1
|
Morigi R, Esposito D, Calvaresi M, Marforio TD, Gentilomi GA, Bonvicini F, Locatelli A. Isatin Bis-Imidathiazole Hybrids Identified as FtsZ Inhibitors with On-Target Activity Against Staphylococcus aureus. Antibiotics (Basel) 2024; 13:992. [PMID: 39452258 PMCID: PMC11505029 DOI: 10.3390/antibiotics13100992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
In the present study, a series of isatin bis-imidathiazole hybrids was designed and synthesized to develop a new class of heterocyclic compounds with improved antimicrobial activity against pathogens responsible for hospital- and community-acquired infections. A remarkable inhibitory activity against Staphylococcus aureus was demonstrated for a subset of compounds (range: 13.8-90.1 µM) in the absence of toxicity towards epithelial cells and human red blood cells. The best performing derivative was further investigated to measure its anti-biofilm potential and its effectiveness against methicillin-resistant Staphylococcus aureus strains. A structure-activity relationship study of the synthesized molecules led to the recognition of some important structural requirements for the observed antibacterial activity. Molecular docking followed by molecular dynamics (MD) simulations identified the binding site of the active compound FtsZ, a key protein in bacterial cell division, and the mechanism of action, i.e., the inhibition of its polymerization. The overall results may pave the way for a further rational development of isatin hybrids as FtsZ inhibitors, with a broader spectrum of activity against human pathogens and higher potency.
Collapse
Affiliation(s)
- Rita Morigi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (R.M.); (D.E.); (A.L.)
| | - Daniele Esposito
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (R.M.); (D.E.); (A.L.)
| | - Matteo Calvaresi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.C.); (T.D.M.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Tainah Dorina Marforio
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (M.C.); (T.D.M.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Alessandra Locatelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy; (R.M.); (D.E.); (A.L.)
| |
Collapse
|
2
|
Shinde Y, Pathan A, Chinnam S, Rathod G, Patil B, Dhangar M, Mathew B, Kim H, Mundada A, Kukreti N, Ahmad I, Patel H. Mycobacterial FtsZ and inhibitors: a promising target for the anti-tubercular drug development. Mol Divers 2024; 28:3457-3478. [PMID: 38010605 DOI: 10.1007/s11030-023-10759-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
The emergence of multidrug-resistant tuberculosis (MDR-TB) strains has rendered many anti-TB drugs ineffective. Consequently, there is an urgent need to identify new drug targets against Mycobacterium tuberculosis (Mtb). Filament Forming Temperature Sensitive Gene Z (FtsZ), a member of the cytoskeletal protein family, plays a vital role in cell division by forming a cytokinetic ring at the cell's center and coordinating the division machinery. When FtsZ is depleted, cells are unable to divide and instead elongate into filamentous structures that eventually undergo lysis. Since the inactivation of FtsZ or alterations in its assembly impede the formation of the Z-ring and septum, FtsZ shows promise as a target for the development of anti-mycobacterial drugs. This review not only discusses the potential role of FtsZ as a promising pharmacological target for anti-tuberculosis therapies but also explores the structural and functional aspects of the mycobacterial protein FtsZ in cell division. Additionally, it reviews various inhibitors of Mtb FtsZ. By understanding the importance of FtsZ in cell division, researchers can explore strategies to disrupt its function, impeding the growth and proliferation of Mtb. Furthermore, the investigation of different inhibitors that target Mtb FtsZ expands the potential for developing effective treatments against tuberculosis.
Collapse
Affiliation(s)
- Yashodeep Shinde
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Asama Pathan
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Autonomous Institute, Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Gajanan Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Mohali, Punjab, 160062, India
| | - Bhatu Patil
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Mayur Dhangar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 690525, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Anand Mundada
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University-Dehradun, Dehradun, Uttarakhand, 248002, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
3
|
Ma Y, Chang X, Zhang S, Zhang P, Guo T, Zhang X, Kong Y, Ma S. New broad-spectrum and potent antibacterial agents with dual-targeting mechanism: Promoting FtsZ polymerization and disrupting bacterial membranes. Eur J Med Chem 2024; 263:115930. [PMID: 37950964 DOI: 10.1016/j.ejmech.2023.115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
The emergence of multidrug-resistant bacteria and the slow development of new antibacterial agents have led to a growing global health crisis. Here, we identified an antibacterial agent possessing 1-methyl-2,5-diphenylpyridin-1-ium core, MA220607, with a dual-targeting mechanism of action (MOA), which exhibited effective killing activity against both Gram-positive (MIC = 0.062-2 μg/mL) and Gram-negative bacteria (MIC = 0.5-4 μg/mL). Moreover, our study revealed that MA220607 could block the formation of bacterial biofilm, which might be the reason for low frequency of resistance. MOA studies showed that MA220607 not only promoted FtsZ protein polymerization, but also increased the permeability of bacterial membranes and altered their proton gradients. In addition, MA220607 had low hemolytic toxicity and could significantly inhibit the growth of bacteria in mice. Molecular dynamics simulations demonstrated that MA220607 could block the transition from the tense (T) to relaxed (R) state of FtsZ protein, thereby perturbing the stepping mechanism of FtsZ protein. Overall, our findings suggest that integrating the dual mechanisms targeting FtsZ protein and cell membranes of bacteria into a single scaffold represents a promising direction for the development of new antibacterial agents.
Collapse
Affiliation(s)
- Yangchun Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Xiaohong Chang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Shenyan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Panpan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Ting Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Xianghui Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yue Kong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine Shandong University, 44 West Wenhua Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Importance of the 2,6-Difluorobenzamide Motif for FtsZ Allosteric Inhibition: Insights from Conformational Analysis, Molecular Docking and Structural Modifications. Molecules 2023; 28:molecules28052055. [PMID: 36903302 PMCID: PMC10003973 DOI: 10.3390/molecules28052055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
A conformational analysis and molecular docking study comparing 2,6-difluoro-3-methoxybenzamide (DFMBA) with 3-methoxybenzamide (3-MBA) has been undertaken for investigating the known increase of FtsZ inhibition related anti S. aureus activity due to fluorination. For the isolated molecules, the calculations reveal that the presence of the fluorine atoms in DFMBA is responsible for its non-planarity, with a dihedral angle of -27° between the carboxamide and the aromatic ring. When interacting with the protein, the fluorinated ligand can thus more easily adopt the non-planar conformation found in reported co-crystallized complexes with FtsZ, than the non-fluorinated one. Molecular docking studies of the favored non-planar conformation of 2,6-difluoro-3-methoxybenzamide highlights the strong hydrophobic interactions between the difluoroaromatic ring and several key residues of the allosteric pocket, precisely between the 2-fluoro substituent and residues Val203 and Val297 and between the 6-fluoro group and the residues Asn263. The docking simulation in the allosteric binding site also confirms the critical importance of the hydrogen bonds between the carboxamide group with the residues Val207, Leu209 and Asn263. Changing the carboxamide functional group of 3-alkyloxybenzamide and 3-alkyloxy-2,6-difluorobenzamide to a benzohydroxamic acid or benzohydrazide led to inactive compounds, confirming the importance of the carboxamide group.
Collapse
|
5
|
Dohle W, Su X, Nigam Y, Dudley E, Potter BVL. Synthesis and In Vitro Antimicrobial SAR of Benzyl and Phenyl Guanidine and Aminoguanidine Hydrazone Derivatives. Molecules 2022; 28:5. [PMID: 36615201 PMCID: PMC9822361 DOI: 10.3390/molecules28010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
A series of benzyl, phenyl guanidine, and aminoguandine hydrazone derivatives was designed and in vitro antibacterial activities against two different bacterial strains (Staphylococcus aureus and Escherichia coli) were determined. Several compounds showed potent inhibitory activity against the bacterial strains evaluated, with minimal inhibitory concentration (MIC) values in the low µg/mL range. Of all guanidine derivatives, 3-[2-chloro-3-(trifluoromethyl)]-benzyloxy derivative 9m showed the best potency with MICs of 0.5 µg/mL (S. aureus) and 1 µg/mL (E. coli), respectively. Several aminoguanidine hydrazone derivatives also showed good overall activity. Compounds 10a, 10j, and 10r-s displayed MICs of 4 µg/mL against both S. aureus and E. coli. In the aminoguanidine hydrazone series, 3-(4-trifluoromethyl)-benzyloxy derivative 10d showed the best potency against S. aureus (MIC 1 µg/mL) but was far less active against E. coli (MIC 16 µg/mL). Compound 9m and the para-substituted derivative 9v also showed promising results against two strains of methicillin-resistant Staphylococcus aureus (MRSA). These results provide new and potent structural leads for further antibiotic optimisation strategies.
