1
|
Ivachtchenko AV, Khvat AV, Shkil DO. Development and Prospects of Furin Inhibitors for Therapeutic Applications. Int J Mol Sci 2024; 25:9199. [PMID: 39273149 PMCID: PMC11394684 DOI: 10.3390/ijms25179199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Furin, a serine protease enzyme located in the Golgi apparatus of animal cells, plays a crucial role in cleaving precursor proteins into their mature, active forms. It is ubiquitously expressed across various tissues, including the brain, lungs, gastrointestinal tract, liver, pancreas, and reproductive organs. Since its discovery in 1990, furin has been recognized as a significant therapeutic target, leading to the active development of furin inhibitors for potential use in antiviral, antibacterial, anticancer, and other therapeutic applications. This review provides a comprehensive overview of the progress in the development and characterization of furin inhibitors, encompassing peptides, linear and macrocyclic peptidomimetics, and non-peptide compounds, highlighting their potential in the treatment of both infectious and non-infectious diseases.
Collapse
|
2
|
Lange RW, Bloch K, Heindl MR, Wollenhaupt J, Weiss MS, Brandstetter H, Klebe G, Falcone FH, Böttcher-Friebertshäuser E, Dahms SO, Steinmetzer T. Fragment-Based Design, Synthesis, and Characterization of Aminoisoindole-Derived Furin Inhibitors. ChemMedChem 2024; 19:e202400057. [PMID: 38385828 DOI: 10.1002/cmdc.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/23/2024]
Abstract
A 1H-isoindol-3-amine was identified as suitable P1 group for the proprotein convertase furin using a crystallographic screening with a set of 20 fragments known to occupy the S1 pocket of trypsin-like serine proteases. Its binding mode is very similar to that observed for the P1 group of benzamidine-derived peptidic furin inhibitors suggesting an aminomethyl substitution of this fragment to obtain a couplable P1 residue for the synthesis of substrate-analogue furin inhibitors. The obtained inhibitors possess a slightly improved picomolar inhibitory potency compared to their benzamidine-derived analogues. The crystal structures of two inhibitors in complex with furin revealed that the new P1 group is perfectly suited for incorporation in peptidic furin inhibitors. Selected inhibitors were tested for antiviral activity against respiratory syncytial virus (RSV) and a furin-dependent influenza A virus (SC35M/H7N7) in A549 human lung cells and demonstrated an efficient inhibition of virus activation and replication at low micromolar or even submicromolar concentrations. First results suggest that the Mas-related G-protein coupled receptor GPCR-X2 could be a potential off-target for certain benzamidine-derived furin inhibitors.
Collapse
Affiliation(s)
- Roman W Lange
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6-10, D-35032, Marburg, Germany Phone
| | - Konstantin Bloch
- Institute of Virology, Philipps University, Hans-Meerwein-Str. 2, Marburg, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps University, Hans-Meerwein-Str. 2, Marburg, Germany
| | - Jan Wollenhaupt
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, 12489, Berlin, Germany
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin, 12489, Berlin, Germany
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, A-5020, Salzburg, Austria Phone
| | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6-10, D-35032, Marburg, Germany Phone
| | - Franco H Falcone
- Institute of Parasitology, BFS, Justus Liebig University, 35392, Giessen, Germany
| | | | - Sven O Dahms
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6-10, D-35032, Marburg, Germany Phone
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, A-5020, Salzburg, Austria Phone
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6-10, D-35032, Marburg, Germany Phone
| |
Collapse
|
3
|
Navals P, Kwiatkowska A, Mekdad N, Couture F, Desjardins R, Day R, Dory YL. Enhancing the Drug-Like Profile of a Potent Peptide PACE4 Inhibitor by the Formation of a Host-Guest Inclusion Complex with β-Cyclodextrin. Mol Pharm 2023; 20:4559-4573. [PMID: 37555521 DOI: 10.1021/acs.molpharmaceut.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The enzyme PACE4 has been validated as a promising therapeutic target to expand the range of prostate cancer (PCa) treatments. In recent years, we have developed a potent peptidomimetic inhibitor, namely, compound C23 (Ac-(DLeu)LLLRVK-4-amidinobenzylamide). Like many peptides, C23 suffers from an unfavorable drug-like profile which, despite our efforts, has not yet benefited from the usual SAR studies. Hence, we turned our attention toward a novel formulation strategy, i.e., the use of cyclodextrins (CDs). CDs can benefit compounds through the formation of "host-guest" complexes, shielding the guest from degradation and enhancing biological survival. In this study, a series of βCD-C23 complexes have been generated and their properties evaluated, including potency toward the enzyme in vitro, a cell-based proliferation assay, and stability in plasma. As a result, a new βCD-formulated lead compound has been identified, which, in addition to being more soluble and more potent, also showed an improved stability profile.
