1
|
Trueblood CT, Singh A, Cusimano MA, Hou S. Autonomic Dysreflexia in Spinal Cord Injury: Mechanisms and Prospective Therapeutic Targets. Neuroscientist 2024; 30:597-611. [PMID: 38084412 PMCID: PMC11166887 DOI: 10.1177/10738584231217455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
High-level spinal cord injury (SCI) often results in cardiovascular dysfunction, especially the development of autonomic dysreflexia. This disorder, characterized as an episode of hypertension accompanied by bradycardia in response to visceral or somatic stimuli, causes substantial discomfort and potentially life-threatening symptoms. The neural mechanisms underlying this dysautonomia include a loss of supraspinal control to spinal sympathetic neurons, maladaptive plasticity of sensory inputs and propriospinal interneurons, and excessive discharge of sympathetic preganglionic neurons. While neural control of cardiovascular function is largely disrupted after SCI, the renin-angiotensin system (RAS), which mediates blood pressure through hormonal mechanisms, is up-regulated after injury. Whether the RAS engages in autonomic dysreflexia, however, is still controversial. Regarding therapeutics, transplantation of embryonic presympathetic neurons, collected from the brainstem or more specific raphe regions, into the injured spinal cord may reestablish supraspinal regulation of sympathetic activity for cardiovascular improvement. This treatment reduces the occurrence of spontaneous autonomic dysreflexia and the severity of artificially triggered dysreflexic responses in rodent SCI models. Though transplanting early-stage neurons improves neural regulation of blood pressure, hormonal regulation remains high and baroreflex dysfunction persists. Therefore, cell transplantation combined with selected RAS inhibition may enhance neuroendocrine homeostasis for cardiovascular recovery after SCI.
Collapse
Affiliation(s)
- Cameron T. Trueblood
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Anurag Singh
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Marissa A. Cusimano
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Shaoping Hou
- Marion Murray Spinal Cord Research Center, Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
2
|
Schwalbe DC, Stornetta DS, Abraham-Fan RJ, Souza GMPR, Jalil M, Crook ME, Campbell JN, Abbott SBG. Molecular Organization of Autonomic, Respiratory, and Spinally-Projecting Neurons in the Mouse Ventrolateral Medulla. J Neurosci 2024; 44:e2211232024. [PMID: 38918066 PMCID: PMC11293450 DOI: 10.1523/jneurosci.2211-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
The ventrolateral medulla (VLM) is a crucial region in the brain for visceral and somatic control, serving as a significant source of synaptic input to the spinal cord. Experimental studies have shown that gene expression in individual VLM neurons is predictive of their function. However, the molecular and cellular organization of the VLM has remained uncertain. This study aimed to create a comprehensive dataset of VLM cells using single-cell RNA sequencing in male and female mice. The dataset was enriched with targeted sequencing of spinally-projecting and adrenergic/noradrenergic VLM neurons. Based on differentially expressed genes, the resulting dataset of 114,805 VLM cells identifies 23 subtypes of neurons, excluding those in the inferior olive, and five subtypes of astrocytes. Spinally-projecting neurons were found to be abundant in seven subtypes of neurons, which were validated through in situ hybridization. These subtypes included adrenergic/noradrenergic neurons, serotonergic neurons, and neurons expressing gene markers associated with premotor neurons in the ventromedial medulla. Further analysis of adrenergic/noradrenergic neurons and serotonergic neurons identified nine and six subtypes, respectively, within each class of monoaminergic neurons. Marker genes that identify the neural network responsible for breathing were concentrated in two subtypes of neurons, delineated from each other by markers for excitatory and inhibitory neurons. These datasets are available for public download and for analysis with a user-friendly interface. Collectively, this study provides a fine-scale molecular identification of cells in the VLM, forming the foundation for a better understanding of the VLM's role in vital functions and motor control.
Collapse
Affiliation(s)
- Dana C Schwalbe
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | | | | | | | - Maira Jalil
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Maisie E Crook
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - John N Campbell
- Departments of Biology, University of Virginia, Charlottesville, Virginia 22904
| | | |
Collapse
|
3
|
Zsombok A, Desmoulins LD, Derbenev AV. Sympathetic circuits regulating hepatic glucose metabolism: where we stand. Physiol Rev 2024; 104:85-101. [PMID: 37440208 PMCID: PMC11281813 DOI: 10.1152/physrev.00005.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023] Open
Abstract
The prevalence of metabolic disorders, including type 2 diabetes mellitus, continues to increase worldwide. Although newer and more advanced therapies are available, current treatments are still inadequate and the search for solutions remains. The regulation of energy homeostasis, including glucose metabolism, involves an exchange of information between the nervous systems and peripheral organs and tissues; therefore, developing treatments to alter central and/or peripheral neural pathways could be an alternative solution to modulate whole body metabolism. Liver glucose production and storage are major mechanisms controlling glycemia, and the autonomic nervous system plays an important role in the regulation of hepatic functions. Autonomic nervous system imbalance contributes to excessive hepatic glucose production and thus to the development and progression of type 2 diabetes mellitus. At cellular levels, change in neuronal activity is one of the underlying mechanisms of autonomic imbalance; therefore, modulation of the excitability of neurons involved in autonomic outflow governance has the potential to improve glycemic status. Tissue-specific subsets of preautonomic neurons differentially control autonomic outflow; therefore, detailed information about neural circuits and properties of liver-related neurons is necessary for the development of strategies to regulate liver functions via the autonomic nerves. This review provides an overview of our current understanding of the hypothalamus-ventral brainstem-liver pathway involved in the sympathetic regulation of the liver, outlines strategies to identify organ-related neurons, and summarizes neuronal plasticity during diabetic conditions with a particular focus on liver-related neurons in the paraventricular nucleus.
