1
|
Anadón R, Rodríguez-Moldes I, Adrio F. Distribution of gamma-aminobutyric acid immunoreactivity in the brain of the Siberian sturgeon (Acipenser baeri): Comparison with other fishes. J Comp Neurol 2024; 532:e25590. [PMID: 38335045 DOI: 10.1002/cne.25590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/12/2024]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the central nervous system (CNS) of vertebrates. Immunohistochemical techniques with specific antibodies against GABA or against its synthesizing enzyme, glutamic acid decarboxylase (GAD) allowed characterizing GABAergic neurons and fibers in the CNS. However, studies on the CNS distribution of GABAergic neurons and fibers of bony fishes are scant and were done in teleost species. With the aim of understanding the early evolution of this system in bony vertebrates, we analyzed the distribution of GABA-immunoreactive (-ir) and GAD-ir neurons and fibers in the CNS of a basal ray-finned fish, the Siberian sturgeon (Chondrostei, Acipenseriformes), using immunohistochemical techniques. Our results revealed the presence and distribution of GABA/GAD-ir cells in different regions of the CNS such as olfactory bulbs, pallium and subpallium, hypothalamus, thalamus, pretectum, optic tectum, tegmentum, cerebellum, central grey, octavolateralis area, vagal lobe, rhombencephalic reticular areas, and the spinal cord. Abundant GABAergic innervation was observed in most brain regions, and GABAergic fibers were very abundant in the hypothalamic floor along the hypothalamo-hypophyseal tract and neurohypophysis. In addition, GABA-ir cerebrospinal fluid-contacting cells were observed in the alar and basal hypothalamus, saccus vasculosus, and spinal cord central canal. The distribution of GABAergic systems in the sturgeon brain shows numerous similarities to that observed in lampreys, but also to those of teleosts and tetrapods.
Collapse
Affiliation(s)
- Ramón Anadón
- Área de Bioloxía Celular, Departamento de Bioloxía Funcional, CIBUS, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Rodríguez-Moldes
- Área de Bioloxía Celular, Departamento de Bioloxía Funcional, CIBUS, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fátima Adrio
- Área de Bioloxía Celular, Departamento de Bioloxía Funcional, CIBUS, Facultade de Bioloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Hotha A, Ganesh CB. GABA-immunoreactive neurons in the Central Nervous System of the viviparous teleost Poecilia sphenops. J Chem Neuroanat 2023; 133:102339. [PMID: 37689218 DOI: 10.1016/j.jchemneu.2023.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gamma-aminobutyric acid (GABA) functions as the primary inhibitory neurotransmitter within the central nervous system (CNS) of vertebrates. In this study, we examined the distribution pattern of GABA-immunoreactive (GABA-ir) cells and fibres in the CNS of the viviparous teleost Poecilia sphenops using immunofluorescence method. GABA immunoreactivity was seen in the glomerular, mitral, and granular layers of the olfactory bulbs, as well as in most parts of the dorsal and ventral telencephalon. The preoptic area consisted of a small cluster of GABA-ir cells, whereas extensively labelled GABA-ir neurons were observed in the hypothalamic areas, including the paraventricular organ, tuberal hypothalamus, nucleus recessus lateralis, nucleus recessus posterioris, and inferior lobes. In the thalamus, GABA-positive neurons were only found in the ventral thalamic and central posterior thalamic nuclei, whereas the dorsal part of the nucleus pretectalis periventricularis consisted of a few GABA-ir cells. GABA-immunoreactivity was extensively seen in the alar and basal subdivisions of the midbrain, whereas in the rhombencephalon, GABA-ir cells and fibres were found in the cerebellum, motor nucleus of glossopharyngeal and vagal nerves, nucleus commissuralis of Cajal, and reticular formation. In the spinal cord, GABA-ir cells and fibres were observed in the dorsal horn, ventral horn, and around the central canal. Overall, the extensive distribution of GABA-ir cells and fibres throughout the CNS suggests several roles for GABA, including the neuroendocrine, viscerosensory, and somatosensory functions, for the first time in a viviparous teleost.
Collapse
Affiliation(s)
- Achyutham Hotha
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
3
|
Borgonovo J, Ahumada-Galleguillos P, Oñate-Ponce A, Allende-Castro C, Henny P, Concha ML. Organization of the Catecholaminergic System in the Short-Lived Fish Nothobranchius furzeri. Front Neuroanat 2021; 15:728720. [PMID: 34588961 PMCID: PMC8473916 DOI: 10.3389/fnana.2021.728720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
The catecholaminergic system has received much attention based on its regulatory role in a wide range of brain functions and its relevance in aging and neurodegenerative diseases. In the present study, we analyzed the neuroanatomical distribution of catecholaminergic neurons based on tyrosine hydroxylase (TH) immunoreactivity in the brain of adult Nothobranchius furzeri. In the telencephalon, numerous TH+ neurons were observed in the olfactory bulbs and the ventral telencephalic area, arranged as strips extending through the rostrocaudal axis. We found the largest TH+ groups in the diencephalon at the preoptic region level, the ventral thalamus, the pretectal region, the posterior tuberculum, and the caudal hypothalamus. In the dorsal mesencephalic tegmentum, we identified a particular catecholaminergic group. The rostral rhombencephalon housed TH+ cells in the locus coeruleus and the medulla oblongata, distributing in a region dorsal to the inferior reticular formation, the vagal lobe, and the area postrema. Finally, scattered TH+ neurons were present in the ventral spinal cord and the retina. From a comparative perspective, the overall organization of catecholaminergic neurons is consistent with the general pattern reported for other teleosts. However, N. furzeri shows some particular features, including the presence of catecholaminergic cells in the midbrain. This work provides a detailed neuroanatomical map of the catecholaminergic system of N. furzeri, a powerful aging model, also contributing to the phylogenetic understanding of one of the most ancient neurochemical systems.
Collapse
Affiliation(s)
- Janina Borgonovo
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Patricio Ahumada-Galleguillos
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile
| | - Alejandro Oñate-Ponce
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Camilo Allende-Castro
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Pablo Henny
- Department of Anatomy and Interdisciplinary Center of Neurosciences, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel L Concha
- Laboratory of Experimental Ontogeny, Faculty of Medicine, Institute of Biomedical Sciences, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
4
|
Yang L, Wang F, Strähle U. The Genetic Programs Specifying Kolmer-Agduhr Interneurons. Front Neurosci 2020; 14:577879. [PMID: 33162880 PMCID: PMC7581942 DOI: 10.3389/fnins.2020.577879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/15/2020] [Indexed: 01/21/2023] Open
Abstract
Kolmer-Agduhr (KA) cells are a subgroup of interneurons positioned adjacent to the neurocoele with cilia on the apical surface protruding into the central canal of the spinal cord. Although KA cells were identified almost a century ago, their development and functions are only beginning to be unfolded. Recent studies have revealed the characteristics of KA cells in greater detail, including their spatial distribution, the timing of their differentiation, and their specification via extrinsic signaling and a unique combination of transcription factors in zebrafish and mouse. Cell lineage-tracing experiments have demonstrated that two subsets of KA cells, named KA' and KA" cells, differentiate from motoneuronal progenitors and floor-plate precursors, respectively, in both zebrafish and mouse. Although KA' and KA" cells originate from different progenitors/precursors, they each share a common set of transcription factors. Intriguingly, the combination of transcription factors that promote the acquisition of KA' cell characteristics differs from those that promote a KA" cell identity. In addition, KA' and KA" cells exhibit separable neuronal targets and differential responses to bending of the spinal cord. In this review, we summarize what is currently known about the genetic programs defining the identities of KA' and KA" cell identities. We then discuss how these two subgroups of KA cells are genetically specified.
