1
|
Pross A, Metwalli AH, Abellán A, Desfilis E, Medina L. Subpopulations of corticotropin-releasing factor containing neurons and internal circuits in the chicken central extended amygdala. J Comp Neurol 2024; 532:e25569. [PMID: 38104270 DOI: 10.1002/cne.25569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/18/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
In mammals, the central extended amygdala is critical for the regulation of the stress response. This regulation is extremely complex, involving multiple subpopulations of GABAergic neurons and complex networks of internal and external connections. Two neuron subpopulations expressing corticotropin-releasing factor (CRF), located in the central amygdala and the lateral bed nucleus of the stria terminalis (BSTL), play a key role in the long-term component of fear learning and in sustained fear responses akin to anxiety. Very little is known about the regulation of stress by the amygdala in nonmammals, hindering efforts for trying to improve animal welfare. In birds, one of the major problems relates to the high evolutionary divergence of the telencephalon, where the amygdala is located. In the present study, we aimed to investigate the presence of CRF neurons of the central extended amygdala in chicken and the local connections within this region. We found two major subpopulations of CRF cells in BSTL and the medial capsular central amygdala of chicken. Based on multiple labeling of CRF mRNA with different developmental transcription factors, all CRF neurons seem to originate within the telencephalon since they express Foxg1, and there are two subtypes with different embryonic origins that express Islet1 or Pax6. In addition, we demonstrated direct projections from Pax6 cells of the capsular central amygdala to BSTL and the oval central amygdala. We also found projections from Islet1 cells of the oval central amygdala to BSTL, which may constitute an indirect pathway for the regulation of BSTL output cells. Part of these projections may be mediated by CRF cells, in agreement with the expression of CRF receptors in both Ceov and BSTL. Our results show a complex organization of the central extended amygdala in chicken and open new venues for studying how different cells and circuits regulate stress in these animals.
Collapse
Affiliation(s)
- Alessandra Pross
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Alek H Metwalli
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| |
Collapse
|
2
|
Mahdavi K, Zendehdel M, Baghbanzadeh A. The effects of neuropeptide W on food consumption and feeding behavior in neonatal meat-type chicks: Role of CRF1/CRF2 and NPY1 receptors. Neurosci Lett 2023; 817:137531. [PMID: 37863422 DOI: 10.1016/j.neulet.2023.137531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
In several studies, the regulatory role of the neuropeptide W (NPW) system in food intake has been demonstrated. Considering the lack of avian studies in this field, the current research was conducted to evaluate the effects of intracerebroventricular (ICV) infusion of NPW and its interferences with corticotropin, melanocortin, and neuropeptide Y (NPY) receptors on meal consumption and feeding behaviors of broilers. In the first experiment, birds were injected with NPW (0.75, 1.5, and 3 nmol) in addition to saline. In the second experiment, saline, CRF1 receptor antagonist (NBI35965, 30 μg), NPW (3 nmol), and simultaneous injections of NBI35965 and NPW were performed. Experiments 3-8 were identical to experiment 2, except that CRF2 receptor antagonist (K41498, 30 μg), MC3/MC4 receptor antagonist (SHU9119, 0.5 nmol), MC4 receptor antagonist (HS024, 0.5 nmol), NPY1 receptor antagonist (BMS193885, 1.25 nmol), NPY2 receptor antagonist (CYM9484, 1.25 nmol), and NPY5 receptor (antagonist L-152,804, 1.25 nmol) were administrated instead of NBI35965. After that, cumulative feed intake and feeding behavior were monitored for 2 h and 30 min after injections, respectively. Following the infusion of NPW (1.5 and 3 nmol), there was a significant stimulation of meal consumption in chickens (P < 0.05). Concomitant injection of NBI35965 and K41498 with NPW enhanced the appetite-increasing effect of NPW (P < 0.05); while BMS193885 suppressed this effect of NPW (P < 0.05). Injection of SHU9119, HS024, CYM9484, and L-152804 with NPW at the same time, had no significant effect on NPW-induced hyperphagia (P > 0.05). NPW also significantly decreased the standing period and the number of jumps, steps, and exploratory pecks, and led to an increase in sitting period and feeding pecks (P < 0.05). Based on the observations, it seems that NPW-induced hyperphagia could be mediated through CRF1, CRF2, and NPY1 receptors in neonatal broilers.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran.
| | - Ali Baghbanzadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| |
Collapse
|
3
|
Metwalli AH, Pross A, Desfilis E, Abellán A, Medina L. Mapping of corticotropin-releasing factor, receptors, and binding protein mRNA in the chicken telencephalon throughout development. J Comp Neurol 2023. [PMID: 37393534 DOI: 10.1002/cne.25517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/11/2023] [Accepted: 06/10/2023] [Indexed: 07/03/2023]
Abstract
Understanding the neural mechanisms that regulate the stress response is critical to know how animals adapt to a changing world and is one of the key factors to be considered for improving animal welfare. Corticotropin-releasing factor (CRF) is crucial for regulating physiological and endocrine responses, triggering the activation of the sympathetic nervous system and the hypothalamo-pituitary-adrenal axis (HPA) during stress. In mammals, several telencephalic areas, such as the amygdala and the hippocampus, regulate the autonomic system and the HPA responses. These centers include subpopulations of CRF containing neurons that, by way of CRF receptors, play modulatory roles in the emotional and cognitive aspects of stress. CRF binding protein also plays a role, buffering extracellular CRF and regulating its availability. CRF role in activation of the HPA is evolutionary conserved in vertebrates, highlighting the relevance of this system to help animals cope with adversity. However, knowledge on CRF systems in the avian telencephalon is very limited, and no information exists on detailed expression of CRF receptors and binding protein. Knowing that the stress response changes with age, with important variations during the first week posthatching, the aim of this study was to analyze mRNA expression of CRF, CRF receptors 1 and 2, and CRF binding protein in chicken telencephalon throughout embryonic and early posthatching development, using in situ hybridization. Our results demonstrate an early expression of CRF and its receptors in pallial areas regulating sensory processing, sensorimotor integration and cognition, and a late expression in subpallial areas regulating the stress response. However, CRF buffering system develops earlier in the subpallium than in the pallium. These results help to understand the mechanisms underlying the negative effects of noise and light during prehatching stages in chicken, and suggest that stress regulation becomes more sophisticated with age.
Collapse
Affiliation(s)
- Alek H Metwalli
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Alessandra Pross
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| |
Collapse
|
4
|
Kadhim HJ, Kuenzel WJ. Interaction between the hypothalamo-pituitary-adrenal and thyroid axes during immobilization stress. Front Physiol 2022; 13:972171. [DOI: 10.3389/fphys.2022.972171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
The location of corticotropin-releasing hormone receptor 2 (CRH-R2) on thyrotropes within the avian anterior pituitary (APit) and its activation by different stressors indicate a possible communication between hypothalamo-pituitary-adrenal (HPA) and thyroid (HPT) axes. Therefore, an experiment was designed to 1) compare the timing of major components of the HPT axis to those of the HPA axis; 2) address whether stressors activating the HPA axis may simultaneously upregulate components of the HPT axis. Blood, brain, and APit were sampled from chicks prior to stress (control) and 15, 30, 60, 90, and 120 min following immobilization (IM) stress. The nucleus of the hippocampal commissure (NHpC) and paraventricular nucleus (PVN) were cryo-dissected from brains for RT-qPCR. Gene expression of thyrotropin-releasing hormone (TRH) and its receptors (TRH-R1 and TRH-R3), urocortin3 (UCN3), deiodinase 2 (D2), and the second type of corticotropin-releasing hormone (CRH2) within the NHpC and PVN was measured. Additionally, gene expression of TRH receptors, thyroid stimulating hormone subunit beta (TSHβ), and D2 was determined in the APit and corticosterone assayed in blood. In brains, a significant upregulation in examined genes occurred at different times of IM. Specifically, UCN3 and CRH2 which have a high affinity to CRH-R2 showed a rapid increase in their mRNA levels that were accompanied by an early upregulation of TRHR1 in the NHpC. In the APit, a significant increase in gene expression of TSHβ and TRH receptors was observed. Therefore, results supported concurrent activation of major brain and APit genes associated with the HPA and HPT axes following IM. The initial neural gene expression originating within the NHpC resulted in the increase of TSHβ mRNA in the APit. Specifically, the rapid upregulation of UCN3 in the NHpC appeared responsible for the early activation of TSHβ in the APit. While sustaining TSHβ activation appeared to be due to both CRH2 and TRH. Therefore, data indicate that CRH-producing neurons and corticotropes as well as CRH- and TRH-producing neurons and thyrotropes are activated to produce the necessary energy required to maintain homeostasis in birds undergoing stress. Overall, data support the inclusion of the NHpC in the classical avian HPA axis and for the first time show the concurrent activation of the HPA axis and components of the HPT axis following a psychogenic stressor.
