1
|
Shimaoka D, Wong YT, Rosa MGP, Price NSC. Naturalistic movies and encoding analysis define areal borders in marmoset third-tier visual cortex. Prog Neurobiol 2024; 240:102657. [PMID: 39103115 DOI: 10.1016/j.pneurobio.2024.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/24/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Accurate definition of the borders of cortical visual areas is essential for the study of neuronal processes leading to perception. However, data used for definition of areal boundaries have suffered from issues related to resolution, uniform coverage, or suitability for objective analysis, leading to ambiguity. Here, we present a novel approach that combines widefield optical imaging, presentation of naturalistic movies, and encoding model analysis, to objectively define borders in the primate extrastriate cortex. We applied this method to test conflicting hypotheses about the third-tier visual cortex, where areal boundaries have remained controversial. We demonstrate pronounced tuning preferences in the third-tier areas, and an organizational structure in which the dorsomedial area (DM) contains representations of both the upper and lower contralateral quadrants, and is located immediate anterior to V2. High-density electrophysiological recordings with a Neuropixels probe confirm these findings. Our encoding-model approach offers a powerful, objective way to disambiguate areal boundaries.
Collapse
Affiliation(s)
- Daisuke Shimaoka
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia.
| | - Yan Tat Wong
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia; Electrical and Computer Systems Engineering, Monash University, Clayton, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Nicholas Seow Chiang Price
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Ortiz-Rios M, Agayby B, Balezeau F, Haag M, Rima S, Cadena-Valencia J, Schmid MC. Optogenetic stimulation of the primary visual cortex drives activity in the visual association cortex. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 4:100087. [PMID: 37397814 PMCID: PMC10313868 DOI: 10.1016/j.crneur.2023.100087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 02/14/2023] [Accepted: 03/22/2023] [Indexed: 07/04/2023] Open
Abstract
Developing optogenetic methods for research in non-human primates (NHP) is important for translational neuroscience and for delineating brain function with unprecedented specificity. Here we assess, in macaque monkeys, the selectivity by which optogenetic stimulation of the primary visual cortex (V1) drives the local laminar and widespread cortical connectivity related to visual perception. Towards this end, we transfected neurons with light-sensitive channelrhodopsin in dorsal V1. fMRI revealed that optogenetic stimulation of V1 using blue light at 40 Hz increased functional activity in the visual association cortex, including areas V2/V3, V4, motion-sensitive area MT and frontal eye fields, although nonspecific heating and eye movement contributions to this effect could not be ruled out. Neurophysiology and immunohistochemistry analyses confirmed optogenetic modulation of spiking activity and opsin expression with the strongest expression in layer 4-B in V1. Stimulating this pathway during a perceptual decision task effectively elicited a phosphene percept in the receptive field of the stimulated neurons in one monkey. Taken together, our findings demonstrate the great potential of optogenetic methods to drive the large-scale cortical circuits of the primate brain with high functional and spatial specificity.
Collapse
Affiliation(s)
- Michael Ortiz-Rios
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Functional Imaging Laboratory, Deutsches Primatenzentrum (DPZ), Leibniz-Institut für Primatenforschung, Göttingen, Germany
| | - Beshoy Agayby
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Fabien Balezeau
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Marcus Haag
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Samy Rima
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Jaime Cadena-Valencia
- Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| | - Michael C. Schmid
- Biosciences Institute, Henry Wellcome Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Faculty of Science and Medicine, University of Fribourg, Chemin du Musée 5, 1700, Fribourg, Switzerland
| |
Collapse
|
3
|
Kaas JH, Qi HX, Stepniewska I. Escaping the nocturnal bottleneck, and the evolution of the dorsal and ventral streams of visual processing in primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210293. [PMID: 34957843 PMCID: PMC8710890 DOI: 10.1098/rstb.2021.0293] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Early mammals were small and nocturnal. Their visual systems had regressed and they had poor vision. After the extinction of the dinosaurs 66 mya, some but not all escaped the 'nocturnal bottleneck' by recovering high-acuity vision. By contrast, early primates escaped the bottleneck within the age of dinosaurs by having large forward-facing eyes and acute vision while remaining nocturnal. We propose that these primates differed from other mammals by changing the balance between two sources of visual information to cortex. Thus, cortical processing became less dependent on a relay of information from the superior colliculus (SC) to temporal cortex and more dependent on information distributed from primary visual cortex (V1). In addition, the two major classes of visual information from the retina became highly segregated into magnocellular (M cell) projections from V1 to the primate-specific temporal visual area (MT), and parvocellular-dominated projections to the dorsolateral visual area (DL or V4). The greatly expanded P cell inputs from V1 informed the ventral stream of cortical processing involving temporal and frontal cortex. The M cell pathways from V1 and the SC informed the dorsal stream of cortical processing involving MT, surrounding temporal cortex, and parietal-frontal sensorimotor domains. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Jon H. Kaas
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| | - Hui-Xin Qi
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| | - Iwona Stepniewska
- Department of Pshycology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37240, USA
| |
Collapse
|
4
|
Kaas JH. Comparative Functional Anatomy of Marmoset Brains. ILAR J 2021; 61:260-273. [PMID: 33550381 PMCID: PMC9214571 DOI: 10.1093/ilar/ilaa026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022] Open
Abstract
Marmosets and closely related tamarins have become popular models for understanding aspects of human brain organization and function because they are small, reproduce and mature rapidly, and have few cortical fissures so that more cortex is visible and accessible on the surface. They are well suited for studies of development and aging. Because marmosets are highly social primates with extensive vocal communication, marmoset studies can inform theories of the evolution of language in humans. Most importantly, marmosets share basic features of major sensory and motor systems with other primates, including those of macaque monkeys and humans with larger and more complex brains. The early stages of sensory processing, including subcortical nuclei and several cortical levels for the visual, auditory, somatosensory, and motor systems, are highly similar across primates, and thus results from marmosets are relevant for making inferences about how these systems are organized and function in humans. Nevertheless, the structures in these systems are not identical across primate species, and homologous structures are much bigger and therefore function somewhat differently in human brains. In particular, the large human brain has more cortical areas that add to the complexity of information processing and storage, as well as decision-making, while making new abilities possible, such as language. Thus, inferences about human brains based on studies on marmoset brains alone should be made with a bit of caution.
Collapse
Affiliation(s)
- Jon H Kaas
- Corresponding Author: Jon H. Kaas, PhD, Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Ave. S., Nashville, TN 37203, USA. E-mail:
| |
Collapse
|
5
|
Turner EC, Gabi M, Liao CC, Kaas JH. The postnatal development of MT, V1, LGN, pulvinar and SC in prosimian galagos (Otolemur garnettii). J Comp Neurol 2020; 528:3075-3094. [PMID: 32067231 PMCID: PMC11495416 DOI: 10.1002/cne.24885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/05/2022]
Abstract
Considerable evidence supports the premise that the visual system of primates develops hierarchically, with primary visual cortex developing structurally and functionally first, thereby influencing the subsequent development of higher cortical areas. An apparent exception is the higher order middle temporal visual area (MT), which appears to be histologically distinct near the time of birth in marmosets. Here we used a number of histological and immunohistological markers to evaluate the maturation of cortical and subcortical components of the visual system in galagos ranging from newborns to adults. Galagos are representative of the large strepsirrhine branch of primate evolution, and studies of these primates help identify brain features that are broadly similar across primate taxa. The histological results support the view that MT is functional at or near the time of birth, as is primary visual cortex. Likewise, the superior colliculus, dorsal lateral geniculate nucleus, and the posterior nucleus of the pulvinar are well-developed by birth. Thus, these subcortical structures likely provide visual information directly or indirectly to cortex in newborn galagos. We conclude that MT resembles a primary sensory area by developing early, and that the early development of MT may influence the subsequent development of dorsal stream visual areas.
Collapse
Affiliation(s)
- Emily C Turner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Mariana Gabi
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
6
|
Bryant KL, Glasser MF, Li L, Jae-Cheol Bae J, Jacquez NJ, Alarcón L, Fields A, Preuss TM. Organization of extrastriate and temporal cortex in chimpanzees compared to humans and macaques. Cortex 2019; 118:223-243. [PMID: 30910223 PMCID: PMC6697630 DOI: 10.1016/j.cortex.2019.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/31/2018] [Accepted: 02/13/2019] [Indexed: 01/11/2023]
Abstract
There is evidence for enlargement of association cortex in humans compared to other primate species. Expansion of temporal association cortex appears to have displaced extrastriate cortex posteriorly and inferiorly in humans compared to macaques. However, the details of the organization of these recently expanded areas are still being uncovered. Here, we used diffusion tractography to examine the organization of extrastriate and temporal association cortex in chimpanzees, humans, and macaques. Our goal was to characterize the organization of visual and auditory association areas with respect to their corresponding primary areas (primary visual cortex and auditory core) in humans and chimpanzees. We report three results: (1) Humans, chimpanzees, and macaques show expected retinotopic organization of primary visual cortex (V1) connectivity to V2 and to areas immediately anterior to V2; (2) In contrast to macaques, chimpanzee and human V1 shows apparent connectivity with lateral, inferior, and anterior temporal regions, beyond the retinotopically organized extrastriate areas; (3) Also in contrast to macaques, chimpanzee and human auditory core shows apparent connectivity with temporal association areas, with some important differences between humans and chimpanzees. Diffusion tractography reconstructs diffusion patterns that reflect white matter organization, but does not definitively represent direct anatomical connectivity. Therefore, it is important to recognize that our findings are suggestive of species differences in long-distance white matter organization rather than demonstrations of direct connections. Our data support the conclusion that expansion of temporal association cortex, and the resulting posterior displacement of extrastriate cortex, occurred in the human lineage after its separation from the chimpanzee lineage. It is possible, however, that some expansion of the temporal lobe occurred prior to the separation of humans and chimpanzees, reflected in the reorganization of long white matter tracts in the temporal lobe that connect occipital areas to the fusiform gyrus, middle temporal gyrus, and anterior temporal lobe.