Collapse
Affiliation(s)
- Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Feifei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Uwe Strähle
- Institute of Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
5
|
Sobrido-Cameán D, Tostivint H, Mazan S, Rodicio MC, Rodríguez-Moldes I, Candal E, Anadón R, Barreiro-Iglesias A. Differential expression of five prosomatostatin genes in the central nervous system of the catshark Scyliorhinus canicula. J Comp Neurol 2020; 528:2333-2360. [PMID: 32141087 DOI: 10.1002/cne.24898] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Abstract
Five prosomatostatin genes (PSST1, PSST2, PSST3, PSST5, and PSST6) have been recently identified in elasmobranchs (Tostivint et al., General and Comparative Endocrinology, 2019, 279, 139-147). In order to gain insight into the contribution of each somatostatin to specific nervous systems circuits and behaviors in this important jawed vertebrate group, we studied the distribution of neurons expressing PSST mRNAs in the central nervous system (CNS) of Scyliorhinus canicula using in situ hybridization. Additionally, we combined in situ hybridization with tyrosine hydroxylase (TH) immunochemistry for better characterization of PSST1 and PSST6 expressing populations. We observed differential expression of PSST1 and PSST6, which are the most widely expressed PSST transcripts, in cell populations of many CNS regions, including the pallium, subpallium, hypothalamus, diencephalon, optic tectum, midbrain tegmentum, and rhombencephalon. Interestingly, numerous small pallial neurons express PSST1 and PSST6, although in different populations judging from the colocalization of TH immunoreactivity and PSST6 expression but not with PSST1. We observed expression of PSST1 in cerebrospinal fluid-contacting (CSF-c) neurons of the hypothalamic paraventricular organ and the central canal of the spinal cord. Unlike PSST1 and PSST6, PSST2, and PSST3 are only expressed in cells of the hypothalamus and in some hindbrain lateral reticular neurons, and PSST5 in cells of the region of the entopeduncular nucleus. Comparative data of brain expression of PSST genes indicate that the somatostatinergic system of sharks is the most complex reported in any fish.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Hervé Tostivint
- Molecular Physiology and Adaptation, CNRS UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Mazan
- CNRS, Sorbonne Université, Biologie intégrative des organismes marins (UMR7232-BIOM), Observatoire Océanologique, Banyuls sur Mer, France
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Rodríguez-Moldes
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Candal
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ramón Anadón
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
6
|
Large-Scale Analysis of the Diversity and Complexity of the Adult Spinal Cord Neurotransmitter Typology. iScience 2019; 19:1189-1201. [PMID: 31542702 PMCID: PMC6831849 DOI: 10.1016/j.isci.2019.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/24/2019] [Accepted: 09/05/2019] [Indexed: 12/17/2022] Open
Abstract
The development of nervous system atlases is a fundamental pursuit in neuroscience, since they constitute a fundamental tool to improve our understanding of the nervous system and behavior. As such, neurotransmitter maps are valuable resources to decipher the nervous system organization and functionality. We present here the first comprehensive quantitative map of neurons found in the adult zebrafish spinal cord. Our study overlays detailed information regarding the anatomical positions, sizes, neurotransmitter phenotypes, and the projection patterns of the spinal neurons. We also show that neurotransmitter co-expression is much more extensive than previously assumed, suggesting that spinal networks are more complex than first recognized. As a first direct application, we investigated the neurotransmitter diversity in the putative glutamatergic spinal V2a-interneuron assembly. These studies shed new light on the diverse and complex functions of this important interneuron class in the neuronal interplay governing the precise operation of the central pattern generators.
Collapse
|
7
|
Berg EM, Bertuzzi M, Ampatzis K. Complementary expression of calcium binding proteins delineates the functional organization of the locomotor network. Brain Struct Funct 2018; 223:2181-2196. [PMID: 29423637 PMCID: PMC5968073 DOI: 10.1007/s00429-018-1622-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/30/2018] [Indexed: 12/18/2022]
Abstract
Neuronal networks in the spinal cord generate and execute all locomotor-related movements by transforming descending signals from supraspinal areas into appropriate rhythmic activity patterns. In these spinal networks, neurons that arise from the same progenitor domain share similar distribution patterns, neurotransmitter phenotypes, morphological and electrophysiological features. However, subgroups of them participate in different functionally distinct microcircuits to produce locomotion at different speeds and of different modalities. To better understand the nature of this network complexity, here we characterized the distribution of parvalbumin (PV), calbindin D-28 k (CB) and calretinin (CR) which are regulators of intracellular calcium levels and can serve as anatomical markers for morphologically and potential functionally distinct neuronal subpopulations. We observed wide expression of CBPs in the adult zebrafish, in several spinal and reticulospinal neuronal populations with a diverse neurotransmitter phenotype. We also found that several spinal motoneurons express CR and PV. However, only the motoneuron pools that are responsible for generation of fast locomotion were CR-positive. CR can thus be used as a marker for fast motoneurons and might potentially label the fast locomotor module. Moreover, CB was mainly observed in the neuronal progenitor cells that are distributed around the central canal. Thus, our results suggest that during development the spinal neurons utilize CB and as the neurons mature and establish a neurotransmitter phenotype they use CR or/and PV. The detailed characterization of CBPs expression, in the spinal cord and brainstem neurons, is a crucial step toward a better understanding of the development and functionality of neuronal locomotor networks.
Collapse
Affiliation(s)
- Eva M Berg
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Maria Bertuzzi
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | |
Collapse
|
8
|
Romaus-Sanjurjo D, Valle-Maroto SM, Barreiro-Iglesias A, Fernández-López B, Rodicio MC. Anatomical recovery of the GABAergic system after a complete spinal cord injury in lampreys. Neuropharmacology 2018; 131:389-402. [PMID: 29317225 DOI: 10.1016/j.neuropharm.2018.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/26/2017] [Accepted: 01/04/2018] [Indexed: 12/16/2022]
Abstract
Lampreys recover locomotion spontaneously several weeks after a complete spinal cord injury. Dysfunction of the GABAergic system following SCI has been reported in mammalian models. So, it is of great interest to understand how the GABAergic system of lampreys adapts to the post-injury situation and how this relates to spontaneous recovery. The spinal cord of lampreys contains 3 populations of GABAergic neurons and most of the GABAergic innervation of the spinal cord comes from these local cells. GABAB receptors are expressed in the spinal cord of lampreys and they play important roles in the control of locomotion. The aims of the present study were to quantify: 1) the changes in the number of GABAergic neurons and innervation of the spinal cord and 2) the changes in the expression of the gabab receptor subunits b1 and b2 in the spinal cord of the sea lamprey after SCI. We performed complete spinal cord transections at the level of the fifth gill of mature larval lampreys and GABA immunohistochemistry or gabab in situ hybridization experiments. Animals were analysed up to 10 weeks post-lesion (wpl), when behavioural analyses showed that they recovered normal appearing locomotion (stage 6 in the Ayer's scale of locomotor recovery). We observed a significant decrease in the number of GABA-ir cells and fibres 1 h after lesion both rostral and caudal to the lesion site. GABA-ir cell numbers and innervation were recovered to control levels 1 to 2 wpl. At 1, 4 and 10 wpl the expression of gabab1 and gabab2 transcripts was significantly decreased in the spinal cord compared to control un-lesioned animals. This is the first study reporting the quantitative long-term changes in the number of GABAergic cells and fibres and in the expression of gabab receptors in the spinal cord of any vertebrate following a traumatic SCI. Our results show that in lampreys there is a full recovery of the GABAergic neurons and a decrease in the expression of gabab receptors when functional recovery is achieved.