Collapse
Affiliation(s)
- Pauline Navals
- Institut de Pharmacologie de Sherbrooke, Département de Chimie, Faculté des Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Anna Kwiatkowska
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Nawel Mekdad
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Frédéric Couture
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Roxane Desjardins
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Robert Day
- Phenoswitch Bioscience Inc, 975 Rue Léon-Trépanier, Sherbrooke, Québec J1G 5J6, Canada
| | - Yves L Dory
- Institut de Pharmacologie de Sherbrooke, Département de Chimie, Faculté des Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
4
|
Lam van TV, Heindl MR, Schlutt C, Böttcher-Friebertshäuser E, Bartenschlager R, Klebe G, Brandstetter H, Dahms SO, Steinmetzer T. The Basicity Makes the Difference: Improved Canavanine-Derived Inhibitors of the Proprotein Convertase Furin. ACS Med Chem Lett 2021; 12:426-432. [PMID: 33732412 PMCID: PMC7957917 DOI: 10.1021/acsmedchemlett.0c00651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022] Open
Abstract
![]()
Furin activates numerous
viral glycoproteins, and its inhibition
prevents virus replication and spread. Through the replacement of
arginine by the less basic canavanine, new inhibitors targeting furin
in the trans-Golgi network were developed. These inhibitors exert
potent antiviral activity in cell culture with much lower toxicity
than arginine-derived analogues, most likely due to their reduced
protonation in the blood circulation. Thus, despite its important
physiological functions, furin might be a suitable antiviral drug
target.
Collapse
Affiliation(s)
- Thuy Van Lam van
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Miriam Ruth Heindl
- Institute of Virology, Philipps University, Hans-Meerwein-Strasse 2, 35043 Marburg, Germany
| | - Christine Schlutt
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | | | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University and German Center for Infection Research, Heidelberg Partner Site, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Gerhard Klebe
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| | - Hans Brandstetter
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Sven O. Dahms
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
- Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032 Marburg, Germany
| |
Collapse
|
5
|
Enhanced anti-tumor activity of the Multi-Leu peptide PACE4 inhibitor transformed into an albumin-bound tumor-targeting prodrug. Sci Rep 2019; 9:2118. [PMID: 30765725 PMCID: PMC6376031 DOI: 10.1038/s41598-018-37568-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
The proprotein convertase PACE4 has been validated as a potential target to develop new therapeutic interventions in prostate cancer (PCa). So far, the most effective compound blocking the activity of this enzyme has been designed based on the structure of a small peptide Ac-LLLLRVKR-NH2 known as the Multi-Leu (ML) peptide. Optimization of this scaffold led to the synthesis of compound C23 (Ac-[DLeu]LLLRVK-amidinobenzylamide) with a potent in vivo inhibitory effect on the tumor growth. However, further developments of PACE4 inhibitors may require additional improvements to counter their rapid renal clearance and to increase their tumor targeting efficiency. Herein, we explored the transformation of the ML-peptide into an albumin-binding prodrug containing a tumor specific release mechanism based on the prostate-specific antigen. Our data confirms that intravenous treatment using the ML-peptide alone has little effect on tumor growth, whereas by using the ML-prodrug in LNCaP xenograft-bearing mice it was significantly reduced. Additionally, excellent in vivo stability and tumor-targeting efficiency was demonstrated using a radiolabelled version of this compound. Taken together, these results provide a solid foundation for further development of targeted PACE4 inhibition in PCa.