Collapse
Affiliation(s)
- Katherine L Bryant
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Matthew F Glasser
- Departments of Radiology and Neuroscience, Washington University Medical School, St. Louis, MO, USA
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | - Jason Jae-Cheol Bae
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA; College of Medicine, American University of Antigua, USA
| | - Nadine J Jacquez
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA
| | - Laura Alarcón
- Neuroscience and Behavioral Biology, Emory University, Atlanta, GA, USA
| | - Archie Fields
- Department of Philosophy, University of Calgary, Calgary, Alberta, Canada
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Center for Translational Social Neuroscience, Emory University, Atlanta, GA, USA; Department of Pathology & Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
7
|
Detailed Visual Cortical Responses Generated by Retinal Sheet Transplants in Rats with Severe Retinal Degeneration. J Neurosci 2018; 38:10709-10724. [PMID: 30396913 DOI: 10.1523/jneurosci.1279-18.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/18/2018] [Accepted: 10/21/2018] [Indexed: 11/21/2022] Open
Abstract
To combat retinal degeneration, healthy fetal retinal sheets have been successfully transplanted into both rodent models and humans, with synaptic connectivity between transplant and degenerated host retina having been confirmed. In rodent studies, transplants have been shown to restore responses to flashes of light in a region of the superior colliculus corresponding to the location of the transplant in the host retina. To determine the quality and detail of visual information provided by the transplant, visual responsivity was studied here at the level of visual cortex where higher visual perception is processed. For our model, we used the transgenic Rho-S334ter line-3 rat (both sexes), which loses photoreceptors at an early age and is effectively blind at postnatal day 30. These rats received fetal retinal sheet transplants in one eye between 24 and 40 d of age. Three to 10 months following surgery, visually responsive neurons were found in regions of primary visual cortex matching the transplanted region of the retina that were as highly selective as normal rat to stimulus orientation, size, contrast, and spatial and temporal frequencies. Conversely, we found that selective response properties were largely absent in nontransplanted line-3 rats. Our data show that fetal retinal sheet transplants can result in remarkably normal visual function in visual cortex of rats with a degenerated host retina and represents a critical step toward developing an effective remedy for the visually impaired human population.SIGNIFICANCE STATEMENT Age-related macular degeneration and retinitis pigmentosa lead to profound vision loss in millions of people worldwide. Many patients lose both retinal pigment epithelium and photoreceptors. Hence, there is a great demand for the development of efficient techniques that allow for long-term vision restoration. In this study, we transplanted dissected fetal retinal sheets, which can differentiate into photoreceptors and integrate with the host retina of rats with severe retinal degeneration. Remarkably, we show that transplants generated visual responses in cortex similar in quality to normal rats. Furthermore, transplants preserved connectivity within visual cortex and the retinal relay from the lateral geniculate nucleus to visual cortex, supporting their potential application in curing vision loss associated with retinal degeneration.
Collapse
|
8
|
Baldwin MKL, Balaram P, Kaas JH. The evolution and functions of nuclei of the visual pulvinar in primates. J Comp Neurol 2017; 525:3207-3226. [PMID: 28653446 DOI: 10.1002/cne.24272] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/31/2017] [Accepted: 06/14/2017] [Indexed: 11/06/2022]
Abstract
In this review, we outline the history of our current understanding of the organization of the pulvinar complex of mammals. We include more recent evidence from our own studies of both New and Old World monkeys, prosimian galagos, and close relatives of primates, including tree shrews and rodents. Based on cumulative evidence, we provide insights into the possible evolution of the visual pulvinar complex, as well as the possible co-evolution of the inferior pulvinar nuclei and temporal cortical visual areas within the MT complex.
Collapse
Affiliation(s)
- Mary K L Baldwin
- Department of Psychology, Vanderbilt University, Nashville, Tennessee.,Center for Neuroscience, University of California Davis, Davis, California
| | - Pooja Balaram
- Department of Psychology, Vanderbilt University, Nashville, Tennessee.,Massachusetts Eye and Ear Infirmary, Harvard Medical School, Cambridge, Massachusetts
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
9
|
Negwer M, Liu YJ, Schubert D, Lyon DC. V1 connections reveal a series of elongated higher visual areas in the California ground squirrel, Otospermophilus beecheyi. J Comp Neurol 2017; 525:1909-1921. [PMID: 28078786 DOI: 10.1002/cne.24173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/14/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022]
Abstract
For studies of visual cortex organization, mouse is becoming an increasingly more often used model. In addition to its genetic tractability, the relatively small area of cortical surface devoted to visual processing simplifies efforts in relating the structure of visual cortex to visual function. However, the nature of this compact organization can make some comparisons to the much larger non-human primate visual cortex difficult. The squirrel, as a highly visual rodent offers a useful means for better understanding how mouse and monkey cortical organization compares. More in line with primates than their nocturnal rodent cousin, squirrels rely much more on sight and have evolved a larger expanse of cortex devoted to visual processing. To reveal the detailed organization of visual cortex in squirrels, we injected a highly sensitive monosynaptic retrograde tracer (glycoprotein deleted rabies virus) into several locations of primary visual cortex (V1) in California ground squirrels. The resulting pattern of connectivity revealed an organizational scheme in the squirrel that retains some of the basic features of the mouse visual cortex along the medial and posterior borders of V1, but unlike mouse has an elaborate and extensive pattern laterally that is more similar to the early visual cortex organization found in monkeys. In this way, we show that the squirrel can serve as a useful model for comparison to both mouse and primate visual systems, and may help facilitate comparisons between these two very different yet widely used animal models of visual processing.
Collapse
Affiliation(s)
- Moritz Negwer
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, California.,Department of Cognitive Neuroscience, Donders Inst. for Brain, Cognition & Behaviour, Radboud University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - Yong-Jun Liu
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, California.,Department of Honeybee Protection and Biosafety, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Haidian District, Beijing, P.R. China
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Donders Inst. for Brain, Cognition & Behaviour, Radboud University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | - David C Lyon
- Department of Anatomy & Neurobiology, School of Medicine, University of California, Irvine, California
| |
Collapse
|
10
|
Abstract
As highlighted by several contributions to this special issue, there is still ongoing debate about the number, exact location, and boundaries of the visual areas located in cortex immediately rostral to the second visual area (V2), i.e., the “third tier” visual cortex, in primates. In this review, we provide a historical overview of the main ideas that have led to four models of third tier cortex organization, which are at the center of today's debate. We formulate specific predictions of these models, and compare these predictions with experimental evidence obtained primarily in New World primates. From this analysis, we conclude that only one of these models (the “multiple-areas” model) can accommodate the breadth of available experimental evidence. According to this model, most of the third tier cortex in New World primates is occupied by two distinct areas, both representing the full contralateral visual quadrant: the dorsomedial area (DM), restricted to the dorsal half of the third visual complex, and the ventrolateral posterior area (VLP), occupying its ventral half and a substantial fraction of its dorsal half. DM belongs to the dorsal stream of visual processing, and overlaps with macaque parietooccipital (PO) area (or V6), whereas VLP belongs to the ventral stream and overlaps considerably with area V3 proposed by others. In contrast, there is substantial evidence that is inconsistent with the concept of a single elongated area V3 lining much of V2. We also review the experimental evidence from macaque monkey and humans, and propose that, once the data are interpreted within an evolutionary-developmental context, these species share a homologous (but not necessarily identical) organization of the third tier cortex as that observed in New World monkeys. Finally, we identify outstanding issues, and propose experiments to resolve them, highlighting in particular the need for more extensive, hypothesis-driven investigations in macaque and humans.