Collapse
Affiliation(s)
- Wolfgang Dohle
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Xiangdong Su
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Yamni Nigam
- Faculty of Medicine, Health and Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Edward Dudley
- Faculty of Medicine, Health and Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
6
|
Mahanty S, Rathinasamy K. The natural anthraquinone dye purpurin exerts antibacterial activity by perturbing the FtsZ assembly. Bioorg Med Chem 2021; 50:116463. [PMID: 34700238 DOI: 10.1016/j.bmc.2021.116463] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
There is an increasing demand to discover novel antibacterial drugs to counter the ever-evolving genetic machinery of bacteria. The cell division protein FtsZ plays a vital role in bacterial cytokinesis and has been recognized as an effective antibacterial drug target. In this study, we have shown that the madder dye purpurin inhibited bacterial cytokinesis through perturbation of FtsZ assembly. Purpurin inhibited the growth of bacterial cells in a concentration-dependent manner and induced bacterial cell filamentation. Microscopy studies showed that it inhibited the localization of the Z ring at the midcell, and FtsZ was dispersed throughout the cells. Further, purpurin bound firmly to FtsZ with a dissociation constant of 11 µM and inhibited its assembly in vitro. It reduced the GTP hydrolysis by binding closer to the nucleotide-binding site of FtsZ. Purpurin inhibited the proliferation of mammalian cancer cells at higher concentrations without disturbing the polymerization of tubulin. The results collectively suggest that the natural anthraquinone purpurin can potently inhibit the growth of bacteria and serve as a lead molecule for the development of antibacterial agents.
Collapse
Affiliation(s)
- Susobhan Mahanty
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
7
|
Pradhan P, Margolin W, Beuria TK. Targeting the Achilles Heel of FtsZ: The Interdomain Cleft. Front Microbiol 2021; 12:732796. [PMID: 34566937 PMCID: PMC8456036 DOI: 10.3389/fmicb.2021.732796] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 02/03/2023] Open
Abstract
Widespread antimicrobial resistance among bacterial pathogens is a serious threat to public health. Thus, identification of new targets and development of new antibacterial agents are urgently needed. Although cell division is a major driver of bacterial colonization and pathogenesis, its targeting with antibacterial compounds is still in its infancy. FtsZ, a bacterial cytoskeletal homolog of eukaryotic tubulin, plays a highly conserved and foundational role in cell division and has been the primary focus of research on small molecule cell division inhibitors. FtsZ contains two drug-binding pockets: the GTP binding site situated at the interface between polymeric subunits, and the inter-domain cleft (IDC), located between the N-terminal and C-terminal segments of the core globular domain of FtsZ. The majority of anti-FtsZ molecules bind to the IDC. Compounds that bind instead to the GTP binding site are much less useful as potential antimicrobial therapeutics because they are often cytotoxic to mammalian cells, due to the high sequence similarity between the GTP binding sites of FtsZ and tubulin. Fortunately, the IDC has much less sequence and structural similarity with tubulin, making it a better potential target for drugs that are less toxic to humans. Over the last decade, a large number of natural and synthetic IDC inhibitors have been identified. Here we outline the molecular structure of IDC in detail and discuss how it has become a crucial target for broad spectrum and species-specific antibacterial agents. We also outline the drugs that bind to the IDC and their modes of action.
Collapse
Affiliation(s)
- Pinkilata Pradhan
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India
- Regional Centre for Biotechnology, Faridabad, India
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, United States
| | | |
Collapse
|
8
|
Song D, Zhang N, Zhang P, Zhang N, Chen W, Zhang L, Guo T, Gu X, Ma S. Design, synthesis and evaluation of novel 9-arylalkyl-10-methylacridinium derivatives as highly potent FtsZ-targeting antibacterial agents. Eur J Med Chem 2021; 221:113480. [PMID: 33964649 DOI: 10.1016/j.ejmech.2021.113480] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 01/28/2023]
Abstract
With the increasing incidence of antibiotic resistance, new antibacterial agents having novel mechanisms of action hence are in an urgent need to combat infectious diseases caused by multidrug-resistant (MDR) pathogens. Four novel series of substituted 9-arylalkyl-10-methylacridinium derivatives as FtsZ inhibitors were designed, synthesized and evaluated for their antibacterial activities against various Gram-positive and Gram-negative bacteria. The results demonstrated that they exhibited broad-spectrum activities with substantial efficacy against MRSA and VRE, which were superior or comparable to the berberine, sanguinarine, linezolid, ciprofloxacin and vancomycin. In particular, the most promising compound 15f showed rapid bactericidal properties, which avoid the emergence of drug resistance. However, 15f showed no inhibitory effect on Gram-negative bacteria but biofilm formation study gave possible answers. Further target identification and mechanistic studies revealed that 15f functioned as an effective FtsZ inhibitor to alter the dynamics of FtsZ self-polymerization, which resulted in termination of the cell division and caused cell death. Further cytotoxicity and animal studies demonstrated that 15f not only displayed efficacy in a murine model of bacteremia in vivo, but also no significant hemolysis to mammalian cells. Overall, this compound with novel skeleton could serve as an antibacterial lead of FtsZ inhibitor for further evaluation of drug-likeness.
Collapse
Affiliation(s)
- Di Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Nan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Panpan Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Na Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Weijin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Long Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Ting Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Xiaotong Gu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, 250012, China.
| |
Collapse
|
9
|
Han H, Wang Z, Li T, Teng D, Mao R, Hao Y, Yang N, Wang X, Wang J. Recent progress of bacterial FtsZ inhibitors with a focus on peptides. FEBS J 2020; 288:1091-1106. [PMID: 32681661 DOI: 10.1111/febs.15489] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/27/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022]
Abstract
In recent years, the rise of antibiotic resistance has become a primary health problem. With the emergence of bacterial resistance, the need to explore and develop novel antibacterial drugs has become increasingly urgent. Filamentous temperature-sensitive mutant Z (FtsZ), a crucial cell division protein of bacteria, has become a vital antibacterial target. FtsZ is a filamentous GTPase; it is highly conserved in bacteria and shares less than 20% sequence identity with the eukaryotic cytoskeleton protein tubulin, indicating that FtsZ-targeting antibacterial agents may have a low cytotoxicity toward eukaryotes. FtsZ can form a dynamic Z-ring in the center of the cell resulting in cell division. Furthermore, disturbance in the assembly of FtsZ may affect cellular dynamics and bacterial cell survival, making it a fascinating target for drug development. This review focuses on the recent discovery of FtsZ inhibitors, including peptides, natural products, and other synthetic small molecules, as well as their mechanism of action, which could facilitate the discovery of novel FtsZ-targeting clinical drugs in the future.
Collapse
Affiliation(s)
- Huihui Han
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
10
|
Pal A, Saha BK, Saha J. Comparative in silico analysis of ftsZ gene from different bacteria reveals the preference for core set of codons in coding sequence structuring and secondary structural elements determination. PLoS One 2019; 14:e0219231. [PMID: 31841523 PMCID: PMC6913975 DOI: 10.1371/journal.pone.0219231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/28/2019] [Indexed: 11/19/2022] Open
Abstract
The deluge of sequence information in the recent times provide us with an excellent opportunity to compare organisms on a large genomic scale. In this study we have tried to decipher the variation in the gene organization and structuring of a vital bacterial gene called ftsZ which codes for an integral component of the bacterial cell division, the FtsZ protein. FtsZ is homologous to tubulin protein and has been found to be ubiquitous in eubacteria. FtsZ is showing increasing promise as a target for antibacterial drug discovery. Our study of ftsZ protein from 143 different bacterial species spanning a wider range of morphological and physiological type demonstrates that the ftsZ gene of about ninety three percent of the organisms show relatively biased codon usage profile and significant GC deviation from their genomic GC content. Comparative codon usage analysis of ftsZ and a core housekeeping gene rpoB demonstrated that codon usage pattern of ftsZ CDS is shaped by natural selection to a large extent and mimics that of a housekeeping gene. We have also detected a tendency among the different organisms to utilize a core set of codons in structuring the ftsZ coding sequence. We observed that the compositional frequency of the amino acid serine in the FtsZ protein appears to be a indicator of the bacterial lifestyle. Our meticulous analysis of the ftsZ gene linked with the corresponding FtsZ protein show that there is a bias towards the use of specific synonymous codons particularly in the helix and strand regions of the multi-domain FtsZ protein. Overall our findings suggest that in an indispensable and vital protein such as FtsZ, there is an inherent tendency to maintain form for optimized performance in spite of the extrinsic variability in coding features.