Collapse
Affiliation(s)
- Andrea Zsombok
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| | - Lucie D Desmoulins
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, Louisiana, United States
- Tulane Brain Institute, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
4
|
Shi Y, Sobrinho CR, Soto-Perez J, Milla BM, Stornetta DS, Stornetta RL, Takakura AC, Mulkey DK, Moreira TS, Bayliss DA. 5-HT7 receptors expressed in the mouse parafacial region are not required for respiratory chemosensitivity. J Physiol 2022; 600:2789-2811. [PMID: 35385139 PMCID: PMC9167793 DOI: 10.1113/jp282279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract A brainstem homeostatic system senses CO2/H+ to regulate ventilation, blood gases and acid–base balance. Neurons of the retrotrapezoid nucleus (RTN) and medullary raphe are both implicated in this mechanism as respiratory chemosensors, but recent pharmacological work suggested that the CO2/H+ sensitivity of RTN neurons is mediated indirectly, by raphe‐derived serotonin acting on 5‐HT7 receptors. To investigate this further, we characterized Htr7 transcript expression in phenotypically identified RTN neurons using multiplex single cell qRT‐PCR and RNAscope. Although present in multiple neurons in the parafacial region of the ventrolateral medulla, Htr7 expression was undetectable in most RTN neurons (Nmb+/Phox2b+) concentrated in the densely packed cell group ventrolateral to the facial nucleus. Where detected, Htr7 expression was modest and often associated with RTN neurons that extend dorsolaterally to partially encircle the facial nucleus. These dorsolateral Nmb+/Htr7+ neurons tended to express Nmb at high levels and the intrinsic RTN proton detectors Gpr4 and Kcnk5 at low levels. In mouse brainstem slices, CO2‐stimulated firing in RTN neurons was mostly unaffected by a 5‐HT7 receptor antagonist, SB269970 (n = 11/13). At the whole animal level, microinjection of SB269970 into the RTN of conscious mice blocked respiratory stimulation by co‐injected LP‐44, a 5‐HT7 receptor agonist, but had no effect on CO2‐stimulated breathing in those same mice. We conclude that Htr7 is expressed by a minor subset of RTN neurons with a molecular profile distinct from the established chemoreceptors and that 5‐HT7 receptors have negligible effects on CO2‐evoked firing activity in RTN neurons or on CO2‐stimulated breathing in mice. Key points Neurons of the retrotrapezoid nucleus (RTN) are intrinsic CO2/H+ chemosensors and serve as an integrative excitatory hub for control of breathing. Serotonin can activate RTN neurons, in part via 5‐HT7 receptors, and those effects have been implicated in conferring an indirect CO2 sensitivity. Multiple single cell molecular approaches revealed low levels of 5‐HT7 receptor transcript expression restricted to a limited population of RTN neurons. Pharmacological experiments showed that 5‐HT7 receptors in RTN are not required for CO2/H+‐stimulation of RTN neuronal activity or CO2‐stimulated breathing. These data do not support a role for 5‐HT7 receptors in respiratory chemosensitivity mediated by RTN neurons.
Collapse
Affiliation(s)
- Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Brenda M Milla
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Abstract
This review provides an overview regarding the main aspects of candidate COVID-19 vaccines and pathophysiology of disease. The types of biotechnological candidate vaccines to be developed against COVID-19, their degree of protection and the pathophysiological mechanism of the disease were analyzed in this review article. The literature data on which cruxes for the development of biotechnological candidate vaccines to be wended are based was researched. Data that could give reference to various biotechnological candidate vaccines were reviewed. For this purpose, up-to-date literature data was utilized. The ways to succeed in the development of a vaccine requiring a technological infrastructure are to synthesize the data obtained from long term trials and to put them into practice subsequently. The vaccines to be developed by means of recombinant DNA technology will be a source of inspiration to people for further studies. After a rapid process of vaccine development, the use of COVID-19 vaccine can be mainstreamed among people to prevent the disease. As a result of these practices, the evaluation of which vaccine will be more safe, reliable and effective will be performed after phase studies.
