1
|
Li D, Geng D, Wang M. Advances in natural products modulating autophagy influenced by cellular stress conditions and their anticancer roles in the treatment of ovarian cancer. FASEB J 2024; 38:e70075. [PMID: 39382031 DOI: 10.1096/fj.202401409r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/20/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024]
Abstract
Autophagy is a conservative catabolic process that typically serves a cell-protective function. Under stress conditions, when the cellular environment becomes unstable, autophagy is activated as an adaptive response for self-protection. Autophagy delivers damaged cellular components to lysosomes for degradation and recycling, thereby providing essential nutrients for cell survival. However, this function of promoting cell survival under stress conditions often leads to malignant progression and chemotherapy resistance in cancer. Consequently, autophagy is considered a potential target for cancer therapy. Herein, we aim to review how natural products act as key modulators of autophagy by regulating cellular stress conditions. We revisit various stressors, including starvation, hypoxia, endoplasmic reticulum stress, and oxidative stress, and their regulatory relationship with autophagy, focusing on recent advances in ovarian cancer research. Additionally, we explore how polyphenolic compounds, flavonoids, alkaloids, terpenoids, and other natural products modulate autophagy mediated by stress responses, affecting the malignant biological behavior of cancer. Furthermore, we discuss their roles in ovarian cancer therapy. This review emphasizes the importance of natural products as valuable resources in cancer therapeutics, highlighting the need for further exploration of their potential in regulating autophagy. Moreover, it provides novel insights and potential therapeutic strategies in ovarian cancer by utilizing natural products to modulate autophagy.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Danbo Geng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Yang Q, Meng D, Zhang Q, Wang J. Advances in the role of resveratrol and its mechanism of action in common gynecological tumors. Front Pharmacol 2024; 15:1417532. [PMID: 39086397 PMCID: PMC11288957 DOI: 10.3389/fphar.2024.1417532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
The incidence of common gynecological malignancies remains high, with current treatments facing multiple limitations and adverse effects. Thus, continuing the search for safe and effective oncologic treatment strategies continues. Resveratrol (RES), a natural non-flavonoid polyphenolic compound, is widely found in various plants and fruits, such as grapes, Reynoutria japonica Houtt., peanuts, and berries. RES possesses diverse biological properties, including neuroprotective, antitumor, anti-inflammatory, and osteoporosis inhibition effects. Notably, RES is broadly applicable in antitumor therapy, particularly for treating gynecological tumors (cervical, endometrial, and ovarian carcinomas). RES exerts antitumor effects by promoting tumor cell apoptosis, inhibiting cell proliferation, invasion, and metastasis, regulating tumor cell autophagy, and enhancing the efficacy of antitumor drugs while minimizing their toxic side effects. However, comprehensive reviews on the role of RES in combating gynecological tumors and its mechanisms of action are lacking. This review aims to fill this gap by examining the RES antitumor mechanisms of action in gynecological tumors, providing valuable insights for clinical treatment.
Collapse
Affiliation(s)
- Qian Yang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dandan Meng
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingchen Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin Wang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Bai Y, Sui R, Zhang L, Bai B, Zhu Y, Jiang H. Resveratrol Improves Cognitive Function in Post-stroke Depression Rats by Repressing Inflammatory Reactions and Oxidative Stress via the Nrf2/HO-1 Pathway. Neuroscience 2024; 541:50-63. [PMID: 38278473 DOI: 10.1016/j.neuroscience.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Post-stroke depression (PSD) is a prevalent mental health issue, and resveratrol (RES) has been implicated in its management. This study aimed to elucidate the impact of RES on PSD. A PSD rat model was established through middle cerebral artery occlusion and chronic unpredictable mild stress. Rats received RES via gavage, and depressive behaviors were evaluated through various measures. Cerebral infarction areas and brain tissue pathology were assessed using TTC and H&E staining. Levels of inflammatory factors (TNF-α/IL-1β/IL-6/IL-10), neurotransmitters (ACH/DA/5-HT/BDNF), and oxidative stress-related indicators (SOD/GSH-Px/MDA), along with the total Nrf2/C-Nrf2/N-Nrf2/HO-1 proteins, were analyzed. The role of the Nrf2/HO-1 pathway was investigated by co-treating rats with RES and either an Nrf2 pathway specific inhibitor (ML385) or activator (dimethyl fumarate). PSD rats exhibited depressive behaviors, disrupted neurotransmitter levels, and oxidative stress markers. RES treatment effectively alleviated these symptoms and activated the Nrf2/HO-1 pathway in PSD rat brain tissues. Co-administration of ML385 attenuated the beneficial effects of RES in PSD rats. Altogether, RES mitigates depressive behaviors, improves cognitive dysfunction, and reduces oxidative stress and inflammatory response in PSD rats. These effects are mediated through the activation of the Nrf2/HO-1 pathway, suggesting RES as a potential therapeutic agent for PSD-related cognitive impairment.
Collapse
Affiliation(s)
- Yanjuan Bai
- Department of Neurology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China
| | - Rubo Sui
- Department of Neurology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China.
| | - Lei Zhang
- School of Nursing, Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China
| | - Bing Bai
- Academic Affairs Office of Liaoning University of Technology, Jinzhou 121000, Liaoning, People's Republic of China
| | - Yue Zhu
- Department of Neurology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, Liaoning, People's Republic of China
| | - Hongxin Jiang
- Department of Radiology, Gucheng County Hospital of Hebei Province, Hengshui 253800, Hebei, People's Republic of China
| |
Collapse
|
4
|
Thongchot S, Ferraresi A, Vidoni C, Salwa A, Vallino L, Kittirat Y, Loilome W, Namwat N, Isidoro C. Preclinical evidence for preventive and curative effects of resveratrol on xenograft cholangiocarcinogenesis. Cancer Lett 2024; 582:216589. [PMID: 38097133 DOI: 10.1016/j.canlet.2023.216589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Cholangiocarcinoma (CCA), the malignant tumor of bile duct epithelial cells, is a relatively rare yet highly lethal cancer. In this work, we tested the ability of Resveratrol (RV) to prevent and cure CCA xenograft in nude mice and investigated molecular mechanisms underpinning such anticancer effect. Human CCA cells were xenografted in mice that were or not treated prior to or after to transplantation with RV. Tumor growth was monitored and analyzed for the markers of cell proliferation, apoptosis, and autophagy. TCGA was interrogated for the molecules possibly targeted by RV. RV could inhibit the growth of human CCA xenograft when administered after implantation and could reduce the growth or even impair the implantation of the tumors when administered prior the transplantation. RV inhibited CCA cell proliferation, induced apoptosis with autophagy, and strongly reduced the presence of CAFs and production of IL-6. Interrogation of CCA dataset in TCGA database revealed that the expression of IL-6 Receptor (IL-6R) inversely correlated with that of MAP-LC3 and BECLIN-1, and that low expression of IL-6R and of MIK67, two pathways downregulated by RV, associated with better survival of CCA patients. Our data demonstrate that RV elicits a strong preventive and curative anticancer effect in CCA by limiting the formation of CAFs and their release of IL-6, and this results in up-regulation of autophagy and apoptosis in the cancer cells. These findings support the clinical use of RV as a primary line of prevention in patients exposed at risk and as an adjuvant therapeutics in CCA patients.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand; Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy; Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand; Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Amreen Salwa
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Letizia Vallino
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy
| | - Yingpinyapat Kittirat
- Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand; Department of Medical Sciences, Regional Medical Sciences Center 2 Phitsanulok, Ministry of Public Health, Phitsanulok, Thailand
| | - Watcharin Loilome
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand
| | - Nisana Namwat
- Department of Systems Biosciences and Computational Medicine, Faculty of Medicine, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 123 Mitraparp Highway, Khon Kaen, 40002, Thailand.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Via Solaroli 17, 28100, Novara, Italy.
| |
Collapse
|
5
|
Hypoxia, but Not Normoxia, Reduces Effects of Resveratrol on Cisplatin Treatment in A2780 Ovarian Cancer Cells: A Challenge for Resveratrol Use in Anticancer Adjuvant Cisplatin Therapy. Int J Mol Sci 2023; 24:ijms24065715. [PMID: 36982788 PMCID: PMC10051682 DOI: 10.3390/ijms24065715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Natural compounds, such as resveratrol (Res), are currently used as adjuvants for anticancer therapies. To evaluate the effectiveness of Res for the treatment of ovarian cancer (OC), we screened the response of various OC cell lines to the combined treatment with cisplatin (CisPt) and Res. We identified A2780 cells as the most synergistically responding, thus optimal for further analysis. Because hypoxia is the hallmark of the solid tumor microenvironment, we compared the effects of Res alone and in combination with CisPt in hypoxia (pO2 = 1%) vs. normoxia (pO2 = 19%). Hypoxia caused an increase (43.2 vs. 5.0%) in apoptosis and necrosis (14.2 vs. 2.5%), reactive oxygen species production, pro-angiogenic HIF-1α (hypoxia-inducible factor-1α) and VEGF (vascular endothelial growth factor), cell migration, and downregulated the expression of ZO1 (zonula occludens-1) protein in comparison to normoxia. Res was not cytotoxic under hypoxia in contrast to normoxia. In normoxia, Res alone or CisPt+Res caused apoptosis via caspase-3 cleavage and BAX, while in hypoxia, it reduced the accumulation of A2780 cells in the G2/M phase. CisPt+Res increased levels of vimentin under normoxia and upregulated SNAI1 expression under hypoxia. Thus, various effects of Res or CisPt+Res on A2780 cells observed in normoxia are eliminated or diminished in hypoxia. These findings indicate the limitations in using Res as an adjuvant with CisPt therapy in OC.
Collapse
|
6
|
Islam MR, Rahman MM, Dhar PS, Nowrin FT, Sultana N, Akter M, Rauf A, Khalil AA, Gianoncelli A, Ribaudo G. The Role of Natural and Semi-Synthetic Compounds in Ovarian Cancer: Updates on Mechanisms of Action, Current Trends and Perspectives. Molecules 2023; 28:2070. [PMID: 36903316 PMCID: PMC10004182 DOI: 10.3390/molecules28052070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Ovarian cancer represents a major health concern for the female population: there is no obvious cause, it is frequently misdiagnosed, and it is characterized by a poor prognosis. Additionally, patients are inclined to recurrences because of metastasis and poor treatment tolerance. Combining innovative therapeutic techniques with established approaches can aid in improving treatment outcomes. Because of their multi-target actions, long application history, and widespread availability, natural compounds have particular advantages in this connection. Thus, effective therapeutic alternatives with improved patient tolerance hopefully can be identified within the world of natural and nature-derived products. Moreover, natural compounds are generally perceived to have more limited adverse effects on healthy cells or tissues, suggesting their potential role as valid treatment alternatives. In general, the anticancer mechanisms of such molecules are connected to the reduction of cell proliferation and metastasis, autophagy stimulation and improved response to chemotherapeutics. This review aims at discussing the mechanistic insights and possible targets of natural compounds against ovarian cancer, from the perspective of medicinal chemists. In addition, an overview of the pharmacology of natural products studied to date for their potential application towards ovarian cancer models is presented. The chemical aspects as well as available bioactivity data are discussed and commented on, with particular attention to the underlying molecular mechanism(s).
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Feana Tasmim Nowrin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Nasrin Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23430, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore 54000, Pakistan
| | - Alessandra Gianoncelli
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Giovanni Ribaudo
- Dipartimento di Medicina Molecolare e Traslazionale, Università degli Studi di Brescia, Viale Europa 11, 25123 Brescia, Italy
| |
Collapse
|
7
|
Kim ME, Kim DH, Lee JS. Transcription Factors as Targets of Natural Compounds in Age-Related Diseases and Cancer: Potential Therapeutic Applications. Int J Mol Sci 2022; 23:ijms232213882. [PMID: 36430361 PMCID: PMC9696520 DOI: 10.3390/ijms232213882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammation exacerbates systemic pathophysiological conditions and chronic inflammation is a sustained and systemic phenomenon that aggravates aging that can lead to chronic age-related diseases. These inflammatory phenomena have recently been redefined and delineated at the molecular, cellular, and systemic levels. Many transcription factors that are activated in response to tumor metabolic state have been reported to be regulated by a class of histone deacetylase called sirtuins (SIRTs). Sirtuins play a pivotal role in the regulation of tumor cell metabolism, proliferation, and angiogenesis, including oxidative stress and inflammation. The SIRT1-mediated signaling pathway in diabetes and cancer is the SIRT1/forkhead-box class O (FoxO)/nuclear factor-kappa B (NF-κB) pathway. In this review, we describe the accumulation of SIRT1-, NF-κB-, and FoxO-mediated inflammatory processes and cellular proinflammatory signaling pathways. We also describe the proinflammatory mechanisms underlying metabolic molecular pathways in various diseases such as liver cancer and diabetes. Finally, the regulation of cancer and diabetes through the anti-inflammatory effects of natural compounds is highlighted. Evidence from inflammation studies strongly suggests that cells may be a major source of cytokines secreted during various diseases. A better understanding of the mechanisms that underpin the inflammatory response and palliative role of natural compounds will provide insights into the molecular mechanisms of inflammation and various diseases for potential intervention.
