1
|
Li E, Niu W, Lu C, Wang M, Xu X, Xu K, Xu P. Interoception and aging. Ageing Res Rev 2025; 108:102743. [PMID: 40188990 DOI: 10.1016/j.arr.2025.102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/04/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
Interoception refers to the body's perception and regulation of internal physiological states and involves complex neural mechanisms and sensory systems. The current definition of interoception falls short of capturing the breadth of related research; here, we propose an updated definition. Homeostasis, a foundational principle of integrated physiology, is the process by which organisms dynamically maintain optimal balance across all conditions through neural, endocrine, and behavioral functions. This review examines the role of interoception in body homeostasis. Aging is a complex process influenced by multiple factors and involving multiple levels, including physical, psychological, and cognitive. However, interoceptive and aging interoceptive interactions are lacking. A new perspective on interoception and aging holds significant implications for understanding how aging regulates interoception and how interoception affects the aging process. Finally, we summarize that arachidonic acid metabolites show promise as biomarkers of interoception-aging. The aim of this study is to comprehensively analyze interoceptive-aging interactions, understand the aging mechanism from a novel perspective, and provide a theoretical basis for exploring anti-aging strategies.
Collapse
Affiliation(s)
- Erliang Li
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an 710000, China.
| | - Wenjing Niu
- Changlefang Community Health Service Center, Xi'an 710000, China
| | - Chao Lu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China
| | - Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an 710000, China
| | - Xin Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China
| | - Ke Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China.
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Xi'an Key Laboratory of Pathogenesis and Precision Treatment of Arthritis, Xi'an 710000, China.
| |
Collapse
|
2
|
Yang M, Keller D, Dobolyi A, Valtcheva S. The lateral thalamus: a bridge between multisensory processing and naturalistic behaviors. Trends Neurosci 2025; 48:33-46. [PMID: 39672783 DOI: 10.1016/j.tins.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/14/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
The lateral thalamus (LT) receives input from primary sensory nuclei and responds to multimodal stimuli. The LT is also involved in regulating innate and social behaviors through its projections to cortical and limbic networks. However, the importance of multisensory processing within the LT in modulating behavioral output has not been explicitly addressed. Here, we discuss recent findings primarily from rodent studies that extend the classical view of the LT as a passive relay, by underscoring its involvement in associating multimodal features and encoding the salience, valence, and social relevance of sensory signals. We propose that the primary function of the LT is to integrate sensory and non-sensory aspects of multisensory input to gate naturalistic behaviors.
Collapse
Affiliation(s)
- Mingyu Yang
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany
| | - Dávid Keller
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany; Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest 1094, Hungary
| | - Arpád Dobolyi
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest 1094, Hungary; Department of Physiology and Neurobiology, Eotvos Lorand University, Budapest 1117, Hungary.
| | - Silvana Valtcheva
- Institute for Systems Physiology, Faculty of Medicine, University of Cologne and University Clinic Cologne, Cologne 50931, Germany.
| |
Collapse
|
3
|
Strohman A, Isaac G, Payne B, Verdonk C, Khalsa SS, Legon W. Low-intensity focused ultrasound to the insula differentially modulates the heartbeat-evoked potential: A proof-of-concept study. Clin Neurophysiol 2024; 167:267-281. [PMID: 39366795 PMCID: PMC11791892 DOI: 10.1016/j.clinph.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVE The heartbeat evoked potential (HEP) is a brain response time-locked to the heartbeat and a potential marker of interoceptive processing that may be generated in the insula and dorsal anterior cingulate cortex (dACC). Low-intensity focused ultrasound (LIFU) can selectively modulate sub-regions of the insula and dACC to better understand their contributions to the HEP. METHODS Healthy participants (n = 16) received stereotaxically targeted LIFU to the anterior insula (AI), posterior insula (PI), dACC, or Sham at rest during continuous electroencephalography (EEG) and electrocardiography (ECG) recording on separate days. Primary outcome was HEP amplitudes. Relationships between LIFU pressure and HEP changes and effects of LIFU on heart rate and heart rate variability (HRV) were also explored. RESULTS Relative to sham, LIFU to the PI, but not AI or dACC, decreased HEP amplitudes; PI effects were partially explained by increased LIFU pressure. LIFU did not affect heart rate or HRV. CONCLUSIONS These results demonstrate the ability to modulate HEP amplitudes via non-invasive targeting of key interoceptive brain regions. SIGNIFICANCE Our findings have implications for the causal role of these areas in bottom-up heart-brain communication that could guide future work investigating the HEP as a marker of interoceptive processing in healthy and clinical populations.
Collapse
Affiliation(s)
- Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech
Carilion, Roanoke, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA,
24016, USA
- Graduate Program in Translational Biology, Medicine, and
Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016,
USA
| | - Gabriel Isaac
- Fralin Biomedical Research Institute at Virginia Tech
Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and
State University, Blacksburg, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech
Carilion, Roanoke, VA, 24016, USA
| | - Charles Verdonk
- Laureate Institute for Brain Research, Tulsa, OK,
USA
- VIFASOM (EA 7330 Vigilance Fatigue, Sommeil et
Santé Publique), Université Paris Cité, Paris, France
- French Armed Forces Biomedical Research Institute,
Brétigny-sur-Orge, France
| | - Sahib S. Khalsa
- Laureate Institute for Brain Research, Tulsa, OK,
USA
- Department of Psychiatry and Biobehavioral Sciences, Semel
Institute for Neuroscience and Human Behavior, David Geffen School of Medicine,
University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech
Carilion, Roanoke, VA, 24016, USA
- Center for Human Neuroscience Research, Fralin Biomedical
Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Health Behaviors Research, Fralin Biomedical
Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and
State University, Blacksburg, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA,
24016, USA
- Graduate Program in Translational Biology, Medicine, and
Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016,
USA
- Department of Neurosurgery, Carilion Clinic, Roanoke,
VA, 24016, USA
| |
Collapse
|
4
|
Lemos MD, Barbosa LM, Andrade DCD, Lucato LT. Contributions of neuroimaging in central poststroke pain: a review. ARQUIVOS DE NEURO-PSIQUIATRIA 2024; 82:1-11. [PMID: 39216489 DOI: 10.1055/s-0044-1789225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Central neuropathic poststroke pain (CNPSP) affects up to 12% of patients with stroke in general and up to 18% of patients with sensory deficits. This pain syndrome is often incapacitating and refractory to treatment. Brain computed tomography and magnetic resonance imaging (MRI) are widely used methods in the evaluation of CNPSP. OBJECTIVE The present study aims to review the role of neuroimaging methods in CNPSP. METHODS We performed a literature review of the main clinical aspects of CNPSP and the contribution of neuroimaging methods to study its pathophysiology, commonly damaged brain sites, and possible differential diagnoses. Lastly, we briefly mention how neuroimaging can contribute to the non-pharmacological CNPSP treatment. Additionally, we used a series of MRI from our institution to illustrate this review. RESULTS Imaging has been used to explain CNPSP pathogenesis based on spinothalamic pathway damage and connectome dysfunction. Imaging locations associated with CNPSP include the brainstem (mainly the dorsolateral medulla), thalamus (especially the ventral posterolateral/ventral posteromedial nuclei), cortical areas such as the posterior insula and the parietal operculum, and, more recently, the thalamocortical white matter in the posterior limb of the internal capsule. Imaging also brings the prospect of helping search for new targets for non-pharmacological treatments for CNPSP. Other neuropathic pain causes identified by imaging include syringomyelia, multiple sclerosis, and herniated intervertebral disc. CONCLUSION Imaging is a valuable tool in the complimentary evaluation of CNPSP patients in clinical and research scenarios.
Collapse
Affiliation(s)
- Marcelo Delboni Lemos
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia, São Paulo SP, Brazil
| | - Luciana Mendonça Barbosa
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil
| | - Daniel Ciampi de Andrade
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil
| | - Leandro Tavares Lucato
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia, São Paulo SP, Brazil
| |
Collapse
|
5
|
In A, Strohman A, Payne B, Legon W. Low-intensity focused ultrasound to the posterior insula reduces temporal summation of pain. Brain Stimul 2024; 17:911-924. [PMID: 39089647 PMCID: PMC11452899 DOI: 10.1016/j.brs.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The insula and dorsal anterior cingulate cortex (dACC) are core brain regions involved in pain processing and central sensitization, a shared mechanism across various chronic pain conditions. Methods to modulate these regions may serve to reduce central sensitization, though it is unclear which target may be most efficacious for different measures of central sensitization. OBJECTIVE/HYPOTHESIS Investigate the effect of low-intensity focused ultrasound (LIFU) to the anterior insula (AI), posterior insula (PI), or dACC on conditioned pain modulation (CPM) and temporal summation of pain (TSP). METHODS N = 16 volunteers underwent TSP and CPM pain tasks pre/post a 10 min LIFU intervention to either the AI, PI, dACC or Sham stimulation. Pain ratings were collected pre/post LIFU. RESULTS Only LIFU to the PI significantly attenuated pain ratings during the TSP protocol. No effects were found for the CPM task for any of the LIFU targets. LIFU pressure modulated group means but did not affect overall group differences. CONCLUSIONS LIFU to the PI reduced temporal summation of pain. This may, in part, be due to dosing (pressure) of LIFU. Inhibition of the PI with LIFU may be a future potential therapy in chronic pain populations demonstrating central sensitization. The minimal effective dose of LIFU for efficacious neuromodulation will help to translate LIFU for therapeutic options.