Collapse
|
6
|
Silva JDN, Oliveira LM, Souza FC, Moreira TS, Takakura AC. GABAergic neurons of the medullary raphe regulate active expiration during hypercapnia. J Neurophysiol 2020; 123:1933-1943. [PMID: 32267190 DOI: 10.1152/jn.00698.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The parafacial respiratory group (pFRG), located in the lateral aspect of the rostroventral lateral medulla, has been described as a conditional expiratory oscillator that emerges mainly in conditions of high metabolic challenges to increase breathing. The convergence of inhibitory and excitatory inputs to pFRG and the generation of active expiration may be more complex than previously thought. We hypothesized that the medullary raphe, a region that has long been described to be involved in breathing activity, is also responsible for the expiratory activity under hypercapnic condition. To test this hypothesis, we performed anatomical and physiological experiments in urethane-anesthetized adult male Wistar rats. Our data showed anatomical projections from serotonergic (5-HT-ergic) and GABAergic neurons of raphe magnus (RMg) and obscurus (ROb) to the pFRG region. Pharmacological inhibition of RMg or ROb with muscimol (60 pmol/30 nL) did not change the frequency or amplitude of diaphragm activity and did not generate active expiration. However, under hypercapnia (9-10% CO2), the inhibition of RMg or ROb increased the amplitude of abdominal activity, without changing the increased amplitude of diaphragm activity. Depletion of serotonergic neurons with saporin anti-SERT injections into ROb and RMg did not increase the amplitude of abdominal activity during hypercapnia. These results show that the presumably GABAergic neurons within the RMg and ROb may be the inhibitory source to modulate the activity of pFRG during hypercapnia condition.NEW & NOTEWORTHY Medullary raphe has been involved in the inspiratory response to central chemoreflex; however, these reports have never addressed the role of raphe neurons on active expiration induced by hypercapnia. Here, we showed that a subset of GABA cells within the medullary raphe directly project to the parafacial respiratory region, modulating active expiration under high levels of CO2.
Collapse
Affiliation(s)
- Josiane do N Silva
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Luiz M Oliveira
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Felipe C Souza
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| | - Thiago S Moreira
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, Brazil
| | - Ana C Takakura
- Departamento de Farmacologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Gao H, Korim WS, Yao ST, Heesch CM, Derbenev AV. Glycinergic neurotransmission in the rostral ventrolateral medulla controls the time course of baroreflex-mediated sympathoinhibition. J Physiol 2018; 597:283-301. [PMID: 30312491 DOI: 10.1113/jp276467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/11/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS To maintain appropriate blood flow to various tissues of the body under a variety of physiological states, autonomic nervous system reflexes regulate regional sympathetic nerve activity and arterial blood pressure. Our data obtained in anaesthetized rats revealed that glycine released in the rostral ventrolateral medulla (RVLM) plays a critical role in maintaining arterial baroreflex sympathoinhibition. Manipulation of brainstem nuclei with known inputs to the RVLM (nucleus tractus solitarius and caudal VLM) unmasked tonic glycinergic inhibition in the RVLM. Whole-cell, patch clamp recordings demonstrate that both GABA and glycine inhibit RVLM neurons. Potentiation of neurotransmitter release from the active synaptic inputs in the RVLM produced saturation of GABAergic inhibition and emergence of glycinergic inhibition. Our data suggest that GABA controls threshold excitability, wherreas glycine increases the strength of inhibition under conditions of increased synaptic activity within the RVLM. ABSTRACT The arterial baroreflex is a rapid negative-feedback system that compensates changes in blood pressure by adjusting the output of presympathetic neurons in the rostral ventrolateral medulla (RVLM). GABAergic projections from the caudal VLM (CVLM) provide a primary inhibitory input to presympathetic RVLM neurons. Although glycine-dependent regulation of RVLM neurons has been proposed, its role in determining RVLM excitability is ill-defined. The present study aimed to determine the physiological role of glycinergic neurotransmission in baroreflex function, identify the mechanisms for glycine release, and evaluate co-inhibition of RVLM neurons by GABA and glycine. Microinjection of the glycine receptor antagonist strychnine (4 mm, 100 nL) into the RVLM decreased the duration of baroreflex-mediated inhibition of renal sympathetic nerve activity (control = 12 ± 1 min; RVLM-strychnine = 5.1 ± 1 min), suggesting that RVLM glycine plays a critical role in regulating the time course of sympathoinhibition. Blockade of output from the nucleus tractus solitarius and/or disinhibition of the CVLM unmasked tonic glycinergic inhibition of the RVLM. To evaluate cellular mechanisms, RVLM neurons were retrogradely labelled (prior injection of pseudorabies virus PRV-152) and whole-cell, patch clamp recordings were obtained in brainstem slices. Under steady-state conditions GABAergic inhibition of RVLM neurons predominated and glycine contributed less than 25% of the overall inhibition. By contrast, stimulation of synaptic inputs in the RVLM decreased GABAergic inhibition to 53%; and increased glycinergic inhibition to 47%. Thus, under conditions of increased synaptic activity in the RVLM, glycinergic inhibition is recruited to strengthen sympathoinhibition.