Collapse
Affiliation(s)
- Mi Eun Kim
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
| | - Dae Hyun Kim
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
- Correspondence: (D.H.K.); (J.S.L.); Tel.: +82-062-230-6651 (J.S.L.)
| | - Jun Sik Lee
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
- LKBio Inc., Chosun University Business Incubator (CUBI) Building, Dong-gu, Gwangju 61452, Korea
- Correspondence: (D.H.K.); (J.S.L.); Tel.: +82-062-230-6651 (J.S.L.)
| |
Collapse
|
8
|
Tao Y, Liu Y, Dong Z, Chen X, Wang Y, Li T, Li J, Zang S, He X, Chen D, Zhao Z, Li M. Cellular Hypoxia Mitigation by Dandelion-like Nanoparticles for Synergistic Photodynamic Therapy of Oral Squamous Cell Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44039-44053. [PMID: 36153957 DOI: 10.1021/acsami.2c10021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hypoxia at the tumor site limits the therapeutic effects of photodynamic therapy (PDT) in oral squamous cell carcinoma (OSCC), which is an oxygen-consumption process. Inhibiting cellular oxygen consumption and reducing cellular ATP production are expected to enhance PDT. In this study, we designed and constructed dandelion-like size-shrinkable nanoparticles for tumor-targeted delivery of hypoxia regulator resveratrol (RES) and photodynamic agent chlorine e6 (CE6). Both drugs were co-encapsulated in small-sized micelles modified with EGFR targeting ligand GE11, which was further conjugated on hyaluronic nanogel (NG) to afford RC-GMN. After targeted accumulation in tumors mediated by GE11 and enhanced penetration and retention (EPR) effects, RC-GMN was degraded by hyaluronidase (HAase) and resulted in small-sized micelles, allowing for deep penetration and dual-receptor-mediated cellular internalization. Resveratrol inhibited cellular oxygen consumption and provided sufficient oxygen for PDT, which consequently activated PDT to produce reactive oxygen species (ROS). Notably, we found that autophagy was overactivated in PDT, which was further strengthened by the hypoxia regulator resveratrol, elevating autophagic cell death. The synergistic effects of resveratrol and CE6 promoted autophagic cell death and apoptosis in the enhanced PDT, resulting in stronger antitumor effects in the orthotopic OSCC model. Therefore, the facilitated delivery of hypoxia regulator enhanced PDT efficacy by elevating oxygen content in tumor cells and inducing autophagic cell death and apoptosis, which offers an alternative strategy for enhancing the PDT effects against OSCC.
Collapse
Affiliation(s)
- Yuan Tao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yingke Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, People's Republic of China
| | - Ziyan Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xiaoxiao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Yashi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Ting Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shuya Zang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Dong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, People's Republic of China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, People's Republic of China
| |
Collapse
|
9
|
Molecular and Cellular Mechanisms of Propolis and Its Polyphenolic Compounds against Cancer. Int J Mol Sci 2022; 23:ijms231810479. [PMID: 36142391 PMCID: PMC9499605 DOI: 10.3390/ijms231810479] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, interest in natural products such as alternative sources of pharmaceuticals for numerous chronic diseases, including tumors, has been renewed. Propolis, a natural product collected by honeybees, and polyphenolic/flavonoid propolis-related components modulate all steps of the cancer progression process. Anticancer activity of propolis and its compounds relies on various mechanisms: cell-cycle arrest and attenuation of cancer cells proliferation, reduction in the number of cancer stem cells, induction of apoptosis, modulation of oncogene signaling pathways, inhibition of matrix metalloproteinases, prevention of metastasis, anti-angiogenesis, anti-inflammatory effects accompanied by the modulation of the tumor microenvironment (by modifying macrophage activation and polarization), epigenetic regulation, antiviral and bactericidal activities, modulation of gut microbiota, and attenuation of chemotherapy-induced deleterious side effects. Ingredients from propolis also "sensitize" cancer cells to chemotherapeutic agents, likely by blocking the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). In this review, we summarize the current knowledge related to the the effects of flavonoids and other polyphenolic compounds from propolis on tumor growth and metastasizing ability, and discuss possible molecular and cellular mechanisms involved in the modulation of inflammatory pathways and cellular processes that affect survival, proliferation, invasion, angiogenesis, and metastasis of the tumor.
Collapse
|
10
|
Saha A, Hamilton-Reeves J, DiGiovanni J. White adipose tissue-derived factors and prostate cancer progression: mechanisms and targets for interventions. Cancer Metastasis Rev 2022; 41:649-671. [PMID: 35927363 PMCID: PMC9474694 DOI: 10.1007/s10555-022-10056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
Obesity represents an important risk factor for prostate cancer, driving more aggressive disease, chemoresistance, and increased mortality. White adipose tissue (WAT) overgrowth in obesity is central to the mechanisms that lead to these clinical observations. Adipose stromal cells (ASCs), the progenitors to mature adipocytes and other cell types in WAT, play a vital role in driving PCa aggressiveness. ASCs produce numerous factors, especially chemokines, including the chemokine CXCL12, which is involved in driving EMT and chemoresistance in PCa. A greater understanding of the impact of WAT in obesity-induced progression of PCa and the underlying mechanisms has begun to provide opportunities for developing interventional strategies for preventing or offsetting these critical events. These include weight loss regimens, therapeutic targeting of ASCs, use of calorie restriction mimetic compounds, and combinations of compounds as well as specific receptor targeting strategies.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Jill Hamilton-Reeves
- Departments of Urology and Dietetics & Nutrition, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78723, USA.
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX, 78723, USA.
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA.
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd, Austin, TX, 78723, USA.
| |
Collapse
|
11
|
Giordo R, Wehbe Z, Posadino AM, Erre GL, Eid AH, Mangoni AA, Pintus G. Disease-Associated Regulation of Non-Coding RNAs by Resveratrol: Molecular Insights and Therapeutic Applications. Front Cell Dev Biol 2022; 10:894305. [PMID: 35912113 PMCID: PMC9326031 DOI: 10.3389/fcell.2022.894305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
There have been significant advances, particularly over the last 20 years, in the identification of non-coding RNAs (ncRNAs) and their pathophysiological role in a wide range of disease states, particularly cancer and other chronic conditions characterized by excess inflammation and oxidative stress such as atherosclerosis, diabetes, obesity, multiple sclerosis, osteoporosis, liver and lung fibrosis. Such discoveries have potential therapeutic implications as a better understanding of the molecular mechanisms underpinning the effects of ncRNAs on critical homeostatic control mechanisms and biochemical pathways might lead to the identification of novel druggable targets. In this context, increasing evidence suggests that several natural compounds can target ncRNAs at different levels and, consequently, influence processes involved in the onset and progression of disease states. The natural phenol resveratrol has been extensively studied for therapeutic purposes in view of its established anti-inflammatory and antioxidant effects, particularly in disease states such as cancer and cardiovascular disease that are associated with human aging. However, increasing in vitro and in vivo evidence also suggests that resveratrol can directly target various ncRNAs and that this mediates, at least in part, its potential therapeutic effects. This review critically appraises the available evidence regarding the resveratrol-mediated modulation of different ncRNAs in a wide range of disease states characterized by a pro-inflammatory state and oxidative stress, the potential therapeutic applications, and future research directions.
Collapse
Affiliation(s)
- Roberta Giordo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Zena Wehbe
- Vascular Biology Research Centre, Molecular and Clinical Research Institute, University of London, London, United Kingdom
| | | | - Gian Luca Erre
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University Hospital (AOUSS) and University of Sassari, Sassari, Italy
| | - Ali H. Eid
- Department of Basic Medical Sciences, College of Medicine, Q.U. Health. Qatar University, Doha, Qatar
| | - Arduino A. Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- Department of Clinical Pharmacology, Flinders Medical Centre, Adelaide, SA, Australia
- *Correspondence: Arduino A. Mangoni, ; Gianfranco Pintus,
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Department of Medical Laboratory Sciences, College of Health Sciences and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Arduino A. Mangoni, ; Gianfranco Pintus,
| |
Collapse
|
12
|
Zhu Q, Gu X, Wei W, Wu Z, Gong F, Dong X. BRD9 is an essential regulator of glycolysis that creates an epigenetic vulnerability in colon adenocarcinoma. Cancer Med 2022; 12:1572-1587. [PMID: 35778964 PMCID: PMC9883419 DOI: 10.1002/cam4.4954] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The intensive interplay between aberrant epigenetic events and metabolic remodeling represents one of the hallmarks of tumors, including colon cancer. The functions of Bromodomain Containing Protein BRD-9 in colon cancer remains indefinite. We aimed to identify the biological roles and clinical significance of BRD9 in colon cancer. METHODS The univariate- and multi-variate Cox regression models were used to screen risk epigenetic regulators. Kaplan-Meier analysis and Pearson correlation analysis were used to assess clinical significance of BRD9. CCK-8 assays, colony formation assay, Transwell, and soft-agar assay were performed to determine the in vitro roles of BRD9. The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of colon cancer cells were evaluated by a Seahorse XF Extracellular Flux Analyzer. In vivo models and RT-qPCR, western blotting, and Chromatin Immunoprecipitation (ChIP) assay were conducted to explore the functional roles of BRD9 in COAD. RESULTS In the study, we detected the expressions of 662 epigenetic regulators in COAD and identified a series of 42 hazard epigenetic factors with p < 0.05. Low-throughput MTT assays highlighted that BRD9 is an essential target, and targeting BRD9 could reduce significant decreases of cell growth. BRD9 overexpression could notably elevate proliferation and migration potentialities, whereas, BRD9 ablation abolished these effects. Mechanistically, functional enrichment analysis indicated the potential associations between BRD9 and glycolysis metabolism. In addition, BRD9 epigenetically coordinates the H3K27ac modifications on the promoter regions of ENO2 and ALDOC, inducing enhanced glycolysis activity. Lastly, I-BRD9 could significantly suppress the growth of colon cancer cells in vitro and in vivo. CONCLUSIONS Together, our study revealed previously unidentified roles of BRD9 in colon cancer metabolism and tumor progression, indicating that BRD9 could be a valuable therapeutic target for COAD patients.
Collapse
Affiliation(s)
- Qunshan Zhu
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina,Department of General SurgeryJiangdu People's Hospital Affiliated to Medical College of Yangzhou UniversityYangzhouChina
| | - Xiang Gu
- Department of RadiotherapyJiangdu People's Hospital Affiliated to Medical College of Yangzhou UniversityYangzhouChina
| | - Wei Wei
- Department of General SurgeryJiangdu People's Hospital Affiliated to Medical College of Yangzhou UniversityYangzhouChina
| | - Zheng Wu
- Department of General SurgeryJiangdu People's Hospital Affiliated to Medical College of Yangzhou UniversityYangzhouChina
| | - Fengqin Gong
- Department of General SurgeryJiangdu People's Hospital Affiliated to Medical College of Yangzhou UniversityYangzhouChina
| | - Xiaoqiang Dong
- Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
13
|
Alhusaini AM, Fadda LM, Alanazi AM, Sarawi WS, Alomar HA, Ali HM, Hasan IH, Ali RA. Nano-Resveratrol: A Promising Candidate for the Treatment of Renal Toxicity Induced by Doxorubicin in Rats Through Modulation of Beclin-1 and mTOR. Front Pharmacol 2022; 13:826908. [PMID: 35281939 PMCID: PMC8913579 DOI: 10.3389/fphar.2022.826908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 12/30/2022] Open
Abstract
Background: Although doxorubicin (DXR) is one of the most used anticancer drugs, it can cause life-threatening renal damage. There has been no effective treatment for DXR-induced renal damage until now. Aim: This work aims at examining the potential impact of nano-resveratrol (N-Resv), native resveratrol (Resv), and their combination with carvedilol (Card) against DXR-induced renal toxicity in rats and to investigate the mechanisms through which these antioxidants act to ameliorate DXR nephrotoxicity. Method: DXR was administered to rats (2 mg/kg, i.p.) twice weekly over 5 weeks. The antioxidants in question were taken 1 week before the DXR dose for 6 weeks. Results: DXR exhibited an elevation in serum urea, creatinine, renal lipid peroxide levels, endoglin expression, kidney injury molecule-1 (KIM-1), and beclin-1. On the other hand, renal podocin and mTOR expression and GSH levels were declined. In addition, DNA fragmentation was markedly increased in the DXR-administered group. Treatment with either Resv or N-Resv alone or in combination with Card ameliorated the previously measured parameters. Conclusion: N-Resv showed superior effectiveness relative to Resv in most of the measured parameters. Histopathological examination revealed amelioration of renal structural and cellular changes after DXR by Card and N-Resv, thus validating the previous biochemical and molecular results.