Collapse
|
5
|
Smulders TV. Telencephalic regulation of the HPA axis in birds. Neurobiol Stress 2021; 15:100351. [PMID: 34189191 PMCID: PMC8220096 DOI: 10.1016/j.ynstr.2021.100351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis is one of the major output systems of the vertebrate stress response. It controls the release of cortisol or corticosterone from the adrenal gland. These hormones regulate a range of processes throughout the brain and body, with the main function of mobilizing energy reserves to improve coping with a stressful situation. This axis is regulated in response to both physical (e.g., osmotic) and psychological (e.g., social) stressors. In mammals, the telencephalon plays an important role in the regulation of the HPA axis response in particular to psychological stressors, with the amygdala and part of prefrontal cortex stimulating the stress response, and the hippocampus and another part of prefrontal cortex inhibiting the response to return it to baseline. Birds also mount HPA axis responses to psychological stressors, but much less is known about the telencephalic areas that control this response. This review summarizes which telencephalic areas in birds are connected to the HPA axis and are known to respond to stressful situations. The conclusion is that the telencephalic control of the HPA axis is probably an ancient system that dates from before the split between sauropsid and synapsid reptiles, but more research is needed into the functional relationships between the brain areas reviewed in birds if we want to understand the level of this conservation.
Collapse
Affiliation(s)
- Tom V. Smulders
- Centre for Behaviour & Evolution, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
6
|
Ancient fishes and the functional evolution of the corticosteroid stress response in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111024. [PMID: 34237466 DOI: 10.1016/j.cbpa.2021.111024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022]
Abstract
The neuroendocrine mechanism underlying stress responses in vertebrates is hypothesized to be highly conserved and evolutionarily ancient. Indeed, elements of this mechanism, from the brain to steroidogenic tissue, are present in all vertebrate groups; yet, evidence of the function and even identity of some elements of the hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis is equivocal among the most basal vertebrates. The purpose of this review is to discuss the functional evolution of the HPA/I axis in vertebrates with a focus on our understanding of this neuroendocrine mechanism in the most ancient vertebrates: the agnathan (i.e., hagfish and lamprey) and chondrichthyan fishes (i.e., sharks, rays, and chimeras). A review of the current literature presents evidence of a conserved HPA/I axis in jawed vertebrates (i.e., gnathostomes); yet, available data in jawless (i.e., agnathan) and chondrichthyan fishes are limited. Neuroendocrine regulation of corticosteroidogenesis in agnathans and chondrichthyans appears to function through similar pathways as in bony fishes and tetrapods; however, key elements have yet to be identified and the involvement of melanotropins and gonadotropin-releasing hormone in the stress axis in these ancient fishes warrants further investigation. Further, the identities of physiological glucocorticoids are uncertain in hagfishes, chondrichthyans, and even coelacanths. Resolving these and other knowledge gaps in the stress response of ancient fishes will be significant for advancing knowledge of the evolutionary origins of the vertebrate stress response.
Collapse
|
7
|
Vicario A, Abellán A, Desfilis E, Medina L. Corrigendum: Genetic Identification of the Central Nucleus and Other Components of the Central Extended Amygdala in Chicken During Development. Front Neuroanat 2021; 15:671725. [PMID: 34093140 PMCID: PMC8171400 DOI: 10.3389/fnana.2021.671725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
[This corrects the article DOI: 10.3389/fnana.2014.00090.].
Collapse
Affiliation(s)
- Alba Vicario
- Department of Experimental Medicine, Laboratory of Evolutionary Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarre Foundation (IRBLleida), University of Lleida, Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Laboratory of Evolutionary Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarre Foundation (IRBLleida), University of Lleida, Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Laboratory of Evolutionary Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarre Foundation (IRBLleida), University of Lleida, Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Laboratory of Evolutionary Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarre Foundation (IRBLleida), University of Lleida, Lleida, Spain
| |
Collapse
|
8
|
Perez EC, Meurisse M, Hervé L, Georgelin M, Constantin P, Cornilleau F, Love SA, Lévy F, Calandreau L, Bertin A. Object and food novelty induce distinct patterns of c-fos immunoreactivity in amygdala and striatum in domestic male chicks (Gallus gallus domesticus). Behav Brain Res 2020; 381:112453. [DOI: 10.1016/j.bbr.2019.112453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/06/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
|
9
|
Billings BK, Behroozi M, Helluy X, Bhagwandin A, Manger PR, Güntürkün O, Ströckens F. A three-dimensional digital atlas of the Nile crocodile (Crocodylus niloticus) forebrain. Brain Struct Funct 2020; 225:683-703. [PMID: 32009190 DOI: 10.1007/s00429-020-02028-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
Abstract
The phylogenetic position of crocodilians in relation to birds and mammals makes them an interesting animal model for investigating the evolution of the nervous system in amniote vertebrates. A few neuroanatomical atlases are available for reptiles, but with a growing interest in these animals within the comparative neurosciences, a need for these anatomical reference templates is becoming apparent. With the advent of MRI being used more frequently in comparative neuroscience, the aim of this study was to create a three-dimensional MRI-based atlas of the Nile crocodile (Crocodylus niloticus) brain to provide a common reference template for the interpretation of the crocodilian, and more broadly reptilian, brain. Ex vivo MRI acquisitions in combination with histological data were used to delineate crocodilian brain areas at telencephalic, diencephalic, mesencephalic, and rhombencephalic levels. A total of 50 anatomical structures were successfully identified and outlined to create a 3-D model of the Nile crocodile brain. The majority of structures were more readily discerned within the forebrain of the crocodile with the methods used to produce this atlas. The anatomy outlined herein corresponds with both classical and recent crocodilian anatomical analyses, barring a few areas of contention predominantly related to a lack of functional data and conflicting nomenclature.