Collapse
Affiliation(s)
- Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| | - Barnan Kumar Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| | - Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
11
|
Doyle AA, Stephens JC. A review of cinnamaldehyde and its derivatives as antibacterial agents. Fitoterapia 2019; 139:104405. [PMID: 31707126 DOI: 10.1016/j.fitote.2019.104405] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023]
Abstract
There is a continuing rise in the occurrence of multidrug-resistant bacterial infections. Antibiotic resistance to currently available antibiotics has become a global health issue leading to an urgent need for alternative antibacterial strategies. There has been a renewed interest in the development of antibacterial agents from natural sources, and trans-cinnamaldehyde is an example of a naturally occurring compound that has received significant attention in recent years. Trans-Cinnamaldehyde has been shown to possess substantial antimicrobial activity, as well as an array of other medicinal properties, and represents an intriguing hit compound from which a number of derivatives have been developed. In some cases, these derivatives have been shown to possess improved activity, not only compared to trans-cinnamaldehyde but also to commonly used antibiotics. Therefore, understanding the antibacterial mechanisms of action that these compounds elicit is imperative in order to facilitate their development and the development of new antibacterial agents that could exploit similar mechanistic approaches. The purpose of this review is to provide an overview of current knowledge on the antibacterial activity and mechanisms of action of cinnamaldehyde and its derivatives, and to highlight significant contributions made in this research area. It is hoped that the findings presented in this work will aid the future development of new antibacterial agents.
Collapse
Affiliation(s)
- Amanda A Doyle
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - John C Stephens
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland; The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
12
|
Zhang TY, Wu YY, Zhang MY, Cheng J, Dube B, Yu HJ, Zhang YX. New antimicrobial compounds produced by Seltsamia galinsogisoli sp. nov., isolated from Galinsoga parviflora as potential inhibitors of FtsZ. Sci Rep 2019; 9:8319. [PMID: 31165765 PMCID: PMC6549247 DOI: 10.1038/s41598-019-44810-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/24/2019] [Indexed: 12/16/2022] Open
Abstract
A total amount of 116 fungal strains, belonging to 30 genera, were acquired from the rhizosphere soil and plant of Galinsoga parviflora. A strain SYPF 7336, isolated from the rhizospheric soil, was identified as Seltsamia galinsogisoli sp. nov., by morphological and molecular analyses, which displayed high antibacterial activity. In order to study the secondary metabolites of Seltsamia galinsogisoli sp. nov., nine compounds were successfully seperated from the strain fermentation broth, including two new compounds and seven known compounds. Their structures were elucidated based on spectral analysis including 1D and 2D NMR. All the seperated compounds were evaluated for their antimicrobial activities. Compounds 2, 5 and 1 displayed antimicrobial activities against Staphylococcus aureus with MIC values of 25, 32 and 75 μg/mL, respectively. Moreover, morphological observation showed the coccoid cells of S. aureus to be swollen to a volume of 1.4 to 1.7-fold after treatment with compounds 1, 2 and 5, respectively. Molecular docking was carried out to investigate interactions of filamentous temperature-sensitive protein Z (FtsZ) with compounds 1, 2 and 5.
Collapse
Affiliation(s)
- Tian-Yuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying-Ying Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Juan Cheng
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Blessings Dube
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hui-Jia Yu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
13
|
Ravichandiran P, Masłyk M, Sheet S, Janeczko M, Premnath D, Kim AR, Park B, Han M, Yoo DJ. Synthesis and Antimicrobial Evaluation of 1,4-Naphthoquinone Derivatives as Potential Antibacterial Agents. ChemistryOpen 2019; 8:589-600. [PMID: 31098338 PMCID: PMC6507621 DOI: 10.1002/open.201900077] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
1,4-Naphthoquinones are an important class of compounds present in a number of natural products. In this study, a new series of 1,4-naphthoquinone derivatives were synthesized. All the synthesized compounds were tested for in vitro antimicrobial activity. In this present investigation, two Gram-positive and five Gram-negative bacterial strains and one pathogenic yeast strain were used to determine the antibacterial activity. Naphthoquinones tested for its antibacterial potencies, among seven of them displayed better antimicrobial activity against Staphylococcus aureus (S. aureus; 30-70 μg/mL). Some of the tested compounds showed moderate to low antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) and Salmonella bongori (S. bongori; 70-150 μg/mL). In addition, most active compounds against S. aureus were evaluated for toxicity to human blood cells using a hemolysis assay. For better understanding, reactive oxygen species (ROS) generation, time-kill kinetic study, and apoptosis, necrosis responses were investigated for three representative compounds.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research CenterChonbuk National University, Jeollabuk-do54896Republic of Korea
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental SciencesThe John Paul II Catholic University of Lublinul. Konstantynów 1i20-708LublinPoland
| | - Sunirmal Sheet
- Department of Forest Science and Technology, College of Agriculture and Life SciencesChonbuk National University, 567 Baekje-daero, Deokjin-guJeonju-si561-756, Jeollabuk-doRepublic of Korea
| | - Monika Janeczko
- Department of Molecular Biology, Faculty of Biotechnology and Environmental SciencesThe John Paul II Catholic University of Lublinul. Konstantynów 1i20-708LublinPoland
| | - Dhanraj Premnath
- Department of BiotechnologyKarunya Institute of Technology and ScienceSchool of Agriculture and Biosciences, Karunya NagarCoimbatore641114, Tamil NaduIndia
| | - Ae Rhan Kim
- R&D Center for CANUTECH, Business Incubation Center, Department of Bioenvironmental ChemistryChonbuk National University, Jeollabuk-do54896Republic of Korea.
| | - Byung‐Hyun Park
- Department of BiochemistryChonbuk National University Medical School, Jeollabuk-do54896Republic of Korea
| | - Myung‐Kwan Han
- Department of MicrobiologyChonbuk National University Medical School, Jeollabuk-do54896Republic of Korea
| | - Dong Jin Yoo
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research CenterChonbuk National University, Jeollabuk-do54896Republic of Korea
| |
Collapse
|
14
|
1,4-Naphthoquinone Analogues: Potent Antibacterial Agents and Mode of Action Evaluation. Molecules 2019; 24:molecules24071437. [PMID: 30979056 PMCID: PMC6480589 DOI: 10.3390/molecules24071437] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
1,4-Naphthoquinones have antibacterial activity and are a promising new class of compound that can be used to treat bacterial infections. The goal was to improve effective antibacterial agents; therefore, we synthesized a new class of naphthoquinone hybrids, which contain phenylamino-phenylthio moieties as significant counterparts. Compound 4 was modified as a substituted aryl amide moiety, which enhanced the antibacterial activity of earlier compounds 3 and 4. In this study, five bacterial strains Staphylococcus aureus (S. aureus), Listeria monocytogenes (L. monocytogenes), Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Klebsiella pneumoniae (K. pneumoniae) were used to evaluate the antibacterial potency of synthesized naphthoquinones using the minimal inhibitory concentration (MIC) method. Most of the studied naphthoquinones demonstrated major antibacterial activity with a MIC of 15.6 µg/mL–500 µg/mL. Selected compounds (5a, 5f and 5x) were studied for the mode of action, using intracellular ROS generation, determination of apoptosis by the Annexin V-FITC/PI assay, a bactericidal kinetic study and in silico molecular modelling. Additionally, the redox potentials of the specified compounds were confirmed by cyclic voltammetry (CV).