Collapse
Affiliation(s)
- Alexander In
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
| | - Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA; Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA; Department of Neurosurgery, Carilion Clinic, Roanoke, VA, 24016, USA.
| |
Collapse
|
6
|
Islam J, Rahman MT, Kc E, Park YS. Deciphering the functional role of insular cortex stratification in trigeminal neuropathic pain. J Headache Pain 2024; 25:76. [PMID: 38730344 PMCID: PMC11084050 DOI: 10.1186/s10194-024-01784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Trigeminal neuropathic pain (TNP) is a major concern in both dentistry and medicine. The progression from normal to chronic TNP through activation of the insular cortex (IC) is thought to involve several neuroplastic changes in multiple brain regions, resulting in distorted pain perception and associated comorbidities. While the functional changes in the insula are recognized contributors to TNP, the intricate mechanisms underlying the involvement of the insula in TNP processing remain subjects of ongoing investigation. Here, we have overviewed the most recent advancements regarding the functional role of IC in regulating TNP alongside insights into the IC's connectivity with other brain regions implicated in trigeminal pain pathways. In addition, the review examines diverse modulation strategies that target the different parts of the IC, thereby suggesting novel diagnostic and therapeutic management of chronic TNP in the future.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Md Taufiqur Rahman
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Elina Kc
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Young Seok Park
- Department of Medical Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, Cheongju, Korea.
| |
Collapse
|
7
|
Strohman A, Isaac G, Payne B, Verdonk C, Khalsa SS, Legon W. Low-intensity focused ultrasound to the human insular cortex differentially modulates the heartbeat-evoked potential: a proof-of-concept study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584152. [PMID: 38559271 PMCID: PMC10979877 DOI: 10.1101/2024.03.08.584152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background The heartbeat evoked potential (HEP) is a brain response time-locked to the heartbeat and a potential marker of interoceptive processing. The insula and dorsal anterior cingulate cortex (dACC) are brain regions that may be involved in generating the HEP. Low-intensity focused ultrasound (LIFU) is a non-invasive neuromodulation technique that can selectively target sub-regions of the insula and dACC to better understand their contributions to the HEP. Objective Proof-of-concept study to determine whether LIFU modulation of the anterior insula (AI), posterior insula (PI), and dACC influences the HEP. Methods In a within-subject, repeated-measures design, healthy human participants (n=16) received 10 minutes of stereotaxically targeted LIFU to the AI, PI, dACC or Sham at rest during continuous electroencephalography (EEG) and electrocardiography (ECG) recording on separate days. Primary outcome was change in HEP amplitudes. Relationships between LIFU pressure and HEP changes were examined using linear mixed modelling. Peripheral indices of visceromotor output including heart rate and heart rate variability (HRV) were explored between conditions. Results Relative to sham, LIFU to the PI, but not AI or dACC, decreased HEP amplitudes; this was partially explained by increased LIFU pressure. LIFU did not affect time or frequency dependent measures of HRV. Conclusions These results demonstrate the ability to modulate HEP amplitudes via non-invasive targeting of key interoceptive brain regions. Our findings have implications for the causal role of these areas in bottom-up heart-brain communication that could guide future work investigating the HEP as a marker of interoceptive processing in healthy and clinical populations.
Collapse
Affiliation(s)
- Andrew Strohman
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
| | - Gabriel Isaac
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA
| | - Brighton Payne
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
| | - Charles Verdonk
- Laureate Institute for Brain Research, Tulsa, OK, USA
- VIFASOM (EA 7330 Vigilance Fatigue, Sommeil et Santé Publique), Université Paris Cité, Paris, France
- French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France
| | - Sahib S. Khalsa
- Laureate Institute for Brain Research, Tulsa, OK, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, USA
| | - Wynn Legon
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Human Neuroscience Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- Center for Health Behaviors Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, 24016, USA
- Department of Neurosurgery, Carilion Clinic, Roanoke, VA, 24016, USA
| |
Collapse
|
8
|
Blomqvist A, Evrard HC. The thalamic projection of pain sensations to the posterior dorsal fundus in the insula: comment on Mandonnet et al. Pain 2024; 165:e15-e16. [PMID: 38335154 PMCID: PMC10885857 DOI: 10.1097/j.pain.0000000000003164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Affiliation(s)
- Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Henry C. Evrard
- International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- Werner Reichardt Center for Integrative Neuroscience, Karl Eberhard University of Tübingen, Tübingen, Germany
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
9
|
Romo-Nava F, Awosika OO, Basu I, Blom TJ, Welge J, Datta A, Guillen A, Guerdjikova AI, Fleck DE, Georgiev G, Mori N, Patino LR, DelBello MP, McNamara RK, Buijs RM, Frye MA, McElroy SL. Effect of non-invasive spinal cord stimulation in unmedicated adults with major depressive disorder: a pilot randomized controlled trial and induced current flow pattern. Mol Psychiatry 2024; 29:580-589. [PMID: 38123726 PMCID: PMC11153138 DOI: 10.1038/s41380-023-02349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Converging theoretical frameworks suggest a role and a therapeutic potential for spinal interoceptive pathways in major depressive disorder (MDD). Here, we aimed to evaluate the antidepressant effects and tolerability of transcutaneous spinal direct current stimulation (tsDCS) in MDD. This was a double-blind, randomized, sham-controlled, parallel group, pilot clinical trial in unmedicated adults with moderate MDD. Twenty participants were randomly allocated (1:1 ratio) to receive "active" 2.5 mA or "sham" anodal tsDCS sessions with a thoracic (anode; T10)/right shoulder (cathode) electrode montage 3 times/week for 8 weeks. Change in depression severity (MADRS) scores (prespecified primary outcome) and secondary clinical outcomes were analyzed with ANOVA models. An E-Field model was generated using the active tsDCS parameters. Compared to sham (n = 9), the active tsDCS group (n = 10) showed a greater baseline to endpoint decrease in MADRS score with a large effect size (-14.6 ± 2.5 vs. -21.7 ± 2.3, p = 0.040, d = 0.86). Additionally, compared to sham, active tsDCS induced a greater decrease in MADRS "reported sadness" item (-1.8 ± 0.4 vs. -3.2 ± 0.4, p = 0.012), and a greater cumulative decrease in pre/post tsDCS session diastolic blood pressure change from baseline to endpoint (group difference: 7.9 ± 3.7 mmHg, p = 0.039). Statistical trends in the same direction were observed for MADRS "pessimistic thoughts" item and week-8 CGI-I scores. No group differences were observed in adverse events (AEs) and no serious AEs occurred. The current flow simulation showed electric field at strength within the neuromodulation range (max. ~0.45 V/m) reaching the thoracic spinal gray matter. The results from this pilot study suggest that tsDCS is feasible, well-tolerated, and shows therapeutic potential in MDD. This work also provides the initial framework for the cautious exploration of non-invasive spinal cord neuromodulation in the context of mental health research and therapeutics. The underlying mechanisms warrant further investigation. Clinicaltrials.gov registration: NCT03433339 URL: https://clinicaltrials.gov/ct2/show/NCT03433339 .
Collapse
Affiliation(s)
- Francisco Romo-Nava
- Lindner Center of HOPE, Mason, OH, USA.
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Oluwole O Awosika
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ishita Basu
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Thomas J Blom
- Lindner Center of HOPE, Mason, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Abhishek Datta
- Research and Development, Soterix Medical, Inc, New York, NY, USA
| | | | - Anna I Guerdjikova
- Lindner Center of HOPE, Mason, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David E Fleck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Nicole Mori
- Lindner Center of HOPE, Mason, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Luis R Patino
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ruud M Buijs
- Departamento de Fisiología Celular y Biología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Susan L McElroy
- Lindner Center of HOPE, Mason, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
10
|
Barwood MJ, Eglin C, Hills SP, Johnston N, Massey H, McMorris T, Tipton MJ, Wakabayashi H, Webster L. Habituation of the cold shock response: A systematic review and meta-analysis. J Therm Biol 2024; 119:103775. [PMID: 38211547 DOI: 10.1016/j.jtherbio.2023.103775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
Cold water immersion (CWI) evokes the life-threatening reflex cold shock response (CSR), inducing hyperventilation, increasing cardiac arrhythmias, and increasing drowning risk by impairing safety behaviour. Repeated CWI induces CSR habituation (i.e., diminishing response with same stimulus magnitude) after ∼4 immersions, with variation between studies. We quantified the magnitude and coefficient of variation (CoV) in the CSR in a systematic review and meta-analysis with search terms entered to Medline, SportDiscus, PsychINFO, Pubmed, and Cochrane Central Register. Random effects meta-analyses, including effect sizes (Cohen's d) from 17 eligible groups (k), were conducted for heart rate (HR, n = 145, k = 17), respiratory frequency (fR, n = 73, k = 12), minute ventilation (Ve, n = 106, k = 10) and tidal volume (Vt, n = 46, k=6). All CSR variables habituated (p < 0.001) with large or moderate pooled effect sizes: ΔHR -14 (10) bt. min-1 (d: -1.19); ΔfR -8 (7) br. min-1 (d: -0.78); ΔVe, -21.3 (9.8) L. min-1 (d: -1.64); ΔVt -0.4 (0.3) L -1. Variation was greatest in Ve (control vs comparator immersion: 32.5&24.7%) compared to Vt (11.8&12.1%). Repeated CWI induces CSR habituation potentially reducing drowning risk. We consider the neurophysiological and behavioural consequences.
Collapse
Affiliation(s)
- Martin J Barwood
- Faculty of Social and Health Sciences, Leeds Trinity University, Horsforth, UK.
| | - Clare Eglin
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Samuel P Hills
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, UK
| | - Nicola Johnston
- Faculty of Social and Health Sciences, Leeds Trinity University, Horsforth, UK
| | - Heather Massey
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Terry McMorris
- Department of Sport and Exercise Science, Institute for Sport, University of Chichester, College Lane, Chichester, West Sussex, UK
| | - Michael J Tipton
- School of Sport, Health and Exercise Science, University of Portsmouth, Portsmouth, UK
| | - Hitoshi Wakabayashi
- Laboratory of Environmental Ergonomics, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Lisa Webster
- Faculty of Social and Health Sciences, Leeds Trinity University, Horsforth, UK
| |
Collapse
|
11
|
Leva TM, Whitmire CJ. Thermosensory thalamus: parallel processing across model organisms. Front Neurosci 2023; 17:1210949. [PMID: 37901427 PMCID: PMC10611468 DOI: 10.3389/fnins.2023.1210949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
The thalamus acts as an interface between the periphery and the cortex, with nearly every sensory modality processing information in the thalamocortical circuit. Despite well-established thalamic nuclei for visual, auditory, and tactile modalities, the key thalamic nuclei responsible for innocuous thermosensation remains under debate. Thermosensory information is first transduced by thermoreceptors located in the skin and then processed in the spinal cord. Temperature information is then transmitted to the brain through multiple spinal projection pathways including the spinothalamic tract and the spinoparabrachial tract. While there are fundamental studies of thermal transduction via thermosensitive channels in primary sensory afferents, thermal representation in the spinal projection neurons, and encoding of temperature in the primary cortical targets, comparatively little is known about the intermediate stage of processing in the thalamus. Multiple thalamic nuclei have been implicated in thermal encoding, each with a corresponding cortical target, but without a consensus on the role of each pathway. Here, we review a combination of anatomy, physiology, and behavioral studies across multiple animal models to characterize the thalamic representation of temperature in two proposed thermosensory information streams.