Collapse
Affiliation(s)
- D Romaus-Sanjurjo
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - S M Valle-Maroto
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - B Fernández-López
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M C Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Djenoune L, Wyart C. Light on a sensory interface linking the cerebrospinal fluid to motor circuits in vertebrates. J Neurogenet 2017; 31:113-127. [PMID: 28789587 DOI: 10.1080/01677063.2017.1359833] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cerebrospinal fluid (CSF) is circulating around the entire central nervous system (CNS). The main function of the CSF has been thought to insure the global homeostasis of the CNS. Recent evidence indicates that the CSF also dynamically conveys signals modulating the development and the activity of the nervous system. The later observation implies that cues from the CSF could act on neurons in the brain and the spinal cord via bordering receptor cells. Candidate neurons to enable such modulation are the cerebrospinal fluid-contacting neurons (CSF-cNs) that are located precisely at the interface between the CSF and neuronal circuits. The atypical apical extension of CSF-cNs bears a cluster of microvilli bathing in the CSF indicating putative sensory or secretory roles in relation with the CSF. In the brainstem and spinal cord, CSF-cNs have been described in over two hundred species by Kolmer and Agduhr, suggesting an important function within the spinal cord. However, the lack of specific markers and the difficulty to access CSF-cNs hampered their physiological investigation. The transient receptor potential channel PKD2L1 is a specific marker of spinal CSF-cNs in vertebrate species. The transparency of zebrafish at early stages eases the functional characterization of pkd2l1+ CSF-cNs. Recent studies demonstrate that spinal CSF-cNs detect spinal curvature via the channel PKD2L1 and modulate locomotion and posture by projecting onto spinal interneurons and motor neurons in vivo. In vitro recordings demonstrated that spinal CSF-cNs are sensing pH variations mainly through ASIC channels, in combination with PKD2L1. Altogether, neurons contacting the CSF appear as a novel sensory modality enabling the detection of mechanical and chemical stimuli from the CSF and modulating the excitability of spinal circuits underlying locomotion and posture.
Collapse
Affiliation(s)
- Lydia Djenoune
- a Institut du Cerveau et de la Moelle épinière (ICM) , Paris , France
| | - Claire Wyart
- a Institut du Cerveau et de la Moelle épinière (ICM) , Paris , France
| |
Collapse
|
10
|
López JM, González A. Organization of the catecholaminergic systems in the brain of lungfishes, the closest living relatives of terrestrial vertebrates. J Comp Neurol 2017. [DOI: 10.1002/cne.24266] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jesús M. López
- Department of Cell Biology; Faculty of Biology, University Complutense of Madrid; Madrid Spain
| | - Agustín González
- Department of Cell Biology; Faculty of Biology, University Complutense of Madrid; Madrid Spain
| |
Collapse
|
11
|
Castro A, Becerra M, Manso MJ, Anadón R. Neuronal organization of the brain in the adult amphioxus (Branchiostoma lanceolatum): A study with acetylated tubulin immunohistochemistry. J Comp Neurol 2015; 523:2211-32. [DOI: 10.1002/cne.23785] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/11/2014] [Accepted: 09/19/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Antonio Castro
- Department of Cell and Molecular Biology; Faculty of Sciences; University of A Coruña; 15008 A Coruña Spain
| | - Manuela Becerra
- Department of Cell Biology and Ecology; CIBUS, University of Santiago de Compostela; 15706 Santiago de Compostela Spain
| | - María Jesús Manso
- Department of Cell and Molecular Biology; Faculty of Sciences; University of A Coruña; 15008 A Coruña Spain
| | - Ramón Anadón
- Department of Cell Biology and Ecology; CIBUS, University of Santiago de Compostela; 15706 Santiago de Compostela Spain
| |
Collapse
|
12
|
Sánchez-Farías N, Candal E. Doublecortin is widely expressed in the developing and adult retina of sharks. Exp Eye Res 2015; 134:90-100. [PMID: 25849205 DOI: 10.1016/j.exer.2015.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 01/08/2023]
Abstract
Doublecortin (DCX) is a microtubule-associated protein that has been considered a marker for neuronal precursors and young migrating neurons during the development of the central nervous system and in adult neurogenic niches. The retina of fishes represents an accessible, continuously growing and highly structured (layered) part of the central nervous system and, therefore, offers an exceptional model to extend our knowledge on the possible role of DCX in promoting neurogenesis and migration to appropriate layers. We have analyzed the distribution of DCX in the embryonic and postembryonic retina of a small shark, the lesser spotted dogfish Scyliorhinus canicula, by means of immunohistochemistry. We investigated the relationship between DCX expression and the neurogenic state of DCX-labeled cells by exploring its co-localization with the proliferation marker PCNA (proliferating cell nuclear antigen) and the marker of neuronal differentiation HuC/D. Since radially migrating neurons use radial glial fibers as substrate, we explored the possible correlation between DCX expression and cell migration along radial glia by comparing its expression with that of the glial marker GFAP (glial fibrillary acidic protein). Additionally, we characterized DCX-expressing cells by double immunocytochemistry using antibodies against Calbindin (a marker for mature bipolar and horizontal cells in this species) and Pax6, which has been proposed as a regulator of cell proliferation, cell differentiation, and neuron diversification in the neural retina of sharks. Strong DCX immunoreactivity was observed in immature cells and cell processes, at a time when retinal cells were not yet organized into different laminae. DCX was also found in subsets of mature ganglion, amacrine, bipolar and horizontal cells long after they had exited the cell cycle, a pattern that was maintained in juveniles and adults. Our results on DCX expression in the retina are compatible with a role for DCX in cell migration within the immature retina, and in dynamic neuronal plasticity in the mature retina. We also provide evidence of DCX expression in discrete cells in the retinal pigment epithelium of prehatching embryos and juveniles, which suggest that retinal pigmented epithelial cells in sharks, as in mammals, have an intrinsic capacity to proliferate and differentiate into cells with neural identity.