Collapse
|
15
|
Cai S, Yuan W, Li Y, Huang X, Guo Q, Tang Z, Fang Z, Lin H, Wong WL, Wong KY, Lu YJ, Sun N. Antibacterial activity of indolyl-quinolinium derivatives and study their mode of action. Bioorg Med Chem 2019; 27:1274-1282. [DOI: 10.1016/j.bmc.2019.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/09/2019] [Accepted: 02/13/2019] [Indexed: 01/23/2023]
|
16
|
Bi F, Song D, Zhang N, Liu Z, Gu X, Hu C, Cai X, Venter H, Ma S. Design, synthesis and structure-based optimization of novel isoxazole-containing benzamide derivatives as FtsZ modulators. Eur J Med Chem 2018; 159:90-103. [DOI: 10.1016/j.ejmech.2018.09.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 11/27/2022]
|
17
|
Mediati DG, Burke CM, Ansari S, Harry EJ, Duggin IG. High-throughput sequencing of sorted expression libraries reveals inhibitors of bacterial cell division. BMC Genomics 2018; 19:781. [PMID: 30373517 PMCID: PMC6206680 DOI: 10.1186/s12864-018-5187-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Background Bacterial filamentation occurs when rod-shaped bacteria grow without dividing. To identify genetically encoded inhibitors of division that promote filamentation, we used cell sorting flow cytometry to enrich filamentous clones from an inducible expression library, and then identified the cloned DNA with high-throughput DNA sequencing. We applied the method to an expression library made from fragmented genomic DNA of uropathogenic E. coli UTI89, which undergoes extensive reversible filamentation in urinary tract infections and might encode additional regulators of division. Results We identified 55 genomic regions that reproducibly caused filamentation when expressed from the plasmid vector, and then further localized the cause of filamentation in several of these to specific genes or sub-fragments. Many of the identified genomic fragments encode genes that are known to participate in cell division or its regulation, and others may play previously-unknown roles. Some of the prophage genes identified were previously implicated in cell division arrest. A number of the other fragments encoded potential short transcripts or peptides. Conclusions The results provided evidence of potential new links between cell division and distinct cellular processes including central carbon metabolism and gene regulation. Candidate regulators of the UTI-associated filamentation response or others were identified amongst the results. In addition, some genomic fragments that caused filamentation may not have evolved to control cell division, but may have applications as artificial inhibitors. Our approach offers the opportunity to carry out in depth surveys of diverse DNA libraries to identify new genes or sequences encoding the capacity to inhibit division and cause filamentation. Electronic supplementary material The online version of this article (10.1186/s12864-018-5187-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel G Mediati
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Catherine M Burke
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Shirin Ansari
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Elizabeth J Harry
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Iain G Duggin
- The ithree institute, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
18
|
Khadkikar P, Goud NS, Mohammed A, Ramamoorthy G, Ananthathatmula R, Doble M, Rizvi A, Banerjee S, Ravi A, Alvala M. An efficient and facile green synthesis of bisindole methanes as potential Mtb
FtsZ inhibitors. Chem Biol Drug Des 2018; 92:1933-1939. [DOI: 10.1111/cbdd.13363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 06/13/2018] [Accepted: 06/16/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Pratima Khadkikar
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad India
| | - N. Sridhar Goud
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad India
| | - Arifuddin Mohammed
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad India
| | - Gayathri Ramamoorthy
- Bioengineering and Drug Design Lab; Department of Biotechnology; Indian Institute of Technology Madras; Chennai India
| | - Ragamanvitha Ananthathatmula
- Bioengineering and Drug Design Lab; Department of Biotechnology; Indian Institute of Technology Madras; Chennai India
| | - Mukesh Doble
- Bioengineering and Drug Design Lab; Department of Biotechnology; Indian Institute of Technology Madras; Chennai India
| | - Arshad Rizvi
- Department of Biochemistry; University of Hyderabad; Hyderabad India
| | | | - Alvala Ravi
- G. Pulla Reddy College of Pharmacy; Hyderabad India
| | - Mallika Alvala
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Hyderabad India
| |
Collapse
|
19
|
Chan KF, Sun N, Yan SC, Wong ILK, Lui HK, Cheung KC, Yuan J, Chan FY, Zheng Z, Chan EWC, Chen S, Leung YC, Chan TH, Wong KY. Efficient Synthesis of Amine-Linked 2,4,6-Trisubstituted Pyrimidines as a New Class of Bacterial FtsZ Inhibitors. ACS OMEGA 2017; 2:7281-7292. [PMID: 30023544 PMCID: PMC6044853 DOI: 10.1021/acsomega.7b00701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/12/2017] [Indexed: 06/08/2023]
Abstract
We have recently identified a new class of filamenting temperature-sensitive mutant Z (FtsZ)-interacting compounds that possess a 2,4,6-trisubstituted pyrimidine-quinuclidine scaffold with moderate antibacterial activity. Employing this scaffold as a molecular template, a compound library of amine-linked 2,4,6-trisubstituted pyrimidines with 99 candidates was successfully established by employing an efficient convergent synthesis designed to explore their structure-activity relationship. The results of minimum inhibitory concentration (MIC) assay against Staphylococcus aureus strains and cytotoxicity assay against the mouse L929 cell line identified those compounds with potent antistaphylococcal properties (MIC ranges from 3 to 8 μg/mL) and some extent of cytotoxicity against normal cells (IC50 ranges from 6 to 27 μM). Importantly, three compounds also exhibited potent antibacterial activities against nine clinically isolated methicillin-resistant S. aureus (MRSA) strains. One of the compounds, 14av_amine16, exhibited low spontaneous frequency of resistance, low toxicity against Galleria mellonella larvae, and the ability to rescue G. mellonella larvae (20% survival rate at a dosage of 100 mg/kg) infected with a lethal dose of MRSA ATCC 43300 strain. Biological characterization of compound 14av_amine16 by saturation transfer difference NMR, light scattering assay, and guanosine triphosphatase hydrolysis assay with purified S. aureus FtsZ protein verified that it interacted with the FtsZ protein. Such a property of FtsZ inhibitors was further confirmed by observing iconic filamentous cell phenotype and mislocalization of the Z-ring formation of Bacillus subtilis. Taken together, these 2,4,6-trisubstituted pyrimidine derivatives represent a novel scaffold of S. aureus FtsZ inhibitors.
Collapse
Affiliation(s)
- Kin-Fai Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ning Sun
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Siu-Cheong Yan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Iris L K Wong
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Hok-Kiu Lui
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Kwan-Choi Cheung
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jian Yuan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Fung-Yi Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zhiwei Zheng
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen 518057, China
| | - Edward W C Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Sheng Chen
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun-Chung Leung
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tak Hang Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Kwok-Yin Wong
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
20
|
Sun N, Du RL, Zheng YY, Huang BH, Guo Q, Zhang RF, Wong KY, Lu YJ. Antibacterial activity of N-methylbenzofuro[3,2-b]quinoline and N-methylbenzoindolo[3,2-b]-quinoline derivatives and study of their mode of action. Eur J Med Chem 2017; 135:1-11. [PMID: 28426995 DOI: 10.1016/j.ejmech.2017.04.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/01/2017] [Accepted: 04/10/2017] [Indexed: 11/17/2022]
Abstract
The emergence of multidrug-resistant bacteria causes an urgent need for new generation of antibiotics, which may have a different mechanism of inhibition or killing action from the existing. Targeting at the inhibition of bacterial cell division via the control of FtsZ function is one of the effective and promising approaches. Some natural extracts from plants such as sanguinarine and berberine (analogs of pyridinium compounds) are known to alter FtsZ function. In this study, a series of novel quaternary pyridinium compounds was constructed based on the N-methylbenzofuro[3,2-b]quinoline and N-methylbenzoindolo[3,2-b]-quinoline derivatives and their antibacterial activity against nine significant pathogens was investigated using broth microdilution method. In the in vitro assay, the compounds showed strong antibacterial activities against various testing strains, which include some drug-resistant strains such as methicillin-resistant S. aureus and vancomycin-resistant E. faecium. Our results of morphology change of B. subtilis cells and molecular docking proved that the compounds functioned as an effective inhibitor to suppress FtsZ polymerization and FtsZ GTPase activity and thus the compound stops cell division and cause cell death through interacting with C-terminal interdomain cleft of FtsZ.
Collapse
Affiliation(s)
- Ning Sun
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China; Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Ruo-Lan Du
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Yuan-Yuan Zheng
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bao-Hua Huang
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Qi Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, PR China
| | - Rui-Fang Zhang
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Yu-Jing Lu
- Institute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
21
|
Mathew B, Hobrath JV, Ross L, Connelly MC, Lofton H, Rajagopalan M, Guy RK, Reynolds RC. Screening and Development of New Inhibitors of FtsZ from M. Tuberculosis. PLoS One 2016; 11:e0164100. [PMID: 27768711 PMCID: PMC5074515 DOI: 10.1371/journal.pone.0164100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022] Open
Abstract
A variety of commercial analogs and a newer series of Sulindac derivatives were screened for inhibition of M. tuberculosis (Mtb) in vitro and specifically as inhibitors of the essential mycobacterial tubulin homolog, FtsZ. Due to the ease of preparing diverse analogs and a favorable in vivo pharmacokinetic and toxicity profile of a representative analog, the Sulindac scaffold may be useful for further development against Mtb with respect to in vitro bacterial growth inhibition and selective activity for Mtb FtsZ versus mammalian tubulin. Further discovery efforts will require separating reported mammalian cell activity from both antibacterial activity and inhibition of Mtb FtsZ. Modeling studies suggest that these analogs bind in a specific region of the Mtb FtsZ polymer that differs from human tubulin and, in combination with a pharmacophore model presented herein, future hybrid analogs of the reported active molecules that more efficiently bind in this pocket may improve antibacterial activity while improving other drug characteristics.