Collapse
Affiliation(s)
- Hong Gao
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Willian S Korim
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Cheryl M Heesch
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Andrei V Derbenev
- Department of Physiology, School of Medicine, Tulane University, New Orleans, LA, USA.,Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
8
|
Neuromedin B Expression Defines the Mouse Retrotrapezoid Nucleus. J Neurosci 2017; 37:11744-11757. [PMID: 29066557 DOI: 10.1523/jneurosci.2055-17.2017] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/09/2017] [Indexed: 11/21/2022] Open
Abstract
The retrotrapezoid nucleus (RTN) consists, by definition, of Phox2b-expressing, glutamatergic, non-catecholaminergic, noncholinergic neurons located in the parafacial region of the medulla oblongata. An unknown proportion of RTN neurons are central respiratory chemoreceptors and there is mounting evidence for biochemical diversity among these cells. Here, we used multiplexed in situ hybridization and single-cell RNA-Seq in male and female mice to provide a more comprehensive view of the phenotypic diversity of RTN neurons. We now demonstrate that the RTN of mice can be identified with a single and specific marker, Neuromedin B mRNA (Nmb). Most (∼75%) RTN neurons express low-to-moderate levels of Nmb and display chemoreceptor properties. Namely they are activated by hypercapnia, but not by hypoxia, and express proton sensors, TASK-2 and Gpr4. These Nmb-low RTN neurons also express varying levels of transcripts for Gal, Penk, and Adcyap1, and receptors for substance P, orexin, serotonin, and ATP. A subset of RTN neurons (∼20-25%), typically larger than average, express very high levels of Nmb mRNA. These Nmb-high RTN neurons do not express Fos after hypercapnia and have low-to-undetectable levels of Kcnk5 or Gpr4 transcripts; they also express Adcyap1, but are essentially devoid of Penk and Gal transcripts. In male rats, Nmb is also a marker of the RTN but, unlike in mice, this gene is expressed by other types of nearby neurons located within the ventromedial medulla. In sum, Nmb is a selective marker of the RTN in rodents; Nmb-low neurons, the vast majority, are central respiratory chemoreceptors, whereas Nmb-high neurons likely have other functions.SIGNIFICANCE STATEMENT Central respiratory chemoreceptors regulate arterial PCO2 by adjusting lung ventilation. Such cells have recently been identified within the retrotrapezoid nucleus (RTN), a brainstem nucleus defined by genetic lineage and a cumbersome combination of markers. Using single-cell RNA-Seq and multiplexed in situ hybridization, we show here that a single marker, Neuromedin B mRNA (Nmb), identifies RTN neurons in rodents. We also suggest that >75% of these Nmb neurons are chemoreceptors because they are strongly activated by hypercapnia and express high levels of proton sensors (Kcnk5 and Gpr4). The other RTN neurons express very high levels of Nmb, but low levels of Kcnk5/Gpr4/pre-pro-galanin/pre-pro-enkephalin, and do not respond to hypercapnia. Their function is unknown.
Collapse
|
9
|
McMenamin CA, Travagli RA, Browning KN. Inhibitory neurotransmission regulates vagal efferent activity and gastric motility. Exp Biol Med (Maywood) 2017; 241:1343-50. [PMID: 27302177 DOI: 10.1177/1535370216654228] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The gastrointestinal tract receives extrinsic innervation from both the sympathetic and parasympathetic nervous systems, which regulate and modulate the function of the intrinsic (enteric) nervous system. The stomach and upper gastrointestinal tract in particular are heavily influenced by the parasympathetic nervous system, supplied by the vagus nerve, and disruption of vagal sensory or motor functions results in disorganized motility patterns, disrupted receptive relaxation and accommodation, and delayed gastric emptying, amongst others. Studies from several laboratories have shown that the activity of vagal efferent motoneurons innervating the upper GI tract is inhibited tonically by GABAergic synaptic inputs from the adjacent nucleus tractus solitarius. Disruption of this influential central GABA input impacts vagal efferent output, hence gastric functions, significantly. The purpose of this review is to describe the development, physiology, and pathophysiology of this functionally dominant inhibitory synapse and its role in regulating vagally determined gastric functions.
Collapse
Affiliation(s)
- Caitlin A McMenamin
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
10
|
Parker LM, Le S, Wearne TA, Hardwick K, Kumar NN, Robinson KJ, McMullan S, Goodchild AK. Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation? J Comp Neurol 2017; 525:2249-2264. [PMID: 28295336 DOI: 10.1002/cne.24203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/15/2022]
Abstract
Previous studies have demonstrated that a range of stimuli activate neurons, including catecholaminergic neurons, in the ventrolateral medulla. Not all catecholaminergic neurons are activated and other neurochemical content is largely unknown hence whether stimulus specific populations exist is unclear. Here we determine the neurochemistry (using in situ hybridization) of catecholaminergic and noncatecholaminergic neurons which express c-Fos immunoreactivity throughout the rostrocaudal extent of the ventrolateral medulla, in Sprague Dawley rats treated with hydralazine or saline. Distinct neuronal populations containing PPCART, PPPACAP, and PPNPY mRNAs, which were largely catecholaminergic, were activated by hydralazine but not saline. Both catecholaminergic and noncatecholaminergic neurons containing preprotachykinin and prepro-enkephalin (PPE) mRNAs were also activated, with the noncatecholaminergic population located in the rostral C1 region. Few GlyT2 neurons were activated. A subset of these data was then used to compare the neuronal populations activated by 2-deoxyglucose evoked glucoprivation (Brain Structure and Function (2015) 220:117). Hydralazine activated more neurons than 2-deoxyglucose but similar numbers of catecholaminergic neurons. Commonly activated populations expressing PPNPY and PPE mRNAs were defined. These likely include PPNPY expressing catecholaminergic neurons projecting to vasopressinergic and corticotrophin releasing factor neurons in the paraventricular nucleus, which when activated result in elevated plasma vasopressin and corticosterone. Stimulus specific neurons included noncatecholaminergic neurons and a few PPE positive catecholaminergic neuron but neurochemical codes were largely unidentified. Reasons for the lack of identification of stimulus specific neurons, readily detectable using electrophysiology in anaesthetized preparations and for which neural circuits can be defined, are discussed.