Collapse
Affiliation(s)
- Brendon K Billings
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Mehdi Behroozi
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Xavier Helluy
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Adhil Bhagwandin
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.,Faculty of Health Sciences, Department of Human Biology, Division of Clinical Anatomy and Biological Anthropology, University of Cape Town, Cape Town, South Africa
| | - Paul R Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Onur Güntürkün
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Felix Ströckens
- Faculty of Psychology, Institute of Cognitive Neuroscience, Biopsychology, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.
| |
Collapse
|
10
|
Poissenot K, Anger K, Constantin P, Cornilleau F, Lomet D, Tsutsui K, Dardente H, Calandreau L, Beltramo M. Brain mapping of the gonadotropin-inhibitory hormone-related peptide 2 with a novel antibody suggests a connection with emotional reactivity in the Japanese quail (Coturnix japonica, Temminck & Schlegel, 1849). J Comp Neurol 2019; 527:1872-1884. [PMID: 30734308 DOI: 10.1002/cne.24659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/23/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide first discovered in the quail brain that is involved in the control of reproductive physiology and behaviors, and stress response. GnIH gene encodes a second peptide, GnIH-related peptide-2 (RP2), the distribution and function of which remain unknown. We therefore studied GnIH-RP2 distribution by immunohistochemistry using a novel antibody capable of discriminating between GnIH and GnIH-RP2. The overall distribution of GnIH-RP2 is similar to that of GnIH. The vast majority of labeled neurons is located in the paraventricular nucleus (PVN) of the hypothalamus. Labeling of fibers is conspicuous in the diencephalon, but present also in the mesencephalon and telencephalon. Several regions involved in the control of reproduction and stress response (the PVN, septum, bed nucleus of the stria terminalis and nucleus commissura pallii) showed a dense network of immunolabeled fibers. To investigate the potential function of GnIH-RP2 we compared its expression in two quail lines genetically selected for divergence in their emotional reactivity. A quantitative analysis in the above-mentioned brain regions showed that the density of fibers was similar in the two lines. However, the number of GnIH-RP2 labeled neurons was higher in the median portion of the PVN in birds with higher emotional reactivity. These results point to a possible involvement of GnRH-RP2 in modulating stress response and/or emotional reactivity.
Collapse
Affiliation(s)
- Kevin Poissenot
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Karine Anger
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Paul Constantin
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Fabien Cornilleau
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Didier Lomet
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Hugues Dardente
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Ludovic Calandreau
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| | - Massimiliano Beltramo
- INRA, UMR85 Physiologie de la Reproduction et des Comportements; CNRS, UMR7247, Université de Tours, IFCE, Nouzilly, France
| |
Collapse
|
11
|
Wang J, DePena M, Taylor G, Gilbert ER, Cline MA. Hypothalamic mechanism of corticotropin-releasing factor's anorexigenic effect in Japanese quail (Coturnix japonica). Gen Comp Endocrinol 2019; 276:22-29. [PMID: 30769012 DOI: 10.1016/j.ygcen.2019.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Central administration of corticotropin-releasing factor (CRF), a 41-amino acid peptide, is associated with anorexigenic effects across various species, with particularly potent reductions in food intake in rodents and chickens (Gallus gallus domesticus), a species for which the most is known. The purpose of the current study was to determine the hypothalamic mechanism of CRF-induced anorexigenic effects in 7 day-old Japanese quail (Coturnix japonica), a less-intensely-selected gallinaceous relative to the chicken that can provide more evolutionary perspective. After intracerebroventricular (ICV) injection of 2, 22, or 222 pmol of CRF, a dose-dependent decrease in food intake was observed that lasted for 3 and 24 h for the 22 and 222 pmol doses, respectively. The 2 pmol dose had no effect on food or water intake. The numbers of c-Fos immunoreactive cells were increased in the paraventricular nucleus (PVN) and lateral hypothalamic area (LHA) at 1 h post-injection in quail injected with 22 pmol of CRF. The hypothalamic mRNA abundance of proopiomelanocortin, melanocortin receptor subtype 4, CRF, and CRF receptor sub-type 2 was increased at 1 h in quail treated with 22 pmol of CRF. Behavior analyses demonstrated that CRF injection reduced feeding pecks and jumps and increased the time spent standing. In conclusion, results demonstrate that the anorexigenic effects of CRF in Japanese quail are likely influenced by the interaction between CRF and melanocortin systems and that injection of CRF results in species-specific behavioral changes.
Collapse
Affiliation(s)
- Jinxin Wang
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mara DePena
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Graham Taylor
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Elizabeth R Gilbert
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Mark A Cline
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
12
|
Incubation temperature affects the expression of young precocial birds' fear-related behaviours and neuroendocrine correlates. Sci Rep 2018; 8:1857. [PMID: 29382895 PMCID: PMC5789981 DOI: 10.1038/s41598-018-20319-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/17/2018] [Indexed: 11/09/2022] Open
Abstract
The influence of embryonic microclimate on the behavioural development of birds remains unexplored. In this study, we experimentally tested whether chronic exposure to suboptimal temperatures engendered plasticity in the expression of fear-related behaviours and in the expression of the corticotropin-releasing factor in the brains of domestic chicks (Gallus g. domesticus). We compared the neurobehavioural phenotypes of a control group of chicks incubated in an optimal thermal environment (37.8 °C) with those of a group of experimental chicks exposed chronically in ovo to suboptimal temperatures (27.2 °C for 1 hour twice a day). Chronic exposure to a suboptimal temperature delayed hatching and decreased growth rate and experimental chicks had higher neophobic responses than controls in novel food and novel environment tests. In addition, experimental chicks showed higher expression of corticotropin-releasing factor than did controls in nuclei of the amygdala, a structure involved in the regulation of fear-related behaviours. In this study, we report the first evidence of the strong but underappreciated role of incubation microclimate on the development of birds’ behaviour and its neurobiological correlates.
Collapse
|
13
|
Nagarajan G, Jurkevich A, Kang SW, Kuenzel WJ. Anatomical and functional implications of corticotrophin-releasing hormone neurones in a septal nucleus of the avian brain: an emphasis on glial-neuronal interaction via V1a receptors in vitro. J Neuroendocrinol 2017; 29. [PMID: 28614607 DOI: 10.1111/jne.12494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/31/2017] [Accepted: 06/09/2017] [Indexed: 01/30/2023]
Abstract
Previously, we showed that corticotrophin-releasing hormone immunoreactive (CRH-IR) neurones in a septal structure are associated with stress and the hypothalamic-pituitary-adrenal axis in birds. In the present study, we focused upon CRH-IR neurones located within the septal structure called the nucleus of the hippocampal commissure (NHpC). Immunocytochemical and gene expression analyses were used to identify the anatomical and functional characteristics of cells within the NHpC. A comparative morphometry analysis showed that CRH-IR neurones in the NHpC were significantly larger than CRH-IR parvocellular neurones in the paraventricular nucleus of the hypothalamus (PVN) and lateral bed nucleus of the stria terminalis. Furthermore, these large neurones in the NHpC usually have more than two processes, showing characteristics of multipolar neurones. Utilisation of an organotypic slice culture method enabled testing of how CRH-IR neurones could be regulated within the NHpC. Similar to the PVN, CRH mRNA levels in the NHpC were increased following forskolin treatment. However, dexamethasone decreased forskolin-induced CRH gene expression only in the PVN and not in the NHpC, indicating differential inhibitory mechanisms in the PVN and the NHpC of the avian brain. Moreover, immunocytochemical evidence also showed that CRH-IR neurones reside in the NHpC along with the vasotocinergic system, comprising arginine vasotocin (AVT) nerve terminals and immunoreactive vasotocin V1a receptors (V1aR) in glia. Hence, we hypothesised that AVT acts as a neuromodulator within the NHpC to modulate activity of CRH neurones via glial V1aR. Gene expression analysis of cultured slices revealed that AVT treatment increased CRH mRNA levels, whereas a combination of AVT and a V1aR antagonist treatment decreased CRH mRNA expression. Furthermore, an attempt to identify an intercellular mechanism in glial-neuronal communication in the NHpC revealed that brain-derived neurotrophic factor (BDNF) and its receptor (TrkB) could be involved in the signalling mechanism. Immunocytochemical results further showed that both BDNF and TrkB receptors were found in glia of the NHpC. Interestingly, in cultured brain slices containing the NHpC, the use of a selective TrkB antagonist decreased the AVT-induced increase in CRH gene expression levels. The results from the present study collectively suggest that CRH neuronal activity is modulated by AVT via V1aR involving BDNF and TrkB glia in the NHpC.