Collapse
Affiliation(s)
- Nuria Sánchez-Farías
- Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Eva Candal
- Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Filippi A, Mueller T, Driever W. vglut2 and gad expression reveal distinct patterns of dual GABAergic versus glutamatergic cotransmitter phenotypes of dopaminergic and noradrenergic neurons in the zebrafish brain. J Comp Neurol 2015; 522:2019-37. [PMID: 24374659 PMCID: PMC4288968 DOI: 10.1002/cne.23524] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/27/2013] [Accepted: 11/27/2013] [Indexed: 01/22/2023]
Abstract
Throughout the vertebrate lineage, dopaminergic neurons form important neuromodulatory systems that influence motor behavior, mood, cognition, and physiology. Studies in mammals have established that dopaminergic neurons often use γ-aminobutyric acid (GABA) or glutamatergic cotransmission during development and physiological function. Here, we analyze vglut2, gad1b and gad2 expression in combination with tyrosine hydroxylase immunoreactivity in 4-day-old larval and 30-day-old juvenile zebrafish brains to determine which dopaminergic and noradrenergic groups may use GABA or glutamate as a second transmitter. Our results show that most dopaminergic neurons also express GABAergic markers, including the dopaminergic groups of the olfactory bulb (homologous to mammalian A16) and the subpallium, the hypothalamic groups (A12, A14), the prethalamic zona incerta group (A13), the preoptic groups (A15), and the pretectal group. Thus, the majority of catecholaminergic neurons are gad1b/2-positive and coexpress GABA. A very few gad1/2-negative dopaminergic groups, however, express vglut2 instead and use glutamate as a second transmitter. These glutamatergic dual transmitter phenotypes are the Orthopedia transcription factor–dependent, A11-type dopaminergic neurons of the posterior tuberculum. All together, our results demonstrate that all catecholaminergic groups in zebrafish are either GABAergic or glutamatergic. Thus, cotransmission of dopamine and noradrenaline with either GABA or glutamate appears to be a regular feature of zebrafish catecholaminergic systems. We compare our results with those that have been described for mammalian systems, discuss the phenomenon of transmitter dualism in the context of developmental specification of GABAergic and glutamatergic regions in the brain, and put this phenomenon in an evolutionary perspective. J. Comp. Neurol. 522:2019–2037, 2014.
Collapse
Affiliation(s)
- Alida Filippi
- Developmental Biology, Institute of Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104, Freiburg, Germany
| | | | | |
Collapse
|
14
|
Zhang G, Vidal Pizarro I, Swain GP, Kang SH, Selzer ME. Neurogenesis in the lamprey central nervous system following spinal cord transection. J Comp Neurol 2014; 522:1316-32. [PMID: 24151158 DOI: 10.1002/cne.23485] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/23/2022]
Abstract
After spinal cord transection, lampreys recover functionally and axons regenerate. It is not known whether this is accompanied by neurogenesis. Previous studies suggested a baseline level of nonneuronal cell proliferation in the spinal cord and rhombencephalon (where most supraspinal projecting neurons are located). To determine whether cell proliferation increases after injury and whether this includes neurogenesis, larval lampreys were spinally transected and injected with 5-bromo-2&prime-deoxyuridine (BrdU) at 0-3 weeks posttransection. Labeled cells were counted in the lesion site, within 0.5 mm rostral and caudal to the lesion, and in the rhombencephalon. One group of animals was processed in the winter and a second group was processed in the summer. The number of labeled cells was greater in winter than in summer. The lesion site had the most BrdU labeling at all times, correlating with an increase in the number of cells. In the adjacent spinal cord, the percentage of BrdU labeling was higher in the ependymal than in nonependymal regions. This was also true in the rhombencephalon but only in summer. In winter, BrdU labeling was seen primarily in the subventricular and peripheral zones. Some BrdU-labeled cells were also double labeled by antibodies to glial-specific (antikeratin) as well as neuron-specific (anti-Hu) antigens, indicating that both gliogenesis and neurogenesis occurred after spinal cord transection. However, the new neurons were restricted to the ependymal zone, were never labeled by antineurofilament antibodies, and never migrated away from the ependyma even at 5 weeks after BrdU injection. They would appear to be cerebrospinal fluid-contacting neurons.
Collapse
Affiliation(s)
- Guixin Zhang
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, Philadelphia, Penhnsylvania, 19140; Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104
| | | | | | | | | |
Collapse
|
15
|
Quintana-Urzainqui I, Rodríguez-Moldes I, Mazan S, Candal E. Tangential migratory pathways of subpallial origin in the embryonic telencephalon of sharks: evolutionary implications. Brain Struct Funct 2014; 220:2905-26. [PMID: 25079345 DOI: 10.1007/s00429-014-0834-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 06/24/2014] [Indexed: 01/18/2023]
Abstract
Tangential neuronal migration occurs along different axes from the axis demarcated by radial glia and it is thought to have evolved as a mechanism to increase the diversity of cell types in brain areas, which in turn resulted in increased complexity of functional networks. In the telencephalon of amniotes, different embryonic tangential pathways have been characterized. However, little is known about the exact routes of migrations in basal vertebrates. Cartilaginous fishes occupy a key phylogenetic position to assess the ancestral condition of vertebrate brain organization. In order to identify putative subpallial-derived tangential migratory pathways in the telencephalon of sharks, we performed a detailed analysis of the distribution pattern of GAD and Dlx2, two reliable markers of tangentially migrating interneurons of subpallial origin in the developing forebrain. We propose the existence of five tangential routes directed toward different telencephalic regions. We conclude that four of the five routes might have emerged in the common ancestor of jawed vertebrates. We have paid special attention to the characterization of the proposed migratory pathway directed towards the olfactory bulbs. Our results suggest that it may be equivalent to the "rostral migratory stream" of mammals and led us to propose a hypothesis about its evolution. The analysis of the final destinations of two other streams allowed us to identify the putative dorsal and medial pallium of sharks, the regions from which the neocortex and hippocampus might have, respectively, evolved. Derived features were also reported and served to explain some distinctive traits in the morphology of the telencephalon of cartilaginous fishes.
Collapse
Affiliation(s)
- Idoia Quintana-Urzainqui
- Departamento de Biología Celular y Ecología, Edificio CIBUS, Campus Vida, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
16
|
Djenoune L, Khabou H, Joubert F, Quan FB, Nunes Figueiredo S, Bodineau L, Del Bene F, Burcklé C, Tostivint H, Wyart C. Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates. Front Neuroanat 2014; 8:26. [PMID: 24834029 PMCID: PMC4018565 DOI: 10.3389/fnana.2014.00026] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
Over 90 years ago, Kolmer and Agduhr identified spinal cerebrospinal fluid-contacting neurons (CSF-cNs) based on their morphology and location within the spinal cord. In more than 200 vertebrate species, they observed ciliated neurons around the central canal that extended a brush of microvilli into the cerebrospinal fluid (CSF). Although their morphology is suggestive of a primitive sensory cell, their function within the vertebrate spinal cord remains unknown. The identification of specific molecular markers for these neurons in vertebrates would benefit the investigation of their physiological roles. PKD2L1, a transient receptor potential channel that could play a role as a sensory receptor, has been found in cells contacting the central canal in mouse. In this study, we demonstrate that PKD2L1 is a specific marker for CSF-cNs in the spinal cord of mouse (Mus musculus), macaque (Macaca fascicularis) and zebrafish (Danio rerio). In these species, the somata of spinal PKD2L1+ CSF-cNs were located below or within the ependymal layer and extended an apical bulbous extension into the central canal. We found GABAergic PKD2L1-expressing CSF-cNs in all three species. We took advantage of the zebrafish embryo for its transparency and rapid development to identify the progenitor domains from which pkd2l1+ CSF-cNs originate. pkd2l1+ CSF-cNs were all GABAergic and organized in two rows—one ventral and one dorsal to the central canal. Their location and marker expression is consistent with previously described Kolmer–Agduhr cells. Accordingly, pkd2l1+ CSF-cNs were derived from the progenitor domains p3 and pMN defined by the expression of nkx2.2a and olig2 transcription factors, respectively. Altogether our results suggest that a system of CSF-cNs expressing the PKD2L1 channel is conserved in the spinal cord across bony vertebrate species.
