. Mol Biol Cell 1995; 6:685-96. [PMID: 7579688 PMCID: PMC301229 DOI: 10.1091/mbc.6.6.685] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Immunological analysis showed that antibodies against the intermediate chains (ICs) IC2 and IC3 of sea urchin outer arm dynein specifically cross-reacted with intermediate chains IC78 and IC69, respectively, of Chlamydomonas outer arm dynein. In contrast, no specific cross-reactivity with any Chlamydomonas outer arm polypeptide was observed using antibody against IC1 of sea urchin outer arm dynein. To learn more about the relationships between the different ICs, overlapping cDNAs encoding all of IC2 and IC3 of sea urchin were isolated and sequenced. Comparison of these sequences with those previously obtained for the Chlamydomonas ICs revealed that, although all four chains are homologous, sea urchin IC2 is much more closely related to Chlamydomonas IC78 (45.8% identity), and sea urchin IC3 is much more closely related to Chlamydomonas IC69 (48.5% identity), than either sea urchin chain is related to the other (23.5% identity). For homologous pairs, the similarities extend throughout the full lengths of the chains. Regions of similarity between all four ICs and the IC (IC74) of cytoplasmic dynein, located in the C-terminal halves of the chains, are due primarily to conservation of the WD repeats present in all of these ICs. This is the first demonstration that structural differences between individual ICs within an outer arm dynein have been highly conserved in the dyneins of distantly related species. The results provide a basis for the subclassification of these chains.
Collapse
Affiliation(s)
- K Ogawa
- Department of Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | |
Collapse
|
42
|
King SM, Patel-King RS. The M(r) = 8,000 and 11,000 outer arm dynein light chains from Chlamydomonas flagella have cytoplasmic homologues. J Biol Chem 1995; 270:11445-52. [PMID: 7744782 DOI: 10.1074/jbc.270.19.11445] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We report here the molecular cloning of the M(r) = 8,000 and 11,000 dynein light chains (DLCs) from the outer arm of Chlamydomonas flagella. These two molecules, which are associated with the intermediate chains at the base of the soluble dynein particle, have predicted masses of 10.3 and 13.8 kDa, respectively, and are 40% identical. Southern blot analysis indicates that one gene exists for each DLC in the Chlamydomonas genome and only a single message was observed for each on Northern blots. Secondary structure predictions suggest that both molecules contain a highly amphiphilic alpha helix that is presumably involved in protein-protein interactions. Several DLC homologues were identified in the GenBank databases. One, predicted from the genomic sequence of Caenorhabditis elegans, is 88.8% identical with the M(r) = 8,000 Chlamydomonas DLC. A second, from rice callus cDNA, is 47% identical with the same DLC. As neither nematodes nor higher plants have motile cilia or flagella at any stage of their life cycles, these DLC homologues presumably must function within the cytoplasm where they may represent previously unrecognized components of cytoplasmic dynein.
Collapse
Affiliation(s)
- S M King
- Department of Biochemistry, University of Connecticut Health Center, Farmington 06032-3305, USA
| | | |
Collapse
|
43
|
Wilkerson CG, King SM, Koutoulis A, Pazour GJ, Witman GB. The 78,000 M(r) intermediate chain of Chlamydomonas outer arm dynein isa WD-repeat protein required for arm assembly. J Biophys Biochem Cytol 1995; 129:169-78. [PMID: 7698982 PMCID: PMC2120364 DOI: 10.1083/jcb.129.1.169] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have isolated and sequenced a full-length cDNA clone encoding the 78,000 Mr intermediate chain (IC78) of the Chlamydomonas outer arm dynein. This protein previously was shown to be located at the base of the solubilized dynein particle and to interact with alpha tubulin in situ, suggesting that it may be involved in binding the outer arm to the doublet microtubule. The sequence predicts a polypeptide of 683 amino acids having a mass of 76.5 kD. Sequence comparison indicates that IC78 is homologous to the 69,000 M(r) intermediate chain (IC69) of Chlamydomonas outer arm dynein and to the 74,000 M(r) intermediate chain (IC74) of cytoplasmic dynein. The similarity between the chains is greatest in their COOH-terminal halves; the NH(2)-terminal halves are highly divergent. The COOH-terminal half of IC78 contains six short imperfect repeats, termed WD repeats, that are thought to be involved in protein-protein interactions. Although not previously reported, these repeated elements also are present in IC69 and IC74. Using the IC78 cDNA as a probe, we screened a group of slow-swimming insertional mutants and identified one which has a large insertion in the IC78 gene and seven in which the IC78 gene is completely deleted. Electron microscopy of three of these IC78 mutants revealed that each is missing the outer arm, indicating that IC78 is essential for arm assembly or attachment to the outer doublet. Restriction fragment length polymorphism mapping places the IC78 gene on the left arm of chromosome XII/XIII, at or near the mutation oda9, which also causes loss of the outer arm. Mutants with defects in the IC78 gene do not complement the oda9 mutation in stable diploids, strongly suggesting that ODA9 is the structural gene for IC78.