Collapse
Affiliation(s)
- Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Ahlam M. Alhusaini,
| | - Laila M. Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abeer M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hatun A. Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanaa M. Ali
- Genetics and Cytology Department, National Research Centre, Cairo, Egypt
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rehab Ahmed Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Rezaei-Tazangi F, Roghani-Shahraki H, Khorsand Ghaffari M, Abolhasani Zadeh F, Boostan A, ArefNezhad R, Motedayyen H. The Therapeutic Potential of Common Herbal and Nano-Based Herbal Formulations against Ovarian Cancer: New Insight into the Current Evidence. Pharmaceuticals (Basel) 2021; 14:1315. [PMID: 34959716 PMCID: PMC8705681 DOI: 10.3390/ph14121315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer (OCa) is characterized as one of the common reasons for cancer-associated death in women globally. This gynecological disorder is chiefly named the "silent killer" due to lacking an association between disease manifestations in the early stages and OCa. Because of the disease recurrence and resistance to common therapies, discovering an effective therapeutic way against the disease is a challenge. According to documents, some popular herbal formulations, such as curcumin, quercetin, and resveratrol, can serve as an anti-cancer agent through different mechanisms. However, these herbal products may be accompanied by some pharmacological limitations, such as poor bioavailability, instability, and weak water solubility. On the contrary, using nano-based material, e.g., nanoparticles (NPs), micelles, liposomes, can significantly solve these limitations. Therefore, in the present study, we will summarize the anti-cancer aspects of these herbal and-nano-based herbal formulations with a focus on their mechanisms against OCa.
Collapse
Affiliation(s)
- Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa 7345149573, Iran;
| | | | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran;
| | - Firoozeh Abolhasani Zadeh
- Department of Surgery, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Aynaz Boostan
- Department of Obstetrics & Gynecology, Saveh Chamran Hospital, Saveh 3919676651, Iran;
| | - Reza ArefNezhad
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan 8715973474, Iran
| |
Collapse
|
15
|
Cheuk IW, Chen J, Siu M, Ho JC, Lam SS, Shin VY, Kwong A. Resveratrol enhanced chemosensitivity by reversing macrophage polarization in breast cancer. Clin Transl Oncol 2021; 24:854-863. [PMID: 34859370 DOI: 10.1007/s12094-021-02731-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Resveratrol, a naturally occurring polyphenolic compound, has been shown to inhibit cancer growth by targeting several cancer-related signalling pathways. In the tumor microenvironment (TME), tumor-associated macrophages (TAMs) are the most abundant leukocyte population that are associated with poor prognosis in over 80% of breast cancer cases. However, little is known about the effect of resveratrol in the TME. METHODS In this study, MDA-MB-231(MB231), cisplatin resistance MDA-MB-231 (cisR), and T47D were used to examine the antitumor effect of resveratrol. The effectiveness of resveratrol, together with cisplatin as breast cancer treatment was investigated in vivo. Gene expressions of M1 (iNOS and CXCL10) and M2 (ARG1, CD163 and MRC1) markers in differentiated macrophages derived from THP-1 cells were examined to investigate the effect of resveratrol on TAM polarization in breast cancer progression. RESULTS Our results demonstrated that resveratrol significantly reduced cell proliferation and enhanced chemosensitivity in breast cancer cells by inhibiting production of IL-6 and STAT3 activation. Treatment of resveratrol increased CXCL10 (M1 marker) expression. Further, resveratrol decreased IL-6 levels in LPS-treated differentiated macrophages. The use of resveratrol with cisplatin inhibited suppressed tumor growth when compared with cisplatin alone. CONCLUSION This study revealed that resveratrol inhibited breast cancer cell proliferation by promoting M1/M2 macrophage polarization ratio and suppressing IL-6/pSTAT3 pathway.
Collapse
Affiliation(s)
- I W Cheuk
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong SAR, China
| | - J Chen
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong SAR, China
| | - M Siu
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong SAR, China
| | - J C Ho
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong SAR, China
| | - S S Lam
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong SAR, China
| | - V Y Shin
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong SAR, China
| | - A Kwong
- Department of Surgery, The University of Hong Kong and The University of Hong Kong-Shenzhen Hospital, Hong Kong SAR, China.
- Department of Surgery, The Hong Kong Sanatorium and Hospital, Hong Kong SAR, China.
- The Hong Kong Hereditary Breast Cancer Family Registry, Room K1401, Queen Mary Hospital, Pokfulam Road, Hong Kong SAR, China.
| |
Collapse
|
16
|
Resveratrol Contrasts LPA-Induced Ovarian Cancer Cell Migration and Platinum Resistance by Rescuing Hedgehog-Mediated Autophagy. Cells 2021; 10:cells10113213. [PMID: 34831435 PMCID: PMC8625920 DOI: 10.3390/cells10113213] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 01/01/2023] Open
Abstract
Background: Ovarian cancer progression and invasiveness are promoted by a range of soluble factors released by cancer cells and stromal cells within the tumor microenvironment. Our previous studies demonstrated that resveratrol (RV), a nutraceutical and caloric restriction mimetic with tumor-suppressive properties, counteracts cancer cell motility induced by stromal IL-6 by upregulating autophagy. Lysophosphatidic acid (LPA), a bioactive phospholipid that shows elevated levels in the tumor microenvironment and the ascites of ovarian cancers, stimulates the growth and tissue invasion of cancer cells. Whether LPA elicits these effects by inhibiting autophagy and through which pathway and whether RV can counteract the same remain obscure. Aims: To investigate the molecular pathways involved in LPA-induced ovarian cancer malignancy, particularly focusing on the role of autophagy, and the ability of RV to counteract LPA activity. Results: LPA stimulated while RV inhibited ovarian cancer cell migration. Transcriptomic and bioinformatic analyses showed an opposite regulation by LPA and RV of genes linked to epithelial-to-mesenchymal transition (EMT) and autophagy with involvement of the PI3K-AKT, JAK-STAT and Hedgehog (Hh) pathways. LPA upregulated the Hh and EMT members GLI1, BMI-1, SNAIL-1 and TWIST1 and inhibited autophagy, while RV did the opposite. Similar to the inhibitors of the Hh pathway, RV inhibited LPA-induced cancer cell migration and 3D growth of ovarian cancer cells. BMI-1 silencing prevented LPA-induced EMT, restored autophagy and hampered cell migration, resembling the effects of RV. TCGA data analyses indicated that patients with low expression of Hh/EMT-related genes together with active autophagy flux tended to have a better prognosis and this correlates with a more effective response to platinum therapy. In in vitro 3D spheroids, LPA upregulated BMI-1, downregulated autophagy and inhibited platinum toxicity while RV and Hh inhibitors restored autophagy and favored BAX-mediated cell death in response to platinum. Conclusions: By inhibiting the Hh pathway and restoration of autophagy, RV counteracts LPA-induced malignancy, supporting its inclusion in the therapy of ovarian cancer for limiting metastasis and chemoresistance.
Collapse
|
17
|
Xu XL, Deng SL, Lian ZX, Yu K. Resveratrol Targets a Variety of Oncogenic and Oncosuppressive Signaling for Ovarian Cancer Prevention and Treatment. Antioxidants (Basel) 2021; 10:antiox10111718. [PMID: 34829589 PMCID: PMC8614917 DOI: 10.3390/antiox10111718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer is a heterogeneous disease and is also the major cause of death among women from gynecologic malignancies. A combination of surgery and chemotherapy is the major therapy for ovarian cancer. Unfortunately, despite good response rates to initial surgery and chemotherapy, most patients relapse and have a generally poor survival rate. The present research sheds light on the therapeutic effects of multiple natural products in patients with ovarian cancer. Notably, these natural ingredients do not have adverse effects on healthy cells and tissues, indicating that natural products can serve as a safe alternative therapy for ovarian cancer. Trans-3,4,5′-Trihydroxystibene (resveratrol) is a natural product that is commonly found in the human diet and that has been shown to have anticancer effects on various human cancer cells. This review summarizes current knowledge regarding the progress of resveratrol against tumor cell proliferation, metastasis, apoptosis induction, autophagy, sensitization, and antioxidation as well as anti-inflammation. It also provides information regarding the role of resveratrol analogues in ovarian cancer. A better understanding of the role of resveratrol in ovarian cancer may provide a new array for the prevention and therapy of ovarian cancer.
Collapse
Affiliation(s)
- Xue-Ling Xu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shou-Long Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China; or
| | - Zheng-Xing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Correspondence: (Z.-X.L.); (K.Y.)
| | - Kun Yu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
- Correspondence: (Z.-X.L.); (K.Y.)
| |
Collapse
|
18
|
Penedo-Vázquez A, Duran X, Mateu J, López-Postigo A, Barreiro E. Curcumin and Resveratrol Improve Muscle Function and Structure through Attenuation of Proteolytic Markers in Experimental Cancer-Induced Cachexia. Molecules 2021; 26:4904. [PMID: 34443492 PMCID: PMC8402048 DOI: 10.3390/molecules26164904] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Muscle wasting and cachexia are prominent comorbidities in cancer. Treatment with polyphenolic compounds may partly revert muscle wasting. We hypothesized that treatment with curcumin or resveratrol in cancer cachectic mice may improve muscle phenotype and total body weight through attenuation of several proteolytic and signaling mechanisms in limb muscles. In gastrocnemius and soleus muscles of cancer cachectic mice (LP07 adenocarcinoma cells, N = 10/group): (1) LC-induced cachexia, (2) LC-cachexia+curcumin, and (3) LC-cachexia + resveratrol, muscle structure and damage (including blood troponin I), sirtuin-1, proteolytic markers, and signaling pathways (NF-κB and FoxO3) were explored (immunohistochemistry and immunoblotting). Compared to nontreated cachectic mice, in LC-cachexia + curcumin and LC-cachexia + resveratrol groups, body and muscle weights (gastrocnemius), limb muscle strength, muscle damage, and myofiber cross-sectional area improved, and in both muscles, sirtuin-1 increased, while proteolysis (troponin I), proteolytic markers, and signaling pathways were attenuated. Curcumin and resveratrol elicited beneficial effects on fast- and slow-twitch limb muscle phenotypes in cachectic mice through sirtuin-1 activation, attenuation of atrophy signaling pathways, and proteolysis in cancer cachectic mice. These findings have future therapeutic implications as these natural compounds, separately or in combination, may be used in clinical settings of muscle mass loss and dysfunction including cancer cachexia.
Collapse
Affiliation(s)
- Antonio Penedo-Vázquez
- Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (A.P.-V.); (A.L.-P.)
| | - Xavier Duran
- Scientific and Technical Department, Hospital del Mar-IMIM, 08003 Barcelona, Spain;
| | - Javier Mateu
- Department of Pharmacy, Hospital del Mar, Parc de Salut Mar, 08003 Barcelona, Spain;
| | - Adrián López-Postigo
- Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (A.P.-V.); (A.L.-P.)
| | - Esther Barreiro
- Department-Muscle Wasting and Cachexia in Chronic Respiratory Diseases and Lung Cancer Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), 08003 Barcelona, Spain; (A.P.-V.); (A.L.-P.)