Collapse
|
11
|
Corticocortical connection patterns reveal two distinct visual cortical areas bordering dorsal V2 in marmoset monkey. Vis Neurosci 2016; 32:E012. [PMID: 26423121 PMCID: PMC5301919 DOI: 10.1017/s0952523815000097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The organization of the cortex located immediately anterior to the second visual area (V2), i.e., the third tier visual cortex, remains controversial, especially in New World primates. In particular, there is lack of consensus regarding the exact location and extent of the lower visual quadrant representation of the third visual area V3 (or ventrolateral posterior –VLP – of a different nomenclature). Microelectrode and connectional mapping studies have revealed the existence of an upper visual quadrant representation abutting dorsal V2 anteriorly, and bordered medially and laterally by representations of the lower visual quadrant. It remains unclear whether these lower field regions are both part of a single area V3, which is split into two patches by an interposed region of upper field representation, or whether they are the lower field representations of two different areas, the dorsomedial area (DM) and area V3/VLP, respectively. To address this question, we quantitatively analyzed the patterns of corticocortical afferent connections labeled by tracer injections targeted to these two lower field regions in the dorsal aspect of the third tier cortex. We found different inter-areal connectivity patterns arising from these two regions, strongly suggesting that they belong to two different visual areas. In particular, our results indicate that the dorsal aspect of the third tier cortex consists of two distinct areas: a full area DM, representing the lower quadrant medially, and the upper quadrant laterally, and the lower quadrant representation of V3/VLP, located laterally to upper field DM. DM is predominantly connected with areas of the dorsal visual stream, and V3/VLP with areas of the ventral stream. These results prompt further functional investigations of the third tier cortex, as previous studies of this cortical territory may have pooled response properties of two very different areas into a single area V3.
Collapse
|
12
|
Abstract
The density of cells and neurons in the neocortex of many mammals varies across cortical areas and regions. This variability is, perhaps, most pronounced in primates. Nonuniformity in the composition of cortex suggests regions of the cortex have different specializations. Specifically, regions with densely packed neurons contain smaller neurons that are activated by relatively few inputs, thereby preserving information, whereas regions that are less densely packed have larger neurons that have more integrative functions. Here we present the numbers of cells and neurons for 742 discrete locations across the neocortex in a chimpanzee. Using isotropic fractionation and flow fractionation methods for cell and neuron counts, we estimate that neocortex of one hemisphere contains 9.5 billion cells and 3.7 billion neurons. Primary visual cortex occupies 35 cm(2) of surface, 10% of the total, and contains 737 million densely packed neurons, 20% of the total neurons contained within the hemisphere. Other areas of high neuron packing include secondary visual areas, somatosensory cortex, and prefrontal granular cortex. Areas of low levels of neuron packing density include motor and premotor cortex. These values reflect those obtained from more limited samples of cortex in humans and other primates.
Collapse
|
13
|
Controversial issues in visual cortex mapping: Extrastriate cortex between areas V2 and MT in human and nonhuman primates. Vis Neurosci 2015; 32:E025. [PMID: 28362250 PMCID: PMC5307691 DOI: 10.1017/s0952523815000292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Abstract
AbstractIn primates, the cortex adjoining the rostral border of V2 has been variously interpreted as belonging to a single visual area, V3, with dorsal V3 (V3d) representing the lower visual quadrant and ventral V3 (V3v) representing the upper visual quadrant, V3d and V3v constituting separate, incomplete visual areas, V3d and ventral posterior (VP), or V3d being divided into several visual areas, including a dorsomedial (DM) visual area, a medial visual area (M), and dorsal extension of VP (or VLP). In our view, the evidence from V1 connections strongly supports the contention that V3v and V3d are parts of a single visual area, V3, and that DM is a separate visual area along the rostral border of V3d. In addition, the retinotopy revealed by V1 connection patterns, microelectrode mapping, optical imaging mapping, and functional magnetic resonance imaging (fmri) mapping indicates that much of the proposed territory of V3d corresponds to V3. Yet, other evidence from microelectrode mapping and anatomical connection patterns supports the possibility of an upper quadrant representation along the rostral border of the middle of dorsal V2 (V2d), interpreted as part of DM or DM plus DI, and along the midline end of V2d, interpreted as the visual area M. While the data supporting these different interpretations appear contradictory, they also seem, to some extent, valid. We suggest that V3d may have a gap in its middle, possibly representing part of the upper visual quadrant that is not part of DM. In addition, another visual area, M, is likely located at the DM tip of V3d. There is no evidence for a similar disruption of V3v. For the present, we favor continuing the traditional concept of V3 with the possible modification of a gap in V3d in at least some primates.
Collapse
|
15
|
Stepniewska I, Cerkevich CM, Kaas JH. Cortical Connections of the Caudal Portion of Posterior Parietal Cortex in Prosimian Galagos. Cereb Cortex 2015; 26:2753-77. [PMID: 26088972 DOI: 10.1093/cercor/bhv132] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Posterior parietal cortex (PPC) of prosimian galagos includes a rostral portion (PPCr) where electrical stimulation evokes different classes of complex movements from different subregions, and a caudal portion (PPCc) where such stimulation fails to evoke movements in anesthetized preparations ( Stepniewska, Fang et al. 2009). We placed tracer injections into PPCc to reveal patterns of its cortical connections. There were widespread connections within PPCc as well as connections with PPCr and extrastriate visual areas, including V2 and V3. Weaker connections were with dorsal premotor cortex, and the frontal eye field. The connections of different parts of PPCc with visual areas were roughly retinotopic such that injections to dorsal PPCc labeled more neurons in the dorsal portions of visual areas, representing lower visual quadrant, and injections to ventral PPCc labeled more neurons in ventral portions of these visual areas, representing the upper visual quadrant. We conclude that much of the PPCc contains a crude representation of the contralateral visual hemifield, with inputs largely, but not exclusively, from higher-order visual areas that are considered part of the dorsal visuomotor processing stream. As in galagos, the caudal half of PPC was likely visual in early primates, with the rostral PPC half mediating sensorimotor functions.
Collapse
Affiliation(s)
- Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| | - Christina M Cerkevich
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA Current address: System Neuroscience Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
16
|
Butt OH, Benson NC, Datta R, Aguirre GK. Hierarchical and homotopic correlations of spontaneous neural activity within the visual cortex of the sighted and blind. Front Hum Neurosci 2015; 9:25. [PMID: 25713519 PMCID: PMC4322716 DOI: 10.3389/fnhum.2015.00025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/12/2015] [Indexed: 10/31/2022] Open
Abstract
Spontaneous neural activity within visual cortex is synchronized by both monosynaptic, hierarchical connections between visual areas and indirect, network-level activity. We examined the interplay of hierarchical and network connectivity in human visual cortex by measuring the organization of spontaneous neural signals within the visual cortex in total darkness using functional magnetic resonance imaging (fMRI). Twenty-five blind (14 congenital and 11 postnatal) participants with equally severe vision loss and 22 sighted subjects were studied. An anatomical template based on cortical surface topology was used for all subjects to identify the quarter-field components of visual areas V1-V3, and assign retinotopic organization. Cortical visual areas that represent the same quadrant of the visual field were considered to have a hierarchical relationship, while the spatially separated quarters of the same visual area were considered homotopic. Blindness was found to enhance correlations between hierarchical cortical areas as compared to indirect, homotopic areas at both the level of visual areas (p = 0.000031) and fine, retinotopic scale (p = 0.0024). A specific effect of congenital, but not postnatal, blindness was to further broaden the cortico-cortico connections between hierarchical visual areas (p = 0.0029). This finding is consistent with animal studies that observe a broadening of axonal terminal arborization when the visual cortex is deprived of early input. We therefore find separable roles for vision in developing and maintaining the intrinsic neural activity of visual cortex.
Collapse
Affiliation(s)
- Omar H Butt
- Department of Neurology, University of Pennsylvania Philadelphia, PA, USA
| | - Noah C Benson
- Department of Neurology, University of Pennsylvania Philadelphia, PA, USA ; Department of Psychology, University of Pennsylvania Philadelphia, PA, USA
| | - Ritobrato Datta
- Department of Neurology, University of Pennsylvania Philadelphia, PA, USA
| | - Geoffrey K Aguirre
- Department of Neurology, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
17
|
SERENO MARTINI, MCDONALD COLINT, ALLMAN JOHNM. Retinotopic organization of extrastriate cortex in the owl monkey--dorsal and lateral areas. Vis Neurosci 2015; 32:E021. [PMID: 26423343 PMCID: PMC4733890 DOI: 10.1017/s0952523815000206] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/20/2015] [Indexed: 11/06/2022]
Abstract
Dense retinotopy data sets were obtained by microelectrode visual receptive field mapping in dorsal and lateral visual cortex of anesthetized owl monkeys. The cortex was then physically flatmounted and stained for myelin or cytochrome oxidase. Retinotopic mapping data were digitized, interpolated to a uniform grid, analyzed using the visual field sign technique-which locally distinguishes mirror image from nonmirror image visual field representations-and correlated with the myelin or cytochrome oxidase patterns. The region between V2 (nonmirror) and MT (nonmirror) contains three areas-DLp (mirror), DLi (nonmirror), and DLa/MTc (mirror). DM (mirror) was thin anteroposteriorly, and its reduced upper field bent somewhat anteriorly away from V2. DI (nonmirror) directly adjoined V2 (nonmirror) and contained only an upper field representation that also adjoined upper field DM (mirror). Retinotopy was used to define area VPP (nonmirror), which adjoins DM anteriorly, area FSTd (mirror), which adjoins MT ventrolaterally, and TP (mirror), which adjoins MT and DLa/MTc dorsoanteriorly. There was additional retinotopic and architectonic evidence for five more subdivisions of dorsal and lateral extrastriate cortex-TA (nonmirror), MSTd (mirror), MSTv (nonmirror), FSTv (nonmirror), and PP (mirror). Our data appear quite similar to data from marmosets, though our field sign-based areal subdivisions are slightly different. The region immediately anterior to the superiorly located central lower visual field V2 varied substantially between individuals, but always contained upper fields immediately touching lower visual field V2. This region appears to vary even more between species. Though we provide a summary diagram, given within- and between-species variation, it should be regarded as a guide to parsing complex retinotopy rather than a literal representation of any individual, or as the only way to agglomerate the complex mosaic of partial upper and lower field, mirror- and nonmirror-image patches into areas.