Collapse
|
6
|
Dianati V, Navals P, Couture F, Desjardins R, Dame A, Kwiatkowska A, Day R, Dory YL. Improving the Selectivity of PACE4 Inhibitors through Modifications of the P1 Residue. J Med Chem 2018; 61:11250-11260. [PMID: 30501188 DOI: 10.1021/acs.jmedchem.8b01381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Paired basic amino acid cleaving enzyme 4 (PACE4), a serine endoprotease of the proprotein convertases family, has been recognized as a promising target for prostate cancer. We previously reported a selective and potent peptide-based inhibitor for PACE4, named the multi-Leu peptide (Ac-LLLLRVKR-NH2 sequence), which was then modified into a more potent and stable compound named C23 with the following structure: Ac-dLeu-LLLRVK-Amba (Amba: 4-amidinobenzylamide). Despite improvements in both in vitro and in vivo profiles of C23, its selectivity for PACE4 over furin was significantly reduced. We examined other Arg-mimetics instead of Amba to regain the lost selectivity. Our results indicated that the replacement of Amba with 5-(aminomethyl)picolinimidamide increased affinity for PACE4 and restored selectivity. Our results also provide a better insight on how structural differences between S1 pockets of PACE4 and furin could be employed in the rational design of selective inhibitors.
Collapse
|
7
|
Dianati V, Kwiatkowska A, Couture F, Desjardins R, Dory YL, Day R. Increasing C-Terminal Hydrophobicity Improves the Cell Permeability and Antiproliferative Activity of PACE4 Inhibitors against Prostate Cancer Cell Lines. J Med Chem 2018; 61:8457-8467. [DOI: 10.1021/acs.jmedchem.8b01144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vahid Dianati
- Département de Chimie, Faculté des Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Anna Kwiatkowska
- Département de Chirurgie/Urologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Frédéric Couture
- Département de Chirurgie/Urologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Roxane Desjardins
- Département de Chirurgie/Urologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Yves L. Dory
- Département de Chimie, Faculté des Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Robert Day
- Département de Chirurgie/Urologie, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
8
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. The Antiviral Potential of Host Protease Inhibitors. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122247 DOI: 10.1007/978-3-319-75474-1_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The replication of numerous pathogenic viruses depends on host proteases, which therefore emerged as potential antiviral drug targets. In some cases, e.g., for influenza viruses, their function during the viral propagation cycle is relatively well understood, where they cleave and activate viral surface glycoproteins. For other viruses, e.g., Ebola virus, the function of host proteases during replication is still not clear. Host proteases may also contribute to the pathogenicity of virus infection by activating proinflammatory cytokines. For some coronaviruses, human proteases can also serve in a nonproteolytical fashion simply as receptors for virus entry. However, blocking of such protein-protein contacts is challenging, because receptor surfaces are often flat and difficult to address with small molecules. In contrast, many proteases possess well-defined binding pockets. Therefore, they can be considered as well-druggable targets, especially, if they are extracellularly active. The number of their experimental crystal structures is steadily increasing, which is an important prerequisite for a rational structure-based inhibitor design using computational chemistry tools in combination with classical medicinal chemistry approaches. Moreover, host proteases can be considered as stable targets, and their inhibition should prevent rapid resistance developments, which is often observed when addressing viral proteins. Otherwise, the inhibition of host proteases can also affect normal physiological processes leading to a higher probability of side effects and a narrow therapeutic window. Therefore, they should be preferably used in combination therapies with additional antiviral drugs. This strategy should provide a stronger antiviral efficacy, allow to use lower drug doses, and minimize side effects. Despite numerous experimental findings on their antiviral activity, no small-molecule inhibitors of host proteases have been approved for the treatment of virus infections, so far.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