Collapse
Affiliation(s)
- C G Wilkerson
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | | | | | | | |
Collapse
|
44
|
Takada S, Kamiya R. Functional reconstitution of Chlamydomonas outer dynein arms from alpha-beta and gamma subunits: requirement of a third factor. J Biophys Biochem Cytol 1994; 126:737-45. [PMID: 8045937 PMCID: PMC2120151 DOI: 10.1083/jcb.126.3.737] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The outer dynein arm of Chlamydomonas flagella, when isolated under Mg(2+)-free conditions, tends to dissociate into an 11 to 12S particle (12S dynein) containing the gamma heavy chain and a 21S particle (called 18S dynein) containing the alpha and beta heavy chains. We show here that functional outer arms can be reconstituted by the addition of 12S and 18S dyneins to the axonemes of the outer armless mutants oda1-oda6. A third factor that sediments at integral 7S is required for efficient reconstitution of the outer arms on the axonemes of oda1 and oda3. However, this factor is not necessary for reconstitution on the axonemes of oda2, oda4, oda5, and oda6. SDS-PAGE analysis indicates that the axonemes of the former two mutants lack a integral of 70-kD polypeptide that is present in those of the other mutants as well as in the 7S fraction from the wild-type extract. Furthermore, electron micrographs of axonemal cross sections revealed that the latter four mutants, but not oda1 or oda3, have small pointed structures on the outer doublets, at a position in cross section where outer arms normally occur. We suggest that the 7S factor constitutes the pointed structure on the outer doublets and facilitates attachment of the outer arm. The discovery of this structure raises a new question as to how the attachment site for the outer arm dynein is determined within the axoneme.
Collapse
Affiliation(s)
- S Takada
- Department of Molecular Biology, School of Science, Nagoya University, Japan
| | | |
Collapse
|
45
|
Gill SR, Cleveland DW, Schroer TA. Characterization of DLC-A and DLC-B, two families of cytoplasmic dynein light chain subunits. Mol Biol Cell 1994; 5:645-54. [PMID: 7949421 PMCID: PMC301080 DOI: 10.1091/mbc.5.6.645] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cytoplasmic dynein is a minus-end-directed, microtubule-dependent motor composed of two heavy chains (approximately 530 kDa), three intermediate chains (approximately 74 kDa), and a family of approximately 52-61 kDa light chains. Although the approximately 530 kDa subunit contains the motor and microtubule binding domains of the complex, the functions of the smaller subunits are not known. Using two-dimensional gel electrophoresis and proteolytic mapping, we show here that the light chains are composed of two major families, a higher M(r) family (58, 59, 61 kDa; dynein light chain group A [DLC-A]) and lower M(r) family (52, 53, 55, 56 kDa; dynein light chain group B [DLC-B]). Dissociation of the cytoplasmic dynein complex with potassium iodide reveals that all light chain polypeptides are tightly associated with the approximately 530 kDa heavy chain, whereas the approximately 74 kDa intermediate chain polypeptides are more readily extracted. Treatment with alkaline phosphatase alters the mobility of four of the light chain polypeptides, indicating that these subunits are phosphorylated. Sequencing of a cDNA clone encoding one member of the DLC-A family reveals a predicted globular structure that is not homologous to any known protein but does contain numerous potential phosphorylation sites and a consensus nucleotide-binding motif.