Collapse
Affiliation(s)
- MARTIN I. SERENO
- Division of Biology 216-76, California Institute of Technology, Pasadena, California 92115
- Cognitive Science, University of California, San Diego, La Jolla, California 92093-0515
- Experimental Psychology, University College London, London WC1H 0AP, UK
- Department of Psychological Sciences, Birkbeck College University of London, London WC1E 7HX, UK
| | - COLIN T. MCDONALD
- Division of Biology 216-76, California Institute of Technology, Pasadena, California 92115
| | - JOHN M. ALLMAN
- Division of Biology 216-76, California Institute of Technology, Pasadena, California 92115
| |
Collapse
|
18
|
ARCARO M, KASTNER S. Topographic organization of areas V3 and V4 and its relation to supra-areal organization of the primate visual system. Vis Neurosci 2015; 32:E014. [PMID: 26241035 PMCID: PMC4900470 DOI: 10.1017/s0952523815000115] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Areas V3 and V4 are commonly thought of as individual entities in the primate visual system, based on definition criteria such as their representation of visual space, connectivity, functional response properties, and relative anatomical location in cortex. Yet, large-scale functional and anatomical organization patterns not only emphasize distinctions within each area, but also links across visual cortex. Specifically, the visuotopic organization of V3 and V4 appears to be part of a larger, supra-areal organization, clustering these areas with early visual areas V1 and V2. In addition, connectivity patterns across visual cortex appear to vary within these areas as a function of their supra-areal eccentricity organization. This complicates the traditional view of these regions as individual functional "areas." Here, we will review the criteria for defining areas V3 and V4 and will discuss functional and anatomical studies in humans and monkeys that emphasize the integration of individual visual areas into broad, supra-areal clusters that work in concert for a common computational goal. Specifically, we propose that the visuotopic organization of V3 and V4, which provides the criteria for differentiating these areas, also unifies these areas into the supra-areal organization of early visual cortex. We propose that V3 and V4 play a critical role in this supra-areal organization by filtering information about the visual environment along parallel pathways across higher-order cortex.
Collapse
Affiliation(s)
- M.J. ARCARO
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
- Department of Psychology, Princeton University, Princeton, New Jersey 08544
| | - S. KASTNER
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
- Department of Psychology, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
19
|
Abstract
Behavioral responses to visual stimuli exhibit visual field asymmetries, but cortical folding and the close proximity of visual cortical areas make electrophysiological comparisons between different stimulus locations problematic. Retinotopy-constrained source estimation (RCSE) uses distributed dipole models simultaneously constrained by multiple stimulus locations to provide separation between individual visual areas that is not possible with conventional source estimation methods. Magnetoencephalography and RCSE were used to estimate time courses of activity in V1, V2, V3, and V3A. Responses to left and right hemifield stimuli were not significantly different. Peak latencies for peripheral stimuli were significantly shorter than those for perifoveal stimuli in V1, V2, and V3A, likely related to the greater proportion of magnocellular input to V1 in the periphery. Consistent with previous results, sensor magnitudes for lower field stimuli were about twice as large as for upper field, which is only partially explained by the proximity to sensors for lower field cortical sources in V1, V2, and V3. V3A exhibited both latency and amplitude differences for upper and lower field responses. There were no differences for V3, consistent with previous suggestions that dorsal and ventral V3 are two halves of a single visual area, rather than distinct areas V3 and VP.
Collapse
Affiliation(s)
- Donald J Hagler
- Department of Radiology, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Jeffs J, Federer F, Ichida JM, Angelucci A. High-resolution mapping of anatomical connections in marmoset extrastriate cortex reveals a complete representation of the visual field bordering dorsal V2. Cereb Cortex 2013; 23:1126-47. [PMID: 22523183 PMCID: PMC3615347 DOI: 10.1093/cercor/bhs088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The primate visual cortex consists of many areas. The posterior areas (V1, V2, V3, and middle temporal) are thought to be common to all primate species. However, the organization of cortex immediately anterior to area V2 (the "third tier" cortex) remains controversial, particularly in New World primates. The main point of contention has been whether the third tier cortex consists of a single area V3, representing lower and upper visual quadrants in dorsal and ventral cortex, respectively, or of 2 distinct areas (the dorsomedial [DM] area and a V3-like area). Resolving this controversy is crucial to understand the function and evolution of the third tier cortex. We have addressed this issue in marmosets, by performing high-precision mapping of corticocortical connections in cortex bordering dorsal V2. Multiple closely spaced neuroanatomical tracer injections were placed across the full width of dorsal V2 or adjacent anterior cortex, and the location of resulting labeled cells mapped throughout whole flattened visual cortex. The resulting topographic patterns of labeled connections allowed us to define areas and their boundaries. We found that a complete representation of the visual field borders dorsal V2 and that the third tier cortex consists of 2 distinct areas. These results unequivocally support the DM model.
Collapse
Affiliation(s)
- Janelle Jeffs
- Department of Ophthalmology, Moran Eye Center
- Department of Bioengineering
| | - Frederick Federer
- Department of Ophthalmology, Moran Eye Center
- Neuroscience Program, University of Utah, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
21
|
Baldwin MKL, Wei H, Reed JL, Bickford ME, Petry HM, Kaas JH. Cortical projections to the superior colliculus in tree shrews (Tupaia belangeri). J Comp Neurol 2013; 521:1614-32. [PMID: 23124770 PMCID: PMC3604183 DOI: 10.1002/cne.23249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/10/2012] [Accepted: 10/25/2012] [Indexed: 11/10/2022]
Abstract
The visuomotor functions of the superior colliculus depend not only on direct inputs from the retina, but also on inputs from neocortex. As mammals vary in the areal organization of neocortex, and in the organization of the number of visual and visuomotor areas, patterns of corticotectal projections vary. Primates in particular have a large number of visual areas projecting to the superior colliculus. As tree shrews are close relatives of primates, and they are also highly visual, we studied the distribution of cortical neurons projecting to the superior colliculus by injecting anatomical tracers into the colliculus. Since projections from visuotopically organized visual areas are expected to match the visuotopy of the superior colliculus, injections at different retinotopic locations in the superior colliculus provide information about the locations and organization of topographic areas in extrastriate cortex. Small injections in the superior colliculus labeled neurons in locations within areas 17 (V1) and 18 (V2) that are consistent with the known topography of these areas and the superior colliculus. In addition, the separate locations of clusters of labeled cells in temporal visual cortex provide evidence for five or more topographically organized areas. Injections that included deeper layers of the superior colliculus also labeled neurons in medial frontal cortex, likely in premotor cortex. Only occasional labeled neurons were observed in somatosensory or auditory cortex. Regardless of tracer injection location, we found that, unlike primates, a substantial projection to the superior colliculus from posterior parietal cortex is not a characteristic of tree shrews.