Collapse
Affiliation(s)
- Lydia Djenoune
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France ; Muséum National d'Histoire Naturelle Paris, France ; Centre National de la Recherche Scientifique UMR 7221 Paris, France
| | - Hanen Khabou
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France
| | - Fanny Joubert
- UPMC Univ. Paris 06 Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR S 1158 Paris, France
| | - Feng B Quan
- Muséum National d'Histoire Naturelle Paris, France ; Centre National de la Recherche Scientifique UMR 7221 Paris, France
| | - Sophie Nunes Figueiredo
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France
| | - Laurence Bodineau
- UPMC Univ. Paris 06 Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR S 1158 Paris, France
| | - Filippo Del Bene
- Institut Curie Paris, France ; Centre National de la Recherche Scientifique UMR 3215 Paris, France ; Institut National de la Santé et de la Recherche Médicale U 934 Paris, France
| | - Céline Burcklé
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle Paris, France ; Centre National de la Recherche Scientifique UMR 7221 Paris, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle Épinière, Hôpital de la Pitié-Salpêtrière Paris, France ; Institut National de la Santé et de la Recherche Médicale UMR 1127 Paris, France ; Centre National de la Recherche Scientifique UMR 7225 Paris, France ; UPMC Univ. Paris 06 Paris, France
| |
Collapse
|
17
|
Quintana-Urzainqui I, Rodríguez-Moldes I, Candal E. Developmental, tract-tracing and immunohistochemical study of the peripheral olfactory system in a basal vertebrate: insights on Pax6 neurons migrating along the olfactory nerve. Brain Struct Funct 2014; 219:85-104. [PMID: 23224251 PMCID: PMC3889696 DOI: 10.1007/s00429-012-0486-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/16/2012] [Indexed: 11/02/2022]
Abstract
The olfactory system represents an excellent model for studying different aspects of the development of the nervous system ranging from neurogenesis to mechanisms of axon growth and guidance. Important findings in this field come from comparative studies. We have analyzed key events in the development of the olfactory system of the shark Scyliorhinus canicula by combining immunohistochemical and tract-tracing methods. We describe for the first time in a cartilaginous fish an early population of pioneer HuC/D-immunoreactive (ir) neurons that seemed to delaminate from the olfactory pit epithelium and migrate toward the telencephalon before the olfactory nerve was identifiable. A distinct, transient cell population, namely the migratory mass, courses later on in apposition to the developing olfactory nerve. It contains olfactory ensheathing glial (GFAP-ir) cells and HuC/D-ir neurons, some of which course toward an extrabulbar region. We also demonstrate that Pax6-ir cells coursing along the developing olfactory pathways in S. canicula are young migrating (HuC/D and DCX-ir) neurons of the migratory mass that do not form part of the terminal nerve pathway. Evidences that these Pax6 neurons originate in the olfactory epithelium are also reported. As Pax6 neurons in the olfactory epithelium show characteristics of olfactory receptor neurons, and migrating Pax6-ir neurons formed transient corridors along the course of olfactory axons at the entrance of the olfactory bulb, we propose that these neurons could play a role as guideposts for axons of olfactory receptor neurons growing toward the olfactory bulb.
Collapse
Affiliation(s)
- Idoia Quintana-Urzainqui
- Departamento de Biología Celular y Ecología, Edificio CIBUS Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Isabel Rodríguez-Moldes
- Departamento de Biología Celular y Ecología, Edificio CIBUS Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eva Candal
- Departamento de Biología Celular y Ecología, Edificio CIBUS Campus Vida, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
18
|
Pose-Méndez S, Candal E, Adrio F, Rodríguez-Moldes I. Development of the cerebellar afferent system in the sharkScyliorhinus canicula: Insights into the basal organization of precerebellar nuclei in gnathostomes. J Comp Neurol 2013; 522:131-68. [DOI: 10.1002/cne.23393] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/09/2013] [Accepted: 06/19/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Sol Pose-Méndez
- Department of Cell Biology and Ecology; University of Santiago de Compostela; 15782- Santiago de Compostela Spain
| | - Eva Candal
- Department of Cell Biology and Ecology; University of Santiago de Compostela; 15782- Santiago de Compostela Spain
| | - Fátima Adrio
- Department of Cell Biology and Ecology; University of Santiago de Compostela; 15782- Santiago de Compostela Spain
| | - Isabel Rodríguez-Moldes
- Department of Cell Biology and Ecology; University of Santiago de Compostela; 15782- Santiago de Compostela Spain
| |
Collapse
|
19
|
Anadón R, Rodríguez-Moldes I, Adrio F. Glycine-immunoreactive neurons in the brain of a shark (Scyliorhinus caniculaL.). J Comp Neurol 2013; 521:3057-82. [DOI: 10.1002/cne.23332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/07/2013] [Accepted: 03/13/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Ramón Anadón
- Department of Cell Biology and Ecology; University of Santiago de Compostela; 15782 Santiago de; Compostela; Spain
| | - Isabel Rodríguez-Moldes
- Department of Cell Biology and Ecology; University of Santiago de Compostela; 15782 Santiago de; Compostela; Spain
| | - Fátima Adrio
- Department of Cell Biology and Ecology; University of Santiago de Compostela; 15782 Santiago de; Compostela; Spain
| |
Collapse
|
20
|
Rodríguez-Moldes I, Carrera I, Pose-Méndez S, Quintana-Urzainqui I, Candal E, Anadón R, Mazan S, Ferreiro-Galve S. Regionalization of the shark hindbrain: a survey of an ancestral organization. Front Neuroanat 2011; 5:16. [PMID: 21519383 PMCID: PMC3077972 DOI: 10.3389/fnana.2011.00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 02/18/2011] [Indexed: 11/21/2022] Open
Abstract
Cartilaginous fishes (chondrichthyans) represent an ancient radiation of vertebrates currently considered the sister group of the group of gnathostomes with a bony skeleton that gave rise to land vertebrates. This out-group position makes chondrichthyans essential in assessing the ancestral organization of the brain of jawed vertebrates. To gain knowledge about hindbrain evolution we have studied its development in a shark, the lesser spotted dogfish Scyliorhinus canicula by analyzing the expression of some developmental genes and the origin and distribution of specific neuronal populations, which may help to identify hindbrain subdivisions and boundaries and the topology of specific cell groups. We have characterized three developmental periods that will serve as a framework to compare the development of different neuronal systems and may represent a suitable tool for comparing the absolute chronology of development among vertebrates. The expression patterns of Pax6, Wnt8, and HoxA2 genes in early embryos of S. canicula showed close correspondence to what has been described in other vertebrates and helped to identify the anterior rhombomeres. Also in these early embryos, the combination of Pax6 with protein markers of migrating neuroblasts (DCX) and early differentiating neurons (general: HuC/D; neuron type specific: GAD, the GABA synthesizing enzyme) revealed the organization of S. canicula hindbrain in both transverse segmental units corresponding to visible rhombomeres and longitudinal columns. Later in development, when the interrhombomeric boundaries fade away, accurate information about S. canicula hindbrain subdivisions was achieved by comparing the expression patterns of Pax6 and GAD, serotonin (serotoninergic neurons), tyrosine hydroxylase (catecholaminergic neurons), choline acetyltransferase (cholinergic neurons), and calretinin (a calcium-binding protein). The patterns observed revealed many topological correspondences with other vertebrates and led to reconsideration of the current view of the elasmobranch hindbrain segmentation as peculiar among vertebrates.