Collapse
Affiliation(s)
- S R Gill
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | | | |
Collapse
|
46
|
Mitchell DR, Brown KS. Sequence analysis of the Chlamydomonas alpha and beta dynein heavy chain genes. J Cell Sci 1994; 107 ( Pt 3):635-44. [PMID: 8006077 DOI: 10.1242/jcs.107.3.635] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We have sequenced genomic clones spanning the complete coding region of one heavy chain (beta) and the catalytic domain of a second (alpha) of the Chlamydomonas reinhardtii flagellar outer arm dynein ATPase. The beta heavy chain gene (ODA-4 locus) spans 20 kb, is divided into at least 30 exons, and encodes a predicted 520 kDa protein. Comparison with sea urchin beta dynein sequences reveals homology that extends throughout both proteins. Over the most conserved central catalytic region, the Chlamydomonas alpha and beta chains are equally divergent from the sea urchin beta chain (64% and 65% similarity, respectively), whereas the Chlamydomonas gamma chain is more divergent from urchin beta (54% similarity). The four glycine-rich loops identified as potential nucleotide-binding sites in other dynein heavy chains are also present in Chlamydomonas alpha and beta dyneins. Two of these four nucleotide-binding motifs are highly conserved among flagellar dyneins, but only the motif previously identified as the catalytic site in sea urchin dynein is highly conserved between flagellar and cytoplasmic dynein heavy chains. Predictions of secondary structure suggest that all dynein heavy chains possess three large domains, with the four nucleotide-binding consensus sequences located in a central 185 kDa domain that is bounded on both sides by regions that form multiple, short alpha-helical coiled-coils.
Collapse
Affiliation(s)
- D R Mitchell
- Department of Anatomy and Cell Biology, SUNY Health Science Center, Syracuse 13210
| | | |
Collapse
|
47
|
Affiliation(s)
- D R Mitchell
- Department of Anatomy and Cell Biology, SUNY Health Science Center, Syracuse 13210
| |
Collapse
|
48
|
|
49
|
Abstract
Dynein is a large enzyme complex that has been found in recent years to be responsible for a variety of forms of intracellular movement associated with microtubules. Molecular analysis of several of the polypeptide components of dynein and a related complex has provided important new insight into their structural organization and mechanism of action in the cell.
Collapse
Affiliation(s)
- R Vallee
- Cell Biology Group, Worcester Foundation for Experimental Biology, Shrewsbury, MA 01545
| |
Collapse
|
50
|
Sakakibara H, Takada S, King SM, Witman GB, Kamiya R. A Chlamydomonas outer arm dynein mutant with a truncated beta heavy chain. J Cell Biol 1993; 122:653-61. [PMID: 8335691 PMCID: PMC2119660 DOI: 10.1083/jcb.122.3.653] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A new allele of the Chlamydomonas oda4 flagellar mutant (oda4-s7) possessing abnormal outer dynein arms was isolated. Unlike the previously described oda4 axoneme lacking all three (alpha, beta, and gamma) outer-arm dynein heavy chains, the oda4-s7 axoneme contains the alpha and gamma heavy chains and a novel peptide with a molecular mass of approximately 160 kD. The peptide reacts with a mAb (18 beta B) that recognizes an epitope on the NH2-terminal part of the beta heavy chain. These observations indicate that this mutant has a truncated beta heavy chain, and that the NH2-terminal part of the beta heavy chain is important for the stable assembly of the outer arms. In averaged electron microscopic images of outer arms from cross sections of axonemes, the mutant outer arm lacks its mid-portion, producing a forked appearance. Together with our previous finding that the mutant oda11 lacks the alpha heavy chain and the outermost portion of the arm (Sakakibara, H., D. R. Mitchell, and R. Kamiya. 1991. J. Cell Biol. 113:615-622), this result defines the approximate locations of the three outer arm heavy chains in the axonemal cross section. The swimming velocity of oda4-s7 is 65 +/- 8 microns/s, close to that of oda4 which lacks the entire outer arm (62 +/- 8 microns/s) but significantly lower than the velocities of wild type (194 +/- 23 microns/s) and oda11 (119 +/- 17 microns/s). Thus, the lack of the beta heavy chain impairs outer-arm function more seriously than does the lack of the alpha heavy chain, suggesting that the alpha and beta chains play different roles in outer arm function.
Collapse
|