Collapse
Affiliation(s)
- Bini Mathew
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama, 35205, United States of America
| | - Judith Varady Hobrath
- Drug Discovery Unit, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Larry Ross
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, Alabama, 35205, United States of America
| | - Michele C. Connelly
- Dept. Chemical Biology & Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, United States of America
| | - Hava Lofton
- The University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, United States of America
| | - Malini Rajagopalan
- The University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, United States of America
| | - R. Kiplin Guy
- Dept. Chemical Biology & Therapeutics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, United States of America
| | - Robert C. Reynolds
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
- Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, Alabama, 35294, United States of America
- * E-mail:
| |
Collapse
|
22
|
Hurley KA, Santos TMA, Nepomuceno GM, Huynh V, Shaw JT, Weibel DB. Targeting the Bacterial Division Protein FtsZ. J Med Chem 2016; 59:6975-98. [DOI: 10.1021/acs.jmedchem.5b01098] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katherine A. Hurley
- Department of Pharmaceutical Sciences, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Thiago M. A. Santos
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Gabriella M. Nepomuceno
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Valerie Huynh
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jared T. Shaw
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Douglas B. Weibel
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Biomedical Engineering, University of Wisconsin—Madison, 1550 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
23
|
Synthesis, characterization and antibacterial properties of polyurethane material functionalized with quaternary ammonium salt. Polym J 2015. [DOI: 10.1038/pj.2015.108] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Qiang S, Wang C, Venter H, Li X, Wang Y, Guo L, Ma R, Ma S. Synthesis and Biological Evaluation of Novel FtsZ-targeted 3-arylalkoxy-2,6-difluorobenzamides as Potential Antimicrobial Agents. Chem Biol Drug Des 2015; 87:257-64. [PMID: 26348110 DOI: 10.1111/cbdd.12658] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/09/2015] [Accepted: 08/18/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Shengsheng Qiang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan 250012 China
| | - Changde Wang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan 250012 China
| | - Henrietta Venter
- School of Pharmacy & Medical Sciences; Sansom Institute for Health Research; University of South Australia; GPO Box 2471 Adelaide SA 5001 Australia
| | - Xin Li
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan 250012 China
| | - Yi Wang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan 250012 China
| | - Liwei Guo
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan 250012 China
| | - Ruixin Ma
- Affiliated Hospital of Medical College; Qingdao University; Qingdao 266003 China
| | - Shutao Ma
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education); School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan 250012 China
| |
Collapse
|
25
|
Doxorubicin inhibits E. coli division by interacting at a novel site in FtsZ. Biochem J 2015; 471:335-46. [PMID: 26285656 DOI: 10.1042/bj20150467] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022]
Abstract
The increase in antibiotic resistance has become a major health concern in recent times. It is therefore essential to identify novel antibacterial targets as well as discover and develop new antibacterial agents. FtsZ, a highly conserved bacterial protein, is responsible for the initiation of cell division in bacteria. The functions of FtsZ inside cells are tightly regulated and any perturbation in its functions leads to inhibition of bacterial division. Recent reports indicate that small molecules targeting the functions of FtsZ may be used as leads to develop new antibacterial agents. To identify small molecules targeting FtsZ and inhibiting bacterial division, we screened a U.S. FDA (Food and Drug Administration)-approved drug library of 800 molecules using an independent computational, biochemical and microbial approach. From this screen, we identified doxorubicin, an anthracycline molecule that inhibits Escherichia coli division and forms filamentous cells. A fluorescence-binding assay shows that doxorubicin interacts strongly with FtsZ. A detailed biochemical analysis demonstrated that doxorubicin inhibits FtsZ assembly and its GTPase activity through binding to a site other than the GTP-binding site. Furthermore, using molecular docking, we identified a probable doxorubicin-binding site in FtsZ. A number of single amino acid mutations at the identified binding site in FtsZ resulted in a severalfold decrease in the affinity of FtsZ for doxorubicin, indicating the importance of this site for doxorubicin interaction. The present study suggests the presence of a novel binding site in FtsZ that interacts with the small molecules and can be targeted for the screening and development of new antibacterial agents.
Collapse
|
26
|
In Vivo Pharmacodynamic Evaluation of an FtsZ Inhibitor, TXA-709, and Its Active Metabolite, TXA-707, in a Murine Neutropenic Thigh Infection Model. Antimicrob Agents Chemother 2015; 59:6568-74. [PMID: 26259789 DOI: 10.1128/aac.01464-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/01/2015] [Indexed: 11/20/2022] Open
Abstract
Antibiotics with novel mechanisms of action are urgently needed. Processes of cellular division are attractive targets for new drug development. FtsZ, an integral protein involved in cell cytokinesis, is a representative example. In the present study, the pharmacodynamic (PD) activity of an FtsZ inhibitor, TXA-709, and its active metabolite, TXA-707, was evaluated in the neutropenic murine thigh infection model against 5 Staphylococcus aureus isolates, including both methicillin-susceptible and methicillin-resistant isolates. The pharmacokinetics (PK) of the TXA-707 active metabolite were examined after oral administration of the TXA-709 prodrug at 10, 40, and 160 mg/kg of body weight. The half-life ranged from 3.2 to 4.4 h, and the area under the concentration-time curve (AUC) and maximum concentration of drug in serum (Cmax) were relatively linear over the doses studied. All organisms exhibited an MIC of 1 mg/liter. Dose fractionation demonstrated the area under the concentration-time curve over 24 h in the steady state divided by the MIC (AUC/MIC ratio) to be the PD index most closely linked to efficacy (R(2) = 0.72). Dose-dependent activity was demonstrated against all 5 isolates, and the methicillin-resistance phenotype did not alter the pharmacokinetic/pharmacodynamic (PK/PD) targets. Net stasis was achieved against all isolates and a 1-log10 kill level against 4 isolates. PD targets included total drug 24-h AUC/MIC values of 122 for net stasis and 243 for 1-log10 killing. TXA-709 and TXA-707 are a promising novel antibacterial class and compound for S. aureus infections. These results should prove useful for design of clinical dosing regimen trials.
Collapse
|
27
|
Brockway AJ, Grove CI, Mahoney ME, Shaw JT. Synthesis of the diaryl ether cores common to chrysophaentins A, E and F. Tetrahedron Lett 2015; 56:3396-3401. [PMID: 26034333 PMCID: PMC4448730 DOI: 10.1016/j.tetlet.2015.01.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The synthesis of the diaryl ether subunits of the marine natural products chrysophaentin A, E and F is described. These natural prodcuts feature tetrasubstituted benzene rings with complex substitution patterns. The central strategy involves an SNAr reaction between a complex phenol and a polysubstituted fluoronitrobenzene. Subseqent attempts to construct the unusual E-chloroalkene linkage through several different approaches are also disclosed.
Collapse
Affiliation(s)
- Anthony J. Brockway
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616
| | - Charles I. Grove
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616
| | | | - Jared T. Shaw
- Department of Chemistry, University of California, One Shields Ave, Davis, CA 95616
| |
Collapse
|
28
|
Wang Y, Yan M, Ma R, Ma S. Synthesis and antibacterial activity of novel 4-bromo-1H-indazole derivatives as FtsZ inhibitors. Arch Pharm (Weinheim) 2015; 348:266-74. [PMID: 25773717 DOI: 10.1002/ardp.201400412] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/04/2015] [Accepted: 02/19/2015] [Indexed: 11/09/2022]
Abstract
A series of novel 4-bromo-1H-indazole derivatives as filamentous temperature-sensitive protein Z (FtsZ) inhibitors were designed, synthesized, and assayed for their in vitro antibacterial activity against various phenotypes of Gram-positive and Gram-negative bacteria and their cell division inhibitory activity. The results indicated that this series showed better antibacterial activity against Staphylococcus epidermidis and penicillin-susceptible Streptococcus pyogenes than the other tested strains. Among them, compounds 12 and 18 exhibited 256-fold and 256-fold more potent activity than 3-methoxybenzamide (3-MBA) against penicillin-resistant Staphylococcus aureus, and compound 18 showed 64-fold better activity than 3-MBA but 4-fold weaker activity than ciprofloxacin in the inhibition of S. aureus ATCC29213. Particularly, compound 9 presented the best activity (4 µg/mL) against S. pyogenes PS, being 32-fold, 32-fold, and 2-fold more active than 3-MBA, curcumin, and ciprofloxacin, respectively, but it was four times less active than oxacillin sodium. In addition, some synthesized compounds displayed moderate inhibition of cell division against S. aureus ATCC25923, Escherichia coli ATCC25922, and Pseudomonas aeruginosa ATCC27853, sharing a minimum cell division concentration of 128 µg/mL.