Collapse
Affiliation(s)
- Isabel Rodríguez-Moldes
- Department of Cell Biology and Ecology, University of Santiago de Compostela Santiago de Compostela, Spain
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ferreiro-Galve S, Rodríguez-Moldes I, Candal E. Calretinin immunoreactivity in the developing retina of sharks: comparison with cell proliferation and GABAergic system markers. Exp Eye Res 2010; 91:378-86. [PMID: 20599967 DOI: 10.1016/j.exer.2010.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/09/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
The calcium-binding protein calretinin (CR) has been widely used as a marker of neuronal differentiation. In the present study we analyzed the distribution of CR-immunoreactive (CR-ir) elements in the embryonic and postembryonic retina of two elasmobranchs, the lesser spotted dogfish (Scyliorhinus canicula) and the brown shyshark (Haploblepharus fuscus). We compared the distribution of CR with that of a proliferation marker (the proliferating cell nuclear antigen, PCNA) in order to investigate the time course of CR expression during retinogenesis and explored the relationship between CR and glutamic acid decarboxylase (GAD), the synthesizing enzyme of the gamma-aminobutyric acid (GABA), which has been reported to play a role in shark retinogenesis. The earliest CR immunoreactivity was concurrently observed in subsets of: a) ganglion cells in the ganglion cell layer; b) displaced ganglion cells in the inner plexiform layer and inner part of the inner nuclear layer (INLi); c) amacrine cells in the INLi, and d) horizontal cells. This pattern of CR distribution is established in the developing retina from early stage 32, long after the appearance of a layered retinal organization in the inner retina, and coinciding with photoreceptor maturation in the outer retina. We also demonstrated that CR is expressed in postmitotic cells long after they have exited the cell cycle and in a subset of GABAergic horizontal cells. Overall our results provide insights into the differentiation patterns in the elasmobranch retina and supply further comparative data on the development of CR distribution in the retina of vertebrates. This study may help in understanding the possible involvement of CR in aspects of retinal morphogenesis.
Collapse
Affiliation(s)
- Susana Ferreiro-Galve
- Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | |
Collapse
|
22
|
Barreiro-Iglesias A, Villar-Cerviño V, Anadón R, Rodicio MC. Dopamine and gamma-aminobutyric acid are colocalized in restricted groups of neurons in the sea lamprey brain: insights into the early evolution of neurotransmitter colocalization in vertebrates. J Anat 2009; 215:601-10. [PMID: 19840024 DOI: 10.1111/j.1469-7580.2009.01159.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Since its discovery, the possible corelease of classic neurotransmitters from neurons has received much attention. Colocalization of monoamines and amino acidergic neurotransmitters [mainly glutamate and dopamine (DA) or serotonin] in mammalian neurons has been reported. However, few studies have dealt with the colocalization of DA and gamma-aminobutyric acid (GABA) in neurons. With the aim of providing some insight into the colocalization of neurotransmitters during early vertebrate phylogeny, we studied GABA expression in dopaminergic neurons in the sea lamprey brain by using double-immunofluorescence methods with anti-DA and anti-GABA antibodies. Different degrees of colocalization of DA and GABA were observed in different dopaminergic brain nuclei. A high degree of colocalization (GABA in at least 25% of DA-immunoreactive neurons) was observed in populations of the caudal rhombencephalon, ventral isthmus, postoptic commissure nucleus, preoptic nucleus and in granule-like cells of the olfactory bulb. A new DA-immunoreactive striatal population that showed colocalization with GABA in about a quarter of its neurons was observed. In the periventricular hypothalamus, colocalization was observed in only a few cells, despite the abundance of DA- and GABA-immunoreactive neurons, and no double-labelled cells were observed in the paratubercular nucleus. The frequent colocalization of DA and GABA reveals that the dopaminergic populations of lampreys are more complex than previously reported. Double-labelled fibres or terminals were observed in different brain regions, suggesting possible corelease of DA and GABA by these lamprey neurons. The present results suggest that colocalization of DA and GABA in neurons appeared early in vertebrate evolution.
Collapse
Affiliation(s)
- Antón Barreiro-Iglesias
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
23
|
Calretinin-immunoreactive systems in the cerebellum and cerebellum-related lateral-line medullary nuclei of an elasmobranch, Scyliorhinus canicula. J Chem Neuroanat 2009; 37:46-54. [DOI: 10.1016/j.jchemneu.2008.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 09/15/2008] [Accepted: 09/16/2008] [Indexed: 11/17/2022]
|
24
|
Carrera I, Molist P, Anadón R, Rodríguez-Moldes I. Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfishScyliorhinus canicula. J Comp Neurol 2008; 511:804-31. [DOI: 10.1002/cne.21857] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Ferreiro-Galve S, Candal E, Carrera I, Anadón R, Rodríguez-Moldes I. Early development of GABAergic cells of the retina in sharks: an immunohistochemical study with GABA and GAD antibodies. J Chem Neuroanat 2008; 36:6-16. [PMID: 18524536 DOI: 10.1016/j.jchemneu.2008.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 03/17/2008] [Accepted: 04/18/2008] [Indexed: 11/24/2022]
Abstract
We studied the ontogeny and organization of GABAergic cells in the retina of two elasmobranches, the lesser-spotted dogfish (Scyliorhinus canicula) and the brown shyshark (Haploblepharus fuscus) by using immunohistochemistry for gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD). Both antibodies revealed the same pattern of immunoreactivity and both species showed similar organization of GABAergic cells. GABAergic cells were first detected in neural retina of embryos at stage 26, which showed a neuroepithelial appearance without any layering. In stages 27-29 the retina showed similar organization but the number of neuroblastic GABAergic cells increased. When layering became apparent in the central retina (stage-30 embryos), GABAergic cells mainly appeared organized in the outer and inner retina, and GABAergic processes and fibres were seen in the primordial inner plexiform layer (IPL), optic fibre layer and optic nerve stalk. In stage-32 embryos, layering was completed in the central retina, where immunoreactivity appeared in perikarya of the horizontal cell layer, inner nuclear layer and ganglion cell layer, and in numerous processes coursing in the IPL, optic fibre layer and optic nerve. From stage 32 to hatching (stage 34), the layered retina extends from centre-to-periphery, recapitulating that observed in the central retina at earlier stages. In adults, GABA/GAD immunoreactivity disappears from the horizontal cell layer except in the marginal retina. Our results indicate that the source of GABA in the shark retina can be explained by its synthesis by GAD. Such synthesis precedes layering and synaptogenesis, thus supporting a developmental role for GABA in addition to act as neurotransmitter and neuromodulator.