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 08003 Barcelona, Spain
| |
Collapse
|
19
|
Ma J, He Z, Zhang H, Zhang W, Gao S, Ni X. SEC61G promotes breast cancer development and metastasis via modulating glycolysis and is transcriptionally regulated by E2F1. Cell Death Dis 2021; 12:550. [PMID: 34039955 PMCID: PMC8155024 DOI: 10.1038/s41419-021-03797-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
Breast cancer is the most common cancer in women and its incidence rates are rapidly increasing in China. Understanding the molecular mechanisms of breast cancer tumorigenesis enables the development of novel therapeutic strategies. SEC61G is a subunit of the endoplasmic reticulum translocon that plays critical roles in various tumors. We aimed to investigate the expression and function of SEC61G in breast cancer. By analyzing The Cancer Genome Atlas breast cancer cohort, we found that SEC61G was highly expressed in breast cancer and predicted poor prognosis of breast cancer patients. Overexpression of SEC61G and its prognostic role was also confirmed in the Nanjing Medical University (NMU) breast cancer cohort. Functionally, we demonstrated that knockdown of SEC61G suppressed breast cancer cell proliferation, migration, invasion, and promoted breast cancer cell apoptosis in vitro. Xenograft breast tumor model revealed that knockdown of SEC61G inhibited breast tumor development in vivo. Furthermore, we demonstrated that SEC61G positively regulated glycolysis in breast cancer cells. Mechanistically, we showed that transcription factor E2F1 directly bound to the promoter of SEC61G and regulated its expression in breast cancer cells. SEC61G overexpression antagonized the effect of E2F1 knockdown in regulating breast cancer cell proliferation, invasion, and apoptosis. Finally, we demonstrated that the E2F1/SEC61G axis regulated glycolysis and chemo-sensitivity of Herceptin in breast cancer cells. Taken together, these results of in vitro and in vivo studies demonstrate that SEC61G promotes breast cancer development and metastasis via modulating glycolysis and is transcriptionally regulated by E2F1, which might be utilized as a promising therapeutic target of breast cancer treatment.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hongwei Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Cancer Center, ZhongShan Hospital, Fudan University, Shanghai, 200032, China
| | - Wensheng Zhang
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, Key Laboratory of Reproduction Regulation of NPFPC and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, 200438, China
| | - Sheng Gao
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| | - Xiaojian Ni
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Cancer Center, ZhongShan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
Chen X, Wang Y, Tian J, Shao Y, Zhu B, Wang J, Hua Z. Quantitative Chemical Proteomics Reveals Resveratrol Inhibition of A549 Cell Migration Through Binding Multiple Targets to Regulate Cytoskeletal Remodeling and Suppress EMT. Front Pharmacol 2021; 12:636213. [PMID: 33867987 PMCID: PMC8044895 DOI: 10.3389/fphar.2021.636213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 12/03/2022] Open
Abstract
Resveratrol (RSV), a health-promoting natural product, has been shown to affect various cellular processes in tumor cells. However, the specific protein targets of RSV and the mechanism of action (MOA) of its anticancer effect remain elusive. In this study, the pharmacological activity of RSV was first evaluated in A549 cells, and the results showed that RSV significantly inhibited A549 cell migration but did not affect cell viability. To elucidate the underlying mechanism, a quantitative chemical proteomics approach was employed to identify the protein targets of RSV. A total of 38 target proteins were identified, and proteomic analysis showed that the targets were mainly involved in cytoskeletal remodeling and EMT, which were verified by subsequent in vitro and in vivo assays. In conclusion, RSV inhibits A549 cell migration by binding to multiple targets to regulate cytoskeletal remodeling and suppress EMT.
Collapse
Affiliation(s)
- Xiao Chen
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Yutong Wang
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Tian
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yurou Shao
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Zhu
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zichun Hua
- School of Medicine and Holistic Integrative Medicine and College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,School of Biopharmacy, China Pharmaceutical University, Nanjing, China.,The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
21
|
Liang ZJ, Wan Y, Zhu DD, Wang MX, Jiang HM, Huang DL, Luo LF, Chen MJ, Yang WP, Li HM, Wei CY. Resveratrol Mediates the Apoptosis of Triple Negative Breast Cancer Cells by Reducing POLD1 Expression. Front Oncol 2021; 11:569295. [PMID: 33747905 PMCID: PMC7970754 DOI: 10.3389/fonc.2021.569295] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Resveratrol (RSV) is known to possess anticancer properties in many types of cancers like breast cancer, in which POLD1 may serve as a potential target. However, the anticancer mechanism of RSV on triple negative breast cancer (TNBC) remains unclear. In the present study, the antitumor effects and mechanism of RSV on TNBC cells were analyzed by RNA sequencing (RNA-seq), which was then verified via cell counting kit-8 (CCK8), immunofluorescence, immunohistochemistry, Western Blot (WB), flow cytometry, and hematoxylin-eosin (HE) staining. According to the corresponding findings, the survival rate of MDA-MB-231 cells gradually decreased as RSV treatment concentration increased. The RNA-seq analysis results demonstrated that genes affected by RSV treatment were mainly involved in apoptosis and the p53 signaling pathway. Moreover, apoptosis of MDA-MB-231 cells induced by RSV was observed to be mainly mediated by POLD1. When treated with RSV, the expression levels of full length PARP1, PCNA, and BCL-2 were found to be significantly reduced, and the expression level of Cleaved-PARP1 as well as Cleaved-Caspase3 increased significantly. Additionally, the mRNA expression of POLD1 was significantly reduced after treatment with RSV, and the protein expression level was also inhibited by RSV in a concentration-dependent manner. The prediction of domain interaction suggested that RSV may bind to at least five functional domains of the POLD1 protein (6s1m, 6s1n, 6s1o, 6tny and 6tnz). Furthermore, after RSV treatment, the anti-apoptotic index (PCNA, BCL-2) of MDA-MB-231 cells was found to decrease while the apoptosis index (caspase3) increased. Moreover, the overexpression of POLD1 reduced the extent of apoptosis observed in MDA-MB-231 cells following RSV treatment. Moreover, animal experimental results showed that RSV had a significant inhibitory effect on the growth of live tumors, while POLD1 overexpression was shown to antagonize this inhibitory effect. Accordingly, this study’s findings reveal that RSV may promote the apoptosis of TNBC cells by reducing the expression of POLD1 to activate the apoptotic pathway, which may serve as a potential therapy for the treatment of TNBC.
Collapse
Affiliation(s)
- Zhi-Jie Liang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Department of Wound Repair Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Yan Wan
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Dan-Dan Zhu
- Department of Wound Repair Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Meng-Xin Wang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hong-Mian Jiang
- Department of Pathology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Dong-Lin Huang
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Li-Feng Luo
- Department of Pathology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Mao-Jian Chen
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wei-Ping Yang
- Department of Ultrasonography, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hong-Mian Li
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Chang-Yuan Wei
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
22
|
Woźniak M, Krajewski R, Makuch S, Agrawal S. Phytochemicals in Gynecological Cancer Prevention. Int J Mol Sci 2021; 22:1219. [PMID: 33530651 PMCID: PMC7865323 DOI: 10.3390/ijms22031219] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Gynecological cancer confers an enormous burden among women worldwide. Accumulating evidence points to the role of phytochemicals in preventing cervical, endometrial, and ovarian cancer. Experimental studies emphasize the chemopreventive and therapeutic potential of plant-derived substances by inhibiting the early stages of carcinogenesis or improving the efficacy of traditional chemotherapeutic agents. Moreover, a number of epidemiological studies have investigated associations between a plant-based diet and cancer risk. This literature review summarizes the current knowledge on the phytochemicals with proven antitumor activity, emphasizing their effectiveness and mechanism of action in gynecological cancer.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
| | - Rafał Krajewski
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Sebastian Makuch
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
| | - Siddarth Agrawal
- Department of Pathology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.W.); (S.M.)
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Department of Cancer Prevention and Therapy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
23
|
Palminteri M, Dhakar NK, Ferraresi A, Caldera F, Vidoni C, Trotta F, Isidoro C. Cyclodextrin nanosponge for the GSH-mediated delivery of Resveratrol in human cancer cells. Nanotheranostics 2021; 5:197-212. [PMID: 33564618 PMCID: PMC7868003 DOI: 10.7150/ntno.53888] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Smart drug delivery systems are required for the site-specific drug targeting to enhance the therapeutic efficiency of a drug. Resveratrol (RV) is a polyphenolic compound with anti-cancer activity. However, its poor aqueous solubility and non-selectivity are the major challenges for its employment in cancer therapy. In this work, we present the synthesis of RV-loaded glutathione responsive cyclodextrin nanosponges (RV-GSH-NSs) to improve the therapeutic efficiency and selective delivery of RV. The drug loading and encapsulation efficiency were 16.12% and 80.64%, respectively. The in vitro release profile confirmed that RV release was enhanced in response to external glutathione (GSH). Nude NSs were not toxic per se to human fibroblasts when administered for up to 72 h at the highest dose. Cell internalization studies confirmed that RV-GSH-NSs were preferentially up-taken by tumor cells compared to non-tumorigenic cells. Accordingly, RV showed selective toxicity to cancer cells compared to normal cells. GSH depletion by buthionine sulfoximine, a potent inhibitor of its synthesis, reflected in a significant decrease of the NSs accumulation, and consequently resulted in a drastic reduction of RV-mediated toxic effects in cancer cells. These findings demonstrate that GSH- responsive NSs represent an effective delivery system for targeting cancer cells by harnessing the differential tumor characteristics in terms of redox status in parallel with the limitation of side effects toward normal cells.
Collapse
Affiliation(s)
- Marco Palminteri
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Nilesh Kumar Dhakar
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Turin, Italy
| | - Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Fabrizio Caldera
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Turin, Italy
| | - Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Turin, via P. Giuria 7, 10125, Turin, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Novara, Italy
| |
Collapse
|
24
|
Brockmueller A, Sameri S, Liskova A, Zhai K, Varghese E, Samuel SM, Büsselberg D, Kubatka P, Shakibaei M. Resveratrol's Anti-Cancer Effects through the Modulation of Tumor Glucose Metabolism. Cancers (Basel) 2021; 13:cancers13020188. [PMID: 33430318 PMCID: PMC7825813 DOI: 10.3390/cancers13020188] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The prevention and treatment of cancer is an ongoing medical challenge. In the context of personalized medicine, the well-studied polyphenol resveratrol could complement classical tumor therapy. It may affect key processes such as inflammation, angiogenesis, proliferation, metastasis, glucose metabolism, and apoptosis in various cancers because resveratrol acts as a multi-targeting agent by modulating multiple signal transduction pathways. This review article focuses on resveratrol’s ability to modify tumor glucose metabolism and its associated therapeutic capacity. Resveratrol reduces glucose uptake and glycolysis by affecting Glut1, PFK1, HIF-1α, ROS, PDH, and the CamKKB/AMPK pathway. It also inhibits cell growth, invasion, and proliferation by targeting NF-kB, Sirt1, Sirt3, LDH, PI-3K, mTOR, PKM2, R5P, G6PD, TKT, talin, and PGAM. In addition, resveratrol induces apoptosis by targeting integrin, p53, LDH, and FAK. In conclusion, resveratrol has many potentials to intervene in tumor processes if bioavailability can be increased and this natural compound can be used selectively. Abstract Tumor cells develop several metabolic reprogramming strategies, such as increased glucose uptake and utilization via aerobic glycolysis and fermentation of glucose to lactate; these lead to a low pH environment in which the cancer cells thrive and evade apoptosis. These characteristics of tumor cells are known as the Warburg effect. Adaptive metabolic alterations in cancer cells can be attributed to mutations in key metabolic enzymes and transcription factors. The features of the Warburg phenotype may serve as promising markers for the early detection and treatment of tumors. Besides, the glycolytic process of tumors is reversible and could represent a therapeutic target. So-called mono-target therapies are often unsafe and ineffective, and have a high prevalence of recurrence. Their success is hindered by the ability of tumor cells to simultaneously develop multiple chemoresistance pathways. Therefore, agents that modify several cellular targets, such as energy restriction to target tumor cells specifically, have therapeutic potential. Resveratrol, a natural active polyphenol found in grapes and red wine and used in many traditional medicines, is known for its ability to target multiple components of signaling pathways in tumors, leading to the suppression of cell proliferation, activation of apoptosis, and regression in tumor growth. Here, we describe current knowledge on the various mechanisms by which resveratrol modulates glucose metabolism, its potential as an imitator of caloric restriction, and its therapeutic capacity in tumors.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
| | - Saba Sameri
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, 6517838678 Hamadan, Iran;
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (K.Z.); (E.V.); (S.M.S.); (D.B.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Pettenkoferstrasse 11, D-80336 Munich, Germany;
- Correspondence: ; Tel.: +49-892-1807-2624; Fax: +49-892-1807-2625
| |
Collapse
|
25
|
Benvenuto M, Albonici L, Focaccetti C, Ciuffa S, Fazi S, Cifaldi L, Miele MT, De Maio F, Tresoldi I, Manzari V, Modesti A, Masuelli L, Bei R. Polyphenol-Mediated Autophagy in Cancer: Evidence of In Vitro and In Vivo Studies. Int J Mol Sci 2020; 21:E6635. [PMID: 32927836 PMCID: PMC7555128 DOI: 10.3390/ijms21186635] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
One of the hallmarks of cellular transformation is the altered mechanism of cell death. There are three main types of cell death, characterized by different morphological and biochemical features, namely apoptosis (type I), autophagic cell death (type II) and necrosis (type III). Autophagy, or self-eating, is a tightly regulated process involved in stress responses, and it is a lysosomal degradation process. The role of autophagy in cancer is controversial and has been associated with both the induction and the inhibition of tumor growth. Autophagy can exert tumor suppression through the degradation of oncogenic proteins, suppression of inflammation, chronic tissue damage and ultimately by preventing mutations and genetic instability. On the other hand, tumor cells activate autophagy for survival in cellular stress conditions. Thus, autophagy modulation could represent a promising therapeutic strategy for cancer. Several studies have shown that polyphenols, natural compounds found in foods and beverages of plant origin, can efficiently modulate autophagy in several types of cancer. In this review, we summarize the current knowledge on the effects of polyphenols on autophagy, highlighting the conceptual benefits or drawbacks and subtle cell-specific effects of polyphenols for envisioning future therapies employing polyphenols as chemoadjuvants.