Collapse
Affiliation(s)
- Mary K L Baldwin
- Department of Psychology, Vanderbilt University, Nashville TN, 37240, USA
| | - Haiyang Wei
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville KY, 40292 USA
| | - Jamie L Reed
- Department of Psychology, Vanderbilt University, Nashville TN, 37240, USA
| | - Martha E Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville KY, 40292 USA
| | - Heywood M Petry
- Department of Psychological and Brain Sciences, University of Louisville, Louisville KY, 40292 USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville TN, 37240, USA
| |
Collapse
|
22
|
Lyon DC. The case for a dorsal V3 in the ‘third-tier’ of primate visual cortex: a reply to ‘the case for a dorsomedial area in the primate ‘third-tier’ visual cortex’. Proc Biol Sci 2013. [DOI: 10.1098/rspb.2012.1994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- David C. Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92617, USA
| |
Collapse
|
23
|
Fan RH, Baldwin MK, Jermakowicz WJ, Casagrande VA, Kaas JH, Roe AW. Intrinsic signal optical imaging evidence for dorsal V3 in the prosimian galago (Otolemur garnettii). J Comp Neurol 2012; 520:4254-74. [PMID: 22628051 PMCID: PMC3593310 DOI: 10.1002/cne.23154] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Currently, we lack consensus regarding the organization along the anterior border of dorsomedial V2 in primates. Previous studies suggest that this region could be either the dorsomedial area, characterized by both an upper and a lower visual field representation, or the dorsal aspect of area V3, which only contains a lower visual field representation. We examined these proposals by using optical imaging of intrinsic signals to investigate this region in the prosimian galago (Otolemur garnettii). Galagos represent the prosimian radiation of surviving primates; cortical areas that bear strong resemblances across members of primates provide a strong argument for their early origin and conserved existence. Based on our mapping of horizontal and vertical meridian representations, visuotopy, and orientation preference, we find a clear lower field representation anterior to dorsal V2 but no evidence of any upper field representation. We also show statistical differences in orientation preference patches between V2 and V3. We additionally supplement our imaging results with electrode array data that reveal differences in the average spatial frequency preference, average temporal frequency preference, and sizes of the receptive fields between V1, V2, and V3. The lack of upper visual field representation along with the differences between the neighboring visual areas clearly distinguish the region anterior to dorsal V2 from earlier visual areas and argue against a DM that lies along the dorsomedial border of V2. We submit that the region of the cortex in question is the dorsal aspect of V3, thus strengthening the possibility that V3 is conserved among primates.
Collapse
Affiliation(s)
- Reuben H. Fan
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37240
| | - Mary K.L. Baldwin
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240
| | | | - Vivien A. Casagrande
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37240
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37240
| | - Anna W. Roe
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37240
| |
Collapse
|
24
|
Rosa MGP, Angelucci A, Jeffs J, Pettigrew JD. The case for a dorsomedial area in the primate 'third-tier' visual cortex. Proc Biol Sci 2012; 280:20121372; discussion 20121994. [PMID: 23135671 DOI: 10.1098/rspb.2012.1372] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Marcello G P Rosa
- Department of Physiology and Monash Vision Group, Monash University, Melbourne, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
25
|
Connolly JD, Hashemi-Nezhad M, Lyon DC. Parallel feedback pathways in visual cortex of cats revealed through a modified rabies virus. J Comp Neurol 2012; 520:988-1004. [PMID: 21826663 DOI: 10.1002/cne.22748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The visual cortex of cats is highly evolved. Analogously to the brains of primates, large numbers of visual areas are arranged hierarchically and can be parsed into separate dorsal and ventral streams for object recognition and visuospatial representation. Within early primate visual areas, V1 and V2, and to a lesser extent V3, the two streams are relatively segregated and relayed in parallel to higher order cortex, although there is some evidence suggesting an alignment of V2 and V3 to one stream over the other. For cats, there is no evidence of anatomical segregation in areas 18 and 19, the analogs to V2 and V3. However, previous work was only qualitative in nature. Here we re-examined the feedback connectivity patterns of areas 18/19 in quantitative detail. To accomplish this, we used a genetically modified rabies virus that acts as a retrograde tracer and fills neurons with fluorescent protein. After injections into area 19, many more neurons were labeled in putative ventral stream area 21a than in putative dorsal stream region posterolateral suprasylvian complex of areas (PLS), and the dendrites of neurons in 21a were significantly more complex. Conversely, area 18 injections labeled more neurons in PLS, and these were more complex than neurons in 21a. We infer from our results that area 19 in cat is more aligned to the ventral stream and area 18 to the dorsal stream. Based on the success of our approach, we suggest that this method could be applied to resolve similar issues related to primate V3.
Collapse
Affiliation(s)
- Jason D Connolly
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California 92697, USA
| | | | | |
Collapse
|
26
|
Lyon DC, Rabideau C. Lack of robust LGN label following transneuronal rabies virus injections into macaque area V4. J Comp Neurol 2012; 520:2500-11. [DOI: 10.1002/cne.23050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Abstract
We can learn about the evolution of neocortex in primates through comparative studies of cortical organization in primates and those mammals that are the closest living relatives of primates, in conjunction with brain features revealed by the skull endocasts of fossil archaic primates. Such studies suggest that early primates had acquired a number of features of neocortex that now distinguish modern primates. Most notably, early primates had an array of new visual areas, and those visual areas widely shared with other mammals had been modified. Posterior parietal cortex was greatly expanded with sensorimotor modules for reaching, grasping, and personal defense. Motor cortex had become more specialized for hand use, and the functions of primary motor cortex were enhanced by the addition and development of premotor and cingulate motor areas. Cortical architecture became more varied, and cortical neuron populations became denser overall than in nonprimate ancestors. Primary visual cortex had the densest population of neurons, and this became more pronounced in the anthropoid radiation. Within the primate clade, considerable variability in cortical size, numbers of areas, and architecture evolved.
Collapse
Affiliation(s)
- Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
28
|
Abstract
The visual system in primates is represented by a remarkably large expanse of the cerebral cortex. While more precise investigative studies that can be performed in non-human primates contribute towards understanding the organization of the human brain, there are several issues of visual cortex organization in monkey species that remain unresolved. In all, more than 20 areas comprise the primate visual cortex, yet there is little agreement as to the exact number, size and visual field representation of all but three. A case in point is the third visual area, V3. It is found relatively early in the visual system hierarchy, yet over the last 40 years its organization and even its very existence have been a matter of debate among prominent neuroscientists. In this review, we discuss a large body of recent work that provides straightforward evidence for the existence of V3. In light of this, we then re-examine results from several seminal reports and provide parsimonious re-interpretations in favour of V3. We conclude with analysis of human and monkey functional magnetic resonance imaging literature to make the case that a complete V3 is an organizational feature of all primate species and may play a greater role in the dorsal stream of visual processing.
Collapse
Affiliation(s)
- David C Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California, 364 Med Surge II, Irvine, CA 92697-1275, USA.
| | | |
Collapse
|
29
|
Krubitzer L, Campi KL, Cooke DF. All rodents are not the same: a modern synthesis of cortical organization. BRAIN, BEHAVIOR AND EVOLUTION 2011; 78:51-93. [PMID: 21701141 PMCID: PMC3182045 DOI: 10.1159/000327320] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rodents are a major order of mammals that is highly diverse in distribution and lifestyle. Five suborders, 34 families, and 2,277 species within this order occupy a number of different niches and vary along several lifestyle dimensions such as diel pattern (diurnal vs. nocturnal), terrain niche, and diet. For example, the terrain niche of rodents includes arboreal, aerial, terrestrial, semi-aquatic, burrowing, and rock dwelling. Not surprisingly, the behaviors associated with particular lifestyles are also highly variable and thus the neocortex, which generates these behaviors, has undergone corresponding alterations across species. Studies of cortical organization in species that vary along several dimensions such as terrain niche, diel pattern, and rearing conditions demonstrate that the size and number of cortical fields can be highly variable within this order. The internal organization of a cortical field also reflects lifestyle differences between species and exaggerates behaviorally relevant effectors such as vibrissae, teeth, or lips. Finally, at a cellular level, neuronal number and density varies for the same cortical field in different species and is even different for the same species reared in different conditions (laboratory vs. wild-caught). These very large differences across and within rodent species indicate that there is no generic rodent model. Rather, there are rodent models suited for specific questions regarding the development, function, and evolution of the neocortex.
Collapse
Affiliation(s)
- Leah Krubitzer
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA.
| | | | | |
Collapse
|
30
|
Borra E, Rockland KS. Projections to early visual areas v1 and v2 in the calcarine fissure from parietal association areas in the macaque. Front Neuroanat 2011; 5:35. [PMID: 21734867 PMCID: PMC3123769 DOI: 10.3389/fnana.2011.00035] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/06/2011] [Indexed: 01/24/2023] Open
Abstract
Non-extrastriate projections to area V1 in monkeys, now demonstrated by several anatomical studies, are potential substrates of physiologically documented multisensory effects in primary sensory areas. The full network of projections among association and primary areas, however, is likely to be complex and is still only partially understood. In the present report, we used the anterograde tracer biotinylated dextran amine to investigate projections to areas V1 and V2 from subdivisions of the parietal association cortex in macaque. Parietal cortex was chosen to allow comparisons between projections from this higher association area and from other previously reported areas. In addition, we were interested in further elucidating pathways to areas V1 and V2 from parietal areas, as potentially contributing to attention and active vision. Of eight cases, three brains had projections only to area V2, and the five others projected to both areas V1 and V2. Terminations in area V1 were sparse. These were located in supragranular layers I, II, upper III; occasionally in IVB; and in layer VI. Terminations in V2 were denser, and slightly more prevalent in the supragranular layers. For both areas, terminations were in the calcarine region, corresponding to the representation of the peripheral visual field. By reconstructions of single axons, we demonstrated that four of nine axons had collaterals, either to V1 and V2 (n = 1) or to area V1 and a ventral area likely to be TEO (n = 3). In area V1, axons extended divergently in layer VI as well as layer I. Overall, these and previous results suggest a nested connectivity architecture, consisting of multiple direct and indirect recurrent projections from association areas to area V1. Terminations in area V1 are not abundant, but could be potentiated by the network of indirect connections.