Collapse
Affiliation(s)
- Susana Ferreiro-Galve
- Department of Cell Biology and Ecology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
26
|
Villar-Cerviño V, Holstein GR, Martinelli GP, Anadón R, Rodicio MC. Glycine-immunoreactive neurons in the developing spinal cord of the sea lamprey: comparison with the gamma-aminobutyric acidergic system. J Comp Neurol 2008; 508:112-30. [PMID: 18302155 DOI: 10.1002/cne.21661] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development and cellular distribution of the inhibitory neurotransmitter glycine in the spinal cord of the sea lamprey were studied by immunocytochemistry and double immunofluorescence and compared with the distribution of gamma-aminobutyric acid (GABA). Results in lamprey embryos and prolarvae reveal that the appearance of glycine-immunoreactive (-ir) spinal neurons precedes that of GABA-ir neurons. Throughout development, glycine-ir cells in the lateral and dorsomedial gray matter of the spinal cord are more numerous than the GABA-ir cells. Only a subset of these neurons shows colocalization of GABA and glycine, suggesting that they are primarily disparate neuronal populations. In contrast, most cerebrospinal fluid (CSF)-contacting neurons of the central canal walls are strongly GABA-ir, and only a portion of them are faintly glycine-ir. Some edge cells (lamprey intraspinal mechanoreceptors) were glycine-ir in larvae and adults. The glycine-ir and GABA-ir neuronal populations observed in the adult spinal cord were similar to those found in larvae. Comparison of glycine-ir and GABA-ir fibers coursing longitudinally in the spinal cord of adult lamprey revealed large differences in diameter between these two types of fiber. Commissural glycine-ir fibers appear in prolarvae and become numerous at larval stages, whereas crossed GABA-ir are scarce. Taken together, results in this primitive vertebrate indicate that the spinal glycinergic cells do not arise by biochemical shift of preexisting GABAergic cells but instead suggest that glycine is present in the earliest circuitry of the developing lamprey spinal cord, where it might act transiently as an excitatory transmitter.
Collapse
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | | | |
Collapse
|
27
|
Colocalization of dopamine and GABA in spinal cord neurones in the sea lamprey. Brain Res Bull 2007; 76:45-9. [PMID: 18395609 DOI: 10.1016/j.brainresbull.2007.10.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 10/19/2007] [Accepted: 10/29/2007] [Indexed: 01/22/2023]
Abstract
In this study, double immunofluorescence methods were used to investigate possible colocalization of the neurotransmitters dopamine [DA] and GABA in rostral spinal cord neurones in the upstream migrating adult sea lamprey (Petromyzon marinus). Double immunofluorescence revealed that all the DA-immunoreactive (ir) cerebrospinal fluid-contacting (CSF-c) cells, approximately 30% of the medioventral DA-ir cells, and most of the DA-ir cells located in the grey lateral to the central canal were also GABA-ir. The results also revealed some DA-ir cells located dorsally to the central canal, which increases the number of dopaminergic cell types known in lamprey. Double-labelled fibres were mainly distributed in the ventral column, and double-labelled boutons contacted some dorsal GABA-ir CSF-c cells, as well as some non-CSF-c GABA-ir cells and ventromedial dendrites of motoneurones. The findings reveal colocalization of dopamine and GABA in some cells and fibres, which suggests co-release of these substances in some synaptic terminals. Although dopaminergic/GABAergic CSF-c cells have been reported in some other vertebrates, the other double-labelled spinal populations appear exclusive to lampreys.
Collapse
|
28
|
Folgueira M, Sueiro C, Rodríguez-Moldes I, Yáñez J, Anadón R. Organization of the torus longitudinalis in the rainbow trout (Oncorhynchus mykiss): an immunohistochemical study of the GABAergic system and a DiI tract-tracing study. J Comp Neurol 2007; 503:348-70. [PMID: 17492628 DOI: 10.1002/cne.21363] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The torus longitudinalis (TL) is a tectum-associated structure of actinopterygian fishes. The organization of the TL of rainbow trout was studied with Nissl staining, Golgi methods, immunocytochemistry with antibodies to gamma-aminobutyric acid (GABA), glutamic acid decarboxylase (GAD), and the GABA(A) receptor subunits delta and beta2/beta 3, and with tract tracing methods. Two types of neuron were characterized: medium-sized GABAergic neurons and small GABA-negative granule cells. GABA(A) receptor subunit delta-like immunoreactivity delineated two different TL regions, ventrolateral and central. Small GABAergic cells were also observed in marginal and periventricular strata of the optic tectum. These results indicate the presence of local GABAergic inhibitory circuits in the TL system. For tract-tracing, a lipophilic dye (DiI) was applied to the TL and to presumed toropetal nuclei or toral targets. Toropetal neurons were observed in the optic tectum, in pretectal (central, intermediate, and paracommissural) nuclei, in the subvalvular nucleus, and associated with the pretectocerebellar tract. Torofugal fibers were numerous in the stratum marginale of the optic tectum. Toropetal pretectal nuclei also project to the cerebellum, and a few TL cells project to the cerebellar corpus. The pyramidal cells of the trout tectum were also studied by Golgi methods and local DiI labeling. The connections of trout TL revealed here were more similar to those recently reported in carp and holocentrids (Ito et al. [2003] J. Comp. Neurol. 457:202-211; Xue et al. [2003] J. Comp. Neurol. 462:194-212), than to those reported in earlier studies. However, important differences in organization of toropetal nuclei were noted between salmonids and these other teleosts.
Collapse
Affiliation(s)
- Mónica Folgueira
- Department of Cell and Molecular Biology, University of A Coruña, 15007-A Coruña, Spain
| | | | | | | | | |
Collapse
|
29
|
Sueiro C, Carrera I, Ferreiro S, Molist P, Adrio F, Anadón R, Rodríguez-Moldes I. New insights on Saccus vasculosus evolution: a developmental and immunohistochemical study in elasmobranchs. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:187-204. [PMID: 17595538 DOI: 10.1159/000104309] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 01/12/2007] [Indexed: 11/19/2022]
Abstract
The saccus vasculosus (SV) is a circumventricular organ of the hypothalamus of many jawed fishes whose functions have not yet been clarified. It is a vascularized neuroepithelium that consists of coronet cells, cerebrospinal fluid-contacting (CSF-c) neurons and supporting cells. To assess the organization, development and evolution of the SV, the expression of glial fibrillary acidic protein (GFAP) and the neuronal markers gamma-aminobutyric acid (GABA), glutamic acid decarboxylase (GAD; the GABA synthesizing enzyme), neuropeptide Y (NPY), neurophysin II (NPH), tyrosine hydroxylase (TH; the rate-limiting catecholamine-synthesizing enzyme) and serotonin (5-HT), were investigated by immunohistochemistry in developing and adult sharks. Coronet cells showed GFAP immunoreactivity from embryos at stage 31 to adults, indicating a glial nature. GABAergic CSF-c neurons were evidenced just when the primordium of the SV becomes detectable (at stage 29). Double immunolabeling revealed colocalization of NPY and GAD in these cells. Some CSF-c cells showed TH immunoreactivity in postembryonic stages. Saccofugal GABAergic fibers formed a defined SV tract from the stage 30 and scattered neurosecretory (NPH-immunoreactive) and monoaminergic (5-HT- and TH-immunoreactive) saccopetal fibers were first detected at stages 31 and 32, respectively. The early differentiation of GABAergic neurons and the presence of a conspicuous GABAergic saccofugal system are shared by elasmobranch and teleosts (trout), suggesting that GABA plays a key function in the SV circuitry. Monoaminergic structures have not been reported in the SV of bony fishes, and were probably acquired secondarily in sharks. The existence of saccopetal monoaminergic and neurosecretory fibers reveals reciprocal connections between the SV and hypothalamic structures which have not been previously detected in teleosts.
