1
|
Ang CG, Hyatt NL, Le Minh G, Gupta M, Kadam M, Hogg PJ, Smith AB, Chaiken IM. Conformational activation and disulfide exchange in HIV-1 Env induce cell-free lytic/fusogenic transformation and enhance infection. J Virol 2025:e0147124. [PMID: 39912667 DOI: 10.1128/jvi.01471-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/21/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025] Open
Abstract
Disulfide exchange is underexplored as a mechanism influencing HIV-1 entry. Prior studies demonstrated that redox enzyme inhibition can prevent HIV-1 infection but with limited mechanistic explanation. We hypothesize that ligand-driven rearrangement ("conformational activation") enables enzyme-mediated disulfide exchange in Env residues ("disulfide trigger") that promotes fusion transformations, enhancing virus entry. We tested soluble CD4 and CD4-binding site entry inhibitors as conformational activators and the ubiquitous redox enzyme thioredoxin-1 (Trx1) as disulfide trigger. We found that combination treatment caused fusion-like Env transformation and pseudovirus lysis, independent of cells. Notably, only compounds associated with gp120 shedding caused lysis when paired with Trx1. In each case, lysis was prevented by adding the fusion inhibitor T20, demonstrating that six-helix bundle formation is required as in virus-cell fusion. In contrast to conformationally activating ligands, neither the ground state stabilizer BMS-806 with Trx1 nor Trx1 alone caused lysis. Order of addition experiments reinforced conformational activation/disulfide trigger as a sequential process, with virus/activator preincubation transiently enhancing lysis and virus/Trx1 preincubation reducing lysis. Lastly, addition of exogenous Trx1 to typical pseudovirus infections exhibited dose-dependent enhancement of infection. Altogether, these data support conformational activation and disulfide triggering as a mechanism that can induce and enhance the fusogenic transformation of Env.IMPORTANCEHIV remains a global epidemic despite effective anti-retroviral therapies (ART) that suppress viral replication. Damage from early-stage infection and immune cell depletion lingers, as ART enables only partial immune system recovery, making prevention of initial virus entry preferable. In this study, we investigate disulfide exchange and its facilitating conformational rearrangements as underexplored, but critical, events in the HIV entry process. The HIV envelope (Env) protein effects cell entry by conformational rearrangement and pore formation upon interaction with immune cell surface proteins, but this transformation can be induced by Env's conformational activation and disulfide exchange by redox enzymes, which then integrates into established processes of HIV entry. The significance of this research is in identifying Env's conformational activation as a mechanistic requirement for initiating fusion by triggering disulfide exchange. This will aid the development of novel preventative strategies against HIV entry, particularly in the context of HIV-enhanced inflammation and comorbidities with redox mechanisms.
Collapse
Affiliation(s)
- Charles G Ang
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Nadia L Hyatt
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Giang Le Minh
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Monisha Gupta
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
- Department of Chemistry, College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania, USA
| | - Manali Kadam
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Philip J Hogg
- School of Life Sciences, University of Technology Sydney and Centenary Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Amos B Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Irwin M Chaiken
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Farghaly TA, Masaret GS, Riyadh SM, Harras MF. A Literature Review Focusing on the Antiviral Activity of [1,2,4] and [1,2,3]-triazoles. Mini Rev Med Chem 2024; 24:1602-1629. [PMID: 38008942 DOI: 10.2174/0113895575277122231108095511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 11/28/2023]
Abstract
Out of a variety of heterocycles, triazole scaffolds have been shown to play a significant part in a wide array of biological functions. Many drug compounds containing a triazole moiety with important antimicrobial, anticancer and antidepressant properties have been commercialized. In addition, the triazole scaffold exhibits remarkable antiviral activity either incorporated into nucleoside analogs or non-nucleosides. Many synthetic techniques have been produced by scientists around the world as a result of their wide-ranging biological function. In this review, we have tried to summarize new synthetic methods produced by diverse research groups as well as provide a comprehensive description of the function of [1,2,4] and [1,2,3]-triazole derivatives as antiviral agents. Antiviral triazole compounds have been shown to target a wide variety of molecular proteins. In addition, several strains of viruses, including the human immunodeficiency virus, SARS virus, hepatitis B and C viruses, influenza virus, Hantavirus, and herpes virus, were discovered to be susceptible to triazole derivatives. This review article covered the reports for antiviral activity of both 1,2,3- and 1,2,4-triazole moieties up to 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Sayed M Riyadh
- Chemistry Department, Faculty of Science, University of Cairo, Giza 12613, Egypt
| | - Marwa F Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Gupta M, Canziani G, Ang C, Mohammadi M, Abrams CF, Yang D, Smith AB, Chaiken I. Pharmacophore Variants of the Macrocyclic Peptide Triazole Inactivator of HIV-1 Env. RESEARCH SQUARE 2023:rs.3.rs-2814722. [PMID: 37131733 PMCID: PMC10153383 DOI: 10.21203/rs.3.rs-2814722/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/04/2023]
Abstract
Previously we established a family of macrocyclic peptide triazoles (cPTs) that inactivate the Env protein complex of HIV-1, and identified the pharmacophore that engages Env's receptor binding pocket. Here, we examined the hypothesis that the side chains of both components of the triazole Pro - Trp segment of cPT pharmacophore work in tandem to make intimate contacts with two proximal subsites of the overall CD4 binding site of gp120 to stabilize binding and function. Variations of the triazole Pro R group, which previously had been significantly optimized, led to identification of a variant MG-II-20 that contains a pyrazole substitution. MG-II-20 has improved functional properties over previously examined variants, with Kd for gp120 in the nM range. In contrast, new variants of the Trp indole side chain, with either methyl- or bromo- components appended, had disruptive effects on gp120 binding, reflecting the sensitivity of function to changes in this component of the encounter complex. Plausible in silico models of cPT:gp120 complex structures were obtained that are consistent with the overall hypothesisof occupancy by the triazole Pro and Trp side chains, respectively, into the β20/21 and Phe43 sub-cavities. The overall results strengthen the definition of the cPT-Env inactivator binding site and provide a new lead composition (MG-II-20) as well as structure-function findings to guide future HIV-1 Env inactivator design.