Collapse
Affiliation(s)
- Lindsay M Parker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.,ARC Centre of Excellence for Nanoscale Biophotonics, Macquarie University, NSW, 2109, Australia
| | - Sheng Le
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Travis A Wearne
- Department of Psychology, Faculty of Human Sciences, Macquarie University, NSW, 2109, Australia
| | - Kate Hardwick
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Natasha N Kumar
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.,Department of Pharmacology, School of Medical Science, University of New South Wales, NSW, 2052, Australia
| | - Katherine J Robinson
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Simon McMullan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| | - Ann K Goodchild
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia
| |
Collapse
|
11
|
Conceição EPSD, Madden CJ, Morrison SF. Glycinergic inhibition of BAT sympathetic premotor neurons in rostral raphe pallidus. Am J Physiol Regul Integr Comp Physiol 2017; 312:R919-R926. [PMID: 28254751 DOI: 10.1152/ajpregu.00551.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/02/2017] [Accepted: 02/18/2017] [Indexed: 11/22/2022]
Abstract
The rostral raphe pallidus (rRPa) contains sympathetic premotor neurons controlling thermogenesis in brown adipose tissue (BAT). We sought to determine whether a tonic activation of glycineA receptors (GlyAR) in the rRPa contributes to the inhibitory regulation of BAT sympathetic nerve activity (SNA) and of cardiovascular parameters in anesthetized rats. Nanoinjection of the GlyAR antagonist, strychnine (STR), into the rRPa of intact rats increased BAT SNA (peak: +495%), BAT temperature (TBAT, +1.1°C), expired CO2, (+0.4%), core body temperature (TCORE, +0.2°C), mean arterial pressure (MAP, +4 mmHg), and heart rate (HR, +57 beats/min). STR into rRPa in rats with a postdorsomedial hypothalamus transection produced similar increases in BAT thermogenic and cardiovascular parameters. Glycine nanoinjection into the rRPa evoked a potent inhibition of the cooling-evoked increases in BAT SNA (nadir: -74%), TBAT (-0.2°C), TCORE (-0.2°C), expired CO2 (-0.2%), MAP (-8 mmHg), and HR (-22 beats/min) but had no effect on the increases in these variables evoked by STR nanoinjection into rRPa. Nanoinjection of GABA into the rRPa inhibited the STR-evoked BAT SNA (nadir: -86%) and reduced the expired CO2 (-0.4%). Blockade of glutamate receptors in rRPa reduced the STR-evoked increases in BAT SNA (nadir: -61%), TBAT (-0.5°C), expired CO2 (-0.3%), MAP (-9 mmHg), and HR (-33 beats/min). We conclude that a tonically active glycinergic input to the rRPa contributes to the inhibitory regulation of the discharge of BAT sympathetic premotor neurons and of BAT thermogenesis and energy expenditure.
Collapse
Affiliation(s)
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
12
|
Subramanian M, Mueller PJ. Altered Differential Control of Sympathetic Outflow Following Sedentary Conditions: Role of Subregional Neuroplasticity in the RVLM. Front Physiol 2016; 7:290. [PMID: 27486405 PMCID: PMC4949265 DOI: 10.3389/fphys.2016.00290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/27/2016] [Indexed: 01/25/2023] Open
Abstract
Despite the classically held belief of an “all-or-none” activation of the sympathetic nervous system, differential responses in sympathetic nerve activity (SNA) can occur acutely at varying magnitudes and in opposing directions. Sympathetic nerves also appear to contribute differentially to various disease states including hypertension and heart failure. Previously we have reported that sedentary conditions enhanced responses of splanchnic SNA (SSNA) but not lumbar SNA (LSNA) to activation of the rostral ventrolateral medulla (RVLM) in rats. Bulbospinal RVLM neurons from sedentary rats also exhibit increased dendritic branching in rostral regions of the RVLM. We hypothesized that regionally specific structural neuroplasticity would manifest as enhanced SSNA but not LSNA following activation of the rostral RVLM. To test this hypothesis, groups of physically active (10–12 weeks on running wheels) or sedentary, male Sprague-Dawley rats were instrumented to record mean arterial pressure, LSNA and SSNA under Inactin anesthesia and during microinjections of glutamate (30 nl, 10 mM) into multiple sites within the RVLM. Sedentary conditions enhanced SSNA but not LSNA responses and SSNA responses were enhanced at more central and rostral sites. Results suggest that enhanced SSNA responses in rostral RVLM coincide with enhanced dendritic branching in rostral RVLM observed previously. Identifying structural and functional neuroplasticity in specific populations of RVLM neurons may help identify new treatments for cardiovascular diseases, known to be more prevalent in sedentary individuals.
Collapse
Affiliation(s)
- Madhan Subramanian
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - Patrick J Mueller
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
13
|
Korim WS, Llewellyn-Smith IJ, Verberne AJM. Activation of Medulla-Projecting Perifornical Neurons Modulates the Adrenal Sympathetic Response to Hypoglycemia: Involvement of Orexin Type 2 (OX2-R) Receptors. Endocrinology 2016; 157:810-9. [PMID: 26653571 DOI: 10.1210/en.2015-1712] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Iatrogenic hypoglycemia in response to insulin treatment is commonly experienced by patients with type 1 diabetes and can be life threatening. The body releases epinephrine in an attempt to counterregulate hypoglycemia, but the neural mechanisms underlying this phenomenon remain to be elucidated. Orexin neurons in the perifornical hypothalamus (PeH) project to the rostral ventrolateral medulla (RVLM) and are likely to be involved in epinephrine secretion during hypoglycemia. In anesthetized rats, we report that hypoglycemia increases the sympathetic preganglionic discharge to the adrenal gland by activating PeH orexin neurons that project to the RVLM (PeH-RVLM). Electrophysiological characterization shows that the majority of identified PeH-RVLM neurons, including a subpopulation of orexin neurons, are activated in response to hypoglycemia or glucoprivation. Furthermore, the excitatory input from the PeH is mediated by orexin type 2 receptors in the RVLM. These results suggest that activation of orexin PeH-RVLM neurons and orexin type 2 receptors in the RVLM facilitates epinephrine release by increasing sympathetic drive to adrenal chromaffin cells during hypoglycemia.