Collapse
Affiliation(s)
- Monica Benvenuto
- Saint Camillus International University of Health and Medical Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy;
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Department of Human Science and Promotion of the Quality of Life, San Raffaele University Rome, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Sara Fazi
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
- Academic Department of Pediatrics (DPUO), Ospedale Pediatrico Bambino Gesù, IRCCS, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - Martino Tony Miele
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Ilaria Tresoldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Vittorio Manzari
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Andrea Modesti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (S.F.); (L.M.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (L.A.); (C.F.); (S.C.); (L.C.); (F.D.M.); (I.T.); (V.M.); (A.M.)
| |
Collapse
|
26
|
Yang Y, Tian W, Yang L, Zhang Q, Zhu M, Liu Y, Li J, Yang L, Liu J, Shen Y, Qi Z. Gemcitabine potentiates anti-tumor effect of resveratrol on pancreatic cancer via down-regulation of VEGF-B. J Cancer Res Clin Oncol 2020; 147:93-103. [PMID: 32897433 DOI: 10.1007/s00432-020-03384-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE In our previous study, we discovered that resveratrol (RSV) had potential tumor-promoting effect on pancreatic cancer (PaCa) via up-regulation of VEGF-B. Therefore, we assumed that a pharmacological inhibitor of VEGF-B should potentiate the anti-tumor effect of RSV on PaCa. METHODS Real-time PCR and western blotting were used to examine VEGF-B mRNA and protein levels. Cell viability and cell apoptosis were assessed by CCK-8 assay and flow cytometry analysis, respectively. PaCa cell-bearing nude mice were used to evaluate the anti-cancer effects of single treatment or co-administration of RSV and gemcitabine (GEM). RESULTS We found that treatment with GEM alone dramatically decreased VEGF-B expression in comparison with control group, indicating that GEM is a potential pharmacological inhibitor of VEGF-B in PaCa. The co-administration of RSV and GEM significantly lowered expression of VEGF-B and increased phosphorylation level of GSK3β at Ser9 when compared to RSV alone treatment either in vitro or in vivo. Combination of RSV and GEM significantly increased cell death and apoptosis of PaCa cells in vitro and inhibited tumor growth in vivo in comparison with RSV or GEM alone treatment. Furthermore, we found that the anti-tumor effect in combination group was dramatically weakened after VEGF-B overexpressed in PaCa cells. CONCLUSION These results suggest that VEGF-B signaling pathway plays an important role in the development of PaCa and combination of GEM and RSV would be a promising modality for clinical PaCa therapy.
Collapse
Affiliation(s)
- Yinan Yang
- Department of Histology and Embryology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China.,Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, China
| | - Wencong Tian
- Department of Histology and Embryology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Lei Yang
- Department of Histology and Embryology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Qiong Zhang
- Department of Microbiology, School of Laboratory Medicine, Tianjin Medical University, 1 Guangdong Road, Hexi District, Tianjin, 300203, China
| | - Mengmeng Zhu
- Department of Histology and Embryology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Yuansheng Liu
- Department of Histology and Embryology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Jing Li
- Department of Histology and Embryology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Liang Yang
- Department of Histology and Embryology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Jie Liu
- Department of Histology and Embryology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China
| | - Yanna Shen
- Department of Microbiology, School of Laboratory Medicine, Tianjin Medical University, 1 Guangdong Road, Hexi District, Tianjin, 300203, China.
| | - Zhi Qi
- Department of Histology and Embryology, School of Medicine, Nankai University, 94 Weijin Road, Nankai District, Tianjin, 300071, China. .,National Clinical Research Center of Kidney Diseases, Beijing, 100853, China.
| |
Collapse
|
27
|
Yan YB, Tian Q, Zhang JF, Xiang Y. Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer. Oncol Lett 2020; 20:141. [PMID: 32934709 PMCID: PMC7471673 DOI: 10.3892/ol.2020.12001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is a common malignancy and the second leading cause of mortality among females with genital tract cancer. At present, postoperative platinum drugs and paclitaxel-based chemotherapy is the gold standard treatment for ovarian cancer. However, patients who receive this chemotherapy often develop cumulative toxic effects and are prone to chemotherapy resistance. Therefore, it is necessary to determine more effective treatment options that would be better tolerated by patients. Recent studies have reported the therapeutic effects of numerous natural products in patients with ovarian cancer. Notably, these natural ingredients do not induce adverse effects in healthy cells and tissues, suggesting that natural products may serve as a safe alternative treatment for ovarian cancer. The antitumor effects of natural products are attributed to suppression of cell proliferation and metastasis, stimulation of autophagy, improved chemotherapy sensitivity, and induction of apoptosis. The present review focused on the antitumor effects of several natural products, including curcumin, resveratrol, ginsenosides, (-)-epigallocatechin-3-gallate and quercetin, which are increasingly being investigated as therapeutic options in ovarian cancer, and discussed the molecular mechanisms involved in cell proliferation, apoptosis, autophagy, metastasis and sensitization.
Collapse
Affiliation(s)
- Yun-Bo Yan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Qing Tian
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China.,Department of Cell Biology and Genetics, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ji-Fang Zhang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China.,Department of Cell Biology and Genetics, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
| |
Collapse
|
28
|
Liang R, Chen X, Chen L, Wan F, Chen K, Sun Y, Zhu X. STAT3 signaling in ovarian cancer: a potential therapeutic target. J Cancer 2020; 11:837-848. [PMID: 31949487 PMCID: PMC6959025 DOI: 10.7150/jca.35011] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/08/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence has shown that Signal Transducer and Activator of Transcription 3 (STAT3) is thought to be a promising target for cancer therapy as STAT3 is frequently overexpressed in a wide range of cancer cells as well as clinical specimens, promoting tumor progression. It is widely accepted that STAT3 regulates a variety of cellular processes, such as tumor cell growth, survival, invasion, cancer stem cell-like characteristic, angiogenesis and drug-resistance. In this review, we focus on the role of STAT3 in tumorigenesis in ovarian cancer and discuss the existing inhibitors of STAT3 signaling that can be promisingly developed as the strategies for ovarian cancer therapy.
Collapse
Affiliation(s)
- Renba Liang
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Xishan Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Li Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Fangzhu Wan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Yongchu Sun
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| | - Xiaodong Zhu
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital and Cancer Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, P.R. China
| |
Collapse
|
29
|
Aziz MAAE, Agarwal K, Dasari S, Mitra AAK. Productive Cross-Talk with the Microenvironment: A Critical Step in Ovarian Cancer Metastasis. Cancers (Basel) 2019; 11:cancers11101608. [PMID: 31640297 PMCID: PMC6827352 DOI: 10.3390/cancers11101608] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 12/20/2022] Open
Abstract
Most ovarian cancer patients present with disseminated disease at the time of their diagnosis, which is one of the main reasons for their poor prognosis. Metastasis is a multi-step process and a clear understanding of the mechanism of regulation of these steps remains elusive. Productive reciprocal interactions between the metastasizing ovarian cancer cells and the microenvironment of the metastatic site or the tumor microenvironment play an important role in the successful establishment of metastasis. Much progress has been made in the recent past in our understanding of such interactions and the role of the cellular and acellular components of the microenvironment in establishing the metastatic tumors. This review will outline the role of the microenvironmental components of the ovarian cancer metastatic niche and their role in helping establish the metastatic tumors. Special emphasis will be given to the mesothelial cells, which are the first cells encountered by the cancer cells at the site of metastasis.
Collapse
Affiliation(s)
- Mohamed A Abd El Aziz
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | - Komal Agarwal
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | - Subramanyam Dasari
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
| | - And Anirban K Mitra
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, IN 47405, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN 46202, USA.
| |
Collapse
|
30
|
Bahrami A, Fereidouni M, Pirro M, Bianconi V, Sahebkar A. Modulation of regulatory T cells by natural products in cancer. Cancer Lett 2019; 459:72-85. [DOI: 10.1016/j.canlet.2019.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
|
31
|
Zambrano A, Molt M, Uribe E, Salas M. Glut 1 in Cancer Cells and the Inhibitory Action of Resveratrol as A Potential Therapeutic Strategy. Int J Mol Sci 2019; 20:ijms20133374. [PMID: 31324056 PMCID: PMC6651361 DOI: 10.3390/ijms20133374] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/14/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
An important hallmark in cancer cells is the increase in glucose uptake. GLUT1 is an important target in cancer treatment because cancer cells upregulate GLUT1, a membrane protein that facilitates the basal uptake of glucose in most cell types, to ensure the flux of sugar into metabolic pathways. The dysregulation of GLUT1 is associated with numerous disorders, including cancer and metabolic diseases. There are natural products emerging as a source for inhibitors of glucose uptake, and resveratrol is a molecule of natural origin with many properties that acts as antioxidant and antiproliferative in malignant cells. In the present review, we discuss how GLUT1 is involved in the general scheme of cancer cell metabolism, the mechanism of glucose transport, and the importance of GLUT1 structure to understand the inhibition process. Then, we review the current state-of-the-art of resveratrol and other natural products as GLUT1 inhibitors, focusing on those directed at treating different types of cancer. Targeting GLUT1 activity is a promising strategy for the development of drugs aimed at treating neoplastic growth.