Collapse
Affiliation(s)
- Monisha Gupta
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19102, United States
- Department of Chemistry, College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Gabriela Canziani
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Charles Ang
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Mohammadjavad Mohammadi
- Department of Chemical & Biological Engineering, College of Engineering, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Cameron F Abrams
- Department of Chemical & Biological Engineering, College of Engineering, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Derek Yang
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amos B Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
4
|
Carter EP, Ang CG, Chaiken IM. Peptide Triazole Inhibitors of HIV-1: Hijackers of Env Metastability. Curr Protein Pept Sci 2023; 24:59-77. [PMID: 35692162 PMCID: PMC11660822 DOI: 10.2174/1389203723666220610120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022]
Abstract
With 1.5 million new infections and 690,000 AIDS-related deaths globally each year, HIV- 1 remains a pathogen of significant public health concern. Although a wide array of effective antiretroviral drugs have been discovered, these largely target intracellular stages of the viral infectious cycle, and inhibitors that act at or before the point of viral entry still require further advancement. A unique class of HIV-1 entry inhibitors, called peptide triazoles (PTs), has been developed, which irreversibly inactivates Env trimers by exploiting the protein structure's innate metastable nature. PTs, and a related group of inhibitors called peptide triazole thiols (PTTs), are peptide compounds that dually engage the CD4 receptor and coreceptor binding sites of Env's gp120 subunit. This triggers dramatic conformational rearrangements of Env, including the shedding of gp120 (PTs and PTTs) and lytic transformation of the gp41 subunit to a post-fusion-like arrangement (PTTs). Due to the nature of their dual receptor site engagement, PT/PTT-induced conformational changes may elucidate mechanisms behind the native fusion program of Env trimers following receptor and coreceptor engagement, including the role of thiols in fusion. In addition to inactivating Env, PTT-induced structural transformation enhances the exposure of important and conserved neutralizable regions of gp41, such as the membrane proximal external region (MPER). PTT-transformed Env could present an intriguing potential vaccine immunogen prototype. In this review, we discuss the origins of the PT class of peptide inhibitors, our current understanding of PT/PTT-induced structural perturbations and viral inhibition, and prospects for using these antagonists for investigating Env structural mechanisms and for vaccine development.
Collapse
Affiliation(s)
- Erik P. Carter
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Charles G. Ang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
5
|
Peptide-Based HIV Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:15-26. [DOI: 10.1007/978-981-16-8702-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
|
6
|
Chaturvedi P, Kelich P, Nitka TA, Vuković L. Computational Modeling of the Virucidal Inhibition Mechanism for Broad-Spectrum Antiviral Nanoparticles and HPV16 Capsid Segments. J Phys Chem B 2021; 125:13122-13131. [PMID: 34845905 DOI: 10.1021/acs.jpcb.1c07436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/31/2023]
Abstract
Solid core nanoparticles (NPs) coated with sulfonated ligands that mimic heparan sulfate proteoglycans (HSPGs) can exhibit virucidal activity against many viruses that utilize HSPG interactions with host cells for the initial stages of infection. How the interactions of these NPs with large capsid segments of HSPG-interacting viruses lead to their virucidal activity has been unclear. Here, we describe the interactions between sulfonated NPs and segments of the human papilloma virus type 16 (HPV16) capsids using atomistic molecular dynamics simulations. The simulations demonstrate that the NPs primarily bind at the interfaces of two HPV16 capsid proteins. After equilibration, the distances and angles between capsid proteins in the capsid segments are larger for the systems in which the NPs bind at the interfaces of capsid proteins. Over time, NP binding can lead to breaking of contacts between two neighboring proteins. The revealed mechanism of NPs targeting the interfaces between pairs of capsid proteins can be utilized for designing new generations of virucidal materials and contribute to the development of new broad-spectrum non-toxic virucidal materials.
Collapse
Affiliation(s)
- Parth Chaturvedi
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Tara A Nitka
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Lela Vuković
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
7
|
Zhang S, Holmes AP, Dick A, Rashad AA, Enríquez Rodríguez L, Canziani GA, Root MJ, Chaiken IM. Altered Env conformational dynamics as a mechanism of resistance to peptide-triazole HIV-1 inactivators. Retrovirology 2021; 18:31. [PMID: 34627310 PMCID: PMC8501640 DOI: 10.1186/s12977-021-00575-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We previously developed drug-like peptide triazoles (PTs) that target HIV-1 Envelope (Env) gp120, potently inhibit viral entry, and irreversibly inactivate virions. Here, we investigated potential mechanisms of viral escape from this promising class of HIV-1 entry inhibitors. RESULTS HIV-1 resistance to cyclic (AAR029b) and linear (KR13) PTs was obtained by dose escalation in viral passaging experiments. High-level resistance for both inhibitors developed slowly (relative to escape from gp41-targeted C-peptide inhibitor C37) by acquiring mutations in gp120 both within (Val255) and distant to (Ser143) the putative PT binding site. The similarity in the resistance profiles for AAR029b and KR13 suggests that the shared IXW pharmacophore provided the primary pressure for HIV-1 escape. In single-round infectivity studies employing recombinant virus, V255I/S143N double escape mutants reduced PT antiviral potency by 150- to 3900-fold. Curiously, the combined mutations had a much smaller impact on PT binding affinity for monomeric gp120 (four to ninefold). This binding disruption was entirely due to the V255I mutation, which generated few steric clashes with PT in molecular docking. However, this minor effect on PT affinity belied large, offsetting changes to association enthalpy and entropy. The escape mutations had negligible effect on CD4 binding and utilization during entry, but significantly altered both binding thermodynamics and inhibitory potency of the conformationally-specific, anti-CD4i antibody 17b. Moreover, the escape mutations substantially decreased gp120 shedding induced by either soluble CD4 or AAR029b. CONCLUSIONS Together, the data suggest that the escape mutations significantly modified the energetic landscape of Env's prefusogenic state, altering conformational dynamics to hinder PT-induced irreversible inactivation of Env. This work therein reveals a unique mode of virus escape for HIV-1, namely, resistance by altering the intrinsic conformational dynamics of the Env trimer.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Andrew P Holmes
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Gabriela A Canziani
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Michael J Root
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, OH, Columbus, USA.
| | - Irwin M Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Ang CG, Carter E, Haftl A, Zhang S, Rashad AA, Kutzler M, Abrams CF, Chaiken IM. Peptide Triazole Thiol Irreversibly Inactivates Metastable HIV-1 Env by Accessing Conformational Triggers Intrinsic to Virus-Cell Entry. Microorganisms 2021; 9:1286. [PMID: 34204725 PMCID: PMC8231586 DOI: 10.3390/microorganisms9061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
KR13, a peptide triazole thiol previously established to inhibit HIV-1 infection and cause virus lysis, was evaluated by flow cytometry against JRFL Env-presenting cells to characterize induced Env and membrane transformations leading to irreversible inactivation. Transiently transfected HEK293T cells were preloaded with calcein dye, treated with KR13 or its thiol-blocked analogue KR13b, fixed, and stained for gp120 (35O22), MPER (10E8), 6-helix-bundle (NC-1), immunodominant loop (50-69), and fusion peptide (VRC34.01). KR13 induced dose-dependent transformations of Env and membrane characterized by transient poration, MPER exposure, and 6-helix-bundle formation (analogous to native fusion events), but also reduced immunodominant loop and fusion peptide exposure. Using a fusion peptide mutant (V504E), we found that KR13 transformation does not require functional fusion peptide for poration. In contrast, simultaneous treatment with fusion inhibitor T20 alongside KR13 prevented membrane poration and MPER exposure, showing that these events require 6-helix-bundle formation. Based on these results, we formulated a model for PTT-induced Env transformation portraying how, in the absence of CD4/co-receptor signaling, PTT may provide alternate means of perturbing the metastable Env-membrane complex, and inducing fusion-like transformation. In turn, the results show that such transformations are intrinsic to Env and can be diverted for irreversible inactivation of the protein complex.