Collapse
Affiliation(s)
- Elena Borra
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università di Parma, Istituto Italiano di Tecnologia, (IIT; Unità di Parma) Parma, Italy
| | | |
Collapse
|
31
|
Hashemi-Nezhad M, Lyon DC. Orientation tuning of the suppressive extraclassical surround depends on intrinsic organization of V1. ACTA ACUST UNITED AC 2011; 22:308-26. [PMID: 21666124 DOI: 10.1093/cercor/bhr105] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The intrinsic functional architecture of early cortical areas in highly visual mammals is characterized by the presence of domains and pinwheels, with orientation preference of the inputs to these regions being more and less selective, respectively. We exploited this organizational feature to investigate mechanisms supporting extraclassical surround suppression, a process thought to be critical for figure ground segregation and form vision. Combining intrinsic signal optical imaging and single-unit recording in V1 of anesthetized cats, we show for the first time that the orientation tuning of the suppressive surround is sharper for domain than for pinwheel neurons. This difference depends on high center gain and is more pronounced in superficial cortex. In addition, when we remove the near component of the surround stimulus, the strength of suppression induced by the iso-oriented surround is significantly reduced for domain neurons but is unchanged for orthogonal oriented surrounds. This leads to broader orientation tuning of suppression that renders domain cells indistinguishable from pinwheel cells. Because the limited receptive field of the near surround can be accounted for by the lateral spread of long-range connections in V1, our findings suggest that intrinsic V1 circuits play a key role in the orientation tuning of extraclassical surround suppression.
Collapse
Affiliation(s)
- Maziar Hashemi-Nezhad
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
32
|
Wong P, Kaas JH. Architectonic subdivisions of neocortex in the Galago (Otolemur garnetti). Anat Rec (Hoboken) 2010; 293:1033-69. [PMID: 20201060 DOI: 10.1002/ar.21109] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present study, galago brains were sectioned in the coronal, sagittal, or horizontal planes, and sections were processed with several different histochemical and immunohistochemical procedures to reveal the architectonic characteristics of the various cortical areas. The histochemical methods used included the traditional Nissl, cytochrome oxidase, and myelin stains, as well as a zinc stain, which reveals free ionic zinc in the axon terminals of neurons. Immunohistochemical methods include parvalbumin (PV) and calbindin (CB), both calcium-binding proteins, and the vesicle glutamate transporter 2 (VGluT2). These different procedures revealed similar boundaries between areas, which suggests that functionally relevant borders were being detected. These results allowed a more precise demarcation of previously identified areas. As thalamocortical terminations lack free ionic zinc, primary cortical areas were most clearly revealed by the zinc stain, because of the poor zinc staining of layer 4. Area 17 was especially prominent, as the broad layer 4 was nearly free of zinc stain. However, this feature was less pronounced in the primary auditory and somatosensory cortex. As VGluT2 is expressed in thalamocortical terminations, layer 4 of primary sensory areas was darkly stained for VGluT2. Primary motor cortex had reduced VGluT2 staining, and increased zinc-enriched terminations in the poorly developed granular layer 4 compared to the adjacent primary somatosensory area. The middle temporal visual (MT) showed increased PV and VGluT2 staining compared to the surrounding cortical areas. The resulting architectonic maps of cortical areas in galagos can usefully guide future studies of cortical organizations and functions.
Collapse
Affiliation(s)
- Peiyan Wong
- Department of Psychology, Vanderbilt University, Nashville, Tennesse, USA
| | | |
Collapse
|
33
|
The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J Neurosci 2010; 30:9801-20. [PMID: 20660263 DOI: 10.1523/jneurosci.2069-10.2010] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although there is general agreement that the human middle temporal (MT)/V5+ complex corresponds to monkey area MT/V5 proper plus a number of neighboring motion-sensitive areas, the identification of human MT/V5 within the complex has proven difficult. Here, we have used functional magnetic resonance imaging and the retinotopic mapping technique, which has very recently disclosed the organization of the visual field maps within the monkey MT/V5 cluster. We observed a retinotopic organization in humans very similar to that documented in monkeys: an MT/V5 cluster that includes areas MT/V5, pMSTv (putative ventral part of the medial superior temporal area), pFST (putative fundus of the superior temporal area), and pV4t (putative V4 transitional zone), and neighbors a more ventral putative human posterior inferior temporal area (phPIT) cluster. The four areas in the MT/V5 cluster and the two areas in the phPIT cluster each represent the complete contralateral hemifield. The complete MT/V5 cluster comprises 70% of the motion localizer activation. Human MT/V5 is located in the region bound by lateral, anterior, and inferior occipital sulci and occupies only one-fifth of the motion complex. It shares the basic functional properties of its monkey homolog: receptive field size relative to other areas, response to moving and static stimuli, as well as sensitivity to three-dimensional structure from motion. Functional properties sharply distinguish the MT/V5 cluster from its immediate neighbors in the phPIT cluster and the LO (lateral occipital) regions. Together with similarities in retinotopic organization and topological neighborhood, the functional properties suggest that MT/V5 in human and macaque cortex are homologous.
Collapse
|
34
|
|
35
|
Wong P, Collins CE, Baldwin MKL, Kaas JH. Cortical connections of the visual pulvinar complex in prosimian galagos (Otolemur garnetti). J Comp Neurol 2009; 517:493-511. [PMID: 19795374 DOI: 10.1002/cne.22162] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The pulvinar complex of prosimian primates is not as architectonically differentiated as that of anthropoid primates. Thus, the functional subdivisions of the complex have been more difficult to determine. In the present study, we related patterns of connections of cortical visual areas (primary visual area, V1; secondary visual area, V2; and middle temporal visual area, MT) as well as the superior colliculus of the visual midbrain, with subdivisions of the pulvinar complex of prosimian galagos (Otolemur garnetti) that were revealed in brain sections processed for cell bodies (Nissl), cytochrome oxidase, or myelin. As in other primates, the architectonic methods allowed us to distinguish the lateral pulvinar (PL) and inferior pulvinar (PI) as major divisions of the visual pulvinar. The connection patterns further allowed us to divide PI into a large central nucleus (PIc), a medial nucleus (PIm), and a posterior nucleus (PIp). Both PL and PIc have separate topographic patterns of connections with V1 and V2. A third, posterior division of PI, PIp, does not appear to project to V1 and V2 and is further distinguished by receiving inputs from the superior colliculus. All these subdivisions of PI project to MT. The evidence suggests that PL of galagos contains a single, large nucleus, as in monkeys, and that PI may have only three subdivisions, rather than the four subdivisions of monkeys. In addition, the cortical projections of PI nuclei are more widespread than those in monkeys. Thus, the pulvinar nuclei in prosimian primates and anthropoid primates have evolved along somewhat different paths.
Collapse
Affiliation(s)
- Peiyan Wong
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37212, USA
| | | | | | | |
Collapse
|
36
|
Kaskan PM, Lu HD, Dillenburger BC, Kaas JH, Roe AW. The organization of orientation-selective, luminance-change and binocular- preference domains in the second (V2) and third (V3) visual areas of New World owl monkeys as revealed by intrinsic signal optical imaging. ACTA ACUST UNITED AC 2008; 19:1394-407. [PMID: 18842661 DOI: 10.1093/cercor/bhn178] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Optical imaging was used to map patterns of visually evoked activation in the second (V2) and third (V3) visual areas of owl monkeys. Modular patterns of activation were produced in response to stimulation with oriented gratings, binocular versus monocular stimulation, and stimuli containing wide-field luminance changes. In V2, luminance-change domains tended to lie between domains selective for orientation. Regions preferentially activated by binocular stimulation co-registered with orientation-selective domains. Co-alignment of images with cytochrome oxidase (CO)-processed sections revealed functional correlates of 2 types of CO-dense regions in V2. Orientation-responsive domains and binocular domains were correlated with the locations of CO-thick stripes, and luminance-change domains were correlated with the locations of CO-thin stripes. In V3, orientation preference, luminance-change, and binocular preference domains were observed, but were more irregularly arranged than those in V2. Our data suggest that in owl monkey V2, consistent with that in macaque monkeys, modules for processing contours and binocularity exist in one type of compartment and that modules related to processing-surface features exist within a separate type of compartment.