Collapse
Affiliation(s)
- Yi Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, P. R. China
| | | | | | | |
Collapse
|
29
|
Lau EC, Mason DJ, Eichhorst N, Engelder P, Mesa C, Kithsiri Wijeratne EM, Gunaherath GMKB, Leslie Gunatilaka AA, La Clair JJ, Chapman E. Functional chromatographic technique for natural product isolation. Org Biomol Chem 2015; 13:2255-9. [PMID: 25588099 PMCID: PMC4576851 DOI: 10.1039/c4ob02292k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural product discovery arises through a unique interplay between chromatographic purification and biological assays. Currently, most techniques used for natural product purification deliver leads without a defined biological action. We now describe a technique, referred to herein as functional chromatography, that deploys biological affinity as the matrix for compound isolation.
Collapse
Affiliation(s)
- Eric C. Lau
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Damian J. Mason
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Nicole Eichhorst
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Pearce Engelder
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, USA
| | - Celestina Mesa
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, USA
| | - E. M. Kithsiri Wijeratne
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706-6800, USA
| | - G. M. Kamal B. Gunaherath
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706-6800, USA
| | - A. A. Leslie Gunatilaka
- Southwest Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, AZ 85706-6800, USA
| | - James J. La Clair
- Xenobe Research Institute, P. O. Box 3052, San Diego, CA 92163-1052, USA
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721-0207, USA
| |
Collapse
|
30
|
Duggirala S, Nankar RP, Rajendran S, Doble M. Phytochemicals as Inhibitors of Bacterial Cell Division Protein FtsZ: Coumarins Are Promising Candidates. Appl Biochem Biotechnol 2014; 174:283-96. [DOI: 10.1007/s12010-014-1056-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
|
31
|
Inhibition of RND-type efflux pumps confers the FtsZ-directed prodrug TXY436 with activity against Gram-negative bacteria. Biochem Pharmacol 2014; 89:321-8. [DOI: 10.1016/j.bcp.2014.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/07/2014] [Accepted: 03/07/2014] [Indexed: 02/03/2023]
|
32
|
Park HC, Gedi V, Cho JH, Hyun JW, Lee KJ, Kang J, So B, Yoon MY. Characterization and in vitro inhibition studies of Bacillus anthracis FtsZ: a potential antibacterial target. Appl Biochem Biotechnol 2014; 172:3263-70. [PMID: 24510482 DOI: 10.1007/s12010-014-0752-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
FtsZ is an essential bacterial cell division protein that is an attractive target for the development of antibacterial agents. FtsZ is a homologue of eukaryotic tubulin, has GTPase activity, and forms a ring-type structure to initiate cell division. In this study, the FtsZ of Bacillus anthracis was cloned into a bacterial expression vector and overexpressed into Escherichia coli BL21 (DE3) cells. The overexpressed B. anthracis FtsZ was soluble and purified to homogeneity using Ni-His-tag affinity chromatography. Like other known FtsZs, the recombinant B. anthracis FtsZ also showed GTP-dependent polymerization, which was analyzed using both spectrophotometric and Transmission Electronic Microscopic (TEM) analysis. Using the purified FtsZ, we screened a naturally extracted chemical library to identify potent and novel inhibitors. The screening yielded three chemicals, SA-011, SA-059, and SA-069, that inhibited the in vitro polymerization activity of FtsZ in the micromolar range (IC50 of 55-168 μM). The inhibition potency was significantly comparable with that of berberine, a known potential inhibitor of FtsZ. Understanding the biochemical basis of the effect of these inhibitors on B. anthracis growth would provide a promising path for the development of new antianthracis drugs.
Collapse
Affiliation(s)
- Hae-Chul Park
- Department of Chemistry and Institute of Natural Science, Hanyang University, Seoul, 133-791, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Studies in the Synthesis of Biaryl Natural Products. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/b978-0-12-417185-5.00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
34
|
Stokes NR, Baker N, Bennett JM, Chauhan PK, Collins I, Davies DT, Gavade M, Kumar D, Lancett P, Macdonald R, Macleod L, Mahajan A, Mitchell JP, Nayal N, Nayal YN, Pitt GRW, Singh M, Yadav A, Srivastava A, Czaplewski LG, Haydon DJ. Design, synthesis and structure-activity relationships of substituted oxazole-benzamide antibacterial inhibitors of FtsZ. Bioorg Med Chem Lett 2013; 24:353-9. [PMID: 24287381 DOI: 10.1016/j.bmcl.2013.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 11/29/2022]
Abstract
The design, synthesis and structure-activity relationships of a series of oxazole-benzamide inhibitors of the essential bacterial cell division protein FtsZ are described. Compounds had potent anti-staphylococcal activity and inhibited the cytokinesis of the clinically-significant bacterial pathogen Staphylococcus aureus. Selected analogues possessing a 5-halo oxazole also inhibited a strain of S. aureus harbouring the glycine-to-alanine amino acid substitution at residue 196 of FtsZ which conferred resistance to previously reported inhibitors in the series. Substitutions to the pseudo-benzylic carbon of the scaffold improved the pharmacokinetic properties by increasing metabolic stability and provided a mechanism for creating pro-drugs. Combining multiple substitutions based on the findings reported in this study has provided small-molecule inhibitors of FtsZ with enhanced in vitro and in vivo antibacterial efficacy.
Collapse
Affiliation(s)
- Neil R Stokes
- Biota Europe Ltd, Begbroke Science Park, Oxfordshire OX5 1PF, United Kingdom
| | - Nicola Baker
- Biota Europe Ltd, Begbroke Science Park, Oxfordshire OX5 1PF, United Kingdom
| | - James M Bennett
- Biota Europe Ltd, Begbroke Science Park, Oxfordshire OX5 1PF, United Kingdom
| | | | - Ian Collins
- Biota Europe Ltd, Begbroke Science Park, Oxfordshire OX5 1PF, United Kingdom
| | - David T Davies
- Biota Europe Ltd, Begbroke Science Park, Oxfordshire OX5 1PF, United Kingdom
| | - Maruti Gavade
- Jubilant Chemsys Ltd, B-34, Sector-58, Noida 201301, India
| | - Dushyant Kumar
- Jubilant Chemsys Ltd, B-34, Sector-58, Noida 201301, India
| | - Paul Lancett
- Biota Europe Ltd, Begbroke Science Park, Oxfordshire OX5 1PF, United Kingdom
| | - Rebecca Macdonald
- Biota Europe Ltd, Begbroke Science Park, Oxfordshire OX5 1PF, United Kingdom
| | - Leanne Macleod
- Biota Europe Ltd, Begbroke Science Park, Oxfordshire OX5 1PF, United Kingdom
| | - Anu Mahajan
- Jubilant Chemsys Ltd, B-34, Sector-58, Noida 201301, India
| | - Jeffrey P Mitchell
- Biota Scientific Management Pty Ltd, 10/585 Blackburn Road, Notting Hill, VIC 3168, Australia
| | - Narendra Nayal
- Jubilant Chemsys Ltd, B-34, Sector-58, Noida 201301, India
| | | | - Gary R W Pitt
- Biota Scientific Management Pty Ltd, 10/585 Blackburn Road, Notting Hill, VIC 3168, Australia
| | - Mahipal Singh
- Jubilant Chemsys Ltd, B-34, Sector-58, Noida 201301, India
| | - Anju Yadav
- Jubilant Chemsys Ltd, B-34, Sector-58, Noida 201301, India
| | | | - Lloyd G Czaplewski
- Biota Europe Ltd, Begbroke Science Park, Oxfordshire OX5 1PF, United Kingdom
| | - David J Haydon
- Biota Europe Ltd, Begbroke Science Park, Oxfordshire OX5 1PF, United Kingdom.