Collapse
Affiliation(s)
- Charles Gotuaco Ang
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19102, USA
| | - Erik Carter
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- Departments of Medicine and Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA;
| | - Ann Haftl
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- Department of Chemistry, College of Arts and Sciences, Drexel University, Philadelphia, PA 19102, USA
| | - Shiyu Zhang
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19102, USA
| | - Adel A. Rashad
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
| | - Michele Kutzler
- Departments of Medicine and Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA;
| | - Cameron F. Abrams
- Department of Chemical and Biological Engineering, College of Engineering, Drexel University, Philadelphia, PA 19102, USA;
| | - Irwin M. Chaiken
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA; (E.C.); (A.H.); (S.Z.); (A.A.R.)
| |
Collapse
|
9
|
Feng LS, Zheng MJ, Zhao F, Liu D. 1,2,3-Triazole hybrids with anti-HIV-1 activity. Arch Pharm (Weinheim) 2020; 354:e2000163. [PMID: 32960467 DOI: 10.1002/ardp.202000163] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) is the major etiological agent responsible for the acquired immunodeficiency syndrome (AIDS), which is a serious infectious disease and remains one of the most prevalent problems at present. Currently, combined antiretroviral therapy is the primary modality for the treatment and management of HIV/AIDS, but the long-term use can result in major drawbacks such as the development of multidrug-resistant viruses and multiple side effects. 1,2,3-Triazole is the common framework in the development of new drugs, and its derivatives have the potential to inhibit various HIV-1 enzymes such as reverse transcriptase, integrase, and protease, consequently possessing a potential anti-HIV-1 activity. This review covers the recent advances regarding the 1,2,3-triazole hybrids with potential anti-HIV-1 activity; it focuses on the chemical structures, structure-activity relationship, and mechanisms of action, covering articles published from 2010 to 2020.
Collapse
Affiliation(s)
| | | | | | - Duan Liu
- WuXi AppTec Co., Ltd., Wuhan, China
| |
Collapse
|
10
|
Su X, Wang Q, Wen Y, Jiang S, Lu L. Protein- and Peptide-Based Virus Inactivators: Inactivating Viruses Before Their Entry Into Cells. Front Microbiol 2020; 11:1063. [PMID: 32523582 PMCID: PMC7261908 DOI: 10.3389/fmicb.2020.01063] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2019] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Infectious diseases caused by human immunodeficiency virus (HIV) and other highly pathogenic enveloped viruses, have threatened the global public health. Most antiviral drugs act as passive defenders to inhibit viral replication inside the cell, while a few of them function as gate keepers to combat viruses outside the cell, including fusion inhibitors, e.g., enfuvirtide, and receptor antagonists, e.g., maraviroc, as well as virus inactivators (including attachment inhibitors). Different from fusion inhibitors and receptor antagonists that must act in the presence of target cells, virus inactivators can actively inactivate cell-free virions in the blood, through interaction with one or more sites in the envelope glycoproteins (Envs) on virions. Notably, a number of protein- and peptide-based virus inactivators (PPVIs) under development are expected to have a better utilization rate than the current antiviral drugs and be safer for in vivo human application than the chemical-based virus inactivators. Here we have highlighted recent progress in developing PPVIs against several important enveloped viruses, including HIV, influenza virus, Zika virus (ZIKV), dengue virus (DENV), and herpes simplex virus (HSV), and the potential use of PPVIs for urgent treatment of infection by newly emerging or re-emerging viruses.
Collapse
Affiliation(s)
- Xiaojie Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yumei Wen
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Darvish A, Lee JS, Peng B, Saharia J, Sundaram RVK, Goyal G, Bandara N, Ahn CW, Kim J, Dutta P, Chaiken I, Kim MJ. Mechanical characterization of HIV-1 with a solid-state nanopore sensor. Electrophoresis 2019; 40:776-783. [PMID: 30151981 PMCID: PMC7400684 DOI: 10.1002/elps.201800311] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Enveloped viruses fuse with cells to transfer their genetic materials and infect the host cell. Fusion requires deformation of both viral and cellular membranes. Since the rigidity of viral membrane is a key factor in their infectivity, studying the rigidity of viral particles is of great significance in understating viral infection. In this paper, a nanopore is used as a single molecule sensor to characterize the deformation of pseudo-type human immunodeficiency virus type 1 at sub-micron scale. Non-infective immature viruses were found to be more rigid than infective mature viruses. In addition, the effects of cholesterol and membrane proteins on the mechanical properties of mature viruses were investigated by chemically modifying the membranes. Furthermore, the deformability of single virus particles was analyzed through a recapturing technique, where the same virus was analyzed twice. The findings demonstrate the ability of nanopore resistive pulse sensing to characterize the deformation of a single virus as opposed to average ensemble measurements.
Collapse
Affiliation(s)
- Armin Darvish
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Jung Soo Lee
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Bin Peng
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Jugal Saharia
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Ramalingam Venkat Kalyana Sundaram
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Nuwan Bandara
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Chi Won Ahn
- Nano-Materials Laboratory, National NanoFab Center, Daejeon, Republic of Korea
| | - Jungsuk Kim
- Department of Biomedical Engineering, Gachon University, Incheon, Republic of Korea
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
12
|
Aneja R, Grigoletto A, Nangarlia A, Rashad AA, Wrenn S, Jacobson JM, Pasut G, Chaiken I. Pharmacokinetic stability of macrocyclic peptide triazole HIV-1 inactivators alone and in liposomes. J Pept Sci 2019; 25:e3155. [PMID: 30809901 DOI: 10.1002/psc.3155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/16/2022]
Abstract
Previously, we reported the discovery of macrocyclic peptide triazoles (cPTs) that bind to HIV-1 Env gp120, inhibit virus cell infection with nanomolar potencies, and cause irreversible virion inactivation. Given the appealing virus-killing activity of cPTs and resistance to protease cleavage observed in vitro, we here investigated in vivo pharmacokinetics of the cPT AAR029b. AAR029b was investigated both alone and encapsulated in a PEGylated liposome formulation that was designed to slowly release inhibitor. Pharmacokinetic analysis in rats showed that the half-life of FITC-AAR029b was substantial both alone and liposome-encapsulated, 2.92 and 8.87 hours, respectively. Importantly, liposome-encapsulated FITC-AAR029b exhibited a 15-fold reduced clearance rate from serum compared with the free FITC-cPT. This work thus demonstrated both the in vivo stability of cPT alone and the extent of pharmacokinetic enhancement via liposome encapsulation. The results obtained open the way to further develop cPTs as long-acting HIV-1 inactivators against HIV-1 infection.