Collapse
Affiliation(s)
- Willian S Korim
- Clinical Pharmacology and Therapeutics Unit (W.S.K., A.J.M.V.), Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia; Florey Institute of Neuroscience and Mental Health (W.S.K.), University of Melbourne, Parkville, Victoria 3052, Australia; and Cardiovascular Medicine (I.J.L.-S.), Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Ida J Llewellyn-Smith
- Clinical Pharmacology and Therapeutics Unit (W.S.K., A.J.M.V.), Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia; Florey Institute of Neuroscience and Mental Health (W.S.K.), University of Melbourne, Parkville, Victoria 3052, Australia; and Cardiovascular Medicine (I.J.L.-S.), Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Anthony J M Verberne
- Clinical Pharmacology and Therapeutics Unit (W.S.K., A.J.M.V.), Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria 3084, Australia; Florey Institute of Neuroscience and Mental Health (W.S.K.), University of Melbourne, Parkville, Victoria 3052, Australia; and Cardiovascular Medicine (I.J.L.-S.), Human Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
14
|
Deuchars SA, Lall VK. Sympathetic preganglionic neurons: properties and inputs. Compr Physiol 2016; 5:829-69. [PMID: 25880515 DOI: 10.1002/cphy.c140020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The sympathetic nervous system comprises one half of the autonomic nervous system and participates in maintaining homeostasis and enabling organisms to respond in an appropriate manner to perturbations in their environment, either internal or external. The sympathetic preganglionic neurons (SPNs) lie within the spinal cord and their axons traverse the ventral horn to exit in ventral roots where they form synapses onto postganglionic neurons. Thus, these neurons are the last point at which the central nervous system can exert an effect to enable changes in sympathetic outflow. This review considers the degree of complexity of sympathetic control occurring at the level of the spinal cord. The morphology and targets of SPNs illustrate the diversity within this group, as do their diverse intrinsic properties which reveal some functional significance of these properties. SPNs show high degrees of coupled activity, mediated through gap junctions, that enables rapid and coordinated responses; these gap junctions contribute to the rhythmic activity so critical to sympathetic outflow. The main inputs onto SPNs are considered; these comprise afferent, descending, and interneuronal influences that themselves enable functionally appropriate changes in SPN activity. The complexity of inputs is further demonstrated by the plethora of receptors that mediate the different responses in SPNs; their origins and effects are plentiful and diverse. Together these different inputs and the intrinsic and coupled activity of SPNs result in the rhythmic nature of sympathetic outflow from the spinal cord, which has a variety of frequencies that can be altered in different conditions.
Collapse
Affiliation(s)
- Susan A Deuchars
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
15
|
Nyhuis TJ, Masini CV, Taufer KL, Day HE, Campeau S. Reversible inactivation of rostral nucleus raphe pallidus attenuates acute autonomic responses but not their habituation to repeated audiogenic stress in rats. Stress 2016; 19:248-59. [PMID: 26998558 PMCID: PMC4957647 DOI: 10.3109/10253890.2016.1160281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The medullary nucleus raphe pallidus (RPa) mediates several autonomic responses evoked by acute stress exposure, including tachycardia and hyperthermia. The present study assessed whether the RPa contributes to the decline/habituation of these responses observed during repeated audiogenic stress. Adult male rats were implanted with cannulae aimed at the RPa, and abdominal E-mitters that wirelessly acquire heart rate and core body temperature. After surgical recovery, animals were injected with muscimol or vehicle (aCSF) in the RPa region, followed by 30 min of 95-dBA loud noise or no noise control exposures on 3 consecutive days at 24-h intervals. Forty-eight hours after the third exposure, animals were exposed to an additional, but injection-free, loud noise or no noise test to assess habituation of hyperthermia and tachycardia. Three days later, rats were restrained for 30-min to evaluate their ability to display normal acute autonomic responses following the repeated muscimol injection regimen. The results indicated that the inhibition of cellular activity induced by the GABAA-receptor agonist muscimol centered in the RPa region reliably attenuated acute audiogenic stress-evoked tachycardia and hyperthermia, compared with vehicle-injected rats. Animals in the stress groups exhibited similar attenuated tachycardia and hyperthermia during the injection-free fourth audiogenic stress exposure, and displayed similar and robust increases in these responses to the subsequent restraint test. These results suggest that cellular activity in neurons of the RPa region is necessary for the expression of acute audiogenic stress-induced tachycardia and hyperthermia, but may not be necessary for the acquisition of habituated tachycardic responses to repeated stress.