Collapse
Affiliation(s)
- Tobias M. Leva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clarissa J. Whitmire
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Noseda R, Villanueva L. Central generators of migraine and autonomic cephalalgias as targets for personalized pain management: Translational links. Eur J Pain 2023; 27:1126-1138. [PMID: 37421221 PMCID: PMC10979820 DOI: 10.1002/ejp.2158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Migraine oscillates between different states in association with internal homeostatic functions and biological rhythms that become more easily dysregulated in genetically susceptible individuals. Clinical and pre-clinical data on migraine pathophysiology support a primary role of the central nervous system (CNS) through 'dysexcitability' of certain brain networks, and a critical contribution of the peripheral sensory and autonomic signalling from the intracranial meningeal innervation. This review focuses on the most relevant back and forward translational studies devoted to the assessment of CNS dysfunctions involved in primary headaches and discusses the role they play in rendering the brain susceptible to headache states. METHODS AND RESULTS We collected a body of scientific literature from human and animal investigations that provide a compelling perspective on the anatomical and functional underpinnings of the CNS in migraine and trigeminal autonomic cephalalgias. We focus on medullary, hypothalamic and corticofugal modulation mechanisms that represent strategic neural substrates for elucidating the links between trigeminovascular maladaptive states, migraine triggering and the temporal phenotype of the disease. CONCLUSION It is argued that a better understanding of homeostatic dysfunctional states appears fundamental and may benefit the development of personalized therapeutic approaches for improving clinical outcomes in primary headache disorders. SIGNIFICANCE This review focuses on the most relevant back and forward translational studies showing the crucial role of top-down brain modulation in triggering and maintaining primary headache states and how these central dysfunctions may interact with personalized pain management strategies.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Luis Villanueva
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris-Cité, Team Imaging Biomarkers of Brain Disorders (IMA-Brain), INSERM U1266, Paris, France
| |
Collapse
|
13
|
Wu FL, Chen SH, Li JN, Zhao LJ, Wu XM, Hong J, Zhu KH, Sun HX, Shi SJ, Mao E, Zang WD, Cao J, Kou ZZ, Li YQ. Projections from the Rostral Zona Incerta to the Thalamic Paraventricular Nucleus Mediate Nociceptive Neurotransmission in Mice. Metabolites 2023; 13:metabo13020226. [PMID: 36837844 PMCID: PMC9966812 DOI: 10.3390/metabo13020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Zona incerta (ZI) is an integrative subthalamic region in nociceptive neurotransmission. Previous studies demonstrated that the rostral ZI (ZIR) is an important gamma-aminobutyric acid-ergic (GABAergic) source to the thalamic paraventricular nucleus (PVT), but whether the ZIR-PVT pathway participates in nociceptive modulation is still unclear. Therefore, our investigation utilized anatomical tracing, fiber photometry, chemogenetic, optogenetic and local pharmacological approaches to investigate the roles of the ZIRGABA+-PVT pathway in nociceptive neurotransmission in mice. We found that projections from the GABAergic neurons in ZIR to PVT were involved in nociceptive neurotransmission. Furthermore, chemogenetic and optogenetic activation of the ZIRGABA+-PVT pathway alleviates pain, whereas inhibiting the activities of the ZIRGABA+-PVT circuit induces mechanical hypersensitivity and partial heat hyperalgesia. Importantly, in vivo pharmacology combined with optogenetics revealed that the GABA-A receptor (GABAAR) is crucial for GABAergic inhibition from ZIR to PVT. Our data suggest that the ZIRGABA+-PVT pathway acts through GABAAR-expressing glutamatergic neurons in PVT mediates nociceptive neurotransmission.
Collapse
Affiliation(s)
- Feng-Ling Wu
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Si-Hai Chen
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Jia-Ni Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Liu-Jie Zhao
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Xue-Mei Wu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Jie Hong
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, Baotou Medical College Inner Mongolia University of Science and Technology, Baotou 014040, China
| | - Ke-Hua Zhu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Han-Xue Sun
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Human Anatomy, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Su-Juan Shi
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - E Mao
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
| | - Wei-Dong Zang
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Cao
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhen-Zhen Kou
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Correspondence: (Z.-Z.K.); (Y.-Q.L.); Tel.: +86-29-8477-2706; Fax: +86-29-8328-3229 (Y.-Q.L.)
| | - Yun-Qing Li
- Department of Human Anatomy, College of Preclinical Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an 710032, China
- Department of Geriatrics, Tangdu Hospital, The Fourth Military Medical University, Xi’an 710038, China
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou 571199, China
- Department of Anatomy, College of Basic Medicine, Dali University, Dali 671000, China
- Correspondence: (Z.-Z.K.); (Y.-Q.L.); Tel.: +86-29-8477-2706; Fax: +86-29-8328-3229 (Y.-Q.L.)
| |
Collapse
|
14
|
Robertson CE, Benarroch EE. The anatomy of head pain. HANDBOOK OF CLINICAL NEUROLOGY 2023; 198:41-60. [PMID: 38043970 DOI: 10.1016/b978-0-12-823356-6.00001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Pain-sensitive structures in the head and neck, including the scalp, periosteum, meninges, and blood vessels, are innervated predominantly by the trigeminal and upper cervical nerves. The trigeminal nerve supplies most of the sensation to the head and face, with the ophthalmic division (V1) providing innervation to much of the supratentorial dura mater and vessels. This creates referral patterns for pain that may be misleading to clinicians and patients, as described by studies involving awake craniotomies and stimulation with electrical and mechanical stimuli. Most brain parenchyma and supratentorial vessels refer pain to the ipsilateral V1 territory, and less commonly the V2 or V3 region. The upper cervical nerves provide innervation to the posterior scalp, while the periauricular region and posterior fossa are territories with shared innervation. Afferent fibers that innervate the head and neck send nociceptive input to the trigeminocervical complex, which then projects to additional pain processing areas in the brainstem, thalamus, hypothalamus, and cortex. This chapter discusses the pain-sensitive structures in the head and neck, including pain referral patterns for many of these structures. It also provides an overview of peripheral and central nervous system structures responsible for transmitting and interpreting these nociceptive signals.
Collapse
Affiliation(s)
- Carrie E Robertson
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States.
| | - Eduardo E Benarroch
- Department of Neurology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
15
|
Haber SN, Lehman J, Maffei C, Yendiki A. The rostral zona incerta: a subcortical integrative hub and potential DBS target for OCD. Biol Psychiatry 2023; 93:1010-1022. [PMID: 37055285 DOI: 10.1016/j.biopsych.2023.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/13/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND The zona incerta (ZI) is involved in mediating survival behaviors and is connected to a wide range of cortical and subcortical structures, including key basal ganglia nuclei. Based on these connections and their links to behavioral modulation, we propose that the ZI is a connectional hub for mediating between top-down and bottom-up control and a possible target for deep brain stimulation for obsessive-compulsive disorder. METHODS We analyzed the trajectory of cortical fibers to the ZI in nonhuman and human primates based on tracer injections in monkeys and high-resolution diffusion magnetic resonance imaging in humans. The organization of cortical and subcortical connections within the ZI were identified in the nonhuman primate studies. RESULTS Monkey anatomical data and human diffusion magnetic resonance imaging data showed a similar trajectory of fibers/streamlines to the ZI. Prefrontal cortex/anterior cingulate cortex terminals all converged within the rostral ZI, with dorsal and lateral areas being most prominent. Motor areas terminated caudally. Dense subcortical reciprocal connections included the thalamus, medial hypothalamus, substantia nigra/ventral tegmental area, reticular formation, and pedunculopontine nucleus and a dense nonreciprocal projection to the lateral habenula. Additional connections included the amygdala, dorsal raphe nucleus, and periaqueductal gray. CONCLUSIONS Dense connections with dorsal and lateral prefrontal cortex/anterior cingulate cortex cognitive control areas and the lateral habenula and the substantia nigra/ventral tegmental area, coupled with inputs from the amygdala, hypothalamus, and brainstem, suggest that the rostral ZI is a subcortical hub positioned to modulate between top-down and bottom-up control. A deep brain stimulation electrode placed in the rostral ZI would not only involve connections common to other deep brain stimulation sites but also capture several critically distinctive connections.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts.
| | - Julia Lehman
- Department of Pharmacology & Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Monosov IE, Ogasawara T, Haber SN, Heimel JA, Ahmadlou M. The zona incerta in control of novelty seeking and investigation across species. Curr Opin Neurobiol 2022; 77:102650. [PMID: 36399897 DOI: 10.1016/j.conb.2022.102650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/02/2022] [Accepted: 10/06/2022] [Indexed: 11/17/2022]
Abstract
Many organisms rely on a capacity to rapidly replicate, disperse, and evolve when faced with uncertainty and novelty. But mammals do not evolve and replicate quickly. They rely on a sophisticated nervous system to generate predictions and select responses when confronted with these challenges. An important component of their behavioral repertoire is the adaptive context-dependent seeking or avoiding of perceptually novel objects, even when their values have not yet been learned. Here, we outline recent cross-species breakthroughs that shed light on how the zona incerta (ZI), a relatively evolutionarily conserved brain area, supports novelty-seeking and novelty-related investigations. We then conjecture how the architecture of the ZI's anatomical connectivity - the wide-ranging top-down cortical inputs to the ZI, and its specifically strong outputs to both the brainstem action controllers and to brain areas involved in action value learning - place the ZI in a unique role at the intersection of cognitive control and learning.