Collapse
Affiliation(s)
- G Nagarajan
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - A Jurkevich
- Molecular Cytology Research Core Facility, University of Missouri, Columbia, MO, USA
| | - S W Kang
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - W J Kuenzel
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
14
|
Nagarajan G, Kang SW, Kuenzel WJ. Functional evidence that the nucleus of the hippocampal commissure shows an earlier activation from a stressor than the paraventricular nucleus: Implication of an additional structural component of the avian hypothalamo-pituitary-adrenal axis. Neurosci Lett 2017; 642:14-19. [DOI: 10.1016/j.neulet.2017.01.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/29/2016] [Accepted: 01/27/2017] [Indexed: 01/10/2023]
|
15
|
Aman NA, Nagarajan G, Kang SW, Hancock M, Kuenzel WJ. Differential responses of the vasotocin 1a receptor (V1aR) and osmoreceptors to immobilization and osmotic stress in sensory circumventricular organs of the chicken (Gallus gallus) brain. Brain Res 2016; 1649:67-78. [PMID: 27559012 DOI: 10.1016/j.brainres.2016.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 02/06/2023]
Abstract
Past studies have shown that the avian vasotocin 1a receptor (V1aR) is involved in immobilization stress. It is not known whether the receptor functions in osmotic stress, and if sensory circumventricular organs may be involved. An experiment was designed with four treatment groups including a 1h immobilization acute stress (AS) group, an unstressed acute control (AC), a third given an intraperitoneal (ip) hypertonic saline injection (HS) and isotonic saline controls (IC) administered ip. One set of chick brains was perfused for immunohistochemistry while a second was sampled for quantitative RT-PCR. Plasma corticosterone (CORT) and arginine vasotocin (AVT) concentrations were significantly increased in the immobilized and hypertonic saline groups (p<0.01) compared to controls. Intense staining of the V1aR occurred throughout the organum vasculosum of the lamina terminalis (OVLT) and subseptal organ (SSO)/subfornical organ (SFO). The immunostaining allowed the boundaries of the two circumventricular organs (CVOs) to be described for the first time in avian species. Both treatment groups showed marked morphological changes in glia within the OVLT and SSO/SFO. The avian V1aR, angiotensin II type 1 receptor (AT1R), and transient receptor potential vanilloid receptor 1 (TRPV1) mRNA levels were increased in the SSO/SFO in hypertonic saline treated birds compared to isotonic controls. In contrast, the latter two genes (AT1R and TRPV1) were significantly decreased in the OVLT of birds subjected to hyperosmotic stress, while all three genes were significantly up-regulated after immobilization. Taken together, results show a possible differential function for the same receptors in two anatomically adjacent CVOs.
Collapse
Affiliation(s)
- N Alphonse Aman
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Gurueswar Nagarajan
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Seong W Kang
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Megan Hancock
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Wayne J Kuenzel
- The Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
16
|
Vicario A, Abellán A, Medina L. Embryonic Origin of the Islet1 and Pax6 Neurons of the Chicken Central Extended Amygdala Using Cell Migration Assays and Relation to Different Neuropeptide-Containing Cells. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:139-69. [DOI: 10.1159/000381004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022]
Abstract
In a recent study, we tentatively identified different subdivisions of the central extended amygdala (EAce) in chicken based on the expression of region-specific transcription factors (including Pax6 and Islet1) and several phenotypic markers during embryonic development. Such a proposal was partially based on the suggestion that, similarly to the subdivisions of the EAce of mammals, the Pax6 and Islet1 neurons of the comparable chicken subdivisions derive from the dorsal (Std) or ventral striatal embryonic domains (Stv), respectively. To investigate whether this is true, in the present study, we carried out cell migration assays from chicken Std or Stv combined with immunofluorescence for Pax6 or Islet1. Our results showed that the cells of the proposed chicken EAce truly originate in either Std (expressing Pax6) or Stv (expressing Islet1). This includes lateral subdivisions previously compared to the intercalated amygdalar cells and the central amygdala of mammals, also rich in Std-derived Pax6 cells and/or Stv-derived Islet1 cells. In the medial region of the chicken EAce, the dorsal part of the lateral bed nucleus of the stria terminalis (BSTL) contains numerous cells expressing Nkx2.1 (mostly derived from the pallidal domain), but our migration assays showed that it also contains neuron subpopulations from the Stv (expressing Islet1) and Std (expressing Pax6), resembling the mouse BSTL. These findings, together with those previously published in different species of mammals, birds and reptiles, support the homology of the chicken EAce to that of other vertebrates, and reinforce the existence of several cell subcorridors inside the EAce. In addition, together with previously published data on neuropeptidergic cells, these results led us to propose the existence of at least seventeen neuron subtypes in the EAce in rodents and/or some birds (chicken and pigeon). The functional significance and the evolutionary origin of each subtype needs to be analyzed separately, and such studies are mandatory in order to understand the multifaceted modulation by the EAce of fear responses, ingestion, motivation and pain in different vertebrates.
Collapse
|
17
|
Honda K, Saneyasu T, Aoki K, Shimatani T, Yamaguchi T, Kamisoyama H. Correlation analysis of hypothalamic mRNA levels of appetite regulatory neuropeptides and several metabolic parameters in 28-day-old layer chickens. Anim Sci J 2014; 86:517-22. [DOI: 10.1111/asj.12320] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/31/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuhisa Honda
- Department of Bioresource Science; Graduate School of Agricultural Science; Kobe University; Kobe Japan
| | - Takaoki Saneyasu
- Department of Bioresource Science; Graduate School of Agricultural Science; Kobe University; Kobe Japan
| | - Koji Aoki
- Department of Bioresource Science; Graduate School of Agricultural Science; Kobe University; Kobe Japan
| | - Tomohiko Shimatani
- Department of Bioresource Science; Graduate School of Agricultural Science; Kobe University; Kobe Japan
| | - Takuya Yamaguchi
- Department of Bioresource Science; Graduate School of Agricultural Science; Kobe University; Kobe Japan
| | - Hiroshi Kamisoyama
- Department of Bioresource Science; Graduate School of Agricultural Science; Kobe University; Kobe Japan
| |
Collapse
|
18
|
Vicario A, Abellán A, Desfilis E, Medina L. Genetic identification of the central nucleus and other components of the central extended amygdala in chicken during development. Front Neuroanat 2014; 8:90. [PMID: 25309337 PMCID: PMC4159986 DOI: 10.3389/fnana.2014.00090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/19/2014] [Indexed: 01/11/2023] Open
Abstract
In mammals, the central extended amygdala shows a highly complex organization, and is essential for animal survival due to its implication in fear responses. However, many aspects of its evolution are still unknown, and this structure is especially poorly understood in birds. The aim of this study was to define the central extended amygdala in chicken, by means of a battery of region-specific transcription factors (Pax6, Islet1, Nkx2.1) and phenotypic markers that characterize these different subdivisions in mammals. Our results allowed the identification of at least six distinct subdivisions in the lateral part of the avian central extended amygdala: (1) capsular central subdivision; (2) a group of intercalated-like cell patches; (3) oval central nucleus; (4) peri-intrapeduncular (peri-INP) island field; (5) perioval zone; and (6) a rostral part of the subpallial extended amygdala. In addition, we identified three subdivisions of the laterodorsal bed nucleus of the stria terminalis (BSTLd) belonging to the medial region of the chicken central extended amygdala complex. Based on their genetic profile, cellular composition and apparent embryonic origin of the cells, we discuss the similarity of these different subdivisions of chicken with different parts of the mouse central amygdala and surrounding cell masses, including the intercalated amygdalar masses and the sublenticular part of the central extended amygdala. Most of the subdivisions include various subpopulations of cells that apparently originate in the dorsal striatal, ventral striatal, pallidal, and preoptic embryonic domains, reaching their final location by either radial or tangential migrations. Similarly to mammals, the central amygdala and BSTLd of chicken project to the hypothalamus, and include different neurons expressing proenkephalin, corticotropin-releasing factor, somatostatin or tyrosine hydroxylase, which may be involved in the control of different aspects of fear/anxiety-related behavior.