Collapse
Affiliation(s)
- Tara J. Nyhuis
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309, USA
| | - Cher V. Masini
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309, USA
| | - Kirsten L. Taufer
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309, USA
| | - Heidi E.W. Day
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309, USA
| | - Serge Campeau
- University of Colorado Boulder, Department of Psychology and Neuroscience, Boulder, CO 80309, USA
- Corresponding Author: Serge Campeau, Department of Psychology and Neuroscience, University of Colorado, Muenzinger D244; UCB 345, Boulder, CO 80309, USA, Phone: 1-303-492-5693, Fax: 1-303-492-2967,
| |
Collapse
|
16
|
Bowman BR, Goodchild AK. GABA and enkephalin tonically alter sympathetic outflows in the rat spinal cord. Auton Neurosci 2015; 193:84-91. [DOI: 10.1016/j.autneu.2015.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/29/2022]
|
17
|
Afferent and efferent connections of C1 cells with spinal cord or hypothalamic projections in mice. Brain Struct Funct 2015; 221:4027-4044. [PMID: 26560463 DOI: 10.1007/s00429-015-1143-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022]
Abstract
The axonal projections and synaptic input of the C1 adrenergic neurons of the rostral ventrolateral medulla (VLM) were examined using transgenic dopamine-beta hydroxylase Cre mice and modified rabies virus. Cre-dependent viral vectors expressing TVA (receptor for envelopeA) and rabies glycoprotein were injected into the left VLM. EnvelopeA-pseudotyped rabies-EGFP glycoprotein-deficient virus (rabies-EGFP) was injected 4-6 weeks later in either thoracic spinal cord (SC) or hypothalamus. TVA immunoreactivity was detected almost exclusively (95 %) in VLM C1 neurons. In mice with SC injections of rabies-EGFP, starter cells (expressing TVA + EGFP) were found at the rostral end of the VLM; in mice with hypothalamic injections starter C1 cells were located more caudally. C1 neurons innervating SC or hypothalamus had other terminal fields in common (e.g., dorsal vagal complex, locus coeruleus, raphe pallidus and periaqueductal gray matter). Putative inputs to C1 cells with SC or hypothalamic projections originated from the same brain regions, especially the lower brainstem reticular core from spinomedullary border to rostral pons. Putative input neurons to C1 cells were also observed in the nucleus of the solitary tract, caudal VLM, caudal spinal trigeminal nucleus, cerebellum, periaqueductal gray matter and inferior and superior colliculi. In sum, regardless of whether they innervate SC or hypothalamus, VLM C1 neurons receive input from the same general brain regions. One interpretation is that many types of somatic or internal stimuli recruit these neurons en bloc to produce a stereotyped acute stress response with sympathetic, parasympathetic, vigilance and neuroendocrine components.
Collapse
|
18
|
Abstract
Thermogenesis, the production of heat energy, in brown adipose tissue is a significant component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature in many species from mouse to man and plays a key role in elevating body temperature during the febrile response to infection. The sympathetic neural outflow determining brown adipose tissue (BAT) thermogenesis is regulated by neural networks in the CNS which increase BAT sympathetic nerve activity in response to cutaneous and deep body thermoreceptor signals. Many behavioral states, including wakefulness, immunologic responses, and stress, are characterized by elevations in core body temperature to which central command-driven BAT activation makes a significant contribution. Since energy consumption during BAT thermogenesis involves oxidation of lipid and glucose fuel molecules, the CNS network driving cold-defensive and behavioral state-related BAT activation is strongly influenced by signals reflecting the short- and long-term availability of the fuel molecules essential for BAT metabolism and, in turn, the regulation of BAT thermogenesis in response to metabolic signals can contribute to energy balance, regulation of body adipose stores and glucose utilization. This review summarizes our understanding of the functional organization and neurochemical influences within the CNS networks that modulate the level of BAT sympathetic nerve activity to produce the thermoregulatory and metabolic alterations in BAT thermogenesis and BAT energy expenditure that contribute to overall energy homeostasis and the autonomic support of behavior.