Collapse
Affiliation(s)
- Rachna Aneja
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Antonella Grigoletto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Aakansha Nangarlia
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA.,School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Steven Wrenn
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, PA, USA
| | - Jeffrey M Jacobson
- Departments of Medicine and Neuroscience and Center of Translational AIDS Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Gianfranco Pasut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
13
|
Rashad AA, Song LR, Holmes AP, Acharya K, Zhang S, Wang ZL, Gary E, Xie X, Pirrone V, Kutzler MA, Long YQ, Chaiken I. Bifunctional Chimera That Coordinately Targets Human Immunodeficiency Virus 1 Envelope gp120 and the Host-Cell CCR5 Coreceptor at the Virus-Cell Interface. J Med Chem 2018; 61:5020-5033. [PMID: 29767965 DOI: 10.1021/acs.jmedchem.8b00477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
To address the urgent need for new agents to reduce the global occurrence and spread of AIDS, we investigated the underlying hypothesis that antagonists of the HIV-1 envelope (Env) gp120 protein and the host-cell coreceptor (CoR) protein can be covalently joined into bifunctional synergistic combinations with improved antiviral capabilities. A synthetic protocol was established to covalently combine a CCR5 small-molecule antagonist and a gp120 peptide triazole antagonist to form the bifunctional chimera. Importantly, the chimeric inhibitor preserved the specific targeting properties of the two separate chimera components and, at the same time, exhibited low to subnanomolar potencies in inhibiting cell infection by different pseudoviruses, which were substantially greater than those of a noncovalent mixture of the individual components. The results demonstrate that targeting the virus-cell interface with a single molecule can result in improved potencies and also the introduction of new phenotypes to the chimeric inhibitor, such as the irreversible inactivation of HIV-1.
Collapse
Affiliation(s)
| | - Li-Rui Song
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Science , Shanghai 201203 , China.,College of Pharmaceutical Sciences , Soochow University Medical College , Suzhou 215123 , China.,University of Chinese Academy of Sciences , Number 19A Yuquan Road , Beijing 100049 , China
| | | | | | - Shiyu Zhang
- School of Biomedical Engineering, Science and Health Systems , Drexel University , Philadelphia , Pennsylvania 19104 , United States
| | - Zhi-Long Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Science , Shanghai 201203 , China
| | | | - Xin Xie
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Science , Shanghai 201203 , China
| | | | | | - Ya-Qiu Long
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica , Chinese Academy of Science , Shanghai 201203 , China.,College of Pharmaceutical Sciences , Soochow University Medical College , Suzhou 215123 , China
| | | |
Collapse
|
14
|
Cagno V, Andreozzi P, D'Alicarnasso M, Jacob Silva P, Mueller M, Galloux M, Le Goffic R, Jones ST, Vallino M, Hodek J, Weber J, Sen S, Janeček ER, Bekdemir A, Sanavio B, Martinelli C, Donalisio M, Rameix Welti MA, Eleouet JF, Han Y, Kaiser L, Vukovic L, Tapparel C, Král P, Krol S, Lembo D, Stellacci F. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. NATURE MATERIALS 2018; 17:195-203. [PMID: 29251725 DOI: 10.1038/nmat5053] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/22/2016] [Accepted: 11/10/2017] [Indexed: 05/18/2023]
Abstract
Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (∼190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism. These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.
Collapse
Affiliation(s)
- Valeria Cagno
- Dipartimento di Scienze Cliniche e Biologiche, Univerisità degli Studi di Torino, Orbassano, Italy
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Faculty of Medicine of Geneva, Department of Microbiology and Molecular medicine, Geneva, Switzerland
| | - Patrizia Andreozzi
- IFOM - FIRC Institute of Molecular Oncology, IFOM-IEO Campus, Milan, Italy
- CIC biomaGUNE Soft Matter Nanotechnology Group San Sebastian-Donostia, 20014 Donastia San Sebastián, Spain
| | | | - Paulo Jacob Silva
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Mueller
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marie Galloux
- VIM, INRA, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Samuel T Jones
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Jones Lab, School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Marta Vallino
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Soumyo Sen
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Emma-Rose Janeček
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ahmet Bekdemir
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Barbara Sanavio
- Fondazione IRCCS Istituto Neurologico "Carlo Besta", IFOM-IEO Campus, Milan, Italy
| | - Chiara Martinelli
- IFOM - FIRC Institute of Molecular Oncology, IFOM-IEO Campus, Milan, Italy
| | - Manuela Donalisio
- Dipartimento di Scienze Cliniche e Biologiche, Univerisità degli Studi di Torino, Orbassano, Italy
| | - Marie-Anne Rameix Welti
- UMR INSERM U1173 I2, UFR des Sciences de la Santé Simone Veil-UVSQ, Montigny-Le-Bretonneux, France
- AP-HP, Laboratoire de Microbiologie, Hôpital Ambroise Paré, 92104 Boulogne-Billancourt, France
| | | | - Yanxiao Han
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Laurent Kaiser
- Geneva University Hospitals, Infectious Diseases Divisions, Geneva, Switzerland
| | - Lela Vukovic
- Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Caroline Tapparel
- Faculty of Medicine of Geneva, Department of Microbiology and Molecular medicine, Geneva, Switzerland
- Geneva University Hospitals, Infectious Diseases Divisions, Geneva, Switzerland
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, USA
- Department of Physics and Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Silke Krol
- Fondazione IRCCS Istituto Neurologico "Carlo Besta", IFOM-IEO Campus, Milan, Italy
- IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - David Lembo
- Dipartimento di Scienze Cliniche e Biologiche, Univerisità degli Studi di Torino, Orbassano, Italy
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Interfaculty Bioengineering Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
15
|
Bastian AR, Ang CG, Kamanna K, Shaheen F, Huang YH, McFadden K, Duffy C, Bailey LD, Sundaram RVK, Chaiken I. Targeting cell surface HIV-1 Env protein to suppress infectious virus formation. Virus Res 2017; 235:33-36. [PMID: 28390972 DOI: 10.1016/j.virusres.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/19/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 11/25/2022]
Abstract
HIV-1 Env protein is essential for host cell entry, and targeting Env remains an important antiretroviral strategy. We previously found that a peptide triazole thiol KR13 and its gold nanoparticle conjugate AuNP-KR13 directly and irreversibly inactivate the virus by targeting the Env protein, leading to virus gp120 shedding, membrane disruption and p24 capsid protein release. Here, we examined the consequences of targeting cell-surface Env with the virus inactivators. We found that both agents led to formation of non-infectious virus from transiently transfected HEK293T cells. The budded non-infectious viruses lacked Env gp120 but contained gp41. Importantly, budded virions also retained the capsid protein p24, in stark contrast to p24 leakage from viruses directly treated by these agents and arguing that the agents led to deformed viruses by transforming the cells at a stage before virus budding. We found that the Env inactivators caused gp120 shedding from the transiently transfected HEK293T cells as well as non-producer CHO-K1-gp160 cells. Additionally, AuNP-KR13 was cytotoxic against the virus-producing HEK293T and CHO-K1-gp160 cells, but not untransfected HEK293T or unmodified CHO-K1 cells. The results obtained reinforce the argument that cell-surface HIV-1 Env is metastable, as on virus particles, and provides a conformationally vulnerable target for virus suppression and infectious cell inactivation.