Collapse
Affiliation(s)
- Alba Vicario
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| |
Collapse
|
19
|
PACAP in the BNST produces anorexia and weight loss in male and female rats. Neuropsychopharmacology 2014; 39:1614-23. [PMID: 24434744 PMCID: PMC4023158 DOI: 10.1038/npp.2014.8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/17/2013] [Accepted: 01/09/2014] [Indexed: 11/08/2022]
Abstract
Recent gene association studies have implicated pituitary adenylate cyclase-activating peptide (PACAP) systems in several psychiatric disorders associated with stressor exposure, and we have argued that many of the behavioral consequences of repeated stressor exposure may depend on the expression of PACAP in the bed nucleus of the stria terminalis (BNST). One behavioral consequence of the activation of stress systems can be anorexia and subsequent weight loss, and both the activation of central PACAP systems as well as neuronal activity in the BNST have also been associated with anorexic states in rodents. Hence, we investigated the regulation of food and water intake and weight loss following BNST PACAP infusion. BNST PACAP38 dose-dependently decreased body weight, as well as food and water intake in the first 24 h following infusion. Because different BNST subregions differentially regulate stress responding, we further examined the effects of PACAP38 in either the anterior or posterior BNST. Anterior BNST PACAP38 infusion did not alter weight gain, whereas posterior PACAP38 infusion resulted in weight loss. PACAP38 infused into the lateral ventricles did not alter weight, suggesting that the effects of BNST-infused PACAP were not mediated by leakage into the ventricular system. These data suggest that PACAP receptor activation in posterior BNST subregions can produce anorexia and weight loss, and corroborate growing data implicating central PACAP activation in mediating the consequences of stressor exposure.
Collapse
|
20
|
Dickens MJ, Cornil CA, Balthazart J. Neurochemical control of rapid stress-induced changes in brain aromatase activity. J Neuroendocrinol 2013; 25:329-39. [PMID: 23253172 DOI: 10.1111/jne.12012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 11/28/2012] [Accepted: 12/08/2012] [Indexed: 11/30/2022]
Abstract
In the male brain, the medial preoptic nucleus (POM) is known to be a critical relay for the activation of sexual behaviour, with the aromatisation of testosterone into 17β-oestradiol (E2 ) playing a key role. Acute stress has been shown to differentially modulate the aromatase enzyme in this and other brain nuclei in a sex-specific manner. In POM specifically, stress induces increases in aromatase activity (AA) that are both rapid and reversible. How the physiological processes initiated during an acute stress response mediate sex- and nuclei- specific changes in AA and which stress response hormones are involved remains to be determined. By examining the relative effects of corticosterone (CORT), arginine vasotocin (AVT, the avian homologue to arginine vasopressin) and corticotrophin-releasing factor (CRF), the present study aimed to define the hormone profile regulating stress-induced increases in AA in the POM. We found that CORT, AVT and CRF all appear to play some role in these changes in the male brain. In addition, these effects occur in a targeted manner, such that modulation of the enzyme by these hormones only occurs in the POM rather than in all aromatase-expressing nuclei. Similarly, in the female brain, the experimental effects were restricted to the POM but only CRF was capable of inducing the stress-like increases in AA. These data further demonstrate the high degree of specificity (nuclei-, sex- and hormone-specific effects) in this system, highlighting the complexity of the stress-aromatase link and suggesting modes through which the nongenomic modulation of this enzyme can result in targeted, rapid changes in local oestrogen concentrations.
Collapse
Affiliation(s)
- M J Dickens
- GIGA Neurosciences, University of Liege, Liège, Belgium.
| | | | | |
Collapse
|
21
|
Age-Dependent Changes in the mRNA Levels of Neuropeptide Y, Proopiomelanocortin, and Corticotropin-Releasing Factor in the Hypothalamus in Growing Broiler Chicks. J Poult Sci 2013. [DOI: 10.2141/jpsa.0120188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Goerlich VC, Nätt D, Elfwing M, Macdonald B, Jensen P. Transgenerational effects of early experience on behavioral, hormonal and gene expression responses to acute stress in the precocial chicken. Horm Behav 2012; 61:711-8. [PMID: 22465454 DOI: 10.1016/j.yhbeh.2012.03.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 12/18/2022]
Abstract
Stress during early life can profoundly influence an individual's phenotype. Effects can manifest in the short-term as well as later in life and even in subsequent generations. Transgenerational effects of stress are potentially mediated via modulation of the hypothalamic-pituitary-adrenal axis (HPA) as well as epigenetic mechanisms causing heritable changes in gene expression. To investigate these pathways we subjected domestic chicken (Gallus gallus) to intermittent social isolation for the first three weeks of life. The early life stress resulted in a dampened corticosterone response to restraint stress in affected birds and in their male offspring. Stress-specific genes, such as early growth response 1 (EGR1) and corticotropin releasing hormone receptor 1 (CRHR1), were upregulated immediately after restraint stress, but not under baseline conditions. Treatment differences in gene expression were also correlated across generations which indicate transgenerational epigenetic inheritance. In an associative learning test early stressed birds made more correct choices suggesting a higher coping ability in stressful situations. This study is the first to show transgenerational effects of early life stress in a precocial species by combining behavioral, endocrinological, and transcriptomic measurements.
Collapse
MESH Headings
- Algorithms
- Animals
- Animals, Domestic
- Behavior, Animal/physiology
- Brain/metabolism
- Chickens/genetics
- Chickens/physiology
- Cohort Effect
- Female
- Gene Expression Regulation/physiology
- Male
- Models, Biological
- Physical Conditioning, Animal/methods
- Physical Conditioning, Animal/psychology
- Restraint, Physical/physiology
- Restraint, Physical/psychology
- Stress, Psychological/epidemiology
- Stress, Psychological/genetics
- Stress, Psychological/physiopathology
- Time Factors
Collapse
Affiliation(s)
- Vivian C Goerlich
- IFM Biology, Division of Zoology, Avian Behavioural Genomics and Physiology Group, Linköping University, Sweden
| | | | | | | | | |
Collapse
|
23
|
Kuenzel WJ, Medina L, Csillag A, Perkel DJ, Reiner A. The avian subpallium: new insights into structural and functional subdivisions occupying the lateral subpallial wall and their embryological origins. Brain Res 2011; 1424:67-101. [PMID: 22015350 PMCID: PMC3378669 DOI: 10.1016/j.brainres.2011.09.037] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 12/18/2022]
Abstract
The subpallial region of the avian telencephalon contains neural systems whose functions are critical to the survival of individual vertebrates and their species. The subpallial neural structures can be grouped into five major functional systems, namely the dorsal somatomotor basal ganglia; ventral viscerolimbic basal ganglia; subpallial extended amygdala including the central and medial extended amygdala and bed nuclei of the stria terminalis; basal telencephalic cholinergic and non-cholinergic corticopetal systems; and septum. The paper provides an overview of the major developmental, neuroanatomical and functional characteristics of the first four of these neural systems, all of which belong to the lateral telencephalic wall. The review particularly focuses on new findings that have emerged since the identity, extent and terminology for the regions were considered by the Avian Brain Nomenclature Forum. New terminology is introduced as appropriate based on the new findings. The paper also addresses regional similarities and differences between birds and mammals, and notes areas where gaps in knowledge occur for birds.