Collapse
Affiliation(s)
- Catalina Sueiro
- Department of Cell Biology and Ecology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
30
|
Lamas I, Anadón R, Díaz-Regueira S. Carnosine-like immunoreactivity in neurons of the brain of an advanced teleost, the gray mullet (Chelon labrosus, Risso). Brain Res 2007; 1149:87-100. [PMID: 17425949 DOI: 10.1016/j.brainres.2007.02.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 02/13/2007] [Accepted: 02/14/2007] [Indexed: 11/26/2022]
Abstract
The distribution of the dipeptide carnosine (beta-alanyl-L-histidine) and the related dipeptides anserine and homocarnosine has been studied by biochemical methods and immunohistochemistry in the brain of mammals and other tetrapods. These studies have indicated the presence of these dipeptides mainly in glial cells and in some neurons (olfactory receptor neurons and certain putative migrating neurons and neuroblasts). Here, we used immunohistochemistry with a polyclonal anti-carnosine antibody and the streptavidin-avidin method to study for the first time the distribution of carnosine/carnosine-related dipeptides in the brain of a teleost fish (the gray mullet Chelon labrosus). In order to assess the neuronal nature of carnosine-immunoreactive cells, we also used double immunofluorescence methods with antibodies to carnosine and to the neuronal protein HuC/D. The results obtained show that carnosine and/or related dipeptides are present in neurons of various brain regions. The carnosine-like-immunoreactive neuronal populations of the optic tectum and cerebellum are described in detail. In the optic tectum, immunoreactivity to carnosine/carnosine-related dipeptides is present in neurons of the stratum album and the stratum griseum centrale. In the cerebellum, immunoreactivity to these dipeptides is localized in Purkinje cells, in putative Golgi and stellate cells, and in many nerve fibers. Carnosine-like immunoreactive cells in mullet brain seem to be specific types of neurons, in line with previous results in a urodele but at variance with previous results in mammals, reptiles and anurans.
Collapse
Affiliation(s)
- Iván Lamas
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15007 A Coruña, Spain
| | | | | |
Collapse
|
31
|
Castro A, Becerra M, Manso MJ, Anadón R. Calretinin immunoreactivity in the brain of the zebrafish, Danio rerio: distribution and comparison with some neuropeptides and neurotransmitter-synthesizing enzymes. I. Olfactory organ and forebrain. J Comp Neurol 2006; 494:435-59. [PMID: 16320255 DOI: 10.1002/cne.20782] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The distribution of calretinin (CR) in the forebrain and the olfactory system of the adult zebrafish was studied by using immunocytochemical techniques. Previous studies in trout forebrain have indicated that CR-immunoreactive neurons acquire this phenotype rather early in development (Castro et al., J. Comp. Neurol. 467:254-269, 2003). Thus, precise knowledge of CR-expressing neuronal populations in adult zebrafish may help to decipher late stages of forebrain morphogenesis. For analysis of some forebrain nuclei and regions, CR distribution was compared with that of various ancillary markers: choline acetyltransferase, glutamic acid decarboxylase, tyrosine hydroxylase, neuropeptide Y, thyrotropin-releasing hormone, and galanin. The results reveal that calretinin is a specific marker of olfactory receptor neurons and of various neuronal populations distributed throughout the telencephalon and diencephalon. In addition, CR immunocytochemistry revealed characteristic patterns of fibers and neuropil in several telencephalic and diencephalic regions, indicating that it is a useful marker for characterizing a number of neural centers, pathways, and neuronal subpopulations in the zebrafish forebrain. Some ancillary markers also showed a distinctive distribution in pallial and subpallial regions, revealing additional aspects of forebrain organization. Comparison of the distribution of CR observed in the forebrain of zebrafish with that reported in other teleosts revealed a number of similarities and also some interesting differences. This indicates that various neuronal populations have maintained the CR phenotype in widely divergent teleost lines and suggests that CR studies may prove very useful for comparative analysis.
Collapse
Affiliation(s)
- Antonio Castro
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071-A Coruña, Spain
| | | | | | | |
Collapse
|
32
|
Carrera I, Sueiro C, Molist P, Holstein GR, Martinelli GP, Rodríguez-Moldes I, Anadón R. GABAergic system of the pineal organ of an elasmobranch (Scyliorhinus canicula): a developmental immunocytochemical study. Cell Tissue Res 2005; 323:273-81. [PMID: 16158323 DOI: 10.1007/s00441-005-0061-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Accepted: 07/25/2005] [Indexed: 12/29/2022]
Abstract
The present immunocytochemical study provides evidence of a previously unrecognized, rich, gamma-aminobutyric acid (GABA)-ergic innervation of the pineal organ in the dogfish (Scyliorhinus canicula). In this elasmobranch, the pineal primordium is initially detected at embryonic stage 24 and grows to form a long pineal tube by stage 28. Glutamic acid decarboxylase (GAD)-immunoreactive (-ir) fibers were first observed at stage 26, and by stage 28, thin GAD-ir fibers were detectable at the base of the pineal neuroepithelium. In pre-hatchling embryos, most fibers gave rise to GAD-ir boutons that were localized in the basal region of the neuroepithelium, although a smaller number of labeled terminals ascended to the pineal lumen. A few pale GAD-ir perikarya were observed within the pineal organ of stage 29 embryos, but GAD-ir perikarya were not observed at other developing stages or in adults. In contrast, GABA immunocytochemistry revealed the presence of GABAergic perikarya and fibers in the pineal organ of late stage embryos and adults. Although high densities of GABAergic cells were observed in the paracommissural pretectum, posterior tubercle, and tegmentum of dogfish embryos (regions previously demonstrated to contain pinealopetal cells), the presence of GABA-ir perikarya in the pineal organ strongly suggests that the rich GABAergic innervation of the elasmobranch pineal organ is intrinsic. This contrasts with the central origin of GABAergic fibers in the pineal gland of some mammals.
Collapse
Affiliation(s)
- Iván Carrera
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Castro A, Becerra M, Manso MJ, Anadón R. Calretinin immunoreactivity in the brain of the zebrafish,Danio rerio: Distribution and comparison with some neuropeptides and neurotransmitter-synthesizing enzymes. II. Midbrain, hindbrain, and rostral spinal cord. J Comp Neurol 2005; 494:792-814. [PMID: 16374815 DOI: 10.1002/cne.20843] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The distribution of calretinin (CR) in the brainstem and rostral spinal cord of the adult zebrafish was studied by using immunocytochemical techniques. For analysis of some brainstem nuclei and regions, CR distribution was compared with that of complementary markers (choline acetyltransferase, glutamic acid decarboxylase, tyrosine hydroxylase, neuropeptide Y). The results reveal that CR is a marker of various neuronal populations distributed throughout the brainstem, including numerous cells in the optic tectum, torus semicircularis, secondary gustatory nucleus, reticular formation, somatomotor column, gustatory lobes, octavolateral area, and inferior olive, as well as of characteristic tracts of fibers and neuropil. These results indicate that CR may prove useful for characterizing a number of neuronal subpopulations in zebrafish. Comparison of the distribution of CR observed in the brainstem of zebrafish with that reported in an advanced teleost (the gray mullet) revealed a number of similarities, and also some interesting differences. Our results indicate that many brainstem neuronal populations have maintained the CR phenotype in widely divergent teleost lines, so CR studies may prove very useful for comparative analysis.
Collapse
Affiliation(s)
- Antonio Castro
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, 15071-A Coruña, Spain
| | | | | | | |
Collapse
|