Collapse
Affiliation(s)
- Angara Zambrano
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Concepción, Concepción 4070386, Chile
| | - Matías Molt
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Concepción, Concepción 4070386, Chile
| | - Mónica Salas
- Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia 0000000, Chile.
| |
Collapse
|
32
|
Abdelgawad IY, Grant MKO, Zordoky BN. Leveraging the Cardio-Protective and Anticancer Properties of Resveratrol in Cardio-Oncology. Nutrients 2019; 11:nu11030627. [PMID: 30875799 PMCID: PMC6471701 DOI: 10.3390/nu11030627] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/25/2022] Open
Abstract
Cardio-oncology is a clinical/scientific discipline which aims to prevent and/or treat cardiovascular diseases in cancer patients. Although a large number of cancer treatments are known to cause cardiovascular toxicity, they are still widely used because they are highly effective. Unfortunately, therapeutic interventions to prevent and/or treat cancer treatment-induced cardiovascular toxicity have not been established yet. A major challenge for such interventions is to protect the cardiovascular system without compromising the therapeutic benefit of anticancer medications. Intriguingly, the polyphenolic natural compound resveratrol and its analogs have been shown in preclinical studies to protect against cancer treatment-induced cardiovascular toxicity. They have also been shown to possess significant anticancer properties on their own, and to enhance the anticancer effect of other cancer treatments. Thus, they hold significant promise to protect the cardiovascular system and fight the cancer at the same time. In this review, we will discuss the current knowledge regarding the cardio-protective and the anticancer properties of resveratrol and its analogs. Thereafter, we will discuss the challenges that face the clinical application of these agents. To conclude, we will highlight important gaps of knowledge and future research directions to accelerate the translation of these exciting preclinical findings to cancer patient care.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
33
|
Gu Z, Chu L, Han Y. Therapeutic effect of resveratrol on mice with depression. Exp Ther Med 2019; 17:3061-3064. [PMID: 30936978 PMCID: PMC6434282 DOI: 10.3892/etm.2019.7311] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/08/2019] [Indexed: 12/12/2022] Open
Abstract
The effect and mechanism of resveratrol on depression-like behavior in mice with depression were investigated. A mouse model of depression was established by social isolation combined with chronic unpredictable stress. The mice were randomly divided into the control group, the model group, the low dose group, the medium dose group and the high dose group. The rats in the low, medium and high dose groups were intraperitoneally injected with resveratrol 10, 20 and 30 mg/kg, respectively. The control and model groups were intraperitoneally injected with an equal volume of normal saline. After 21 days of continuous treatment, the neurobehavioral changes of each group were analyzed by forced swimming test, tail suspension experiment and sucrose consumption experiment. Dopamine (DA) and serotoni (5-HT) and the level of brain-derived nerve growth factor (BDNF) in the prefrontal cortex of each group were analyzed by ELISA. The level of neuropeptide (NPY) expression was analyzed by western blot analysis. Compared with the model group, the immobility time of the tail suspension experiment and forced swimming experiment in the low, medium and high dose groups was significantly prolonged (P<0.05), while the 24 h sucrose consumption was significantly increased (P<0.05), showing a dose-dependent manner. Compared with the model group, the levels of DA and 5-HT in the prefrontal cortex of the low, medium and high dose groups were significantly increased, and showed a dose-dependent effect (P<0.05). Compared with the model group, the expression levels of NPY protein in the low, medium and high dose groups were significantly increased, and gradually increased with the increase of the dose, the difference was statistically significant (P<0.05). Resveratrol can significantly increase the levels of neurotransmitters DA and 5-HT in the prefrontal cortex and increase the expression of NPY in the brain, which can play an antagonistic role in depression.
Collapse
Affiliation(s)
- Zheng Gu
- Department of Pharmacy, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Liujie Chu
- Department of Pharmacy, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Yaqiong Han
- Department of Pharmacy, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| |
Collapse
|
34
|
Giampieri F, Afrin S, Forbes-Hernandez TY, Gasparrini M, Cianciosi D, Reboredo-Rodriguez P, Varela-Lopez A, Quiles JL, Battino M. Autophagy in Human Health and Disease: Novel Therapeutic Opportunities. Antioxid Redox Signal 2019; 30:577-634. [PMID: 29943652 DOI: 10.1089/ars.2017.7234] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE In eukaryotes, autophagy represents a highly evolutionary conserved process, through which macromolecules and cytoplasmic material are degraded into lysosomes and recycled for biosynthetic or energetic purposes. Dysfunction of the autophagic process has been associated with the onset and development of many human chronic pathologies, such as cardiovascular, metabolic, and neurodegenerative diseases as well as cancer. Recent Advances: Currently, comprehensive research is being carried out to discover new therapeutic agents that are able to modulate the autophagic process in vivo. Recent evidence has shown that a large number of natural bioactive compounds are involved in the regulation of autophagy by modulating several transcriptional factors and signaling pathways. CRITICAL ISSUES Critical issues that deserve particular attention are the inadequate understanding of the complex role of autophagy in disease pathogenesis, the limited availability of therapeutic drugs, and the lack of clinical trials. In this context, the effects that natural bioactive compounds exert on autophagic modulation should be clearly highlighted, since they depend on the type and stage of the pathological conditions of diseases. FUTURE DIRECTIONS Research efforts should now focus on understanding the survival-supporting and death-promoting roles of autophagy, how natural compounds interact exactly with the autophagic targets so as to induce or inhibit autophagy and on the evaluation of their pharmacological effects in a more in-depth and mechanistic way. In addition, clinical studies on autophagy-inducing natural products are strongly encouraged, also to highlight some fundamental aspects, such as the dose, the duration, and the possible synergistic action of these compounds with conventional therapy.
Collapse
Affiliation(s)
- Francesca Giampieri
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Sadia Afrin
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Tamara Y Forbes-Hernandez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,2 Area de Nutricion y Salud, Universidad Internacional Iberoamericana , Campeche, Mexico
| | - Massimiliano Gasparrini
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Danila Cianciosi
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Patricia Reboredo-Rodriguez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,3 Departamento de Quimica Analıtica y Alimentaria, Grupo de Nutricion y Bromatologıa, Universidade Vigo , Ourense, Spain
| | - Alfonso Varela-Lopez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Jose L Quiles
- 4 Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix," Biomedical Research Centre, University of Granada , Granada, Spain
| | - Maurizio Battino
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,5 Centre for Nutrition and Health, Universidad Europea del Atlantico (UEA) , Santander, Spain
| |
Collapse
|
35
|
Xiong DD, Qin Y, Xu WQ, He RQ, Wu HY, Wei DM, Zeng JJ, Dang YW, Chen G. A Network Pharmacology-Based Analysis of Multi-Target, Multi-Pathway, Multi-Compound Treatment for Ovarian Serous Cystadenocarcinoma. Clin Drug Investig 2018; 38:909-925. [PMID: 30097905 DOI: 10.1007/s40261-018-0683-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Pharmacological control against ovarian serous cystadenocarcinoma has received increasing attention. The purpose of this study was to investigate multi-drug treatments as synergetic therapy for ovarian serous cystadenocarcinoma and to explore their mechanisms of action by the network pharmacology method. METHODS Genes acting on ovarian serous cystadenocarcinoma were first collected from GEPIA and DisGeNET. Gene Ontology annotation, Kyoto Encyclopedia of Genes and Genomes pathway, Reactome pathway, and Disease Ontology analyses were then conducted. A connectivity map analysis was employed to identify compounds as treatment options for ovarian serous cystadenocarcinoma. Targets of these compounds were obtained from the Search Tool for Interacting Chemicals (STITCH). The intersections between the ovarian serous cystadenocarcinoma-related genes and the compound targets were identified. Finally, the Kyoto Encyclopedia of Genes and Genomes and Reactome pathways in which the overlapped genes participated were selected, and a correspondence compound-target pathway network was constructed. RESULTS A total of 541 ovarian serous cystadenocarcinoma-related genes were identified. The functional enrichment and pathway analyses indicated that these genes were associated with critical tumor-related pathways. Based on the connectivity map analysis, five compounds (resveratrol, MG-132, puromycin, 15-delta prostaglandin J2, and valproic acid) were determined as treatment agents for ovarian serous cystadenocarcinoma. Next, 48 targets of the five compounds were collected. Following mapping of the 48 targets to the 541 ovarian serous cystadenocarcinoma-related genes, we identified six targets (PTGS1, FOS, HMOX1, CASP9, PPARG, and ABCB1) as therapeutic targets for ovarian serous cystadenocarcinoma by the five compounds. By analysis of the compound-target pathway network, we found the synergistic anti-ovarian serous cystadenocarcinoma potential and the underlying mechanisms of action of the five compounds. CONCLUSION In summary, latent drugs against ovarian serous cystadenocarcinoma were acquired and their target actions and pathways were determined by the network pharmacology strategy, which provides a new prospect for medicamentous therapy for ovarian serous cystadenocarcinoma. However, further in-depth studies are indispensable to increase the validity of this study.
Collapse
Affiliation(s)
- Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Yue Qin
- College of Pharmaceutical Science, Guangxi Medical University, Nanning, Guangxi, China
| | - Wen-Qing Xu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hua-Yu Wu
- Department of Cell Biology and Genetics, School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Dan-Min Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Jing-Jing Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, 530021, Guangxi, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, No. 6. Shuangyong Rd, Nanning, 530021, Guangxi, China.
| |
Collapse
|
36
|
Germination results in reduced allergenicity of peanut by degradation of allergens and resveratrol enrichment. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.10.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
37
|
Guerra AR, Duarte MF, Duarte IF. Targeting Tumor Metabolism with Plant-Derived Natural Products: Emerging Trends in Cancer Therapy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10663-10685. [PMID: 30227704 DOI: 10.1021/acs.jafc.8b04104] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recognition of neoplastic metabolic reprogramming as one of cancer's hallmarks has paved the way for developing novel metabolism-targeted therapeutic approaches. The use of plant-derived natural bioactive compounds for this endeavor is especially promising, due to their diverse structures and multiple targets. Hence, over the past decade, a growing number of studies have assessed the impact of phytochemicals on tumor cell metabolism, aiming at improving current knowledge on their mechanisms of action and, at the same time, evaluating their potential as anti-cancer metabolic modulators. In this Review, we focus on three classes of plant-derived compounds with promising anti-cancer activity-phenolic compounds, isoprenoids, and alkaloids-to describe their effects on major energetic and biosynthetic pathways of human tumor cells. Such a comprehensive and integrated account of the ability of these compounds to hit different metabolic targets is expected to contribute to the rational design and critical assessment of novel anti-cancer therapies based on natural-product-mediated metabolic reprogramming.
Collapse
Affiliation(s)
- Angela R Guerra
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja , Apartado 6158 , 7801-908 Beja , Portugal
- CICECO - Instituto de Materiais de Aveiro, Departamento de Quı́mica , Universidade de Aveiro , Campus de Santiago , 3810-193 Aveiro , Portugal
| | - Maria F Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja , Apartado 6158 , 7801-908 Beja , Portugal
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas , Universidade de Évora , Pólo da Mitra, 7006-554 Évora , Portugal
| | - Iola F Duarte
- CICECO - Instituto de Materiais de Aveiro, Departamento de Quı́mica , Universidade de Aveiro , Campus de Santiago , 3810-193 Aveiro , Portugal
| |
Collapse
|
38
|
Hessin AF, Hegazy RR, Hassan AA, Yassin NZ, Kenawy SAB. Resveratrol prevents liver fibrosis via two possible pathways: Modulation of alpha fetoprotein transcriptional levels and normalization of protein kinase C responses. Indian J Pharmacol 2018; 49:282-289. [PMID: 29326488 PMCID: PMC5754935 DOI: 10.4103/ijp.ijp_299_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE: Liver fibrosis is a global health problem that causes approximately 1.4 million deaths per year. It is associated with inflammation, oxidative stress, necrosis and ends with cirrhosis, liver cancer, or liver failure. Therefore, the present study was constructed to investigate the protective effect of resveratrol (RVT) on liver fibrosis, focusing on the possible involvement of alpha 1-fetoprotein and protein kinase C signaling. MATERIALS AND METHODS: Rats received thioacetamide (TAA) (200 mg/kg, intraperitoneal) twice weekly, for 4 successive weeks to induce liver fibrosis. RVT (30 mg/kg, per os) and vehicle were administered orally for 1 month before and another month during TAA intoxication. Body weights and mortality rate were assessed during the experiment. Liver functions and protein concentration were determined in serum, while liver tissues were analyzed for oxidative and fibrotic biomarkers. Moreover, histological examinations were performed to liver biopsies. RESULTS: RVT prevented the debility of TAA; liver functions including alanine aminotransferase, aspartate aminotransferase, bilirubin, and albumin were also protected. RVT prevented TAA oxidative stress, and normal liver contents of malondialdehyde and reduced glutathione were markedly preserved. In addition, RVT abolished the stimulant effect of TAA to fibrosis markers and conserved normal liver contents of nuclear factor kappa B, hydroxyproline, and alpha fetoprotein. Histological examinations indicated normal liver architecture in RVT-administered rats as compared to their TAA-administered peers. CONCLUSION: RVT was able to enhance liver functions, prevent oxidative stress, and eliminate liver fibrosis. Hence, the present data highlight the therapeutic potential of RVT as a protective agent against liver fibrosis.