Collapse
Affiliation(s)
- Wayne J Kuenzel
- Department of Poultry Science, Poultry Science Center, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | | | | | |
Collapse
|
24
|
Shiraishi JI, Tanizawa H, Fujita M, Kawakami SI, Bungo T. Localization of hypothalamic insulin receptor in neonatal chicks: Evidence for insulinergic system control of feeding behavior. Neurosci Lett 2011; 491:177-80. [DOI: 10.1016/j.neulet.2011.01.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 12/28/2010] [Accepted: 01/12/2011] [Indexed: 12/21/2022]
|
25
|
Kuenzel W, Jurkevich A. Molecular neuroendocrine events during stress in poultry. Poult Sci 2010; 89:832-40. [DOI: 10.3382/ps.2009-00376] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Martínez-García F, Novejarque A, Lanuza E. Two interconnected functional systems in the amygdala of amniote vertebrates. Brain Res Bull 2008; 75:206-13. [DOI: 10.1016/j.brainresbull.2007.10.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 10/17/2007] [Indexed: 11/24/2022]
|
27
|
Development and adult organization of the lateral part of the bed nucleus of the stria terminalis in the chicken. Brain Res Bull 2007; 75:410-3. [PMID: 18331907 DOI: 10.1016/j.brainresbull.2007.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 10/17/2007] [Indexed: 11/20/2022]
Abstract
The lateral part of the bed nucleus of the stria terminalis (BSTL) is a component of the subpallial amygdala located near the ventral sulcus of the lateral ventricle, but its limits have not been well defined in birds. In this study, we analyzed the expression patterns of a number of neurochemical markers: GABA, calbindin (CB), calretinin (CR), or neuronal nitric oxide synthase (nNOS), in the embryonic and adult chicken brain, to further characterize the organization of the avian BSTL. From embryonic day 16, it was possible to distinguish three different regions within BSTL on the basis of cytoarchitectonic and immunohistochemical features. A central region, referred to as lateral bed nucleus of the stria terminalis pars densocellularis (BSTLdc), is characterized by numerous tightly packed cell bodies, most of which are GABA-immunoreactive (ir), and two peripheral regions with lower cellular density displaying a moderate GABA expression, referred to as lateral bed nucleus of the stria terminalis, plexiform part 1 (BSTLp1) and plexiform part 2 (BSTLp2), respectively. In contrast to BSTLdc, both plexiform parts are characterized by the presence of many fibers and terminals immunoreactive for nNOS and CR, as well as some CR-ir scattered cells. A distinctive feature of BSTLp2 is a population of CB-ir cells embedded in a slightly CB-ir neuropil. Comparison of our immunohistochemical data with gene expression data suggests that BSTLdc and BSTLp1 are pallidal in nature, whereas BSTLp2 receives important contributions from the entopeduncular/preoptic area.
Collapse
|
28
|
Coleman MJ, Roy A, Wild JM, Mooney R. Thalamic gating of auditory responses in telencephalic song control nuclei. J Neurosci 2007; 27:10024-36. [PMID: 17855617 PMCID: PMC6672633 DOI: 10.1523/jneurosci.2215-07.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In songbirds, nucleus Uvaeformis (Uva) is the sole thalamic input to the telencephalic nucleus HVC (used as a proper name), a sensorimotor structure essential to learned song production that also exhibits state-dependent responses to auditory presentation of the bird's own song (BOS). The role of Uva in influencing HVC auditory activity is unknown. Using in vivo extracellular and intracellular recordings in urethane-anesthetized zebra finches, we characterized the auditory properties of Uva and examined its influence on auditory activity in HVC and in the telencephalic nucleus interface (NIf), the main auditory afferent of HVC and a corecipient of Uva input. We found robust auditory activity in Uva and determined that Uva is innervated by the ventral nucleus of lateral lemniscus, an auditory brainstem component. Thus, Uva provides a direct linkage between the auditory brainstem and HVC. Although low-frequency electrical stimulation in Uva elicited short-latency depolarizing postsynaptic potentials in HVC neurons, reversibly silencing Uva exerted little effect on BOS-evoked activity in HVC neurons. However, high-frequency stimulation in Uva suppressed auditory-evoked synaptic and suprathreshold activity in all HVC neuron types, a process accompanied by decreased input resistance of individual HVC neurons. Furthermore, high-frequency stimulation in Uva simultaneously suppressed auditory activity in HVC and NIf. These results suggest that Uva can gate auditory responses in HVC through a mechanism that involves inhibition local to HVC as well as withdrawal of auditory-evoked excitatory drive from NIf. Thus, Uva could play an important role in state-dependent gating of auditory activity in telencephalic sensorimotor structures important to learned vocal control.
Collapse
Affiliation(s)
- Melissa J Coleman
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
29
|
Mormède P, Andanson S, Aupérin B, Beerda B, Guémené D, Malmkvist J, Manteca X, Manteuffel G, Prunet P, van Reenen CG, Richard S, Veissier I. Exploration of the hypothalamic–pituitary–adrenal function as a tool to evaluate animal welfare. Physiol Behav 2007; 92:317-39. [PMID: 17234221 DOI: 10.1016/j.physbeh.2006.12.003] [Citation(s) in RCA: 474] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 11/10/2006] [Indexed: 01/02/2023]
Abstract
Measuring HPA axis activity is the standard approach to the study of stress and welfare in farm animals. Although the reference technique is the use of blood plasma to measure glucocorticoid hormones (cortisol or corticosterone), several alternative methods such as the measurement of corticosteroids in saliva, urine or faeces have been developed to overcome the stress induced by blood sampling itself. In chronic stress situations, as is frequently the case in studies about farm animal welfare, hormonal secretions are usually unchanged but dynamic testing allows the demonstration of functional changes at several levels of the system, including the sensitization of the adrenal cortex to ACTH and the resistance of the axis to feedback inhibition by corticosteroids (dexamethasone suppression test). Beyond these procedural aspects, the main pitfall in the use of HPA axis activity is in the interpretation of experimental data. The large variability of the system has to be taken into consideration, since corticosteroid hormone secretion is usually pulsatile, follows diurnal and seasonal rhythms, is influenced by feed intake and environmental factors such as temperature and humidity, age and physiological state, just to cite the main sources of variation. The corresponding changes reflect the important role of glucocorticoid hormones in a number of basic physiological processes such as energy metabolism and central nervous system functioning. Furthermore, large differences have been found across species, breeds and individuals, which reflect the contribution of genetic factors and environmental influences, especially during development, in HPA axis functioning. Usually, these results will be integrated with data from behavioral observation, production and pathology records in a comprehensive approach of farm animal welfare.
Collapse
Affiliation(s)
- Pierre Mormède
- Neurogenetics and Stress, UMR1243 INRA, Université Victor Segalen Bordeaux 2, 33076 Bordeaux, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yao M, Denver RJ. Regulation of vertebrate corticotropin-releasing factor genes. Gen Comp Endocrinol 2007; 153:200-16. [PMID: 17382944 DOI: 10.1016/j.ygcen.2007.01.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 01/21/2007] [Indexed: 11/17/2022]
Abstract
Developmental, physiological, and behavioral adjustments in response to environmental change are crucial for animal survival. In vertebrates, the neuroendocrine stress system, comprised of the hypothalamus, pituitary, and adrenal/interrenal glands (HPA/HPI axis) plays a central role in adaptive stress responses. Corticotropin-releasing factor (CRF) is the primary hypothalamic neurohormone regulating the HPA/HPI axis. CRF also functions as a neurotransmitter/neuromodulator in the limbic system and brain stem to coordinate endocrine, behavioral, and autonomic responses to stressors. Glucocorticoids, the end products of the HPA/HPI axis, cause feedback regulation at multiple levels of the stress axis, exerting direct and indirect actions on CRF neurons. The spatial expression patterns of CRF, and stressor-dependent CRF gene activation in the central nervous system (CNS) are evolutionarily conserved. This suggests conservation of the gene regulatory mechanisms that underlie tissue-specific and stressor-dependent CRF expression. Comparative genomic analysis showed that the proximal promoter regions of vertebrate CRF genes are highly conserved. Several cis regulatory elements and trans acting factors have been implicated in stressor-dependent CRF gene activation, including cyclic AMP response element binding protein (CREB), activator protein 1 (AP-1/Fos/Jun), and nerve growth factor induced gene B (NGFI-B). Glucocorticoids, acting through the glucocorticoid and mineralocorticoid receptors, either repress or promote CRF expression depending on physiological state and CNS region. In this review, we take a comparative/evolutionary approach to understand the physiological regulation of CRF gene expression. We also discuss evolutionarily conserved molecular mechanisms that operate at the level of CRF gene transcription.