Collapse
Affiliation(s)
- Peter M Kaskan
- Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA.
| | | | | | | | | |
Collapse
|
37
|
Kaskan PM, Kaas JH. Cortical connections of the middle temporal and the middle temporal crescent visual areas in prosimian galagos (Otolemur garnetti). Anat Rec (Hoboken) 2007; 290:349-66. [PMID: 17525950 DOI: 10.1002/ar.20440] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
While considerable progress has been made in understanding the organization of visual cortex in monkeys, less is known about the visual systems of prosimians. The middle temporal visual area (MT), an area involved in motion perception, is common to all primates. We placed injections of tracers in MT and just caudal to MT in cortex expected to be the MT crescent (MTc), an area previously identified in monkeys but not in prosimians. We analyzed the patterns of projections in sections of the flattened cortex and used sections stained for cytochrome oxidase (CO) and myelin to identify the borders of MT, MTc, middle superior temporal (MST), superior temporal sulcus (FST), and V1 and V2 and to identify possible subdivisions of these areas. As in owl monkeys, MTc is a belt around most of MT that consists of a single row of CO-dense patches in a CO-light surround. Injections placed in MT revealed connections with V1, V2, V3, FST, MST, MTc, dorsomedial, dorsolateral (DL), posterior parietal cortex, and inferotemporal (IT) cortex. Injections localized to MTc displayed a slightly different pattern of connections with more involvement of DL and IT cortex, though other aspects, including patchy connections with V1 and V2, were similar to MT connections. The results indicate that prosimian galagos have an MT area with connection patterns that are similar to those in New and Old World monkeys. The MTc, initially described in owl monkeys, is present in galagos and is likely to be a common component of primate visual cortex.
Collapse
Affiliation(s)
- Peter M Kaskan
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203, USA.
| | | |
Collapse
|
38
|
Kaas JH, Lyon DC. Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. ACTA ACUST UNITED AC 2007; 55:285-96. [PMID: 17433837 PMCID: PMC2100380 DOI: 10.1016/j.brainresrev.2007.02.008] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/18/2007] [Accepted: 02/21/2007] [Indexed: 11/26/2022]
Abstract
The visual pulvinar is part of the dorsal thalamus, and in primates it is especially well developed. Recently, our understanding of how the visual pulvinar is subdivided into nuclei has greatly improved as a number of histological procedures have revealed marked architectonic differences within the pulvinar complex. At the same time, there have been unparalleled advances in understanding of how visual cortex of primates is subdivided into areas and how these areas interconnect. In addition, considerable evidence supports the view that the hierarchy of interconnected visual areas is divided into two major processing streams, a ventral stream for object vision and a dorsal stream for visually guided actions. In this review, we present evidence that a subset of medial nuclei in the inferior pulvinar function predominantly as a subcortical component of the dorsal stream while the most lateral nucleus of the inferior pulvinar and the adjoining ventrolateral nucleus of the lateral pulvinar are more devoted to the ventral stream of cortical processing. These nuclei provide cortico-pulvinar-cortical interactions that spread information across areas within streams, as well as information relayed from the superior colliculus via inferior pulvinar nuclei to largely dorsal stream areas.
Collapse
Affiliation(s)
- Jon H Kaas
- Department of Psychology, 301 Wilson Hall, Vanderbilt University, 111 21st Avenue S., Nashville, TN 37203, USA.
| | | |
Collapse
|
39
|
Palmer SM, Rosa MGP. A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J Neurosci 2006; 24:2389-405. [PMID: 17042793 DOI: 10.1111/j.1460-9568.2006.05113.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We defined cortical areas involved in the analysis of motion in the far peripheral visual field, a poorly understood aspect of visual processing in primates. This was accomplished by small tracer injections within and around the representations of the monocular field of vision ('temporal crescents') in the middle temporal area (MT) of marmoset monkeys. Quantitative analyses demonstrate that the representation of the far periphery receives specific connections from the retrosplenial cortex (areas 23v and prostriata), as well as comparatively stronger inputs from the primary visual area (V1) and from areas surrounding MT (in particular, the medial superior temporal area, MST). In contrast, the far peripheral representation receives little or no input from most other extrastriate areas, including the second visual area (V2), the densely myelinated areas of the dorsomedial cortex, and ventral stream areas; these areas are shown to have robust projections to other parts of MT. Our results demonstrate that the responses of cells in different parts of a same visual area can be determined by different combinations of synaptic inputs, in terms of areas of origin. They also suggest that the interconnections responsible for motion processing in the far periphery of the visual field convey information that is crucial for rapid-response aspects of visual function such as orienting, postural and defensive reactions.
Collapse
Affiliation(s)
- S M Palmer
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | | |
Collapse
|
40
|
Weller RE, LeDoux MS, Toll LM, Gould MK, Hicks RA, Cox JE. Subdivisions of inferior temporal cortex in squirrel monkeys make dissociable contributions to visual learning and memory. Behav Neurosci 2006; 120:423-46. [PMID: 16719706 DOI: 10.1037/0735-7044.120.2.423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inferior temporal cortex of squirrel monkeys consists of caudal (ITC), intermediate (ITI), and rostral (ITR) subdivisions, possibly homologous to TEO, posterior TE, and anterior TE of macaque monkeys. The present study compared visual learning in squirrel monkeys with ablations of ITC; ITI and ITR (group ITRd); or ITI, ITR, and more ventral cortex, including perirhinal cortex (group ITR+), with visual learning in unoperated controls. The ITC monkeys had significant impairments on pattern discriminations and milder deficits on delayed non-matching to sample (DNMS) of objects. The ITRd monkeys had deficits on some pattern discriminations but not on DNMS. The ITRd monkeys were significantly impaired on DNMS and some pattern discriminations. These results are similar to those found in macaques and support the proposed homologies.
Collapse
Affiliation(s)
- Rosalyn E Weller
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Collins CE, Lyon DC, Kaas JH. Distribution across cortical areas of neurons projecting to the superior colliculus in new world monkeys. ACTA ACUST UNITED AC 2005; 285:619-27. [PMID: 15912524 DOI: 10.1002/ar.a.20207] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Surprisingly little is known about the proportions of projections of different areas and regions of neocortex to the superior colliculus in primates. To obtain an overview of such projection patterns, we placed a total of 10 injections of retrograde tracers in the superior colliculus of three New World monkeys (Callithrix, Callicebus, and Aotus). Because cortex was flattened and cut parallel to the surface, labeled corticotectal neurons could be accurately located relative to architectonic boundaries and surface features. While there was variability across cases and injection sites, the summed results clearly support several conclusions. One, three well-defined visual areas, V1 (18%), V2 (14%), and MT (11%), contributed nearly half of the total of labeled cells. Two, several other visual areas (V3, DL, DM, and FST) that are early in the processing hierarchy provided another fifth of the total. Three, inferior temporal visual areas of the ventral stream provided only minor projections. Four, visuomotor fields (FEF, FV, cortex in the region of SEF, and posterior parietal cortex) contained less than 10% of the labeled neurons. Five, few labeled neurons were in auditory or somatosensory areas. The results indicate that cortical inputs to the superior colliculus originate predominantly from early visual areas rather than from multimodal or visuomotor areas.
Collapse
Affiliation(s)
- Christine E Collins
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37203, USA.
| | | | | |
Collapse
|
42
|
Kaas JH. The future of mapping sensory cortex in primates: three of many remaining issues. Philos Trans R Soc Lond B Biol Sci 2005; 360:653-64. [PMID: 15937006 PMCID: PMC1569483 DOI: 10.1098/rstb.2005.1624] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
After 100 years of progress in understanding the organization of cerebral cortex, three issues have persisted over the last 35 years, which are revisited in this paper. First, is V3 an established or questionable area of visual cortex? Second, does taste cortex include part of area 3b (S1 proper) and other somatosensory areas? Third, is primary auditory cortex, A1, of primates the homologue of A1 in cats? The existence of such questions about even the early stages of cortical processing reflects the difficulties in mapping cerebral cortex, and reminds us that the era of basic discovery is far from over.
Collapse
Affiliation(s)
- Jon H Kaas
- Department of Psychology, Vanderbilt University, 301 Wilson Hall, 111 21st Avenue South, Nashville, TN 37203, USA.
| |
Collapse
|
43
|
Changizi MA, Shimojo S. Parcellation and area-area connectivity as a function of neocortex size. BRAIN, BEHAVIOR AND EVOLUTION 2005; 66:88-98. [PMID: 15920318 DOI: 10.1159/000085942] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 02/11/2005] [Indexed: 11/19/2022]
Abstract
Via the accumulation of data from across the neuroanatomy literature, we estimate the manner in which (i) the number of neocortical areas varies with neocortex size, and (ii) the number of area-area connections varies with neocortex size. Concerning parcellation, we find that the number of areas scales approximately as the 1/3 power of gray matter volume, or, equivalently, as the square root of the total number of neocortical neurons. A consequence of this is that the average number of neurons per area also scales approximately as the square root of the total number of areas. Concerning area-area connectivity, we find evidence that the total number of area-area connections scales as the square of the number of areas. These scaling results help constrain theories about the principles underlying neocortical organization.