Collapse
Affiliation(s)
- Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Takaya Ogasawara
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA; Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, 02478, USA
| | - J Alexander Heimel
- Circuits Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - Mehran Ahmadlou
- Circuits Structure and Function Group, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, 25 Howland St., W1T4JG London, UK
| |
Collapse
|
17
|
Mungoven TJ, Meylakh N, Macefield VG, Macey PM, Henderson LA. Alterations in brain structure associated with trigeminal nerve anatomy in episodic migraine. FRONTIERS IN PAIN RESEARCH 2022; 3:951581. [PMID: 35923273 PMCID: PMC9341524 DOI: 10.3389/fpain.2022.951581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/28/2022] [Indexed: 11/15/2022] Open
Abstract
The pathophysiology of migraine remains to be elucidated. We have recently shown that interictal migraineurs exhibit reduced fractional anisotropy (FA) in the root entry zone of the trigeminal nerve when compared to controls, but it is not known if this altered nerve anatomy is associated with changes within the brainstem or higher cortical brain regions. Diffusion tensor imaging of the brain was used to calculate regional measures of structure, including mean diffusivity (MD), axial diffusivity (AX) and radial diffusivity (RD) in addition to voxel-based morphometry of T1-weighted anatomical images. Linear relationships between trigeminal nerve anatomy (FA) and MD throughout the brainstem and/or higher cortical regions were determined in both controls (n = 31, brainstem; n = 38, wholebrain) and interictal migraineurs (n = 32, brainstem; n = 38, wholebrain). Additionally, within the same brain areas, relationships of AX and RD with nerve FA were determined. We found that in both interictal migraine and control participants, decreasing trigeminal nerve FA was associated with significantly increased MD in brainstem regions including the spinal trigeminal nucleus and midbrain periaqueductal gray matter (PAG), and in higher brain regions such as the hypothalamus, insula, posterior cingulate, primary somatosensory and primary visual (V1) cortices. Whereas, both control and migraineur groups individually displayed significant inverse correlations between nerve FA and MD, in migraineurs this pattern was disrupted in the areas of the PAG and V1, with only the control group displaying a significant linear relationship (PAG controls r = –0.58, p = 0.003; migraineurs r = –0.25, p = 0.17 and V1 controls r = −0.52, p = 0.002; migraineurs r = –0.10, p = 0.55). Contrastingly, we found no gray matter volume changes in brainstem or wholebrain areas. These data show that overall, trigeminal nerve anatomy is significantly related to regional brain structure in both controls and migraineurs. Importantly, the PAG showed a disruption of this relationship in migraineurs suggesting that the anatomy and possibly the function of the PAG is uniquely altered in episodic migraine, which may contribute to altered orofacial pain processing in migraine.
Collapse
Affiliation(s)
- Tiffani J. Mungoven
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Noemi Meylakh
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Vaughan G. Macefield
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC, Australia
| | - Paul M. Macey
- UCLA School of Nursing and Brain Research Institute, University of California, Los Angeles, CA, United States
| | - Luke A. Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
- *Correspondence: Luke A. Henderson
| |
Collapse
|
18
|
Casillo F, Sebastianelli G, Renzo AD, Cioffi E, Parisi V, Lorenzo CD, Serrao M, Coppola G. The monoclonal CGRP-receptor blocking antibody erenumab has different effects on brainstem and cortical sensory-evoked responses. Cephalalgia 2022; 42:1236-1245. [DOI: 10.1177/03331024221103811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objectives It is unclear whether the electrophysiological effects of erenumab, a monoclonal antibody against the calcitonin gene-related peptide receptor, occur only at the periphery of the trigeminal system or centrally and at the cortical level. Methods We prospectively enrolled 20 patients with migraine who had failed at least two preventative treatments. We measured the nociceptive blink reflex and non-noxious somatosensory evoked potentials in all participants. The area under the curve and habituation of the second polysynaptic nociceptive blink reflex component (R2) as well as the amplitude and habituation of somatosensory evoked potentials N20-P25 were measured. Electrophysiological data were collected at baseline (T0), 28 days (T1), and 56 days (T2) before each injection of erenumab (70 mg). Results Erenumab reduced the patients’ mean monthly headache days, headache intensity, and acute medication intake considerably at T1 and T2 (all p < 0.05). The nociceptive blink reflex area under the curve was considerably lower at T1 and T2 than at baseline without changing the habituation slope. At T2, there was a significant increase in the delayed somatosensory evoked potentials amplitude reduction (habituation) but not in the initial cortical activation. Conclusion Our findings showed that erenumab, in addition to its well-known peripheral effects, can induce central effects earlier in the brainstem and later in the cortex. We cannot rule out whether these results are due to a direct effect of erenumab on the central nervous system or an indirect effect secondary to peripheral drug modulation.
Collapse
Affiliation(s)
- Francesco Casillo
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Gabriele Sebastianelli
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | | | - Ettore Cioffi
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | | | - Cherubino Di Lorenzo
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Mariano Serrao
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| | - Gianluca Coppola
- Sapienza University of Rome Polo Pontino, Department of Medico-Surgical Sciences and Biotechnologies, Latina, Italy
| |
Collapse
|
19
|
Dissecting neuropathic from poststroke pain: the white matter within. Pain 2022; 163:765-778. [PMID: 35302975 DOI: 10.1097/j.pain.0000000000002427] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT Poststroke pain (PSP) is a heterogeneous term encompassing both central neuropathic (ie, central poststroke pain [CPSP]) and nonneuropathic poststroke pain (CNNP) syndromes. Central poststroke pain is classically related to damage in the lateral brainstem, posterior thalamus, and parietoinsular areas, whereas the role of white matter connecting these structures is frequently ignored. In addition, the relationship between stroke topography and CNNP is not completely understood. In this study, we address these issues comparing stroke location in a CPSP group of 35 patients with 2 control groups: 27 patients with CNNP and 27 patients with stroke without pain. Brain MRI images were analyzed by 2 complementary approaches: an exploratory analysis using voxel-wise lesion symptom mapping, to detect significant voxels damaged in CPSP across the whole brain, and a hypothesis-driven, region of interest-based analysis, to replicate previously reported sites involved in CPSP. Odds ratio maps were also calculated to demonstrate the risk for CPSP in each damaged voxel. Our exploratory analysis showed that, besides known thalamic and parietoinsular areas, significant voxels carrying a high risk for CPSP were located in the white matter encompassing thalamoinsular connections (one-tailed threshold Z > 3.96, corrected P value <0.05, odds ratio = 39.7). These results show that the interruption of thalamocortical white matter connections is an important component of CPSP, which is in contrast with findings from nonneuropathic PSP and from strokes without pain. These data can aid in the selection of patients at risk to develop CPSP who could be candidates to pre-emptive or therapeutic interventions.
Collapse
|
20
|
Lötsch J, Oertel BG, Felden L, Nöth U, Deichmann R, Hummel T, Walter C. Central encoding of the strength of intranasal chemosensory trigeminal stimuli in a human experimental pain setting. Hum Brain Mapp 2020; 41:5240-5254. [PMID: 32870583 PMCID: PMC7670645 DOI: 10.1002/hbm.25190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/29/2022] Open
Abstract
An important measure in pain research is the intensity of nociceptive stimuli and their cortical representation. However, there is evidence of different cerebral representations of nociceptive stimuli, including the fact that cortical areas recruited during processing of intranasal nociceptive chemical stimuli included those outside the traditional trigeminal areas. Therefore, the aim of this study was to investigate the major cerebral representations of stimulus intensity associated with intranasal chemical trigeminal stimulation. Trigeminal stimulation was achieved with carbon dioxide presented to the nasal mucosa. Using a single-blinded, randomized crossover design, 24 subjects received nociceptive stimuli with two different stimulation paradigms, depending on the just noticeable differences in the stimulus strengths applied. Stimulus-related brain activations were recorded using functional magnetic resonance imaging with event-related design. Brain activations increased significantly with increasing stimulus intensity, with the largest cluster at the right Rolandic operculum and a global maximum in a smaller cluster at the left lower frontal orbital lobe. Region of interest analyses additionally supported an activation pattern correlated with the stimulus intensity at the piriform cortex as an area of special interest with the trigeminal input. The results support the piriform cortex, in addition to the secondary somatosensory cortex, as a major area of interest for stimulus strength-related brain activation in pain models using trigeminal stimuli. This makes both areas a primary objective to be observed in human experimental pain settings where trigeminal input is used to study effects of analgesics.
Collapse
Affiliation(s)
- Jörn Lötsch
- Institute of Clinical PharmacologyGoethe – UniversityFrankfurt am MainGermany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEBranch for Translational Medicine and Pharmacology TMPFrankfurt am MainGermany
| | - Bruno G. Oertel
- Institute of Clinical PharmacologyGoethe – UniversityFrankfurt am MainGermany
| | - Lisa Felden
- Institute of Clinical PharmacologyGoethe – UniversityFrankfurt am MainGermany
| | - Ulrike Nöth
- Brain Imaging CenterGoethe – UniversityFrankfurt am MainGermany
| | - Ralf Deichmann
- Brain Imaging CenterGoethe – UniversityFrankfurt am MainGermany
| | - Thomas Hummel
- Smell & Taste Clinic, Department of OtorhinolaryngologyTU DresdenDresdenGermany
| | - Carmen Walter
- Institute of Clinical PharmacologyGoethe – UniversityFrankfurt am MainGermany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEBranch for Translational Medicine and Pharmacology TMPFrankfurt am MainGermany
| |
Collapse
|
21
|
De Ridder D, Vanneste S. The Bayesian brain in imbalance: Medial, lateral and descending pathways in tinnitus and pain: A perspective. PROGRESS IN BRAIN RESEARCH 2020; 262:309-334. [PMID: 33931186 DOI: 10.1016/bs.pbr.2020.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tinnitus and pain share similarities in their anatomy, pathophysiology, clinical picture and treatments. Based on what is known in the pain field, a heuristic model can be proposed for the pathophysiolgy of tinnitus. This heuristic pathophysiological model suggests that pain and tinnitus are the consequence of an imbalance between two pain/tinnitus evoking pathways, i.e., a lateral sensory pathway and a medial affective pathway, both of which are not balanced anymore by a pain/noise inhibitory pathway. Mechanistically, based on the Bayesian brain concept, it can be explained by a switch occuring under influence of the rostral to dorsal anterior cingulate cortex of its prior predictions, i.e., a reference resetting, in which the pain/tinnitus state is considered as the new reference state. This reference resetting is confirmed by the nucleus accumbens as part of the reward system and maintained by connectivity changes between the nucleus accumbens and the pregenual anterior cingulate cortex. As a consequence it can be suggested to treat pain/tinnitus via reconditioning, either surgically or non-surgically. The model can also be used to develop objective measures for tinnitus and pain via supervised machine learning.