Collapse
Affiliation(s)
- Alyaa Farouk Hessin
- Department of Pharmacology, Division of Medical, National Research Center, Giza, Cairo, Egypt.,Department of Microbiology and Immunology, College of Medicine, UIC, IL, USA
| | - Rehab Rehab Hegazy
- Department of Pharmacology, Division of Medical, National Research Center, Giza, Cairo, Egypt
| | - Azza Ahmed Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Cairo, Egypt
| | - Nemat Zakaria Yassin
- Department of Pharmacology, Division of Medical, National Research Center, Giza, Cairo, Egypt
| | - Sanaa Abdel-Baky Kenawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Cairo, Egypt
| |
Collapse
|
39
|
Chen X, Li W, Xu C, Wang J, Zhu B, Huang Q, Chen D, Sheng J, Zou Y, Lee YM, Tan R, Shen P, Wong YK, Lin Q, Wang J, Hua Z. Comparative profiling of analog targets: a case study on resveratrol for mouse melanoma metastasis suppression. Theranostics 2018; 8:3504-3516. [PMID: 30026862 PMCID: PMC6037041 DOI: 10.7150/thno.24336] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/23/2018] [Indexed: 12/13/2022] Open
Abstract
Many plant-specialized metabolites have remedial properties and provide an endless chemical resource for drug discovery. However, most of these metabolites have promiscuous binding targets in mammalian cells and elicit a series of responses that collectively change the physiology of the cells. To explore the potential of these multi-functional and multi-targeted drugs, it is critical to understand the direct relationships between their key chemical features, the corresponding binding targets and the relevant biological effects, which is a prerequisite for future drug modification and optimization. Methods: We introduced and demonstrated a general workflow, called Comparative Profiling of Analog Targets (CPAT), to connect specific biological effects with defined chemical structures of drugs. Using resveratrol (RSV) as an example, we have synthesized and characterized a series of partial functional analogs of RSV. An analog (named RSVN) that specifically lost the inhibitory effect of RSV in cell migration was identified. The binding targets of RSVN and RSV was profiled and compared. Results: Comparative profiling of the RSV and RSVN binding targets showed that, unlike RSV, RSVN failed to target specific components involved in DNA methylation (histone deacetylase 1 [HDAC1] and DNA methyltransferase 3 alpha [DNMT3a]), suggesting that RSV suppresses cell migration through epigenetic regulation. Indeed, RSV treatment recruited HDAC1 and DNMT3a to the promoter region of the focal adhesion kinase (FAK), a key factor involved in cell adhesion, enhanced the promoter methylation, and thus attenuated the protein expression. The inhibitory effect of RSV in cell migration was diminished once FAK expression was restored. Thus, the mechanism of RSV in inhibiting cell migration could be largely accounted to epigenetically control of FAK expression. Conclusion: Our results showed that even though RSV exhibits promiscuous binding, its inhibitory effect on cell migration can be mechanistically understood. First, the presence of 4'-hydroxystilbene within the RSV structure is essential for this activity. Second, it inhibits cell migration through epigenetically based downregulation of FAK expression. Taken together, we propose that CPAT might also be adapted to delineate the specific function of other natural products (NPs) that exhibit binding promiscuity.
Collapse
Affiliation(s)
- Xiao Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wei Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chengchao Xu
- Department of Biological Science, National University of Singapore, Singapore, 117543, Singapore
| | - Jie Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Bo Zhu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Qilai Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Dianhua Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jianfei Sheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yew Mun Lee
- Department of Biological Science, National University of Singapore, Singapore, 117543, Singapore
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Pingping Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yin Kwan Wong
- Department of Biological Science, National University of Singapore, Singapore, 117543, Singapore
| | - Qingsong Lin
- Department of Biological Science, National University of Singapore, Singapore, 117543, Singapore
| | - Jigang Wang
- Department of Biological Science, National University of Singapore, Singapore, 117543, Singapore
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
40
|
Nam S, Lee SY, Kang WS, Cho HJ. Development of Resveratrol-Loaded Herbal Extract-Based Nanocomposites and Their Application to the Therapy of Ovarian Cancer. NANOMATERIALS 2018; 8:nano8060384. [PMID: 29857475 PMCID: PMC6027326 DOI: 10.3390/nano8060384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/11/2018] [Accepted: 05/30/2018] [Indexed: 12/25/2022]
Abstract
Resveratrol (RSV) and the ethanol extract of Angelica gigas Nakai (AGN Ex)-based nanoparticles (NPs) were prepared using the nanocrystal concept. AGN/RSV NPs with 224 nm hydrodynamic size, unimodal size distribution, and negative zeta potential values were developed with the emulsification and solvent evaporation techniques. The crystalline properties of AGN Ex and RSV were transformed during the emulsification and solvent evaporation processes, thus, AGN NPs and AGN/RSV NPs exhibited amorphous states. AGN/RSV NPs held up their initial hydrodynamic size after 24 h of incubation in serum-included media. Sustained release profiles (for 5 days) of decursin (D) and decursinol angelate (DA) (the representative markers of AGN Ex) and RSV were observed at normal physiological pH (pH 7.4). In ovarian cancer (SKOV-3) cells, although AGN/RSV NPs showed a lower cellular entry rate rather than AGN NPs, the cellular accumulated amount of AGN/RSV NPs was similar with that of AGN NPs after 4 h of incubation. The antiproliferation efficiency of AGN/RSV NPs group was significantly higher than the AGN Ex, AGN NPs, and AGN NPs + RSV groups in SKOV-3 cells. AGN/RSV NPs can be one of the promising candidates for therapeutic nanoplatforms against ovarian cancers.
Collapse
Affiliation(s)
- Suyeong Nam
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Wie-Soo Kang
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| |
Collapse
|
41
|
Chin YT, Wei PL, Ho Y, Nana AW, Changou CA, Chen YR, Yang YCS, Hsieh MT, Hercbergs A, Davis PJ, Shih YJ, Lin HY. Thyroxine inhibits resveratrol-caused apoptosis by PD-L1 in ovarian cancer cells. Endocr Relat Cancer 2018; 25:533-545. [PMID: 29555649 DOI: 10.1530/erc-17-0376] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022]
Abstract
Thyroid hormone, l-thyroxine (T4), has been shown to promote ovarian cancer cell proliferation via a receptor on plasma membrane integrin αvβ3 and to induce the activation of ERK1/2 and expression of programmed death-ligand 1 (PD-L1) in cancer cells. In contrast, resveratrol binds to integrin αvβ3 at a discrete site and induces p53-dependent antiproliferation in malignant neoplastic cells. The mechanism of resveratrol action requires nuclear accumulation of inducible cyclooxygenase (COX)-2 and its complexation with phosphorylated ERK1/2. In this study, we examined the mechanism by which T4 impairs resveratrol-induced antiproliferation in human ovarian cancer cells and found that T4 inhibited resveratrol-induced nuclear accumulation of COX-2. Furthermore, T4 increased expression and cytoplasmic accumulation of PD-L1, which in turn acted to retain inducible COX-2 in the cytoplasm. Knockdown of PD-L1 by small hairpin RNA (shRNA) relieved the inhibitory effect of T4 on resveratrol-induced nuclear accumulation of COX-2- and COX-2/p53-dependent gene expression. Thus, T4 inhibits COX-2-dependent apoptosis in ovarian cancer cells by retaining inducible COX-2 with PD-L1 in the cytoplasm. These findings provide new insights into the antagonizing effect of T4 on resveratrol's anticancer properties.
Collapse
Affiliation(s)
- Yu-Tang Chin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Po-Li Wei
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, College of Medicine; Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Yih Ho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - André Wendindondé Nana
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
| | - Chun A Changou
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Facility, Taipei Medical University, Taipei, Taiwan
- Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ru Chen
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen Sh Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Meng-Ti Hsieh
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Aleck Hercbergs
- Department of Radiation Oncology, The Cleveland Clinic, Cleveland, Ohio, USA
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York, USA
- Department of Medicine, Albany Medical College, Albany, New York, USA
| | - Ya-Jung Shih
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
42
|
Zhong LX, Nie JH, Liu J, Lin LZ. Correlation of ARHI upregulation with growth suppression and STAT3 inactivation in resveratrol-treated ovarian cancer cells. Cancer Biomark 2018; 21:787-795. [PMID: 29504523 DOI: 10.3233/cbm-170483] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Li-Xia Zhong
- Department of Oncology Center, First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510407, Guangdong, China
| | - Jun-Hua Nie
- South China University of Technology School of Medicine, Guangzhou 520006, Guangdong, China
| | - Jia Liu
- South China University of Technology School of Medicine, Guangzhou 520006, Guangdong, China
| | - Li-Zhu Lin
- Department of Oncology Center, First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou 510407, Guangdong, China
| |
Collapse
|
43
|
Rossi EL, Khatib SA, Doerstling SS, Bowers LW, Pruski M, Ford NA, Glickman RD, Niu M, Yang P, Cui Z, DiGiovanni J, Hursting SD. Resveratrol inhibits obesity-associated adipose tissue dysfunction and tumor growth in a mouse model of postmenopausal claudin-low breast cancer. Mol Carcinog 2018; 57:393-407. [PMID: 29197120 PMCID: PMC6053655 DOI: 10.1002/mc.22763] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/13/2017] [Indexed: 01/24/2023]
Abstract
Adipose tissue dysregulation, a hallmark of obesity, contributes to a chronic state of low-grade inflammation and is associated with increased risk and progression of several breast cancer subtypes, including claudin-low breast tumors. Unfortunately, mechanistic targets for breaking the links between obesity-associated adipose tissue dysfunction, inflammation, and claudin-low breast cancer growth have not been elucidated. Ovariectomized female C57BL/6 mice were randomized (n = 15/group) to receive a control diet, a diet-induced obesity (DIO) diet, or a DIO + resveratrol (0.5% wt/wt) diet. Mice consumed these diets ad libitum throughout study and after 6 weeks were orthotopically injected with M-Wnt murine mammary tumor cells, a model of estrogen receptor (ER)-negative claudin-low breast cancer. Compared with controls, DIO mice displayed adipose dysregulation and metabolic perturbations including increased mammary adipocyte size, cyclooxygenase-2 (COX-2) expression, inflammatory eicosanoid levels, macrophage infiltration, and prevalence of crown-like structures (CLS). DIO mice (relative to controls) also had increased systemic inflammatory cytokines and decreased adipocyte expression of peroxisome proliferator-activated receptor gamma (PPARγ) and other adipogenesis-regulating genes. Supplementing the DIO diet with resveratrol prevented obesity-associated increases in mammary tumor growth, mammary adipocyte hypertrophy, COX-2 expression, macrophage infiltration, CLS prevalence, and serum cytokines. Resveratrol also offset the obesity-associated downregulation of adipocyte PPARγ and other adipogenesis genes in DIO mice. Our findings suggest that resveratrol may inhibit obesity-associated inflammation and claudin-low breast cancer growth by inhibiting adipocyte hypertrophy and associated adipose tissue dysregulation that typically accompanies obesity.
Collapse
Affiliation(s)
- Emily L Rossi
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Subreen A Khatib
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Steven S Doerstling
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Laura W Bowers
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Melissa Pruski
- Department of Nutritional Sciences, University of Texas, Austin, Texas
| | - Nikki A Ford
- Department of Nutritional Sciences, University of Texas, Austin, Texas
| | - Randolph D Glickman
- Department of Ophthalmology, University of Texas Health Science Center, San Antonio, Texas
| | - Mengmeng Niu
- College of Pharmacy, Pharmaceutics Division, University of Texas, Austin, Texas
| | - Peiying Yang
- Department of Palliative, Rehabilitation and Integrative Medicine, M.D. Anderson Cancer Center, Houston, Texas
| | - Zhengrong Cui
- College of Pharmacy, Pharmaceutics Division, University of Texas, Austin, Texas
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, The University of Texas, Austin, Texas
| | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
44
|
Linnerth-Petrik NM, Santry LA, Moorehead R, Jücker M, Wootton SK, Petrik J. Akt isoform specific effects in ovarian cancer progression. Oncotarget 2018; 7:74820-74833. [PMID: 27533079 PMCID: PMC5342704 DOI: 10.18632/oncotarget.11204] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/27/2016] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer remains a significant therapeutic problem and novel, effective therapies are needed. Akt is a serine-threonine kinase that is overexpressed in numerous cancers, including ovarian. Mammalian cells express three Akt isoforms which are encoded by distinct genes. Although there are several Akt inhibitors in clinical trials, most indiscriminately target all isoforms. Current in vitro data and animal knockout experiments suggest that the Akt isoforms may have divergent roles. In this paper, we determined the isoform-specific functions of Akt in ovarian cancer cell proliferation in vitro and in ovarian cancer progression in vivo. For in vitro experiments, murine and human ovarian cancer cells were treated with Akt inhibitors and cell viability was assessed. We used two different in vivo approaches to identify the roles of Akt isoforms in ovarian cancer progression and their influence on the primary tumor and tumor microenvironment. In one experiment, wild-type C57Bl6 mice were orthotopically injected with ID8 cells with stable knockdown of Akt isoforms. In a separate experiment, mice null for Akt 1-3 were orthotopically injected with WT ID8 cells (Figure 1). Our data show that inhibition of Akt1 significantly reduced ovarian cancer cell proliferation and inhibited tumor progression in vivo. Conversely, disruption of Akt2 increased tumor growth. Inhibition of Akt3 had an intermediate phenotype, but also increased growth of ovarian cancer cells. These data suggest that there is minimal redundancy between the Akt isoforms in ovarian cancer progression. These findings have important implications in the design of Akt inhibitors for the effective treatment of ovarian cancer.