Collapse
Affiliation(s)
- Arangassery Rosemary Bastian
- Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, United States; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States.
| | - Charles G Ang
- Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, United States; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Kantharaju Kamanna
- Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Farida Shaheen
- Viral and Molecular Core, Penn Center for AIDS Research, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Yu-Hung Huang
- Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Karyn McFadden
- Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Caitlin Duffy
- Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Lauren D Bailey
- Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, United States
| | - Ramalingam Venkat Kalyana Sundaram
- Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, United States; School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Irwin Chaiken
- Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| |
Collapse
|
16
|
Gary EN, Kutzler MA. A Little Help From the Follicles: Understanding the Germinal Center Response to Human Immunodeficiency Virus 1 Infection and Prophylactic Vaccines. Clin Med Insights Pathol 2017; 10:1179555717695548. [PMID: 28469517 PMCID: PMC5398647 DOI: 10.1177/1179555717695548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2016] [Accepted: 01/29/2017] [Indexed: 01/05/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) is the causative agent of AIDS. There are currently more than 35 million people living with HIV infection worldwide, and more than 2 million new infections occur each year. The global pandemic caused by HIV-1 is the subject of numerous research projects, with the development of a prophylactic vaccine and a therapeutic cure being the ultimate goals. The classic paradigms of vaccinology have proven incapable of producing a viable vaccine due to the complexity of the virus' replication cycle, its genetic diversity, and a lack of understanding of the immune correlates of protection. Here, we briefly discuss recent vaccine approaches and the immune correlates of protection from HIV-1 infection with a focus on the role of the germinal center as a reservoir of replication-competent virus and its role in the development of broadly neutralizing antibodies in response to vaccination.
Collapse
Affiliation(s)
- Ebony N Gary
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Michele A Kutzler
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA, USA
- Department of Medicine, Division of Infectious Diseases & HIV Medicine, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
17
|
Acharya K, Rashad AA, Moraca F, Klasse PJ, Moore JP, Abrams C, Chaiken I. Recognition of HIV-inactivating peptide triazoles by the recombinant soluble Env trimer, BG505 SOSIP.664. Proteins 2017; 85:843-851. [PMID: 28056499 DOI: 10.1002/prot.25238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2016] [Accepted: 12/18/2016] [Indexed: 11/08/2022]
Abstract
Peptide triazole (PT) antagonists interact with gp120 subunits of HIV-1 Env trimers to block host cell receptor interactions, trigger gp120 shedding, irreversibly inactivate virus and inhibit infection. Despite these enticing functions, understanding the structural mechanism of PT-Env trimer encounter has been limited. In this work, we combined competition interaction analysis and computational simulation to demonstrate PT binding to the recombinant soluble trimer, BG505 SOSIP.664, a stable variant that resembles native virus spikes in binding to CD4 receptor as well as known conformationally-dependent Env antibodies. Binding specificity and computational modeling fit with encounter through complementary PT pharmacophore Ile-triazolePro-Trp interaction with a 2-subsite cavity in the Env gp120 subunit of SOSIP trimer similar to that in monomeric gp120. These findings argue that PTs are able to recognize and bind a closed prefusion state of Env trimer upon HIV-1 encounter. The results provide a structural model of how PTs exert their function on virion trimeric spike protein and a platform to inform future antagonist design. Proteins 2017; 85:843-851. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kriti Acharya
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, 19102
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, 19102
| | - Francesca Moraca
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, 19104
| | - Per Johan Klasse
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, 10065
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, 10065
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, 19104
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, 19102
| |
Collapse
|
18
|
Kalyana Sundaram RV, Li H, Bailey L, Rashad AA, Aneja R, Weiss K, Huynh J, Bastian AR, Papazoglou E, Abrams C, Wrenn S, Chaiken I. Impact of HIV-1 Membrane Cholesterol on Cell-Independent Lytic Inactivation and Cellular Infectivity. Biochemistry 2016; 55:447-58. [PMID: 26713837 DOI: 10.1021/acs.biochem.5b00936] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
Peptide triazole thiols (PTTs) have been found previously to bind to HIV-1 Env spike gp120 and cause irreversible virus inactivation by shedding gp120 and lytically releasing luminal capsid protein p24. Since the virions remain visually intact, lysis appears to occur via limited membrane destabilization. To better understand the PTT-triggered membrane transformation involved, we investigated the role of envelope cholesterol on p24 release by measuring the effect of cholesterol depletion using methyl beta-cyclodextrin (MβCD). An unexpected bell-shaped response of PTT-induced lysis to [MβCD] was observed, involving lysis enhancement at low [MβCD] vs loss of function at high [MβCD]. The impact of cholesterol depletion on PTT-induced lysis was reversed by adding exogenous cholesterol and other sterols that support membrane rafts, while sterols that do not support rafts induced only limited reversal. Cholesterol depletion appears to cause a reduced energy barrier to lysis as judged by decreased temperature dependence with MβCD. Enhancement/replenishment responses to [MβCD] also were observed for HIV-1 infectivity, consistent with a similar energy barrier effect in the membrane transformation of virus cell fusion. Overall, the results argue that cholesterol in the HIV-1 envelope is important for balancing virus stability and membrane transformation, and that partial depletion, while increasing infectivity, also makes the virus more fragile. The results also reinforce the argument that the lytic inactivation and infectivity processes are mechanistically related and that membrane transformations occurring during lysis can provide an experimental window to investigate membrane and protein factors important for HIV-1 cell entry.
Collapse
Affiliation(s)
- Ramalingam Venkat Kalyana Sundaram
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Huiyuan Li
- Shared Research Facilities, West Virginia University , Morgantown, West Virginia 26506, United States
| | - Lauren Bailey
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Adel A Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Rachna Aneja
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | - Karl Weiss
- Department of Chemical and Biological Engineering, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - James Huynh
- Department of Biological Sciences, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Arangaserry Rosemary Bastian
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Elisabeth Papazoglou
- School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Cameron Abrams
- Department of Chemical and Biological Engineering, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Steven Wrenn
- Department of Chemical and Biological Engineering, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
19
|
Bailey LD, Kalyana Sundaram RV, Li H, Duffy C, Aneja R, Rosemary Bastian A, Holmes AP, Kamanna K, Rashad AA, Chaiken I. Disulfide Sensitivity in the Env Protein Underlies Lytic Inactivation of HIV-1 by Peptide Triazole Thiols. ACS Chem Biol 2015; 10:2861-73. [PMID: 26458166 DOI: 10.1021/acschembio.5b00381] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
We investigated the mode of action underlying lytic inactivation of HIV-1 virions by peptide triazole thiol (PTT), in particular the relationship between gp120 disulfides and the C-terminal cysteine-SH required for virolysis. Obligate PTT dimer obtained by PTT SH cross-linking and PTTs with serially truncated linkers between pharmacophore isoleucine-ferrocenyltriazole-proline-tryptophan and cysteine-SH were synthesized. PTT variants showed loss of lytic activity but not binding and infection inhibition upon SH blockade. A disproportionate loss of lysis activity vs binding and infection inhibition was observed upon linker truncation. Molecular docking of PTT onto gp120 argued that, with sufficient linker length, the peptide SH could approach and disrupt several alternative gp120 disulfides. Inhibition of lysis by gp120 mAb 2G12, which binds at the base of the V3 loop, as well as disulfide mutational effects, argued that PTT-induced disruption of the gp120 disulfide cluster at the base of the V3 loop is an important step in lytic inactivation of HIV-1. Further, PTT-induced lysis was enhanced after treating virus with reducing agents dithiothreitol and tris (2-carboxyethyl)phosphine. Overall, the results are consistent with the view that the binding of PTT positions the peptide SH group to interfere with conserved disulfides clustered proximal to the CD4 binding site in gp120, leading to disulfide exchange in gp120 and possibly gp41, rearrangement of the Env spike, and ultimately disruption of the viral membrane. The dependence of lysis activity on thiol-disulfide interaction may be related to intrinsic disulfide exchange susceptibility in gp120 that has been reported previously to play a role in HIV-1 cell infection.