Collapse
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Sven Vanneste
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
McMorris T. Cognitive Fatigue Effects on Physical Performance: The Role of Interoception. Sports Med 2020; 50:1703-1708. [DOI: 10.1007/s40279-020-01320-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Wan L, Li Z, Liu T, Chen X, Xu Q, Yao W, Zhang C, Zhang Y. Epoxyeicosatrienoic acids: Emerging therapeutic agents for central post-stroke pain. Pharmacol Res 2020; 159:104923. [PMID: 32461186 DOI: 10.1016/j.phrs.2020.104923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 01/23/2023]
Abstract
Central post-stroke pain (CPSP) is chronic neuropathic pain due to a lesion or dysfunction of the central nervous system following cerebrovascular insult. This syndrome is characterized by chronic somatosensory abnormalities including spontaneous pain, hyperalgesia and allodynia, which localize to body areas corresponding to the injured brain region. However, despite its potential to impair activities of daily life and cause mood disorders after stroke, it is probably the least recognized complication of stroke. All currently approved treatments for CPSP have limited efficacy but troublesome side effects. The detailed mechanism underlying CPSP is still under investigation; however, its diverse clinical features indicate excessive central neuronal excitability, which is attributed to loss of inhibition and excessive neuroinflammation. Recently, exogenous epoxyeicosatrienoic acids (EETs) have been used to attenuate the mechanical allodynia in CPSP rats and proven to provide a quicker onset and superior pain relief compared to the current first line drug gabapentin. This anti-nociceptive effect is mediated by reserving the normal thalamic inhibition state through neurosteroid-GABA signaling. Moreover, mounting evidence has revealed that EETs exert anti-inflammatory effects by inhibiting the expression of vascular adhesion molecules, activating NFκB, inflammatory cytokines secretion and COX-2 gene induction. The present review focuses on the extensive evidence supporting the potential of EETs to be a multi-functional therapeutic approach for CPSP. Additionally, the role of EETs in the crosstalk between anti-CPSP and the comorbid mood disorder is reviewed herein.
Collapse
Affiliation(s)
- Li Wan
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zuofan Li
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongtong Liu
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuhui Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiaoqiao Xu
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenlong Yao
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chuanhan Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yue Zhang
- Department of Anaesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
24
|
|
25
|
Oishi K, Mori S, Troncoso JC, Lenz FA. Mapping tracts in the human subthalamic area by 11.7T ex vivo diffusion tensor imaging. Brain Struct Funct 2020; 225:1293-1312. [PMID: 32303844 PMCID: PMC7584118 DOI: 10.1007/s00429-020-02066-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023]
Abstract
The cortico-basal ganglia-thalamo-cortical feedback loops that consist of distinct white matter pathways are important for understanding in vivo imaging studies of functional and anatomical connectivity, and for localizing subthalamic white matter structures in surgical approaches for movement disorders, such as Parkinson's disease. Connectomic analysis in animals has identified fiber connections between the basal ganglia and thalamus, which pass through the fields of Forel, where other fiber pathways related to motor, sensory, and cognitive functions co-exist. We now report these pathways in the human brain on ex vivo mesoscopic (250 μm) diffusion tensor imaging and on tractography. The locations of the tracts were identified relative to the adjacent gray matter structures, such as the internal and external segments of the globus pallidus; the zona incerta; the subthalamic nucleus; the substantia nigra pars reticulata and compacta; and the thalamus. The connectome atlas of the human subthalamic region may serve as a resource for imaging studies and for neurosurgical planning.
Collapse
Affiliation(s)
- Kenichi Oishi
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Ave., Baltimore, MD, 21205, USA.
| | - Susumu Mori
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 208 Traylor Building, 720 Rutland Ave., Baltimore, MD, 21205, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederick A Lenz
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Meyer 8181 Neurosurgery, 600 North Wolfe Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
26
|
Cui WQ, Zhang WW, Chen T, Li Q, Xu F, Mao-Ying QL, Mi WL, Wang YQ, Chu YX. Tacr3 in the lateral habenula differentially regulates orofacial allodynia and anxiety-like behaviors in a mouse model of trigeminal neuralgia. Acta Neuropathol Commun 2020; 8:44. [PMID: 32264959 PMCID: PMC7137530 DOI: 10.1186/s40478-020-00922-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/26/2020] [Indexed: 11/24/2022] Open
Abstract
Trigeminal neuralgia (TN) is debilitating and is usually accompanied by mood disorders. The lateral habenula (LHb) is considered to be involved in the modulation of pain and mood disorders, and the present study aimed to determine if and how the LHb participates in the development of pain and anxiety in TN. To address this issue, a mouse model of partial transection of the infraorbital nerve (pT-ION) was established. pT-ION induced stable and long-lasting primary and secondary orofacial allodynia and anxiety-like behaviors that correlated with the increased excitability of LHb neurons. Adeno-associated virus (AAV)-mediated expression of hM4D(Gi) in glutamatergic neurons of the unilateral LHb followed by clozapine-N-oxide application relieved pT-ION-induced anxiety-like behaviors but not allodynia. Immunofluorescence validated the successful infection of AAV in the LHb, and microarray analysis showed changes in gene expression in the LHb of mice showing allodynia and anxiety-like behaviors after pT-ION. Among these differentially expressed genes was Tacr3, the downregulation of which was validated by RT-qPCR. Rescuing the downregulation of Tacr3 by AAV-mediated Tacr3 overexpression in the unilateral LHb significantly reversed pT-ION-induced anxiety-like behaviors but not allodynia. Whole-cell patch clamp recording showed that Tacr3 overexpression suppressed nerve injury-induced hyperexcitation of LHb neurons, and western blotting showed that the pT-ION-induced upregulation of p-CaMKII was reversed by AAV-mediated Tacr3 overexpression or chemicogenetic inhibition of glutamatergic neurons in the LHb. Moreover, not only anxiety-like behaviors, but also allodynia after pT-ION were significantly alleviated by chemicogenetic inhibition of bilateral LHb neurons or by bilateral Tacr3 overexpression in the LHb. In conclusion, Tacr3 in the LHb plays a protective role in treating trigeminal nerve injury-induced allodynia and anxiety-like behaviors by suppressing the hyperexcitability of LHb neurons. These findings provide a rationale for suppressing unilateral or bilateral LHb activity by targeting Tacr3 in treating the anxiety and pain associated with TN.
Collapse
|
27
|
Vedantam A, Bruera E, Hess KR, Dougherty PM, Viswanathan A. Somatotopy and Organization of Spinothalamic Tracts in the Human Cervical Spinal Cord. Neurosurgery 2020; 84:E311-E317. [PMID: 30011044 DOI: 10.1093/neuros/nyy330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 06/20/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Understanding spinothalamic tract anatomy may improve lesioning and outcomes in patients undergoing percutaneous cordotomy. OBJECTIVE To investigate somatotopy and anatomical organization of spinothalamic tracts in the human cervical spinal cord. METHODS Patients with intractable cancer pain undergoing cordotomy underwent preoperative and postoperative quantitative sensory testing for sharp pain and heat pain on day 1 and 7 after cordotomy. Intraoperative sensory stimulation was performed with computed tomography (CT) imaging to confirm the location of the radiofrequency electrode during cordotomy. Postoperative magnetic resonance (MR) imaging was performed to define the location of the lesion. RESULTS Twelve patients were studied, and intraoperative sensory stimulation combined with CT imaging revealed a somatotopy where fibers from the legs were posterolateral to fibers from the hand. Sharpness detection thresholds were significantly elevated in the area of maximum pain on postoperative day 1 (P = .01). Heat pain thresholds for all areas were not elevated significantly on postoperative day 1, or postoperative day 7. MR imaging confirmed that the cordotomy lesion was in the anterolateral quadrant, and in this location the lesion had a sustained effect on sharp pain but a transient impact on heat pain. CONCLUSION In the high cervical spinal cord, spinothalamic fibers mediating sharp pain for the arms are located ventromedial to fibers for the legs, and these fibers are spatially distinct from fibers that mediate heat pain.
Collapse
Affiliation(s)
- Aditya Vedantam
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Eduardo Bruera
- Department of Palliative Care and Rehabilitation Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kenneth R Hess
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M Dougherty
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
28
|
Henssen D, Giesen E, van der Heiden M, Kerperien M, Lange S, van Cappellen van Walsum AM, Kurt E, van Dongen R, Schutter D, Vissers K. A systematic review of the proposed mechanisms underpinning pain relief by primary motor cortex stimulation in animals. Neurosci Lett 2020; 719:134489. [DOI: 10.1016/j.neulet.2019.134489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 06/28/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023]
|
29
|
Mayer A, Lewenfus G, Bittencourt-Navarrete RE, Clasca F, Franca JGD. Thalamic Inputs to Posterior Parietal Cortical Areas Involved in Skilled Forelimb Movement and Tool Use in the Capuchin Monkey. Cereb Cortex 2019; 29:5098-5115. [PMID: 30888415 DOI: 10.1093/cercor/bhz051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/09/2019] [Accepted: 02/22/2019] [Indexed: 12/27/2022] Open
Abstract
The posterior parietal cortex (PPC) is a central hub for the primate forebrain networks that control skilled manual behavior, including tool use. Here, we quantified and compared the sources of thalamic input to electrophysiologically-identified hand/forearm-related regions of several PPC areas, namely areas 5v, AIP, PFG, and PF, of the capuchin monkey (Sapajus sp). We found that these areas receive most of their thalamic connections from the Anterior Pulvinar (PuA), Lateral Posterior (LP) and Medial Pulvinar (PuM) nuclei. Each PPC area receives a specific combination of projections from these nuclei, and fewer additional projections from other nuclei. Moreover, retrograde labeling of the cells innervating different PPC areas revealed substantial intermingling of these cells within the thalamus. Differences in thalamic input may contribute to the different functional properties displayed by the PPC areas. Furthermore, the observed innervation of functionally-related PPC domains from partly intermingled thalamic cell populations accords with the notion that higher-order thalamic inputs may dynamically regulate functional connectivity between cortical areas.