| |
Collapse
|
35
|
Kaul M, Mark L, Zhang Y, Parhi AK, LaVoie EJ, Pilch DS. Pharmacokinetics and in vivo antistaphylococcal efficacy of TXY541, a 1-methylpiperidine-4-carboxamide prodrug of PC190723. Biochem Pharmacol 2013; 86:1699-707. [PMID: 24148278 DOI: 10.1016/j.bcp.2013.10.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/31/2022]
Abstract
The benzamide derivative PC190723 was among the first of a promising new class of FtsZ-directed antibacterial agents to be identified that exhibit potent antistaphylococcal activity. However, the compound is associated with poor drug-like properties. As part of an ongoing effort to develop FtsZ-targeting antibacterial agents with increased potential for clinical utility, we describe herein the pharmacodynamics, pharmacokinetics, in vivo antistaphylococcal efficacy, and mammalian cytotoxicity of TXY541, a novel 1-methylpiperidine-4-carboxamide prodrug of PC190723. TXY541 was found to be 143-times more soluble than PC190723 in an aqueous acidic vehicle (10mM citrate, pH 2.6) suitable for both oral and intravenous in vivo administration. In staphylococcal growth media, TXY541 converts to PC190723 with a half-life of approximately 8h. In 100% mouse serum, the TXY541-to-PC190723 conversion was much more rapid (with a half-life of approximately 3min), suggesting that the conversion of the prodrug in serum is predominantly enzyme-catalyzed. Pharmacokinetic analysis of both orally and intravenously administered TXY541 in mice yielded a half-life for the PC190723 conversion product of 0.56h and an oral bioavailability of 29.6%. Whether administered orally or intravenously, TXY541 was found to be efficacious in vivo in mouse models of systemic infection with both methicillin-sensitive and methicillin-resistant S. aureus. Toxicological assessment of TXY541 against mammalian cells revealed minimal detectable cytotoxicity. The results presented here highlight TXY541 as a potential therapeutic agent that warrants further pre-clinical development.
Collapse
Affiliation(s)
- Malvika Kaul
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, United States
| | | | | | | | | | | |
Collapse
|
36
|
An FtsZ-targeting prodrug with oral antistaphylococcal efficacy in vivo. Antimicrob Agents Chemother 2013; 57:5860-9. [PMID: 24041882 DOI: 10.1128/aac.01016-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The bacterial cell division protein FtsZ represents a novel antibiotic target that has yet to be exploited clinically. The benzamide PC190723 was among the first FtsZ-targeting compounds to exhibit in vivo efficacy in a murine infection model system. Despite its initial promise, the poor formulation properties of the compound have limited its potential for clinical development. We describe here the development of an N-Mannich base derivative of PC190723 with enhanced drug-like properties and oral in vivo efficacy. The N-Mannich base derivative (TXY436) is ∼100-fold more soluble than PC190723 in an acidic aqueous vehicle (10 mM citrate, pH 2.6) suitable for oral in vivo administration. At physiological pH (7.4), TXY436 acts as a prodrug, converting to PC190723 with a conversion half-life of 18.2 ± 1.6 min. Pharmacokinetic analysis following intravenous administration of TXY436 into mice yielded elimination half-lives of 0.26 and 0.96 h for the TXY436 prodrug and its PC190723 product, respectively. In addition, TXY436 was found to be orally bioavailable and associated with significant extravascular distribution. Using a mouse model of systemic infection with methicillin-sensitive Staphylococcus aureus or methicillin-resistant S. aureus, we show that TXY436 is efficacious in vivo upon oral administration. In contrast, the oral administration of PC190723 was not efficacious. Mammalian cytotoxicity studies of TXY436 using Vero cells revealed an absence of toxicity up to compound concentrations at least 64 times greater than those associated with antistaphylococcal activity. These collective properties make TXY436 a worthy candidate for further investigation as a clinically useful agent for the treatment of staphylococcal infections.
Collapse
|
37
|
Keffer JL, Huecas S, Hammill JT, Wipf P, Andreu JM, Bewley CA. Chrysophaentins are competitive inhibitors of FtsZ and inhibit Z-ring formation in live bacteria. Bioorg Med Chem 2013; 21:5673-8. [PMID: 23932448 PMCID: PMC3768135 DOI: 10.1016/j.bmc.2013.07.033] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/06/2013] [Accepted: 07/16/2013] [Indexed: 12/17/2022]
Abstract
The bacterial cell division protein FtsZ polymerizes in a GTP-dependent manner to form a Z-ring that marks the plane of division. As a validated antimicrobial target, considerable efforts have been devoted to identify small molecule FtsZ inhibitors. We recently discovered the chrysophaentins, a novel suite of marine natural products that inhibit FtsZ activity in vitro. These natural products along with a synthetic hemi-chrysophaentin exhibit strong antimicrobial activity toward a broad spectrum of Gram-positive pathogens. To define their mechanisms of FtsZ inhibition and determine their in vivo effects in live bacteria, we used GTPase assays and fluorescence anisotropy to show that hemi-chrysophaentin competitively inhibits FtsZ activity. Furthermore, we developed a model system using a permeable Escherichia coli strain, envA1, together with an inducible FtsZ-yellow fluorescent protein construct to show by fluorescence microscopy that both chrysophaentin A and hemi-chrysophaentin disrupt Z-rings in live bacteria. We tested the E. coli system further by reproducing phenotypes observed for zantrins Z1 and Z3, and demonstrate that the alkaloid berberine, a reported FtsZ inhibitor, exhibits auto-fluorescence, making it incompatible with systems that employ GFP or YFP tagged FtsZ. These studies describe unique examples of nonnucleotide, competitive FtsZ inhibitors that disrupt FtsZ in vivo, together with a model system that should be useful for in vivo testing of FtsZ inhibitor leads that have been identified through in vitro screens but are unable to penetrate the Gram-negative outer membrane.
Collapse
Affiliation(s)
- Jessica L. Keffer
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sonia Huecas
- Centro de Investigaciones Biologicas, CSIC, Madrid, Spain
| | - Jared T. Hammill
- Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter Wipf
- Centro de Investigaciones Biologicas, CSIC, Madrid, Spain
| | - Jose M. Andreu
- Centro de Investigaciones Biologicas, CSIC, Madrid, Spain
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Ma S, Cong C, Meng X, Cao S, Yang H, Guo Y, Lu X, Ma S. Synthesis and on-target antibacterial activity of novel 3-elongated arylalkoxybenzamide derivatives as inhibitors of the bacterial cell division protein FtsZ. Bioorg Med Chem Lett 2013; 23:4076-9. [DOI: 10.1016/j.bmcl.2013.05.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/30/2013] [Accepted: 05/16/2013] [Indexed: 11/16/2022]
|
39
|
Kaul M, Zhang Y, Parhi AK, Lavoie EJ, Tuske S, Arnold E, Kerrigan JE, Pilch DS. Enterococcal and streptococcal resistance to PC190723 and related compounds: molecular insights from a FtsZ mutational analysis. Biochimie 2013; 95:1880-7. [PMID: 23806423 DOI: 10.1016/j.biochi.2013.06.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
Abstract
New antibiotics with novel mechanisms of action are urgently needed to overcome the growing bacterial resistance problem faced by clinicians today. PC190723 and related compounds represent a promising new class of antibacterial compounds that target the essential bacterial cell division protein FtsZ. While this family of compounds exhibits potent antistaphylococcal activity, they have poor activity against enterococci and streptococci. The studies described herein are aimed at investigating the molecular basis of the enterococcal and streptococcal resistance to this family of compounds. We show that the poor activity of the compounds against enterococci and streptococci correlates with a correspondingly weak impact of the compounds on the self-polymerization of the FtsZ proteins from those bacteria. In addition, computational and mutational studies identify two key FtsZ residues (E34 and R308) as being important determinants of enterococcal and streptococcal resistance to the PC190723-type class of compounds.
Collapse
Affiliation(s)
- Malvika Kaul
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mathew B, Ross L, Reynolds RC. A novel quinoline derivative that inhibits mycobacterial FtsZ. Tuberculosis (Edinb) 2013; 93:398-400. [PMID: 23647650 DOI: 10.1016/j.tube.2013.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 11/18/2022]
Abstract
High throughput phenotypic screening of large commercially available libraries through two NIH programs has produced thousands of potentially interesting hits for further development as antitubercular agents. Unfortunately, these screens do not supply target information, and further follow up target identification is required to allow optimal rational design and development of highly active and selective clinical candidates. Cheminformatic analysis of the quinoline and quinazoline hits from these HTS screens suggested a hypothesis that certain compounds in these two classes may target the mycobacterial tubulin homolog, FtsZ. In this brief communication, activity of a lead quinoline against the target FtsZ from Mycobacterium tuberculosis (Mtb) is confirmed as well as good in vitro whole cell antibacterial activity against Mtb H37Rv. The identification of a putative target of this highly tractable pharmacophore should help medicinal chemists interested in targeting FtsZ and cell division develop a rational design program to optimize this activity toward a novel drug candidate.