9
|
Ivanova T, Hardes K, Kallis S, Dahms SO, Than ME, Künzel S, Böttcher-Friebertshäuser E, Lindberg I, Jiao GS, Bartenschlager R, Steinmetzer T. Optimization of Substrate-Analogue Furin Inhibitors. ChemMedChem 2017; 12:1953-1968. [PMID: 29059503 DOI: 10.1002/cmdc.201700596] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/19/2017] [Indexed: 12/21/2022]
Abstract
The proprotein convertase furin is a potential target for drug design, especially for the inhibition of furin-dependent virus replication. All effective synthetic furin inhibitors identified thus far are multibasic compounds; the highest potency was found for our previously developed inhibitor 4-(guanidinomethyl)phenylacetyl-Arg-Tle-Arg-4-amidinobenzylamide (MI-1148). An initial study in mice revealed a narrow therapeutic range for this tetrabasic compound, while significantly reduced toxicity was observed for some tribasic analogues. This suggests that the toxicity depends at least to some extent on the overall multibasic character of this inhibitor. Therefore, in a first approach, the C-terminal benzamidine of MI-1148 was replaced by less basic P1 residues. Despite decreased potency, a few compounds still inhibit furin in the low nanomolar range, but display negligible efficacy in cells. In a second approach, the P2 arginine was replaced by lysine; compared to MI-1148, this furin inhibitor has slightly decreased potency, but exhibits similar antiviral activity against West Nile and Dengue virus in cell culture and decreased toxicity in mice. These results provide a promising starting point for the development of efficacious and well-tolerated furin inhibitors.
Collapse
Affiliation(s)
- Teodora Ivanova
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| | - Kornelia Hardes
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| | - Stephanie Kallis
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany.,German Center for Infection Research, Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Sven O Dahms
- Protein Crystallography Group, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.,Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Manuel E Than
- Protein Crystallography Group, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Sebastian Künzel
- Faculty of Engineering Sciences, Hochschule Ansbach, Residenzstraße 8, 91522, Ansbach, Germany
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, MD, 21201, USA
| | - Guan-Sheng Jiao
- Department of Chemistry, Hawaii Biotech, Inc., Honolulu, HI, USA.,MedChem ShortCut LLC, Pearl City, HI, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany.,German Center for Infection Research, Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| |
Collapse
|
10
|
Łepek T, Kwiatkowska A, Couture F, Ly K, Desjardins R, Dory Y, Prahl A, Day R. Macrocyclization of a potent PACE4 inhibitor: Benefits and limitations. Eur J Cell Biol 2017; 96:476-485. [DOI: 10.1016/j.ejcb.2017.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 01/09/2023] Open
|
11
|
Dianati V, Shamloo A, Kwiatkowska A, Desjardins R, Soldera A, Day R, Dory YL. Rational Design of a Highly Potent and Selective Peptide Inhibitor of PACE4 by Salt Bridge Interaction with D160 at Position P3. ChemMedChem 2017; 12:1169-1172. [PMID: 28722823 DOI: 10.1002/cmdc.201700300] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 06/28/2017] [Indexed: 11/11/2022]
Abstract
PACE4, a member of the proprotein convertases (PCs) family of serine proteases, is a validated target for prostate cancer. Our group has developed a potent and selective PACE4 inhibitor: Ac-LLLLRVKR-NH2 . In seeking for modifications to increase the selectivity of this ligand toward PACE4, we replaced one of its P3 Val methyl groups with a basic group capable of forming a salt bridge with D160 of PACE4. The resulting inhibitor is eight times more potent than the P3 Val parent inhibitor and two times more selective over furin, because the equivalent salt bridge with furin E257 is not optimal. Moreover, the β-branched nature of the new P3 residue favors the extended β-sheet conformation usually associated with substrates of proteases. This work provides new insight for better understanding of β-sheet backbone-backbone interactions between serine proteases and their peptidic ligands.