Collapse
Affiliation(s)
- Andrei Mayer
- Department of Physiological Sciences, Federal University of Santa Catarina, 88040-900, Santa Catarina, Brazil
| | - Gabriela Lewenfus
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| | | | - Francisco Clasca
- Department of Anatomy & Neuroscience, Autonoma University, Madrid, 28029 Spain
| | - João Guedes da Franca
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Abstract
Long perceived as a primitive and poorly differentiated brain structure, the primate insular cortex recently emerged as a highly evolved, organized and richly connected cortical hub interfacing bodily states with sensorimotor, environmental, and limbic activities. This insular interface likely substantiates emotional embodiment and has the potential to have a key role in the interoceptive shaping of cognitive processes, including perceptual awareness. In this review, we present a novel working model of the insular cortex, based on an accumulation of neuroanatomical and functional evidence obtained essentially in the macaque monkey. This model proposes that interoceptive afferents that represent the ongoing physiological status of all the organs of the body are first being received in the granular dorsal fundus of the insula or “primary interoceptive cortex,” then processed through a series of dysgranular poly-modal “insular stripes,” and finally integrated in anterior agranular areas that serve as an additional sensory platform for visceral functions and as an output stage for efferent autonomic regulation. One of the agranular areas hosts the specialized von Economo and Fork neurons, which could provide a decisive evolutionary advantage for the role of the anterior insula in the autonomic and emotional binding inherent to subjective awareness.
Collapse
Affiliation(s)
- Henry C Evrard
- Functional and Comparative Neuroanatomy Laboratory, Werner Reichardt Center for Integrative Neuroscience, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
31
|
Chao THH, Chen JH, Yen CT. Plasticity changes in forebrain activity and functional connectivity during neuropathic pain development in rats with sciatic spared nerve injury. Mol Brain 2018; 11:55. [PMID: 30285801 PMCID: PMC6167811 DOI: 10.1186/s13041-018-0398-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023] Open
Abstract
Neuropathic pain is a major worldwide health problem. Although central sensitization has been reported in well-established neuropathic conditions, information on the acute brain activation patterns in response to peripheral nerve injury is lacking. This study first mapped the brain activity in rats immediately following spared nerve injury (SNI) of the sciatic nerve. Using blood-oxygenation-level-dependent functional magnetic resonance imaging (BOLD-fMRI), we observed sustained activation in the bilateral insular cortices (ICs), primary somatosensory cortex (S1), and cingulate cortex. Second, this study sought to link this sustained activation pattern with brain sensitization. Using manganese-enhanced magnetic resonance imaging (MEMRI), we observed enhanced activity in the ipsilateral anterior IC (AIC) in free-moving SNI rats on Days 1 and 8 post-SNI. Furthermore, enhanced functional connectivity between the ipsilateral AIC, bilateral rostral AIC, and S1 was observed on Day 8 post-SNI. Chronic electrophysiological recording experiments were conducted to confirm the tonic neuronal activation in selected brain regions. Our data provide evidence of tonic activation-dependent brain sensitization during neuropathic pain development and offer evidence that the plasticity changes in the IC and S1 may contribute to neuropathic pain development.
Collapse
Affiliation(s)
- Tzu-Hao Harry Chao
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Jyh-Horng Chen
- Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Chen-Tung Yen
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 10617, Taiwan.
| |
Collapse
|
32
|
McMorris T, Barwood M, Corbett J. Central fatigue theory and endurance exercise: Toward an interoceptive model. Neurosci Biobehav Rev 2018; 93:93-107. [DOI: 10.1016/j.neubiorev.2018.03.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/15/2018] [Accepted: 03/22/2018] [Indexed: 12/20/2022]
|
33
|
Moayedi M, Salomons TV, Atlas LY. Pain Neuroimaging in Humans: A Primer for Beginners and Non-Imagers. THE JOURNAL OF PAIN 2018; 19:961.e1-961.e21. [PMID: 29608974 PMCID: PMC6192705 DOI: 10.1016/j.jpain.2018.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/22/2018] [Accepted: 03/19/2018] [Indexed: 01/06/2023]
Abstract
Human pain neuroimaging has exploded in the past 2 decades. During this time, the broader neuroimaging community has continued to investigate and refine methods. Another key to progress is exchange with clinicians and pain scientists working with other model systems and approaches. These collaborative efforts require that non-imagers be able to evaluate and assess the evidence provided in these reports. Likewise, new trainees must design rigorous and reliable pain imaging experiments. In this article we provide a guideline for designing, reading, evaluating, analyzing, and reporting results of a pain neuroimaging experiment, with a focus on functional and structural magnetic resonance imaging. We focus in particular on considerations that are unique to neuroimaging studies of pain in humans, including study design and analysis, inferences that can be drawn from these studies, and the strengths and limitations of the approach.
Collapse
Affiliation(s)
- Massieh Moayedi
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada; University of Toronto Centre for the Study of Pain, University of Toronto, Toronto, Ontario, Canada; Department of Dentistry, Mount Sinai Hospital, Toronto, Ontario, Canada.
| | - Tim V Salomons
- School of Psychology and Clinical Language Science, University of Reading, Reading, UK; Centre for Integrated Neuroscience and Neurodynamics, University of Reading, Reading, UK
| | - Lauren Y Atlas
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland; National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
34
|
|
35
|
Bud Craig AD. Central neural substrates involved in temperature discrimination, thermal pain, thermal comfort, and thermoregulatory behavior. HANDBOOK OF CLINICAL NEUROLOGY 2018; 156:317-338. [PMID: 30454598 DOI: 10.1016/b978-0-444-63912-7.00019-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A phylogenetically novel pathway that emerged with primate encephalization is described, which conveys high-fidelity cutaneous thermosensory activity in "labeled lines" to a somatotopic map in the dorsal posterior insular cortex. It originates in lamina I of the superficial dorsal horn and ascends by way of the lateral spinothalamic tract and a distinct region in posterolateral thalamus. It evolved from the homeostatic sensory activity that represents the physiologic (interoceptive) condition of the body and drives the central autonomic network, which underlies all affective feelings from the body. Accordingly, human discriminative thermal sensations are accompanied by thermally motivated behaviors and thermal feelings of comfort or discomfort (unless neutral), which evidence suggests are associated with activity in the insular, cingulate, and orbitofrontal cortices, respectively. Yet, the substrates for thermoregulatory behavior have not been established, and several strong candidates (including the hypothalamus and the bed nucleus of the stria terminalis) are discussed. Finally, the neural underpinnings for relationships between thermal affect and social feelings (warm-positive/cold-negative) are addressed, including the association of hyperthermia with clinical depression.
Collapse
Affiliation(s)
- Arthur D Bud Craig
- Atkinson Research Laboratory, Barrow Neurological Institute, Phoenix, AZ, United States.
| |
Collapse
|
36
|
Moon HC, Park YS. Reduced GABAergic neuronal activity in zona incerta causes neuropathic pain in a rat sciatic nerve chronic constriction injury model. J Pain Res 2017; 10:1125-1134. [PMID: 28546770 PMCID: PMC5436785 DOI: 10.2147/jpr.s131104] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The zona incerta (ZI) is below the ventral tier of the thalamus and has a strong influence selectively in higher-order thalamic relays. Although neuropathic pain has been suggested to result from reduced gamma-aminobutyric acid (GABA) and GABAergic signaling in the ZI, the mechanisms remain unclear. Here, the role of GABA and GABAergic signaling was investigated in the ZI in neuropathic pain using sciatic nerve chronic constriction injury (CCI) rats. MATERIALS AND METHODS Single-unit neuronal activity was recorded, and microdialysis was performed in the ZI of CCI rats and sham-treated rats in vivo. This study also compared ZI neuronal activity after treatment with saline, the GABAA receptor agonist (muscimol), or the GABAA receptor antagonist (bicuculline). RESULTS AND CONCLUSION CCI rats exhibited hypersensitivity to pain as evidenced by decreased hind paw withdrawal threshold and latency. CCI rats also showed reduced GABA level and decreased neuronal activity in the ZI compared with sham-treated rats. Treatment with GABAA receptor agonist, but not GABAA receptor antagonist, ameliorated pain hypersensitivity and increased the firing rate (spikes/s) of ZI neurons in CCI rats.
Collapse
Affiliation(s)
| | - Young Seok Park
- Department of Medical Neuroscience
- Department of Neurosurgery, Neurofuture Laboratory, College of Medicine, Chungbuk National University Hospital, Cheongju-si, Chungbuk, Republic of Korea
| |
Collapse
|
37
|
De Ridder D, Vanneste S. Occipital Nerve Field Transcranial Direct Current Stimulation Normalizes Imbalance Between Pain Detecting and Pain Inhibitory Pathways in Fibromyalgia. Neurotherapeutics 2017; 14:484-501. [PMID: 28004273 PMCID: PMC5398977 DOI: 10.1007/s13311-016-0493-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Occipital nerve field (OCF) stimulation with subcutaneously implanted electrodes is used to treat headaches, more generalized pain, and even failed back surgery syndrome via unknown mechanisms. Transcranial direct current stimulation (tDCS) can predict the efficacy of implanted electrodes. The purpose of this study is to unravel the neural mechanisms involved in global pain suppression, mediated by occipital nerve field stimulation, within the realm of fibromyalgia. Nineteen patients with fibromyalgia underwent a placebo-controlled OCF tDCS. Electroencephalograms were recorded at baseline after active and sham stimulation. In comparison with healthy controls, patients with fibromyalgia demonstrate increased dorsal anterior cingulate cortex, increased premotor/dorsolateral prefrontal cortex activity, and an imbalance between pain-detecting dorsal anterior cingulate cortex and pain-suppressing pregenual anterior cingulate cortex activity, which is normalized after active tDCS but not sham stimulation associated with increased pregenual anterior cingulate cortex activation. The imbalance improvement between the pregenual anterior cingulate cortex and the dorsal anterior cingulate cortex is related to clinical changes. An imbalance assumes these areas communicate and, indeed, abnormal functional connectivity between the dorsal anterior cingulate cortex and pregenual anterior cingulate cortex is noted to be caused by a dysfunctional effective connectivity from the pregenual anterior cingulate cortex to the dorsal anterior cingulate cortex, which improves and normalizes after real tDCS but not sham tDCS. In conclusion, OCF tDCS exerts its effect via activation of the descending pain inhibitory pathway and de-activation of the salience network, both of which are abnormal in fibromyalgia.
Collapse
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- BRAI2N, Sint Augustinus Hospital Antwerp, Antwerp, Belgium
| | - Sven Vanneste
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
- BRAI2N, Sint Augustinus Hospital Antwerp, Antwerp, Belgium.