Collapse
Affiliation(s)
- Bini Mathew
- Drug Discovery Division, Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205, USA.
| | | | | |
Collapse
|
41
|
Burke C, Liu M, Britton W, Triccas JA, Thomas T, Smith AL, Allen S, Salomon R, Harry E. Harnessing single cell sorting to identify cell division genes and regulators in bacteria. PLoS One 2013; 8:e60964. [PMID: 23565292 PMCID: PMC3614548 DOI: 10.1371/journal.pone.0060964] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/04/2013] [Indexed: 11/19/2022] Open
Abstract
Cell division is an essential cellular process that requires an array of known and unknown proteins for its spatial and temporal regulation. Here we develop a novel, high-throughput screening method for the identification of bacterial cell division genes and regulators. The method combines the over-expression of a shotgun genomic expression library to perturb the cell division process with high-throughput flow cytometry sorting to screen many thousands of clones. Using this approach, we recovered clones with a filamentous morphology for the model bacterium, Escherichia coli. Genetic analysis revealed that our screen identified both known cell division genes, and genes that have not previously been identified to be involved in cell division. This novel screening strategy is applicable to a wide range of organisms, including pathogenic bacteria, where cell division genes and regulators are attractive drug targets for antibiotic development.
Collapse
Affiliation(s)
- Catherine Burke
- The ithree Institute, University of Technology, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Anderson DE, Kim MB, Moore JT, O’Brien TE, Sorto NA, Grove CI, Lackner LL, Ames JB, Shaw JT. Comparison of small molecule inhibitors of the bacterial cell division protein FtsZ and identification of a reliable cross-species inhibitor. ACS Chem Biol 2012; 7:1918-28. [PMID: 22958099 DOI: 10.1021/cb300340j] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
FtsZ is a guanosine triphosphatase (GTPase) that mediates cytokinesis in bacteria. FtsZ is homologous in structure to eukaryotic tubulin and polymerizes in a similar head-to-tail fashion. The study of tubulin's function in eukaryotic cells has benefited greatly from specific and potent small molecule inhibitors, including colchicine and taxol. Although many small molecule inhibitors of FtsZ have been reported, none has emerged as a generally useful probe for modulating bacterial cell division. With the goal of establishing a useful and reliable small molecule inhibitor of FtsZ, a broad biochemical cross-comparison of reported FtsZ inhibitors was undertaken. Several of these molecules, including phenolic natural products, are unselective inhibitors that seem to derive their activity from the formation of microscopic colloids or aggregates. Other compounds, including the natural product viriditoxin and the drug development candidate PC190723, exhibit no inhibition of GTPase activity using protocols in this work or under published conditions. Of the compounds studied, only zantrin Z3 exhibits good levels of inhibition, maintains activity under conditions that disrupt small molecule aggregates, and provides a platform for exploration of structure-activity relationships (SAR). Preliminary SAR studies have identified slight modifications to the two side chains of this structure that modulate the inhibitory activity of zantrin Z3. Collectively, these studies will help focus future investigations toward the establishment of probes for FtsZ that fill the roles of colchicine and taxol in studies of tubulin.
Collapse
Affiliation(s)
- David E. Anderson
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Michelle B. Kim
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Jared T. Moore
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Terrence E. O’Brien
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Nohemy A. Sorto
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Charles I. Grove
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Laura L. Lackner
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - James B. Ames
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| | - Jared T. Shaw
- Department of Chemistry, University of California, One Shields Ave, Davis, California 95616,
United States
| |
Collapse
|
43
|
An improved small-molecule inhibitor of FtsZ with superior in vitro potency, drug-like properties, and in vivo efficacy. Antimicrob Agents Chemother 2012; 57:317-25. [PMID: 23114779 DOI: 10.1128/aac.01580-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The bacterial cell division protein FtsZ is an attractive target for small-molecule antibacterial drug discovery. Derivatives of 3-methoxybenzamide, including compound PC190723, have been reported to be potent and selective antistaphylococcal agents which exert their effects through the disruption of intracellular FtsZ function. Here, we report the further optimization of 3-methoxybenzamide derivatives towards a drug candidate. The in vitro and in vivo characterization of a more advanced lead compound, designated compound 1, is described. Compound 1 was potently antibacterial, with an average MIC of 0.12 μg/ml against all staphylococcal species, including methicillin- and multidrug-resistant Staphylococcus aureus and Staphylococcus epidermidis. Compound 1 inhibited an S. aureus strain carrying the G196A mutation in FtsZ, which confers resistance to PC190723. Like PC190723, compound 1 acted on whole bacterial cells by blocking cytokinesis. No interactions between compound 1 and a diverse panel of antibiotics were measured in checkerboard experiments. Compound 1 displayed suitable in vitro pharmaceutical properties and a favorable in vivo pharmacokinetic profile following intravenous and oral administration, with a calculated bioavailability of 82.0% in mice. Compound 1 demonstrated efficacy in a murine model of systemic S. aureus infection and caused a significant decrease in the bacterial load in the thigh infection model. A greater reduction in the number of S. aureus cells recovered from infected thighs, equivalent to 3.68 log units, than in those recovered from controls was achieved using a succinate prodrug of compound 1, which was designated compound 2. In summary, optimized derivatives of 3-methoxybenzamide may yield a first-in-class FtsZ inhibitor for the treatment of antibiotic-resistant staphylococcal infections.
Collapse
|
44
|
Kaul M, Parhi AK, Zhang Y, LaVoie EJ, Tuske S, Arnold E, Kerrigan JE, Pilch DS. A bactericidal guanidinomethyl biaryl that alters the dynamics of bacterial FtsZ polymerization. J Med Chem 2012; 55:10160-76. [PMID: 23050700 DOI: 10.1021/jm3012728] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The prevalence of multidrug resistance among clinically significant bacterial pathogens underscores a critical need for the development of new classes of antibiotics with novel mechanisms of action. Here we describe the synthesis and evaluation of a guanidinomethyl biaryl compound {1-((4'-(tert-butyl)-[1,1'-biphenyl]-3-yl)methyl)guanidine} that targets the bacterial cell division protein FtsZ. In vitro studies with various bacterial FtsZ proteins reveal that the compound alters the dynamics of FtsZ self-polymerization via a stimulatory mechanism, while minimally impacting the polymerization of tubulin, the closest mammalian homologue of FtsZ. The FtsZ binding site of the compound is identified through a combination of computational and mutational approaches. The compound exhibits a broad spectrum of bactericidal activity, including activity against the multidrug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), while also exhibiting a minimal potential to induce resistance. Taken together, our results highlight the compound as a promising new FtsZ-targeting bactericidal agent.
Collapse
Affiliation(s)
- Malvika Kaul
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School , Piscataway, New Jersey 08854-5635, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Godel C, Kumar S, Koutsovoulos G, Ludin P, Nilsson D, Comandatore F, Wrobel N, Thompson M, Schmid CD, Goto S, Bringaud F, Wolstenholme A, Bandi C, Epe C, Kaminsky R, Blaxter M, Mäser P. The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets. FASEB J 2012; 26:4650-61. [PMID: 22889830 PMCID: PMC3475251 DOI: 10.1096/fj.12-205096] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The heartworm Dirofilaria immitis is an important parasite of dogs. Transmitted by mosquitoes in warmer climatic zones, it is spreading across southern Europe and the Americas at an alarming pace. There is no vaccine, and chemotherapy is prone to complications. To learn more about this parasite, we have sequenced the genomes of D. immitis and its endosymbiont Wolbachia. We predict 10,179 protein coding genes in the 84.2 Mb of the nuclear genome, and 823 genes in the 0.9-Mb Wolbachia genome. The D. immitis genome harbors neither DNA transposons nor active retrotransposons, and there is very little genetic variation between two sequenced isolates from Europe and the United States. The differential presence of anabolic pathways such as heme and nucleotide biosynthesis hints at the intricate metabolic interrelationship between the heartworm and Wolbachia. Comparing the proteome of D. immitis with other nematodes and with mammalian hosts, we identify families of potential drug targets, immune modulators, and vaccine candidates. This genome sequence will support the development of new tools against dirofilariasis and aid efforts to combat related human pathogens, the causative agents of lymphatic filariasis and river blindness.—Godel, C., Kumar, S., Koutsovoulos, G., Ludin, P., Nilsson, D., Comandatore, F., Wrobel, N., Thompson, M., Schmid, C. D., Goto, S., Bringaud, F., Wolstenholme, A., Bandi, C., Epe, C., Kaminsky, R., Blaxter, M., Mäser, P. The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets.
Collapse
|