Collapse
Affiliation(s)
- Vahid Dianati
- Institut de Pharmacologie de Sherbrooke, IPS, Département de Chimie, Faculté des Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Azar Shamloo
- Département de Chimie, Centre Québécois sur les Matériaux Fonctionnels, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Anna Kwiatkowska
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Roxane Desjardins
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Armand Soldera
- Département de Chimie, Centre Québécois sur les Matériaux Fonctionnels, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Robert Day
- Institut de Pharmacologie de Sherbrooke, Département de Chirurgie/Urologie, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Yves L Dory
- Institut de Pharmacologie de Sherbrooke, IPS, Département de Chimie, Faculté des Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada
| |
Collapse
|
12
|
Klein-Szanto AJ, Bassi DE. Proprotein convertase inhibition: Paralyzing the cell's master switches. Biochem Pharmacol 2017; 140:8-15. [PMID: 28456517 DOI: 10.1016/j.bcp.2017.04.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Abstract
Proprotein convertases are serine proteases responsible for the cleavage and subsequent activation of protein substrates, many of them relevant for the development of an ample variety of diseases. Seven of the PCs, including furin and PACE4, recognize and hydrolyze the C-terminal end of the general sequence RXRR/KXR, whereas PCSK-9 recognizes a series of non-basic amino acids. In some systems, PC-mediated substrate activation results in the development of pathological processes, such as cancer, endocrinopathies, and cardiovascular and infectious diseases. After establishing PCs as relevant contributors to disease processes, research efforts were directed towards the development of inhibition strategies, including small and large molecules, anti-sense therapies, and antibody-based therapies. Most of these inhibitors mimic the consensus sequence of PCs, blocking the active site in a competitive manner. The most promising inhibitors were designed as bioengineered proteins; however, some non-protein and peptidomimetic agents have also proved to be effective. These efforts led to the design of pre-clinical studies and clinical trials utilizing inhibitors to PCs. Although the initial studies were performed using non-selective PCs inhibitors, such as CMK, the search for more specific, and compartmentalized selective inhibitors resulted in specific activities ascribed to some, but not all of the PCs. For instance, PACE4 inhibitors were effective in decreasing prostate cancer cell proliferation, and neovascularization. Decreased metastatic ovarian cancer utilizing furin inhibitors represents one of the major endeavors, currently in a phase II trial stage. Antibodies targeting PCSK-9 decreased significantly the levels of HDL-cholesterol, in a phase III trial. The study of Proprotein convertases has reached a stage of maturity. New strategies based on the alteration of their activity at the cellular and clinical level represent a promising experimental pharmacology field. The development of allosteric inhibitors, or specific agents directed against individual PCs is one of the challenges to be unraveled in the future.
Collapse
Affiliation(s)
| | - Daniel E Bassi
- Fox Chase Cancer Center, 333 Cotman Ave, Philadelphia 19111, USA.
| |
Collapse
|
13
|
Hardes K, Ivanova T, Thaa B, McInerney GM, Klokk TI, Sandvig K, Künzel S, Lindberg I, Steinmetzer T. Elongated and Shortened Peptidomimetic Inhibitors of the Proprotein Convertase Furin. ChemMedChem 2017; 12:613-620. [PMID: 28334511 PMCID: PMC5572662 DOI: 10.1002/cmdc.201700108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/16/2017] [Indexed: 12/13/2022]
Abstract
Novel elongated and shortened derivatives of the peptidomimetic furin inhibitor phenylacetyl-Arg-Val-Arg-4-amidinobenzylamide were synthesized. The most potent compounds, such as Nα (carbamidoyl)Arg-Arg-Val-Arg-4-amidinobenzylamide (Ki =6.2 pm), contain additional basic residues at the N terminus and inhibit furin in the low-picomolar range. Furthermore, to decrease the molecular weight of this inhibitor type, compounds that lack the P5 moiety were prepared. The best inhibitors of this series, 5-(guanidino)valeroyl-Val-Arg-4-amidinobenzylamide and its P3 tert-leucine analogue displayed Ki values of 2.50 and 1.26 nm, respectively. Selected inhibitors, together with our previously described 4-amidinobenzylamide derivatives as references, were tested in cell culture for their activity against furin-dependent infectious pathogens. The propagation of the alphaviruses Semliki Forest virus and chikungunya virus was strongly inhibited in the presence of selected derivatives. Moreover, a significant protective effect of the inhibitors against diphtheria toxin was observed. These results confirm that the inhibition of furin should be a promising approach for the short-term treatment of acute infectious diseases.