Collapse
Affiliation(s)
| | - Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Roger Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Manfred Jücker
- Center of Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jim Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
45
|
de Almeida Chuffa LG, de Moura Ferreira G, Lupi LA, da Silva Nunes I, Fávaro WJ. P-MAPA immunotherapy potentiates the effect of cisplatin on serous ovarian carcinoma through targeting TLR4 signaling. J Ovarian Res 2018; 11:8. [PMID: 29343281 PMCID: PMC5773141 DOI: 10.1186/s13048-018-0380-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 01/11/2018] [Indexed: 01/16/2023] Open
Abstract
Background Toll-like receptors (TLRs) are transmembrane proteins expressed on the surface of ovarian cancer (OC) and immune cells. Identifying the specific roles of the TLR-mediated signaling pathways in OC cells is important to guide new treatments. Because immunotherapies have emerged as the adjuvant treatment for patients with OC, we investigated the effect of a promising immunotherapeutic strategy based on protein aggregate magnesium-ammonium phospholinoleate-palmitoleate anhydride (P-MAPA) combined with cisplatin (CIS) on the TLR2 and TLR4 signaling pathways via myeloid differentiation factor 88 (MyD88) and TLR-associated activator of interferon (TRIF) in an in vivo model of OC. Methods Tumors were chemically induced by a single injection of 100 μg of 7,12-dimethylbenz(a)anthracene (DMBA) directly under the left ovarian bursa in Fischer 344 rats. After the rats developed serous papillary OC, they were given P-MAPA, CIS or the combination P-MAPA+CIS as therapies. To understand the effects of the treatments, we assessed the tumor size, histopathology, and the TLR2- and TLR4-mediated inflammatory responses. Results Although CIS therapy was more effective than P-MAPA in reducing the tumor size, P-MAPA immunotherapy significantly increased the expressions of TLR2 and TLR4. More importantly, the combination of P-MAPA with CIS showed a greater survival rate compared to CIS alone, and exhibited a significant reduction in tumor volume compared to P-MAPA alone. The combination therapy also promoted the increase in the levels of the following OC-related proteins: TLR4, MyD88, TRIF, inhibitor of phosphorylated NF-kB alpha (p-IkBα), and nuclear factor kappa B (NF-kB p65) in both cytoplasmic and nuclear sites. While P-MAPA had no apparent effect on tumor necrosis factor alpha (TNF-α) and interleukin (IL)-6, it seems to increase interferon-γ (IFN-γ), which may induce the Thelper (Th1)-mediated immune response. Conclusion Collectively, our results suggest that P-MAPA immunotherapy combined with cisplatin could be considered an important therapeutic strategy against OC cells based on signaling pathways activated by TLR4.
Collapse
Affiliation(s)
- Luiz Gustavo de Almeida Chuffa
- Department of Anatomy, São Paulo State University (Unesp), Institute of Biosciences, Rubião Júnior, s/n, P.O Box: 18618-970, Botucatu, SP, 510, Brazil.
| | - Grazielle de Moura Ferreira
- Department of Anatomy, São Paulo State University (Unesp), Institute of Biosciences, Rubião Júnior, s/n, P.O Box: 18618-970, Botucatu, SP, 510, Brazil
| | - Luiz Antonio Lupi
- Department of Anatomy, São Paulo State University (Unesp), Institute of Biosciences, Rubião Júnior, s/n, P.O Box: 18618-970, Botucatu, SP, 510, Brazil
| | | | - Wagner José Fávaro
- Farmabrasilis R&D Division, Campinas, SP, Brazil.,Department of Structural and Functional Biology, Laboratory of Urogenital Carcinogenesis and Immunotherapy, UNICAMP - University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
46
|
Ferraresi A, Titone R, Follo C, Castiglioni A, Chiorino G, Dhanasekaran DN, Isidoro C. The protein restriction mimetic Resveratrol is an autophagy inducer stronger than amino acid starvation in ovarian cancer cells. Mol Carcinog 2017; 56:2681-2691. [PMID: 28856729 DOI: 10.1002/mc.22711] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/24/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022]
Abstract
The potential benefit of nutrient starvation in the prevention and treatment of cancer is presently under consideration. Resveratrol (RV), a dietary polyphenol acting as a protein (caloric) restriction mimetic, could substitute for amino acid starvation. The effects of starvation and of caloric restriction are mediated, among others, by autophagy, a process that contributes to cell homeostasis by promoting the lysosomal degradation of damaged and redundant self-constituents. Up-regulation of autophagy favors cell survival under nutrient shortage situation, and may drive cancer cells into a non-replicative, dormant state. Both RV and amino acid starvation effectively induced the aminoacid response and autophagy. These processes were associated with inhibition of the mTOR pathway and disruption of the BECLIN1-BCL-2 complex. The number of transcripts positively impinging on the autophagy pathway was higher in RV-treated than in starved cancer cells. Consistent with our data, it appears that RV treatment is more effective than and can substitute for starvation for inducing autophagy in cancer cells. The present findings are clinically relevant because of the potential therapeutic implications.
Collapse
Affiliation(s)
- Alessandra Ferraresi
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Rossella Titone
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Andrea Castiglioni
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Giovanna Chiorino
- Cancer Genomics Laboratory, Fondazione Edo ed Elvo Tempia, Biella, Italy
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", Novara, Italy
| |
Collapse
|
47
|
Pan J, Shen J, Si W, Du C, Chen D, Xu L, Yao M, Fu P, Fan W. Resveratrol promotes MICA/B expression and natural killer cell lysis of breast cancer cells by suppressing c-Myc/miR-17 pathway. Oncotarget 2017; 8:65743-65758. [PMID: 29029468 PMCID: PMC5630368 DOI: 10.18632/oncotarget.19445] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/26/2017] [Indexed: 12/31/2022] Open
Abstract
Major histocompatibility complex class I chain-related proteins A and B (MICA and MICB) are important ligands for recognition of tumor cells by immune effector cells. Here, we report that resveratrol upregulated the protein and mRNA expression of MICA and MICB in breast cancer cells, which in turn promoted breast cancer cell lysis by natural killer (NK) cells in vitro and in vivo. Antibodies against NK group 2 member D blocked this effect. The 3'-untranslated regions of MICA and MICB were found to be direct binding targets of miR-17. MICA and MICB expression increased or decreased in breast cancer cells transfected with a miR-17 inhibitor or mimic, respectively. C-Myc overexpression/knockdown increased/decreased transcription of the miR-17-92 cluster host gene. Resveratrol suppressed c-Myc expression, which inhibited the transcription of miR-17-92 cluster, thereby downregulating miR-17. MiR-17 expression correlated inversely with MICA and MICB expression and overall survival in two sets of breast cancer specimens. Resveratrol thus upregulates MICA and MICB by suppressing the c-Myc/miR-17 pathway in breast cancer cells, and increases the cytolysis of breast cancer cells by NK cells. This suggests resveratrol has the potential to promote antitumor immune responses in breast cancer patients.
Collapse
Affiliation(s)
- Jie Pan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Jiaying Shen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Wengong Si
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Chengyong Du
- Breast Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Danni Chen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Liang Xu
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China.,Clinical Research Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Minya Yao
- Breast Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Peifen Fu
- Breast Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
48
|
Sun L, Yin Y, Clark LH, Sun W, Sullivan SA, Tran AQ, Han J, Zhang L, Guo H, Madugu E, Pan T, Jackson AL, Kilgore J, Jones HM, Gilliam TP, Zhou C, Bae-Jump VL. Dual inhibition of glycolysis and glutaminolysis as a therapeutic strategy in the treatment of ovarian cancer. Oncotarget 2017; 8:63551-63561. [PMID: 28969010 PMCID: PMC5609942 DOI: 10.18632/oncotarget.18854] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/04/2017] [Indexed: 01/12/2023] Open
Abstract
Cancer cell metabolism is required to support the biosynthetic demands of cell growth and cell division, and to maintain reduction oxidaton (redox) homeostasis. This study was designed to test the effects of glucose and glutamine on ovarian cancer cell growth and explore the inter-relationship between glycolysis and glutaminolysis. The SKOV3, IGROV-1 and Hey ovarian cancer cell lines were assayed for glucose, pyruvate and glutamine dependence by analyzing cytotoxicity, cell cycle progression, apoptosis and ATP production. As determined by MTT assay, glucose stimulated cell growth while the combination of glucose, glutamine and pyruvate resulted in the greatest stimulation of cell proliferation. Furthermore, 2-deoxy-glucose (2-DG) and 3-bromopyruvate (3-BP) induced apoptosis, caused G1 phase cell cycle arrest and reduced glycolytic activity. Moreover, 2-DG in combination with a low dose of aminooxyacetate (AOA) synergistically increased the sensitivity to 2-DG in the inhibition of cell growth in the ovarian cancer cell lines. These studies suggest that dual inhibition of glycolysis and glutaminolysis may be a promising therapeutic strategy for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Li Sun
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yajie Yin
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, People's Republic of China.,School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, Shandong Province, People's Republic of China.,Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leslie H Clark
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wenchuan Sun
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephanie A Sullivan
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Arthur-Quan Tran
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jianjun Han
- Department of Surgical Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, People's Republic of China
| | - Lu Zhang
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, People's Republic of China
| | - Hui Guo
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong Province, People's Republic of China
| | - Esther Madugu
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tommy Pan
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amanda L Jackson
- Division of Gynecologic Oncology, University of Cincinnati, Cincinnati, OH, USA
| | - Joshua Kilgore
- Houston Methodist Gynecologic Oncology Associates, Houston, TX, USA
| | - Hannah M Jones
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Timothy P Gilliam
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Victoria L Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
49
|
Mouhid L, Corzo-Martínez M, Torres C, Vázquez L, Reglero G, Fornari T, Ramírez de Molina A. Improving In Vivo Efficacy of Bioactive Molecules: An Overview of Potentially Antitumor Phytochemicals and Currently Available Lipid-Based Delivery Systems. JOURNAL OF ONCOLOGY 2017; 2017:7351976. [PMID: 28555156 PMCID: PMC5438845 DOI: 10.1155/2017/7351976] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/06/2017] [Indexed: 02/07/2023]
Abstract
Cancer is among the leading causes of morbidity and mortality worldwide. Many of the chemotherapeutic agents used in cancer treatment exhibit cell toxicity and display teratogenic effect on nontumor cells. Therefore, the search for alternative compounds which are effective against tumor cells but reduce toxicity against nontumor ones is of great importance in the progress or development of cancer treatments. In this sense, scientific knowledge about relevant aspects of nutrition intimately involved in the development and progression of cancer progresses rapidly. Phytochemicals, considered as bioactive ingredients present in plant products, have shown promising effects as potential therapeutic/preventive agents on cancer in several in vitro and in vivo assays. However, despite their bioactive properties, phytochemicals are still not commonly used in clinical practice due to several reasons, mainly attributed to their poor bioavailability. In this sense, new formulation strategies are proposed as carriers to improve their bioefficacy, highlighting the use of lipid-based delivery systems. Here, we review the potential antitumoral activity of the bioactive compounds derived from plants and the current studies carried out in animal and human models. Furthermore, their association with lipids as a formulation strategy to enhance their efficacy in vivo is also reported. The development of high effective bioactive supplements for cancer treatment based on the improvement of their bioavailability goes through this association.
Collapse
Affiliation(s)
- Lamia Mouhid
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| | - Marta Corzo-Martínez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Carlos Torres
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Luis Vázquez
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Guillermo Reglero
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Tiziana Fornari
- Department of Production and Characterization of Novel Foods, Institute of Food Science Research (CIAL), Campus of International Excellence (CEI) UAM+CSIC, 28049 Madrid, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, IMDEA Food Institute, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
50
|
Kim YJ, Chung SO, Kim JK, Park SU. Recent studies on resveratrol and its biological and pharmacological activity. EXCLI JOURNAL 2017; 16:602-608. [PMID: 28694761 PMCID: PMC5491918 DOI: 10.17179/excli2017-253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 04/11/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Yong Joo Kim
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Sun Ok Chung
- Department of Biosystems Machinery Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jae Kwang Kim
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Sang Un Park
- Division of Life Sciences and Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Korea
| |
Collapse
|