Collapse
Affiliation(s)
- Meng Yao
- Department of Molecular, Cellular and Developmental Biology, 3065C Kraus Natural Science Building, The University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
31
|
Honda K, Kamisoyama H, Saneyasu T, Sugahara K, Hasegawa S. Central administration of insulin suppresses food intake in chicks. Neurosci Lett 2007; 423:153-7. [PMID: 17693022 DOI: 10.1016/j.neulet.2007.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/01/2007] [Accepted: 07/14/2007] [Indexed: 10/23/2022]
Abstract
Although the orexigenic action of peptide hormones such as ghrelin and growth hormone releasing peptide is different between chickens and mammals, the anorexigenic action of peptide hormones is similar in both species. For example, central administration of peptide hormones such as leptin, cholecystokinin or glucagon has been shown to suppress food intake behavior in chickens and mammals. Central administration of insulin suppresses food intake in mammals. However, the anorexigenic action of insulin in chickens has not yet been identified. In the present study, we investigated the effects of central administration of insulin on food intake in chicks. Intracerebroventricular administration of insulin in chicks significantly suppressed food intake. Central administration of insulin significantly upregulated mRNA levels of proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART) and corticotropin-releasing factor (CRF), but did not influence mRNA levels of neuropeptide Y and agouti-related protein in the hypothalamus. These results suggest that alpha-melanocyte stimulating hormone (alpha-MSH, an anorexigenic peptide from the post-translational cleavage of POMC), CART and CRF are involved in the anorexigenic action of insulin in chicks. Furthermore, central administration of alpha-MSH or CART significantly suppressed food intake. In addition, alpha-MSH significantly upregulated CRF mRNA expression, suggesting that the anorexigenic action of alpha-MSH is mediated by CRF. Our findings demonstrate that insulin functions in chicks as an appetite-suppressive peptide in the central nervous system and suggest that this anorexigenic action is mediated by CART, alpha-MSH and CRF.
Collapse
Affiliation(s)
- Kazuhisa Honda
- Department of Animal Science, Faculty of Agriculture, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
32
|
Lowry CA, Moore FL. Regulation of behavioral responses by corticotropin-releasing factor. Gen Comp Endocrinol 2006; 146:19-27. [PMID: 16426606 DOI: 10.1016/j.ygcen.2005.12.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 12/01/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
In the wild, animals survive by responding to perceived threats with adaptive and appropriate changes in their behaviors and physiological states. The exact nature of these responses depends on species-specific factors plus the external context and internal physiological states associated with the stressful condition. The neuroendocrine mechanisms that control context-dependent stress responses are poorly understood for most animals, but some progress has been made recently. Corticotropin-releasing factor (CRF) plays an important role in mediating neuroendocrine, autonomic, and behavioral responses to stress. Across many vertebrate taxa, CRF not only stimulates the HPA axis by increasing the secretion of ACTH and glucocorticoid hormones, but also acts centrally by modifying neurotransmitter systems and behaviors. CRF or one of several CRF-related neuropeptides acts to stimulate locomotor activity during periods of acute stress. This behavioral activation consists of anxiety-related non-ambulatory motor activity, ambulatory locomotion, or swimming depending on the species and context. CRF-related neuropeptides increase swimming behaviors in amphibians and fish, apparently by activating brainstem serotonergic systems because the administration of fluoxetine (a selective serotonin re-uptake inhibitor) greatly enhances CRF-induced locomotor activity. Thus, our working model is that CRF, in part via interactions with brainstem serotonergic systems, modulates context-dependent behavioral responses to perceived threats, including both anxiety-related risk assessment behaviors and fight-or-flight locomotor responses.
Collapse
Affiliation(s)
- Christopher A Lowry
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol BS1 3NY, UK
| | | |
Collapse
|
33
|
Moreno N, González A. The common organization of the amygdaloid complex in tetrapods: new concepts based on developmental, hodological and neurochemical data in anuran amphibians. Prog Neurobiol 2006; 78:61-90. [PMID: 16457938 DOI: 10.1016/j.pneurobio.2005.12.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 12/19/2005] [Accepted: 12/20/2005] [Indexed: 10/25/2022]
Abstract
Research over the last few years has demonstrated that the amygdaloid complex in amniotes shares basic developmental, hodological and neurochemical features. Furthermore, homolog territories of all main amygdaloid subdivisions have been recognized among amniotes, primarily highlighted by the common expression patterns for numerous developmental genes. With the achievement of new technical approaches, the study of the precise neuroanatomy of the telencephalon of the anuran amphibians has been possible, revealing that most of the structures present in amniotes are recognizable in these anamniotes. Thus, recent investigations have yielded enough results to support the notion that the organization of the anuran amygdaloid complex includes subdivisions with origin in ventral pallial and subpallial territories, a strong relationship with the vomeronasal and olfactory systems, abundant intra-amygdaloid connections, a main output center involved in the autonomic system, profuse amygdaloid fiber systems, and distinct chemoarchitecture. When all these new data about the development, connectivity and neurochemistry of the amygdaloid complex in anurans are taken into account, it becomes patent that a basic organization pattern is shared by both amniotic and anamniotic tetrapods.
Collapse
Affiliation(s)
- Nerea Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | |
Collapse
|
34
|
Atoji Y, Saito S, Wild JM. Fiber connections of the compact division of the posterior pallial amygdala and lateral part of the bed nucleus of the stria terminalis in the pigeon (Columba livia). J Comp Neurol 2006; 499:161-82. [PMID: 16977623 DOI: 10.1002/cne.21042] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The compact division of the posterior pallial amygdala (PoAc) and lateral part of the bed nucleus of the stria terminalis (BSTL) are components of the limbic system in the pigeon brain. In this study, we examined the position and fiber connections of these two nuclei by using Nissl staining and tract-tracing methods. PoAc occupies a central division in the posterior pallial amygdala. BSTL faces the ventral horn of the lateral ventricle and extends between A 7.25 and A 10.50. PoAc and BSTL connect bidirectionally by the stria terminalis. PoAc connects reciprocally with two nuclear groups in the cerebrum: 1) a continuum consisting of the caudoventral nidopallium, lateral part of the caudoventral nidopallium (NCVl), subnidopallium beneath NCVl, and piriform cortex and 2) rostral areas of the hemisphere, including the frontolateral and frontomedial nidopallium and the densocellular part of the hyperpallium. Extratelencephalic projections of PoAc terminate in the dorsomedial thalamic nuclei and reach the lateral hypothalamic area via the hypothalamic part of the occipito-mesencephalic tract. BSTL also connects reciprocally with two main regions: 1) the same continuum as for PoAc projections, except the piriform cortex and 2) rostral areas of the hemisphere, including the olfactory tubercle and nucleus accumbens. Extratelencephalic reciprocal connections are with the substantia nigra, nucleus subceruleus dorsalis, parabrachial nucleus, locus coeruleus, and nucleus of the solitary tract. The dorsomedial subdivision of the hippocampal formation projects massively to PoAc and BSTL. These findings indicate that PoAc and BSTL are important components of an interconnected neural circuit involving widespread regions of the neuraxis and mediating limbic-visceral functions.