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, TX, USA.
| |
Collapse
|
38
|
Saito H, Katagiri A, Okada S, Mikuzuki L, Kubo A, Suzuki T, Ohara K, Lee J, Gionhaku N, Iinuma T, Bereiter DA, Iwata K. Ascending projections of nociceptive neurons from trigeminal subnucleus caudalis: A population approach. Exp Neurol 2017; 293:124-136. [PMID: 28366470 DOI: 10.1016/j.expneurol.2017.03.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/25/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022]
Abstract
Second-order neurons in trigeminal subnucleus caudalis (Vc) and upper cervical spinal cord (C1) are critical for craniofacial pain processing and project rostrally to terminate in: ventral posteromedial thalamic nucleus (VPM), medial thalamic nuclei (MTN) and parabrachial nuclei (PBN). The contribution of each region to trigeminal nociception was assessed by the number of phosphorylated extracellular signal-regulated kinase-immunoreactive (pERK-IR) neurons co-labeled with fluorogold (FG). The phenotype of pERK-IR neurons was further defined by the expression of neurokinin 1 receptor (NK1). The retrograde tracer FG was injected into VPM, MTN or PBN of the right hemisphere and after seven days, capsaicin was injected into the left upper lip in male rats. Nearly all pERK-IR neurons were found in superficial laminae of Vc-C1 ipsilateral to the capsaicin injection. Nearly all VPM and MTN FG-labeled neurons in Vc-C1 were found contralateral to the injection site, whereas FG-labeled neurons were found bilaterally after PBN injection. The percentage of FG-pERK-NK1-IR neurons was significantly greater (>10%) for PBN projection neurons than for VPM and MTN projection neurons (<3%). pERK-NK1-IR VPM projection neurons were found mainly in the middle-Vc, while pERK-NK1-immunoreactive MTN or PBN projection neurons were found in the middle-Vc and caudal Vc-C1. These results suggest that a significant percentage of capsaicin-responsive neurons in superficial laminae of Vc-C1 project directly to PBN, while neurons that project to VPM and MTN are subject to greater modulation by pERK-IR local interneurons. Furthermore, the rostrocaudal distribution differences of FG-pERK-NK1-IR neurons in Vc-C1 may reflect functional differences between these projection areas regarding craniofacial pain.
Collapse
Affiliation(s)
- Hiroto Saito
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Shinji Okada
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Lou Mikuzuki
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Psychosomatic Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Tatsuro Suzuki
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan; Department of Periodontology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Nobuhito Gionhaku
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - David A Bereiter
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA.
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| |
Collapse
|
39
|
Strigo IA, Craig ADB. Interoception, homeostatic emotions and sympathovagal balance. Philos Trans R Soc Lond B Biol Sci 2016; 371:20160010. [PMID: 28080968 PMCID: PMC5062099 DOI: 10.1098/rstb.2016.0010] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2016] [Indexed: 12/16/2022] Open
Abstract
We briefly review the evidence for distinct neuroanatomical substrates that underlie interoception in humans, and we explain how they substantialize feelings from the body (in the insular cortex) that are conjoined with homeostatic motivations that guide adaptive behaviours (in the cingulate cortex). This hierarchical sensorimotor architecture coincides with the limbic cortical architecture that underlies emotions, and thus we regard interoceptive feelings and their conjoint motivations as homeostatic emotions We describe how bivalent feelings, emotions and sympathovagal balance can be organized and regulated efficiently in the bicameral forebrain as asymmetric positive/negative, approach/avoidance and parasympathetic/sympathetic components. We provide original evidence supporting this organization from studies of cardiorespiratory vagal activity in monkeys and functional imaging studies in healthy humans showing activation modulated by paced breathing and passively viewed emotional images. The neuroanatomical architecture of interoception provides deep insight into the functional organization of all emotional feelings and behaviours in humans.This article is part of the themed issue 'Interoception beyond homeostasis: affect, cognition and mental health'.
Collapse
Affiliation(s)
- Irina A Strigo
- Research Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA 94121, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA 94121, USA
| | - Arthur D Bud Craig
- Neurosurgery Research, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| |
Collapse
|
40
|
Abstract
INTRODUCTION Recent advances regarding mechanisms of chronic pain emphasize the role of corticolimbic circuitry in predicting risk for chronic pain, independently from site of injury-related parameters. These results compel revisiting the role of peripheral nociceptive signaling in chronic pain. We address this issue by examining what brain circuitry transmit information regarding the intensity of chronic pain and how this information may be related to a common co-morbidity, depression. METHODS Resting state functional MRI was used in a large group of chronic pain patients (n=40 chronic back pain, CBP, and n=44 osteoarthritis, OA patients), and in comparison to healthy subjects (n=88). We used a graph theoretical measure, degree count, to investigate voxel-wise information sharing/transmission in the brain. Degree count, a functional connectivity based measure, identifies the number of voxels functionally connected to every given voxel. Subdividing the chronic pain cohort into discovery, replication, and also for overall group we show that only degree counts of diencephalic voxels centered in the ventral lateral thalamus reflected intensity of chronic pain, independently of depression. RESULTS Pain intensity was reliably associated with degree count of the thalamus, which was correlated negatively with components of the default mode network and positively with the periaqueductal grey (in contrast to healthy controls). Depression scores were not reliably associated with regional degree count. CONCLUSION Collectively the results suggest that, across two types of chronic pain, nociceptive specific information is relayed through the spinothalamic pathway to the lateral thalamus, potentiated by pro-nociceptive descending modulation, and interrupting cortical cognitive processes.
Collapse
|
41
|
Porcaro C, Di Lorenzo G, Seri S, Pierelli F, Tecchio F, Coppola G. Impaired brainstem and thalamic high-frequency oscillatory EEG activity in migraine between attacks. Cephalalgia 2016; 37:915-926. [DOI: 10.1177/0333102416657146] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction We investigated whether interictal thalamic dysfunction in migraine without aura (MO) patients is a primary determinant or the expression of its functional disconnection from proximal or distal areas along the somatosensory pathway. Methods Twenty MO patients and twenty healthy volunteers (HVs) underwent an electroencephalographic (EEG) recording during electrical stimulation of the median nerve at the wrist. We used the functional source separation algorithm to extract four functionally constrained nodes (brainstem, thalamus, primary sensory radial, and primary sensory motor tangential parietal sources) along the somatosensory pathway. Two digital filters (1–400 Hz and 450–750 Hz) were applied in order to extract low- (LFO) and high- frequency (HFO) oscillatory activity from the broadband signal. Results Compared to HVs, patients presented significantly lower brainstem (BS) and thalamic (Th) HFO activation bilaterally. No difference between the two cortical HFO as well as in LFO peak activations between the two groups was seen. The age of onset of the headache was positively correlated with HFO power in the right brainstem and thalamus. Conclusions This study provides evidence for complex dysfunction of brainstem and thalamocortical networks under the control of genetic factors that might act by modulating the severity of migraine phenotype.
Collapse
Affiliation(s)
- Camillo Porcaro
- LET’S-ISTC-CNR, Ospedale Fatebenefratelli, Isola Tiberina, Rome, Italy
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Giorgio Di Lorenzo
- Laboratory of Psychophysiology, Psychiatric Chair, Department of Systems Medicine, University of Rome ‘Tor Vergata’, Rome, Italy
- Psychiatry and Clinical Psychology Unit, Department of Neurosciences, Fondazione Policlinico ‘Tor Vergata’, Rome, Italy
| | - Stefano Seri
- The Wellcome Trust Laboratory for MEG Studies, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Francesco Pierelli
- Sapienza University of Rome Polo Pontino, Latina and IRCCS Neuromed, Pozzilli (IS), Italy
| | - Franca Tecchio
- LET’S-ISTC-CNR, Ospedale Fatebenefratelli, Isola Tiberina, Rome, Italy
| | - Gianluca Coppola
- G.B. Bietti Foundation IRCCS, Department of Neurophysiology of Vision and Neurophthalmology, Rome, Italy
| |
Collapse
|
42
|
De Ridder D, Vanneste S. Burst and Tonic Spinal Cord Stimulation: Different and Common Brain Mechanisms. Neuromodulation 2015; 19:47-59. [DOI: 10.1111/ner.12368] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/05/2015] [Accepted: 09/24/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery; Dunedin School of Medicine; University of Otago; Dunedin New Zealand
| | - Sven Vanneste
- Lab for Clinical & Integrative Neuroscience; School of Behavioral and Brain Sciences; The University of Texas at Dallas; Dallas TX USA
| |
Collapse
|
43
|
Abstract
Visceral pain is diffusely localized, referred into other tissues, frequently not correlated with visceral traumata, preferentially accompanied by autonomic and somatomotor reflexes, and associated with strong negative affective feelings. It belongs together with the somatic pain sensations and non-painful body sensations to the interoception of the body. (1) Visceral pain is correlated with the excitation of spinal (thoracolumbar, sacral) visceral afferents and (with a few exceptions) not with the excitation of vagal afferents. Spinal visceral afferents are polymodal and activated by adequate mechanical and chemical stimuli. All groups of spinal visceral afferents can be sensitized (e.g., by inflammation). Silent mechanoinsensitive spinal visceral afferents are recruited by inflammation. (2) Spinal visceral afferent neurons project into the laminae I, II (outer part IIo) and V of the spinal dorsal horn over several segments, medio-lateral over the whole width of the dorsal horn and contralateral. Their activity is synaptically transmitted in laminae I, IIo and deeper laminae to viscero-somatic convergent neurons that receive additionally afferent synaptic (mostly nociceptive) input from the skin and from deep somatic tissues of the corresponding dermatomes, myotomes and sclerotomes. (3) The second-order neurons consist of excitatory and inhibitory interneurons (about 90 % of all dorsal horn neurons) and tract neurons activated monosynaptically in lamina I by visceral afferent neurons and di- or polysynaptically in deeper laminae. (4) The sensitization of viscero-somatic convergent neurons (central sensitization) is dependent on the sensitization of spinal visceral afferent neurons, local spinal excitatory and inhibitory interneurons and supraspinal endogenous control systems. The mechanisms of this central sensitization have been little explored. (5) Viscero-somatic tract neurons project through the contralateral ventrolateral tract and presumably other tracts to the lower and upper brain stem, the hypothalamus and via the thalamus to various cortical areas. (6) Visceral pain is presumably (together with other visceral sensations and nociceptive as well as non-nociceptive somatic body sensations) primarily represented in the posterior dorsal insular cortex (primary interoceptive cortex). This cortex receives in primates its spinal synaptic inputs mainly from lamina I tract neurons via the ventromedial posterior nucleus of the thalamus. (7) The transmission of activity from visceral afferents to second-order neurons in spinal cord is modulated in an excitatory and inhibitory way by endogenous anti- and pronociceptive control systems in the lower and upper brain stem. These control systems are under cortical control. (8) Visceral pain is referred to deep somatic tissues, to the skin and to other visceral organs. This referred pain consists of spontaneous pain and mechanical hyperalgesia. The mechanisms underlying referred pain and the accompanying tissue changes have been little explored.