Collapse
Affiliation(s)
- Lauren D. Bailey
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Ramalingam Venkat Kalyana Sundaram
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Huiyuan Li
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Caitlin Duffy
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Rachna Aneja
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | | | - Andrew P. Holmes
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Kantharaju Kamanna
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Adel A. Rashad
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Irwin Chaiken
- Department
of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
20
|
|
21
|
Rashad AA, Kalyana Sundaram RV, Aneja R, Duffy C, Chaiken I. Macrocyclic Envelope Glycoprotein Antagonists that Irreversibly Inactivate HIV-1 before Host Cell Encounter. J Med Chem 2015; 58:7603-8. [PMID: 26331669 DOI: 10.1021/acs.jmedchem.5b00935] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
We derived macrocyclic HIV-1 antagonists as a new class of peptidomimetic drug leads. Cyclic peptide triazoles (cPTs) retained the gp120 inhibitory and virus-inactivating signature of parent PTs, arguing that cyclization locked an active conformation. The six-residue cPT 9 (AAR029b) exhibited submicromolar antiviral potencies in inhibiting cell infection and triggering gp120 shedding that causes irreversible virion inactivation. Importantly, cPTs were stable to trypsin and chymotrypsin compared to substantial susceptibility of corresponding linear PTs.
Collapse
Affiliation(s)
- Adel A Rashad
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , 245 North 15th Street, Philadelphia, Pennsylvania 19102 United States
| | - Ramalingam Venkat Kalyana Sundaram
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , 245 North 15th Street, Philadelphia, Pennsylvania 19102 United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University , Philadelphia, Pennsylvania 19104 United States
| | - Rachna Aneja
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , 245 North 15th Street, Philadelphia, Pennsylvania 19102 United States
| | - Caitlin Duffy
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , 245 North 15th Street, Philadelphia, Pennsylvania 19102 United States
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine , 245 North 15th Street, Philadelphia, Pennsylvania 19102 United States
| |
Collapse
|
22
|
Aneja R, Rashad AA, Li H, Kalyana Sundaram RV, Duffy C, Bailey LD, Chaiken I. Peptide Triazole Inactivators of HIV-1 Utilize a Conserved Two-Cavity Binding Site at the Junction of the Inner and Outer Domains of Env gp120. J Med Chem 2015; 58:3843-58. [PMID: 25860784 DOI: 10.1021/acs.jmedchem.5b00073] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/20/2023]
Abstract
We used coordinated mutagenesis, synthetic design, and flexible docking to investigate the structural mechanism of Env gp120 encounter by peptide triazole (PT) inactivators of HIV-1. Prior results demonstrated that the PT class of inhibitors suppresses binding at both CD4 and coreceptor sites on Env and triggers gp120 shedding, leading to cell-independent irreversible virus inactivation. Despite these enticing anti-HIV-1 phenotypes, structural understanding of the PT-gp120 binding mechanism has been incomplete. Here we found that PT engages two inhibitor ring moieties at the junction between the inner and outer domains of the gp120 protein. The results demonstrate how combined occupancy of two gp120 cavities can coordinately suppress both receptor and coreceptor binding and conformationally entrap the protein in a destabilized state. The two-cavity model has common features with small molecule gp120 inhibitor binding sites and provides a guide for further design of peptidomimetic HIV-1 inactivators based on the PT pharmacophore.
Collapse
Affiliation(s)
- Rachna Aneja
- †Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Adel A Rashad
- †Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Huiyuan Li
- †Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Ramalingam Venkat Kalyana Sundaram
- †Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States.,‡School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Caitlin Duffy
- †Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Lauren D Bailey
- †Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Irwin Chaiken
- †Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| |
Collapse
|
23
|
Rosemary Bastian A, Nangarlia A, Bailey LD, Holmes A, Kalyana Sundaram RV, Ang C, Moreira DRM, Freedman K, Duffy C, Contarino M, Abrams C, Root M, Chaiken I. Mechanism of multivalent nanoparticle encounter with HIV-1 for potency enhancement of peptide triazole virus inactivation. J Biol Chem 2014; 290:529-43. [PMID: 25371202 DOI: 10.1074/jbc.m114.608315] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Entry of HIV-1 into host cells remains a compelling yet elusive target for developing agents to prevent infection. A peptide triazole (PT) class of entry inhibitor has previously been shown to bind to HIV-1 gp120, suppress interactions of the Env protein at host cell receptor binding sites, inhibit cell infection, and cause envelope spike protein breakdown, including gp120 shedding and, for some variants, virus membrane lysis. We found that gold nanoparticle-conjugated forms of peptide triazoles (AuNP-PT) exhibit substantially more potent antiviral effects against HIV-1 than corresponding peptide triazoles alone. Here, we sought to reveal the mechanism of potency enhancement underlying nanoparticle conjugate function. We found that altering the physical properties of the nanoparticle conjugate, by increasing the AuNP diameter and/or the density of PT conjugated on the AuNP surface, enhanced potency of infection inhibition to impressive picomolar levels. Further, compared with unconjugated PT, AuNP-PT was less susceptible to reduction of antiviral potency when the density of PT-competent Env spikes on the virus was reduced by incorporating a peptide-resistant mutant gp120. We conclude that potency enhancement of virolytic activity and corresponding irreversible HIV-1 inactivation of PTs upon AuNP conjugation derives from multivalent contact between the nanoconjugates and metastable Env spikes on the HIV-1 virus. The findings reveal that multispike engagement can exploit the metastability built into virus the envelope to irreversibly inactivate HIV-1 and provide a conceptual platform to design nanoparticle-based antiviral agents for HIV-1 specifically and putatively for metastable enveloped viruses generally.