Collapse
Affiliation(s)
- Mark A Changizi
- Sloan-Swartz Center for Theoretical Neurobiology, Caltech, CA 91125, USA.
| | | |
Collapse
|
44
|
Rosa MGP, Tweedale R. Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philos Trans R Soc Lond B Biol Sci 2005; 360:665-91. [PMID: 15937007 PMCID: PMC1874231 DOI: 10.1098/rstb.2005.1626] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this paper, we review evidence from comparative studies of primate cortical organization, highlighting recent findings and hypotheses that may help us to understand the rules governing evolutionary changes of the cortical map and the process of formation of areas during development. We argue that clear unequivocal views of cortical areas and their homologies are more likely to emerge for "core" fields, including the primary sensory areas, which are specified early in development by precise molecular identification steps. In primates, the middle temporal area is probably one of these primordial cortical fields. Areas that form at progressively later stages of development correspond to progressively more recent evolutionary events, their development being less firmly anchored in molecular specification. The certainty with which areal boundaries can be delimited, and likely homologies can be assigned, becomes increasingly blurred in parallel with this evolutionary/developmental sequence. For example, while current concepts for the definition of cortical areas have been vindicated in allowing a clarification of the organization of the New World monkey "third tier" visual cortex (the third and dorsomedial areas, V3 and DM), our analyses suggest that more flexible mapping criteria may be needed to unravel the organization of higher-order visual association and polysensory areas.
Collapse
Affiliation(s)
- Marcello G P Rosa
- Department of Physiology, Monash University Centre for Brain and Behaviour, Monash University, Clayton, VIC 3800, Australia.
| | | |
Collapse
|
45
|
Lui LL, Bourne JA, Rosa MGP. Functional response properties of neurons in the dorsomedial visual area of New World monkeys (Callithrix jacchus). ACTA ACUST UNITED AC 2005; 16:162-77. [PMID: 15858163 DOI: 10.1093/cercor/bhi094] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The dorsomedial visual area (DM), a subdivision of extrastriate cortex located near the dorsal midline, is characterized by heavy myelination and a relative emphasis on peripheral vision. To date, DM remains the least understood of the three primary targets of projections from the striate cortex (V1) in New World monkeys. Here, we characterize the responses of DM neurons in anaesthetized marmosets to drifting sine wave gratings. Most (82.4%) cells showed bidirectional sensitivity, with only 6.9% being strongly direction selective. The distribution of orientation sensitivity was bimodal, with a distinct population (corresponding to over half of the sample) formed by neurons with very narrow selectivity. When compared with a sample of V1 units representing a comparable range of eccentricities, DM cells revealed a preference for much lower spatial frequencies, and higher speeds. End inhibition was extremely rare, and the responses of many cells summated over distances as large as 30 degrees. Our results suggest clear differences between DM and the two other main targets of V1 projections, the second (V2) and middle temporal (MT) areas, with cells in DM emphasizing aspects of visual information that are likely to be relevant for motor control.
Collapse
Affiliation(s)
- Leo L Lui
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| | | | | |
Collapse
|
46
|
Rosa MGP, Palmer SM, Gamberini M, Tweedale R, Piñon MC, Bourne JA. Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (Callithrix jacchus). J Comp Neurol 2005; 483:164-91. [PMID: 15678474 DOI: 10.1002/cne.20412] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We tested current hypotheses on the functional organization of the third visual complex, a particularly controversial region of the primate extrastriate cortex. In anatomical experiments, injections of retrograde tracers were placed in the dorsal cortex immediately rostral to the second visual area (V2) of New World monkeys (Callithrix jacchus), revealing the topography of interconnections between the "third tier" cortex and the primary visual area (V1). The data indicate the presence of a dorsomedial area (DM), which represents the entire upper and lower quadrants of the visual field, and which receives strong, topographically organized projections from the superficial layers of V1. The visuotopic organization and boundaries of DM were confirmed by electrophysiological recordings in the same animals and by architectural characteristics which were distinct from those found in ventral extrastriate cortex rostral to V2. There was no electrophysiological or histological evidence for a transitional area between V2 and DM. In particular, the central representation of the upper quadrant in DM was directly adjacent to the representation of the horizontal meridian that marks the rostral border of V2. The present results argue in favor of the hypothesis that the third visual complex in New World monkeys contains different areas in its dorsal and ventral components: area DM, near the dorsal midline, and a homolog of area 19 of other mammals, located more lateral and ventrally. The characteristics of DM suggest that it may correspond to visual area 6 (V6) of Old World monkeys.
Collapse
Affiliation(s)
- Marcello G P Rosa
- Department of Physiology and Monash University Centre for Brain and Behaviour, Monash University, Clayton VIC 3800, Australia.
| | | | | | | | | | | |
Collapse
|
47
|
Xu X, Bosking W, Sáry G, Stefansic J, Shima D, Casagrande V. Functional organization of visual cortex in the owl monkey. J Neurosci 2004; 24:6237-47. [PMID: 15254078 PMCID: PMC6729553 DOI: 10.1523/jneurosci.1144-04.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, we compared the organization of orientation preference in visual areas V1, V2, and V3. Within these visual areas, we also quantified the relationship between orientation preference and cytochrome oxidase (CO) staining patterns. V1 maps of orientation preference contained both pinwheels and linear zones. The location of CO blobs did not relate in a systematic way to maps of orientation; although, as in other primates, there were approximately twice as many pinwheels as CO blobs. V2 contained bands of high and low orientation selectivity. The bands of high orientation selectivity were organized into pinwheels and linear zones, but iso-orientation domains were twice as large as those in V1. Quantitative comparisons between bands containing high or low orientation selectivity and CO dark and light bands suggested that at least four functional compartments exist in V2, CO dense bands with either high or low orientation selectivity, and CO light bands with either high or low selectivity. We also demonstrated that two functional compartments exist in V3, with zones of high orientation selectivity corresponding to CO dense areas and zones of low orientation selectivity corresponding to CO pale areas. Together with previous findings, these results suggest that the modular organization of V1 is similar across primates and indeed across most mammals. V2 organization in owl monkeys also appears similar to that of other simians but different from that of prosimians and other mammals. Finally, V3 of owl monkeys shows a compartmental organization for orientation selectivity that remains to be demonstrated in other primates.
Collapse
Affiliation(s)
- Xiangmin Xu
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37232-2175, USA
| | | | | | | | | | | |
Collapse
|
48
|
Nakamura H, Le WR, Wakita M, Mikami A, Itoh K. Projections from the cytochrome oxidase modules of visual area V2 to the ventral posterior area in the macaque. Exp Brain Res 2003; 155:102-10. [PMID: 15064890 DOI: 10.1007/s00221-003-1698-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2002] [Accepted: 08/23/2003] [Indexed: 11/26/2022]
Abstract
The ventral part of the third visual cortical complex, the ventral posterior area (VP) or V3v, is located between the ventral half of visual areas V2 and V4. Because of its location and the physiological properties of its neurons, VP has been considered to be involved in the ventral stream visual areas. The ventral stream visual areas such as V4 and TEO receive projections from the cytochrome oxidase (CO)-rich thin stripes and CO-poor interstripe regions of V2; however, which CO-modules project to VP remains unclear. Moreover, it is not clear whether V1 projects to VP. We injected retrograde tracers into VP and found that VP receives projections from V2 neurons not only in the CO-rich thin stripes and CO-poor interstripe regions but also in the CO-rich thick stripes. We also confirmed the virtual absence of inputs from V1 to VP. These results support the hypothesis that VP constitutes a distinct extrastriate visual area and also suggest that, in addition to color and shape information, VP may also process visual information related to space and disparity.
Collapse
Affiliation(s)
- Hiroyuki Nakamura
- Department of Morphological Neuroscience, Gifu University School of Medicine, 500-8705, Gifu, Japan.
| | | | | | | | | |
Collapse
|
49
|
Lyon DC, Xu X, Casagrande VA, Stefansic JD, Shima D, Kaas JH. Optical imaging reveals retinotopic organization of dorsal V3 in New World owl monkeys. Proc Natl Acad Sci U S A 2002; 99:15735-42. [PMID: 12441399 PMCID: PMC137785 DOI: 10.1073/pnas.242600699] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optical imaging of intrinsic responses to visual stimuli in extrastriate cortex of owl monkeys provided evidence for the dorsal half of the third visual area, V3. Visual stimuli were used to selectively activate locations in dorsolateral V2 and the rostrally adjoining presumptive V3. Consistent with the proposed retinotopies of dorsal V2 and dorsal V3, small bars of drifting gratings along the horizontal meridian of the contralateral hemifield activated cortex along the V2V3 border, whereas such stimuli along the vertical meridian activated cortex along the rostral border of V3. Stimuli in limited locations in the lower visual quadrant revealed mirror reversals of retinotopy in dorsal V2 and V3, whereas stimuli in the upper visual quadrant failed to activate either region. Brain sections processed for cytochrome oxidase from the same cases provided architectonic borders of V2 that matched those indicated by the optical imaging. The results support the concept that a narrow dorsal V3 exists in monkeys. V3d borders dorsal V2 and contains a smaller, mirror-image representation of the lower visual quadrant.
Collapse
Affiliation(s)
- David C Lyon
- Vision Research Center, Department of Psychology, Vanderbilt University, 301 Wilson Hall, Nashville, TN 37203, USA
| | | | | | | | | | | |
Collapse
|