Collapse
Affiliation(s)
- W Jänig
- Physiologisches Institut, Christian-Albrechts-Universität, Olshausenstr. 40, 24098, Kiel, Deutschland,
| |
Collapse
|
44
|
Bastuji H, Frot M, Mazza S, Perchet C, Magnin M, Garcia-Larrea L. Thalamic Responses to Nociceptive-Specific Input in Humans: Functional Dichotomies and Thalamo-Cortical Connectivity. Cereb Cortex 2015; 26:2663-76. [DOI: 10.1093/cercor/bhv106] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
45
|
Anatomical changes at the level of the primary synapse in neuropathic pain: evidence from the spinal trigeminal nucleus. J Neurosci 2015; 35:2508-15. [PMID: 25673845 DOI: 10.1523/jneurosci.3756-14.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulated evidence from experimental animal models suggests that neuronal loss within the dorsal horn is involved in the development and/or maintenance of peripheral neuropathic pain. However, to date, no study has specifically investigated whether such neuroanatomical changes also occur at this level in humans. Using brain imaging techniques, we sought to determine whether anatomical changes were present in the spinal trigeminal nucleus in subjects with chronic orofacial neuropathic pain. In 22 subjects with painful trigeminal neuropathy and 44 pain-free controls, voxel-based morphometry of T1-weighted anatomical images and diffusion tensor images were used to assess regional gray matter volume and microstructural changes within the brainstem. In addition, deterministic tractography was used to assess the integrity of ascending pain pathways. Orofacial neuropathic pain was associated with significant regional gray matter volume decreases, fractional anisotropy increases, and mean diffusivity decreases within the spinal trigeminal nucleus, specifically the subnucleus oralis. In addition, tractography revealed no significant differences in diffusivity properties in the root entry zone of the trigeminal nerve, the spinal trigeminal tract, or the ventral trigeminothalamic tracts in painful trigeminal neuropathy subjects compared with controls. These data reveal that chronic neuropathic pain in humans is associated with discrete alterations in the anatomy of the primary synapse. These neuroanatomical changes may be critical for the generation and/or maintenance of pathological pain.
Collapse
|
46
|
|
47
|
Park A, Hoffman K, Keller A. Roles of GABAA and GABAB receptors in regulating thalamic activity by the zona incerta: a computational study. J Neurophysiol 2014; 112:2580-96. [PMID: 25143541 DOI: 10.1152/jn.00282.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The posterior thalamic nucleus (PO) is a higher order nucleus heavily implicated in the processing of somatosensory information. We have previously shown in rodent models that activity in PO is tightly regulated by inhibitory inputs from a GABAergic nucleus known as the zona incerta (ZI). The level of incertal inhibition varies under both physiological and pathological conditions, leading to concomitant changes in PO activity. These changes are causally linked to variety of phenomena from altered sensory perception to pathological pain. ZI regulation of PO is mediated by GABAA and GABAB receptors (GABAAR and GABABR) that differ in their binding kinetics and their electrophysiological properties, suggesting that each may have distinct roles in incerto-thalamic regulation. We developed a computational model to test this hypothesis. We created a two-cell Hodgkin-Huxley model representing PO and ZI with kinetically realistic GABAAR- and GABABR-mediated synapses. We simulated spontaneous and evoked firing in PO and observed how these activities were affected by inhibition mediated by each receptor type. Our model predicts that spontaneous PO activity is preferentially regulated by GABABR-mediated mechanisms, while evoked activity is preferentially regulated by GABAAR. Our model also predicts that modulation of ZI firing rate and synaptic GABA concentrations is an effective means to regulate the incerto-thalamic circuit. The coupling of distinct functions to GABAAR and GABABR presents an opportunity for the development of therapeutics, as particular aspects of incerto-thalamic regulation can be targeted by manipulating the corresponding receptor class. Thus these findings may provide interventions for pathologies of sensory processing.
Collapse
Affiliation(s)
- Anthony Park
- Program in Neuroscience, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| | - Kathleen Hoffman
- Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore, Maryland
| | - Asaf Keller
- Program in Neuroscience, Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
48
|
Evrard HC, Logothetis NK, Craig ADB. Modular architectonic organization of the insula in the macaque monkey. J Comp Neurol 2014; 522:64-97. [PMID: 23900781 DOI: 10.1002/cne.23436] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 11/30/2012] [Accepted: 07/17/2012] [Indexed: 02/06/2023]
Abstract
In order to provide a framework for ongoing analyses of the neuronal connections of the insular cortex of the macaque monkey using modern high-resolution methods, we examined its anatomical organization in serial coronal sections stained alternately with Nissl and Gallyas (myelin) techniques. We observed the same 15 distinct architectonic areas in 10 brains. Within the granular, dysgranular, and agranular regions described in prior studies, we identified 4, 4, and 7 distinct areas, respectively. Across brains, these areas have consistent architectonic characteristics, and in flat map reconstructions they display a consistent topological or neighborhood arrangement, despite variations in the size of individual areas between cases. The borders between areas are generally rather sharply defined. Some areas, in particular the dysgranular areas, appear to consistently contain subtle transitions that suggest possible subareas or modules within the well-delimited areas. The presence of a distinct granular area that straddles the fundus of the superior limiting sulcus over its entire posterior-to-anterior extent is consistent with the available evidence on interoceptive thalamocortical projections, and also with the tensile anchor theory of species-specific cortical gyrification. These observations are consonant with the model of homeostatic afferent processing in the primate insula, and they suggest that discrete modules within insular cortex provide the basis for its polymodal integration of all salient activity relevant to ongoing emotional behavior.
Collapse
Affiliation(s)
- Henry C Evrard
- Max Planck Institute for Biological Cybernetics, 72076, Tuebingen, Germany
| | | | | |
Collapse
|
49
|
Craig ADB. Topographically organized projection to posterior insular cortex from the posterior portion of the ventral medial nucleus in the long-tailed macaque monkey. J Comp Neurol 2014; 522:36-63. [PMID: 23853108 PMCID: PMC4145874 DOI: 10.1002/cne.23425] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 04/15/2013] [Accepted: 07/03/2013] [Indexed: 12/18/2022]
Abstract
Prior anterograde tracing work identified somatotopically organized lamina I trigemino- and spinothalamic terminations in a cytoarchitectonically distinct portion of posterolateral thalamus of the macaque monkey, named the posterior part of the ventral medial nucleus (VMpo; Craig [2004] J. Comp. Neurol. 477:119-148). Microelectrode recordings from clusters of selectively thermoreceptive or nociceptive neurons were used to guide precise microinjections of various tracers in VMpo. A prior report (Craig and Zhang [2006] J. Comp. Neurol. 499:953-964) described retrograde tracing results, which confirmed the selective lamina I input to VMpo and the anteroposterior (head to foot) topography. The present report describes the results of microinjections of anterograde tracers placed at different levels in VMpo, based on the anteroposterior topographic organization of selectively nociceptive units and clusters over nearly the entire extent of VMpo. Each injection produced dense, patchy terminal labeling in a single coherent field within a distinct granular cortical area centered in the fundus of the superior limiting sulcus. The terminations were distributed with a consistent anteroposterior topography over the posterior half of the superior limiting sulcus. These observations demonstrate a specific VMpo projection area in dorsal posterior insular cortex that provides the basis for a somatotopic representation of selectively nociceptive lamina I spinothalamic activity. These results also identify the VMpo terminal area as the posterior half of interoceptive cortex; the anterior half receives input from the vagal-responsive and gustatory neurons in the basal part of the ventral medial nucleus.
Collapse
Affiliation(s)
- A D Bud Craig
- Atkinson Research Laboratory, Barrow Neurological Institute, Phoenix, Arizona, 85013
| |
Collapse
|
50
|
Sokolov AY, Lyubashina OA, Sivachenko IB, Berkovich RR, Panteleev SS. Intravenous valproate inhibits ongoing and evoked activity of dura-sensitive thalamic neurons in rats. Eur J Pharmacol 2013; 715:204-11. [PMID: 23732564 DOI: 10.1016/j.ejphar.2013.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/02/2013] [Accepted: 05/20/2013] [Indexed: 01/24/2023]
Abstract
Valproate is widely used for migraine treatments, although precise mechanisms of its anticephalgic action are poorly understood. Migraine attacks are thought to occur due to trigemino-vascular system activation, which in turn, stimulates nociceptive transmission in trigemino-thalamo-cortical pathway. The ventroposteromedial (VPM) nucleus of the thalamus is considered to play a prominent role in neurobiology of headaches by serving as the highest subcortical relay for conveying nociceptive information from intra- and extra-cranial structures to the cortex. While it has been demonstrated that valproate can modulate trigemino-vascular nociceptive neurotransmission in the VPM, its effects have been investigated using only intrathalamic ejection of the compound in pentobarbitone sodium anesthetized rats. The objective of our study was to evaluate the effects of intravenously administered valproate on both ongoing firing of the VPM neurons and their activity induced by electrical stimulation of the dura mater. The experiments were performed on rats under nonbarbiturate anesthesia. To define the dose-dependent properties and longevity of the studied effects of valproate, two distinguished dosing regiments were used: bolus (single infusion at a dose of 300 mg/kg) and cumulative (thrice-repeated administration of 100mg/kg performed 30 min apart). Intravenous administration of valproate produced the dose-dependent suppression of both the ongoing activity of the thalamic VPM neurons and their responses to electrical stimulation of the dura mater. This effect was fast-developing (within 5 min) and short-lasting (no longer than 30 min). These data suggest that intravenous administration of valproate could produce a reduction of the thalamo-cortical nociceptive transmission associated with trigemino-vascular activation.
Collapse
Affiliation(s)
- Alexey Y Sokolov
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Naberezhnaya Makarova, Saint Petersburg 199034, Russia.
| | | | | | | | | |
Collapse
|