Collapse
Affiliation(s)
- Arangassery Rosemary Bastian
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Aakansha Nangarlia
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Lauren D Bailey
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Andrew Holmes
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - R Venkat Kalyana Sundaram
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Charles Ang
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, the School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104
| | - Diogo R M Moreira
- the Fundação Oswaldo Cruz, Centro de Pesquisas Goncalo Moniz, Salvador-BA 40296-710, Brazil
| | - Kevin Freedman
- the Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Caitlin Duffy
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Mark Contarino
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Cameron Abrams
- the Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Michael Root
- the Department of Biochemistry and Molecular Biology, Jefferson University, Philadelphia, Pennsylvania 19107
| | - Irwin Chaiken
- From the Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102,
| |
Collapse
|
24
|
Emileh A, Duffy C, Holmes AP, Rosemary Bastian A, Aneja R, Tuzer F, Rajagopal S, Li H, Abrams CF, Chaiken IM. Covalent conjugation of a peptide triazole to HIV-1 gp120 enables intramolecular binding site occupancy. Biochemistry 2014; 53:3403-14. [PMID: 24801282 PMCID: PMC4045323 DOI: 10.1021/bi500136f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/02/2022]
Abstract
![]()
The HIV-1 gp120 glycoprotein is the
main viral surface protein
responsible for initiation of the entry process and, as such, can
be targeted for the development of entry inhibitors. We previously
identified a class of broadly active peptide triazole (PT) dual antagonists
that inhibit gp120 interactions at both its target receptor and coreceptor
binding sites, induce shedding of gp120 from virus particles prior
to host–cell encounter, and consequently can prevent viral
entry and infection. However, our understanding of the conformational
alterations in gp120 by which PT elicits its dual receptor antagonism
and virus inactivation functions is limited. Here, we used a recently
developed computational model of the PT–gp120 complex as a
blueprint to design a covalently conjugated PT–gp120 recombinant
protein. Initially, a single-cysteine gp120 mutant, E275CYU-2, was expressed and characterized. This variant retains excellent
binding affinity for peptide triazoles, for sCD4 and other CD4 binding
site (CD4bs) ligands, and for a CD4-induced (CD4i) ligand that binds
the coreceptor recognition site. In parallel, we synthesized a PEGylated
and biotinylated peptide triazole variant that retained gp120 binding
activity. An N-terminally maleimido variant of this PEGylated PT,
denoted AE21, was conjugated to E275C gp120 to produce the AE21–E275C
covalent conjugate. Surface plasmon resonance interaction analysis
revealed that the PT–gp120 conjugate exhibited suppressed binding
of sCD4 and 17b to gp120, signatures of a PT-bound state of envelope
protein. Similar to the noncovalent PT–gp120 complex, the covalent
conjugate was able to bind the conformationally dependent mAb 2G12.
The results argue that the PT–gp120 conjugate is structurally
organized, with an intramolecular interaction between the PT and gp120
domains, and that this structured state embodies a conformationally
entrapped gp120 with an altered bridging sheet but intact 2G12 epitope.
The similarities of the PT–gp120 conjugate to the noncovalent
PT–gp120 complex support the orientation of binding of PT to
gp120 predicted in the molecular dynamics simulation model of the
PT–gp120 noncovalent complex. The conformationally stabilized
covalent conjugate can be used to expand the structural definition
of the PT-induced “off” state of gp120, for example,
by high-resolution structural analysis. Such structures could provide
a guide for improving the subsequent structure-based design of inhibitors
with the peptide triazole mode of action.
Collapse
Affiliation(s)
- Ali Emileh
- Chemical and Biological Engineering, Drexel University , Philadelphia, Pennsylvania 19104, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
INTRODUCTION HIV type 1 infection, despite having fallen by one-third over the past decade, remains a global health concern affecting millions of individuals worldwide. A focal point in contemporary research aimed at global HIV prevention has been the development of safe and efficacious coitally dependent and coitally independent anti-HIV microbicides to curb heterosexual HIV transmission. Despite extensive research efforts to develop novel vaginal antiretroviral (ARV) formulations and intravaginal ring delivery systems, the clinical advancement of microbicides with improved safety, efficacy and tolerability has significantly lagged behind. AREAS COVERED This review focuses on the current status of both coitally dependent and coitally independent delivery platforms designed to increase user acceptability and clinical effectiveness of anti-HIV microbicides. The clinical failure of several vaginal microbicide candidates has propelled the field to mechanism-based ARV candidates that act more specifically on viral receptors, viral enzymes and host proteins. Consequently, improved vaginal microbicide delivery strategies that achieve uniform drug distribution with enhanced solubility, sustained drug release, improved product adherence with reduced dosing frequency and lack of effect on the vaginal mucosa and microbiota are being sought. EXPERT OPINION Clinical success with vaginal microbicides may best be achieved through the combined effects of ARV compounds that exhibit different mechanisms of action with potent activity against multidrug-resistant HIV and efficacious delivery systems.
Collapse
Affiliation(s)
- Osmond J D'Cruz
- Children's Center for Cancer and Blood Diseases , Children's Hospital Los Angeles, Smith Research Tower Suite 316, 4650 Sunset Boulevard, CHLA Mailstop 160, Los Angeles, CA , USA
| | | |
Collapse
|
26
|
Bastian AR, Contarino M, Bailey LD, Aneja R, Moreira DRM, Freedman K, McFadden K, Duffy C, Emileh A, Leslie G, Jacobson JM, Hoxie JA, Chaiken I. Interactions of peptide triazole thiols with Env gp120 induce irreversible breakdown and inactivation of HIV-1 virions. Retrovirology 2013; 10:153. [PMID: 24330857 PMCID: PMC3878761 DOI: 10.1186/1742-4690-10-153] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2013] [Accepted: 12/02/2013] [Indexed: 11/10/2022] Open
Abstract
Background We examined the underlying mechanism of action of the peptide triazole thiol, KR13 that has been shown previously to specifically bind gp120, block cell receptor site interactions and potently inhibit HIV-1 infectivity. Results KR13, the sulfhydryl blocked KR13b and its parent non-sulfhydryl peptide triazole, HNG156, induced gp120 shedding but only KR13 induced p24 capsid protein release. The resulting virion post virolysis had an altered morphology, contained no gp120, but retained gp41 that bound to neutralizing gp41 antibodies. Remarkably, HIV-1 p24 release by KR13 was inhibited by enfuvirtide, which blocks formation of the gp41 6-helix bundle during membrane fusion, while no inhibition of p24 release occurred for enfuvirtide-resistant virus. KR13 thus appears to induce structural changes in gp41 normally associated with membrane fusion and cell entry. The HIV-1 p24 release induced by KR13 was observed in several clades of HIV-1 as well as in fully infectious HIV-1 virions. Conclusions The antiviral activity of KR13 and its ability to inactivate virions prior to target cell engagement suggest that peptide triazole thiols could be highly effective in inhibiting HIV transmission across mucosal barriers and provide a novel probe to understand biochemical signals within envelope that are involved in membrane fusion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N 15th Street, New College Building, Room No, 11102, Philadelphia, PA 19102, USA.
| |
Collapse
|
27
|
Chimeric Cyanovirin-MPER recombinantly engineered proteins cause cell-free virolysis of HIV-1. Antimicrob Agents Chemother 2013; 57:4743-50. [PMID: 23856780 DOI: 10.1128/aac.00309-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus (HIV) is the primary etiologic agent responsible for the AIDS pandemic. In this work, we used a chimeric recombinant protein strategy to test the possibility of irreversibly destroying the HIV-1 virion using an agent that simultaneously binds the Env protein and viral membrane. We constructed a fusion of the lectin cyanovirin-N (CVN) and the gp41 membrane-proximal external region (MPER) peptide with a variable-length (Gly4Ser)x linker (where x is 4 or 8) between the C terminus of the former and N terminus of the latter. The His-tagged recombinant proteins, expressed in BL21(DE3)pLysS cells and purified by immobilized metal affinity chromatography followed by gel filtration, were found to display a nanomolar efficacy in blocking BaL-pseudotyped HIV-1 infection of HOS.T4.R5 cells. This antiviral activity was HIV-1 specific, since it did not inhibit cell infection by vesicular stomatitis virus (VSV) or amphotropic-murine leukemia virus. Importantly, the chimeric proteins were found to release intraviral p24 protein from both BaL-pseudotyped HIV-1 and fully infectious BaL HIV-1 in a dose-dependent manner in the absence of host cells. The addition of either MPER or CVN was found to outcompete this virolytic effect, indicating that both components of the chimera are required for virolysis. The finding that engaging the Env protein spike and membrane using a chimeric ligand can destabilize the virus and lead to inactivation opens up a means to investigate virus particle metastability and to evaluate this approach for inactivation at the earliest stages of exposure to virus and before host cell encounter.