Collapse
Affiliation(s)
- Yasuro Atoji
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
| | | | | |
Collapse
|
35
|
Goodson JL. The vertebrate social behavior network: evolutionary themes and variations. Horm Behav 2005; 48:11-22. [PMID: 15885690 PMCID: PMC2570781 DOI: 10.1016/j.yhbeh.2005.02.003] [Citation(s) in RCA: 548] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2005] [Revised: 01/29/2005] [Accepted: 02/01/2005] [Indexed: 11/17/2022]
Abstract
Based on a wide variety of data, it is now clear that birds and teleost (bony) fish possess a core "social behavior network" within the basal forebrain and midbrain that is homologous to the social behavior network of mammals. The nodes of this network are reciprocally connected, contain receptors for sex steroid hormones, and are involved in multiple forms of social behavior. Other hodological features and neuropeptide distributions are likewise very similar across taxa. This evolutionary conservation represents a boon for experiments on phenotypic behavioral variation, as the extraordinary social diversity of teleost fish and songbirds can now be used to generate broadly relevant insights into issues of brain function that are not particularly tractable in other vertebrate groups. Two such lines of research are presented here, each of which addresses functional variation within the network as it relates to divergent patterns of social behavior. In the first set of experiments, we have used a sexually polymorphic fish to demonstrate that natural selection can operate independently on hypothalamic neuroendocrine functions that are relevant for (1) gonadal regulation and (2) sex-typical behavioral modulation. In the second set of experiments, we have exploited the diversity of avian social organizations and ecologies to isolate species-typical group size as a quasi-independent variable. These experiments have shown that specific areas and peptidergic components of the social behavior network possess functional properties that evolve in parallel with divergence and convergence in sociality.
Collapse
Affiliation(s)
- James L Goodson
- Psychology Department, 0109, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
36
|
Vandenborne K, De Groef B, Geelissen SME, Boorse GC, Denver RJ, Kühn ER, Darras VM, Van der Geyten S. Molecular cloning and developmental expression of corticotropin-releasing factor in the chicken. Endocrinology 2005; 146:301-8. [PMID: 15388646 DOI: 10.1210/en.2004-0608] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have characterized the structure of the chicken corticotropin-releasing factor (CRF) gene through cDNA cloning and genomic sequence analysis, and we analyzed the expression of CRF mRNA and peptide in the diencephalon of the chick throughout embryonic development. The structure of the chicken CRF gene is similar to other vertebrate CRF genes and contains two exons and a single intron. The primary structure of the mature chicken CRF peptide is identical to human and rat CRF. This is the first archosaurian CRF gene to be characterized. We used RIAs to analyze CRF peptide content in the diencephalon and the median eminence and plasma corticosterone during the last week of embryonic development. We also developed a semiquantitative RT-PCR method to analyze the expression of CRF mRNA during the same period. CRF peptide content in the diencephalon increased, whereas peptide content in the ME decreased just before hatching, suggesting that release and biosynthesis are coupled. Plasma corticosterone concentration significantly increased between embryonic d 20 and the first day post hatch. By contrast, CRF mRNA levels in the diencephalon decreased just before hatching. Changes in CRF production just before hatching may be causally related to the regulation of the thyroid and interrenal axes at this stage of chicken development.
Collapse
Affiliation(s)
- Kristien Vandenborne
- Laboratory of Comparative Endocrinology, Zoological Institute, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yao M, Westphal NJ, Denver RJ. Distribution and acute stressor-induced activation of corticotrophin-releasing hormone neurones in the central nervous system of Xenopus laevis. J Neuroendocrinol 2004; 16:880-93. [PMID: 15584929 DOI: 10.1111/j.1365-2826.2004.01246.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In mammals, corticotrophin-releasing hormone (CRH) and related peptides are known to play essential roles in the regulation of neuroendocrine, autonomic and behavioural responses to physical and emotional stress. In nonmammalian species, CRH-like peptides are hypothesized to play similar neuroendocrine and neurocrine roles. However, there is relatively little detailed information on the distribution of CRH neurones in the central nervous system (CNS) of nonmammalian vertebrates, and there are currently no comparative data on stress-induced changes in CRH neuronal physiology. We used a specific, affinity-purified antibody raised against synthetic Xenopus laevis CRH to map the distribution of CRH in the CNS of juvenile South African clawed frogs. We then analysed stress-induced changes in CRH immunoreactivity (CRH-ir) throughout the CNS. We found that CRH-positive cell bodies and fibres are widely distributed throughout the brain and rostral spinal cord of juvenile X. laevis. Strong CRH-immunoreactivity (ir) was found in cell bodies and fibres in the anterior preoptic area (POA, an area homologous to the mammalian paraventricular nucleus) and the external zone of the median eminence. Specific CRH-ir cell bodies and fibres were also identified in the septum, pallium and striatum in the telencephalon; the amygdala, bed nucleus of the stria terminalis and various hypothalamic and thalamic nuclei in the diencephalon; the tectum, torus semicircularis and tegmental nuclei of the mesencephalon; the cerebellum and locus coeruleus in the rhombencephalon; and the ventral horn of the rostral spinal cord. To determine if exposure to an acute physical stressor alters CRH neuronal physiology, we exposed juvenile frogs to shaking/handling and conducted morphometric analysis. Plasma corticosterone was significantly elevated by 30 min after exposure to the stressor and continued to increase up to 6 h. Morphometric analysis of CRH-ir after 4 h of stress showed a significant increase in CRH-ir in parvocellular neurones of the anterior preoptic area, the medial amygdala and the bed nucleus of the stria terminalis, but not in other brain regions. The stress-induced increase in CRH-ir in the POA was associated with increased Fos-like immunoreactivity (Fos-LI), and confocal microscopy showed that CRH-ir colocalized with Fos-LI in a subset of Fos-LI-positive neurones. Our results support the view that the basic pattern of CNS CRH expression arose early in vertebrate evolution and lend further support to earlier studies suggesting that amphibians may be a transitional species for descending CRH-ergic pathways. Furthermore, CRH neurones in the frog brain exhibit changes in response to a physical stressor that parallel those seen in mammals, and thus are likely to play an active role in mediating neuroendocrine, behavioural and autonomic stress responses.
Collapse
Affiliation(s)
- M Yao
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
38
|
Novejarque A, Lanuza E, Martínez-García F. Amygdalostriatal projections in reptiles: A tract-tracing study in the lizardPodarcis hispanica. J Comp Neurol 2004; 479:287-308. [PMID: 15457506 DOI: 10.1002/cne.20309] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Whereas the lacertilian anterior dorsal ventricular ridge contains unimodal sensory areas, its posterior part (PDVR) is an associative center that projects to the hypothalamus, thus being comparable to the amygdaloid formation. To further understand the organization of the reptilian cerebral hemispheres, we have used anterograde and retrograde tracing techniques to study the projections from the PDVR and adjoining areas (dorsolateral amygdala, DLA; deep lateral cortex, dLC; nucleus sphericus, NS) to the striatum in the lizard Podarcis hispanica. This information is complemented with a detailed description of the organization of the basal telencephalon of Podarcis. The caudal aspect of the dorsal ventricular ridge projects nontopographically mainly (but not exclusively) to the ventral striatum. The NS projects bilaterally (with strong ipsilateral dominance) to the nucleus accumbens, thus recalling the posteromedial cortical amygdala of mammals. The PDVR (especially its lateral aspect) and the dLC project massively to a continuum of structures connecting the striatoamygdaloid transition area (SAT) and the nucleus accumbens (rostrally), the projection arising from the dLC being probably bilateral. Finally, the DLA projects massively and bilaterally to both the ventral and dorsal striatum, including the SAT. Our findings lend further support to the view that the PDVR and neighboring structures constitute the reptilian basolateral amygdala and indicate that an emotional brain was already present in the ancestral amniote. These results are important to understand the comparative significance of the caudal aspect of the amniote cerebral hemispheres, and specifically challenge current views on the nature of the avian caudal neostriatum.
Collapse
Affiliation(s)
- Amparo Novejarque
- Departament de Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, ES-46100 València, Spain
| | | | | |
Collapse
|