Collapse
Affiliation(s)
- Kornelia Hardes
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Teodora Ivanova
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, D-35032 Marburg, Germany
| | - Bastian Thaa
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, SE-171 77 Stockholm, Sweden
| | - Gerald M. McInerney
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, SE-171 77 Stockholm, Sweden
| | - Tove Irene Klokk
- Department of Molecular Cell Biology and Centre for Cancer Biomedicine, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, NO-0310 Oslo, Norway
| | - Kirsten Sandvig
- Department of Molecular Cell Biology and Centre for Cancer Biomedicine, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, NO-0310 Oslo, Norway
| | - Sebastian Künzel
- Faculty of Engineering Sciences, Hochschule Ansbach, Residenzstraße 8, D-91522 Ansbach, Germany
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, Maryland 21201
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, D-35032 Marburg, Germany
| |
Collapse
|
14
|
Małuch I, Levesque C, Kwiatkowska A, Couture F, Ly K, Desjardins R, Neugebauer WA, Prahl A, Day R. Positional Scanning Identifies the Molecular Determinants of a High Affinity Multi-Leucine Inhibitor for Furin and PACE4. J Med Chem 2017; 60:2732-2744. [PMID: 28287731 DOI: 10.1021/acs.jmedchem.6b01499] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The proprotein convertase family of enzymes includes seven endoproteases with significant redundancy in their cleavage activity. We previously described the peptide Ac-LLLLRVK-Amba that displays potent inhibitory effects on both PACE4 and prostate cancer cell lines proliferation. Herein, the molecular determinants for PACE4 and furin inhibition were investigated by positional scanning using peptide libraries that substituted its leucine core with each natural amino acid. We determined that the incorporation of basic amino acids led to analogues with improved inhibitory potency toward both enzymes, whereas negatively charged residues significantly reduced it. All the remaining amino acids were in general well tolerated, with the exemption of the P6 position. However, not all of the potent PACE4 inhibitors displayed antiproliferative activity. The best analogues were obtained by the incorporation of the Ile residue at the P5 and P6 positions. These substitutions led to inhibitors with increased PACE4 selectivity and potent antiproliferative effects.
Collapse
Affiliation(s)
- Izabela Małuch
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk , 80-308 Gdańsk, Poland
| | - Christine Levesque
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada.,Département de Chirurgie/Urologie, Centre Hospitalier Université de Sherbrooke , 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Canada
| | - Anna Kwiatkowska
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada.,Département de Chirurgie/Urologie, Centre Hospitalier Université de Sherbrooke , 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Canada
| | - Frédéric Couture
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada.,Département de Chirurgie/Urologie, Centre Hospitalier Université de Sherbrooke , 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Canada
| | - Kévin Ly
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada.,Département de Chirurgie/Urologie, Centre Hospitalier Université de Sherbrooke , 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Canada
| | - Roxane Desjardins
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada.,Département de Chirurgie/Urologie, Centre Hospitalier Université de Sherbrooke , 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Canada
| | - Witold A Neugebauer
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada
| | - Adam Prahl
- Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk , 80-308 Gdańsk, Poland
| | - Robert Day
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada.,Département de Chirurgie/Urologie, Centre Hospitalier Université de Sherbrooke , 3001 12e Avenue Nord, J1H 5N4 Sherbrooke, Canada
| |
Collapse
|