Collapse
|
28
|
Emileh A, Tuzer F, Yeh H, Umashankara M, Moreira DRM, Lalonde JM, Bewley CA, Abrams CF, Chaiken IM. A model of peptide triazole entry inhibitor binding to HIV-1 gp120 and the mechanism of bridging sheet disruption. Biochemistry 2013; 52:2245-61. [PMID: 23470147 DOI: 10.1021/bi400166b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
Peptide triazole (PT) entry inhibitors prevent HIV-1 infection by blocking the binding of viral gp120 to both the HIV-1 receptor and the coreceptor on target cells. Here, we used all-atom explicit solvent molecular dynamics (MD) to propose a model for the encounter complex of the peptide triazoles with gp120. Saturation transfer difference nuclear magnetic resonance (STD NMR) and single-site mutagenesis experiments were performed to test the simulation results. We found that docking of the peptide to a conserved patch of residues lining the "F43 pocket" of gp120 in a bridging sheet naïve gp120 conformation of the glycoprotein led to a stable complex. This pose prevents formation of the bridging sheet minidomain, which is required for receptor-coreceptor binding, providing a mechanistic basis for dual-site antagonism of this class of inhibitors. Burial of the peptide triazole at the gp120 inner domain-outer domain interface significantly contributed to complex stability and rationalizes the significant contribution of hydrophobic triazole groups to peptide potency. Both the simulation model and STD NMR experiments suggest that the I-X-W [where X is (2S,4S)-4-(4-phenyl-1H-1,2,3-triazol-1-yl)pyrrolidine] tripartite hydrophobic motif in the peptide is the major contributor of contacts at the gp120-PT interface. Because the model predicts that the peptide Trp side chain hydrogen bonding with gp120 S375 contributes to the stability of the PT-gp120 complex, we tested this prediction through analysis of peptide binding to gp120 mutant S375A. The results showed that a peptide triazole KR21 inhibits S375A with 20-fold less potency than WT, consistent with predictions of the model. Overall, the PT-gp120 model provides a starting point for both the rational design of higher-affinity peptide triazoles and the development of structure-minimized entry inhibitors that can trap gp120 into an inactive conformation and prevent infection.
Collapse
Affiliation(s)
- Ali Emileh
- Chemical and Biological Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kamanna K, Aneja R, Duffy C, Kubinski P, Moreira DR, Bailey LD, McFadden K, Schön A, Holmes A, Tuzer F, Contarino M, Freire E, Chaiken IM. Non-natural peptide triazole antagonists of HIV-1 envelope gp120. ChemMedChem 2013; 8:322-8. [PMID: 23239505 PMCID: PMC3810028 DOI: 10.1002/cmdc.201200422] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/07/2012] [Revised: 11/08/2012] [Indexed: 11/06/2022]
Abstract
We investigated the derivation of non-natural peptide triazole dual receptor site antagonists of HIV-1 Env gp120 to establish a pathway for developing peptidomimetic antiviral agents. Previously we found that the peptide triazole HNG-156 [R-I-N-N-I-X-W-S-E-A-M-M-CONH(2), in which X=ferrocenyltriazole-Pro (FtP)] has nanomolar binding affinity to gp120, inhibits gp120 binding to CD4 and the co-receptor surrogate mAb 17b, and has potent antiviral activity in cell infection assays. Furthermore, truncated variants of HNG-156, typified by UM-24 (Cit-N-N-I-X-W-S-CONH(2)) and containing the critical central stereospecific (L)X-(L)W cluster, retain the functional characteristics of the parent peptide triazole. In the current work, we examined the possibility of replacing natural with unnatural residue components in UM-24 to the greatest extent possible. The analogue with the critical "hot spot" residue Trp 6 replaced with L-3-benzothienylalanine (Bta) (KR-41), as well as a completely non-natural analogue containing D-amino acid substitutions outside the central cluster (KR-42, (D)Cit-(D)N-(D)N-(D)I-X-Bta-(D)S-CONH(2)), retained the dual receptor site antagonism/antiviral activity signature. The results define differential functional roles of subdomains within the peptide triazole and provide a structural basis for the design of metabolically stable peptidomimetic inhibitors of HIV-1 Env gp120.
Collapse
Affiliation(s)
- Kantharaju Kamanna
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Rachna Aneja
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Caitlin Duffy
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Pamela Kubinski
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Diogo Rodrigo Moreira
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Lauren D Bailey
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Karyn McFadden
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218 (USA)
| | - Andrew Holmes
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Ferit Tuzer
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Mark Contarino
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218 (USA)
| | - Irwin M Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245N, 15 Street, New College Building, Room 11302, Philadelphia, PA, 19102 (USA)
| |
Collapse
|
30
|
Tuzer F, Madani N, Kamanna K, Zentner I, LaLonde J, Holmes A, Upton E, Rajagopal S, McFadden K, Contarino M, Sodroski J, Chaiken I. HIV-1 Env gp120 structural determinants for peptide triazole dual receptor site antagonism. Proteins 2012; 81:271-90. [PMID: 23011758 DOI: 10.1002/prot.24184] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2012] [Revised: 08/18/2012] [Accepted: 09/03/2012] [Indexed: 11/09/2022]
Abstract
Despite advances in HIV therapy, viral resistance and side-effects with current drug regimens require targeting new components of the virus. Dual antagonist peptide triazoles (PT) are a novel class of HIV-1 inhibitors that specifically target the gp120 component of the viral spike and inhibit its interaction with both of its cell surface protein ligands, namely the initial receptor CD4 and the co-receptor (CCR5/CXCR4), thus preventing viral entry. Following an initial survey of 19 gp120 alanine mutants by ELISA, we screened 11 mutants for their importance in binding to, and inhibition by the PT KR21 using surface plasmon resonance. Key mutants were purified and tested for their effects on the peptide's affinity and its ability to inhibit binding of CD4 and the co-receptor surrogate mAb 17b. Effects of the mutations on KR21 viral neutralization were measured by single-round cell infection assays. Two mutations, D474A and T257A, caused large-scale loss of KR21 binding, as well as losses in both CD4/17b and viral inhibition by KR21. A set of other Ala mutants revealed more moderate losses in direct binding affinity and inhibition sensitivity to KR21. The cluster of sensitive residues defines a PT functional epitope. This site is in a conserved region of gp120 that overlaps the CD4 binding site and is distant from the co-receptor/17b binding site, suggesting an allosteric mode of inhibition for the latter. The arrangement and sequence conservation of the residues in the functional epitope explain the breadth of antiviral activity, and improve the potential for rational inhibitor development.
Collapse
Affiliation(s)
- Ferit Tuzer
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|