Collapse
Affiliation(s)
- Shaun F Morrison
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | | |
Collapse
|
19
|
Dergacheva O. Chronic intermittent hypoxia alters neurotransmission from lateral paragigantocellular nucleus to parasympathetic cardiac neurons in the brain stem. J Neurophysiol 2014; 113:380-9. [PMID: 25318765 DOI: 10.1152/jn.00302.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Patients with sleep-related disorders, including obstructive sleep apnea (OSA), have an increased risk of cardiovascular diseases. OSA events are more severe in rapid eye movement (REM) sleep. REM sleep further increases the risk of adverse cardiovascular events by diminishing cardioprotective parasympathetic activity. The mechanisms underlying REM sleep-related reduction in parasympathetic activity likely include activation of inhibitory input to cardiac vagal neurons (CVNs) in the brain stem originating from the lateral paragigantocellular nucleus (LPGi), a nucleus that plays a role in REM sleep control. This study tests the hypothesis that chronic intermittent hypoxia and hypercapnia (CIHH), an animal model of OSA, inhibits CVNs because of exaggeration of the GABAergic pathway from the LPGi to CVNs. GABAergic neurotransmission to CVNs evoked by electrical stimulation of the LPGi was examined with whole cell patch-clamp recordings in an in vitro brain slice preparation in rats exposed to CIHH and control rats. GABAergic synaptic events were enhanced after 4-wk CIHH in both male and female rats, to a greater degree in males. Acute hypoxia and hypercapnia (H/H) reversibly diminished the LPGi-evoked GABAergic neurotransmission to CVNs. However, GABAergic synaptic events were enhanced after acute H/H in CIHH male animals. Orexin-A elicited a reversible inhibition of LPGi-evoked GABAergic currents in control animals but evoked no significant changes in CIHH male rats. In conclusion, exaggerated inhibitory neurotransmission from the LPGi to CVNs in CIHH animals would reduce cardioprotective parasympathetic activity and enhance the risk of adverse cardiovascular events.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| |
Collapse
|
20
|
Abstract
Lung ventilation fluctuates widely with behavior but arterial PCO2 remains stable. Under normal conditions, the chemoreflexes contribute to PaCO2 stability by producing small corrective cardiorespiratory adjustments mediated by lower brainstem circuits. Carotid body (CB) information reaches the respiratory pattern generator (RPG) via nucleus solitarius (NTS) glutamatergic neurons which also target rostral ventrolateral medulla (RVLM) presympathetic neurons thereby raising sympathetic nerve activity (SNA). Chemoreceptors also regulate presympathetic neurons and cardiovagal preganglionic neurons indirectly via inputs from the RPG. Secondary effects of chemoreceptors on the autonomic outflows result from changes in lung stretch afferent and baroreceptor activity. Central respiratory chemosensitivity is caused by direct effects of acid on neurons and indirect effects of CO2 via astrocytes. Central respiratory chemoreceptors are not definitively identified but the retrotrapezoid nucleus (RTN) is a particularly strong candidate. The absence of RTN likely causes severe central apneas in congenital central hypoventilation syndrome. Like other stressors, intense chemosensory stimuli produce arousal and activate circuits that are wake- or attention-promoting. Such pathways (e.g., locus coeruleus, raphe, and orexin system) modulate the chemoreflexes in a state-dependent manner and their activation by strong chemosensory stimuli intensifies these reflexes. In essential hypertension, obstructive sleep apnea and congestive heart failure, chronically elevated CB afferent activity contributes to raising SNA but breathing is unchanged or becomes periodic (severe CHF). Extreme CNS hypoxia produces a stereotyped cardiorespiratory response (gasping, increased SNA). The effects of these various pathologies on brainstem cardiorespiratory networks are discussed, special consideration being given to the interactions between central and peripheral chemoreflexes.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
21
|
Tupone D, Madden CJ, Morrison SF. Autonomic regulation of brown adipose tissue thermogenesis in health and disease: potential clinical applications for altering BAT thermogenesis. Front Neurosci 2014; 8:14. [PMID: 24570653 PMCID: PMC3916784 DOI: 10.3389/fnins.2014.00014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/20/2014] [Indexed: 01/04/2023] Open
Abstract
From mouse to man, brown adipose tissue (BAT) is a significant source of thermogenesis contributing to the maintenance of the body temperature homeostasis during the challenge of low environmental temperature. In rodents, BAT thermogenesis also contributes to the febrile increase in core temperature during the immune response. BAT sympathetic nerve activity controlling BAT thermogenesis is regulated by CNS neural networks which respond reflexively to thermal afferent signals from cutaneous and body core thermoreceptors, as well as to alterations in the discharge of central neurons with intrinsic thermosensitivity. Superimposed on the core thermoregulatory circuit for the activation of BAT thermogenesis, is the permissive, modulatory influence of central neural networks controlling metabolic aspects of energy homeostasis. The recent confirmation of the presence of BAT in human and its function as an energy consuming organ have stimulated interest in the potential for the pharmacological activation of BAT to reduce adiposity in the obese. In contrast, the inhibition of BAT thermogenesis could facilitate the induction of therapeutic hypothermia for fever reduction or to improve outcomes in stroke or cardiac ischemia by reducing infarct size through a lowering of metabolic oxygen demand. This review summarizes the central circuits for the autonomic control of BAT thermogenesis and highlights the potential clinical relevance of the pharmacological inhibition or activation of BAT thermogenesis.
Collapse
Affiliation(s)
- Domenico Tupone
- Department of Neurological Surgery, Oregon Health and Science University Portland, OR, USA
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health and Science University Portland, OR, USA
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
22
|
Bron R, Yin L, Russo D, Furness JB. Expression of the ghrelin receptor gene in neurons of the medulla oblongata of the rat. J Comp Neurol 2013; 521:2680-702. [DOI: 10.1002/cne.23309] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/12/2012] [Accepted: 01/17/2013] [Indexed: 01/29/2023]
Affiliation(s)
- Romke Bron
- Department of Anatomy & Neuroscience; University of Melbourne; Parkville; Victoria 3010; Australia
| | - Lei Yin
- Department of Anatomy & Neuroscience; University of Melbourne; Parkville; Victoria 3010; Australia
| | - Domenico Russo
- Department of Veterinary Morphophysiology and Animal Production; University of Bologna; 40064 Ozzano Emilia; Bologna; Italy
| | - John B. Furness
- Department of Anatomy & Neuroscience; University of Melbourne; Parkville; Victoria 3010; Australia
| |
Collapse
|
23
|
Structural-functional properties of identified excitatory and inhibitory interneurons within pre-Botzinger complex respiratory microcircuits. J Neurosci 2013; 33:2994-3009. [PMID: 23407957 DOI: 10.1523/jneurosci.4427-12.2013] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We comparatively analyzed cellular and circuit properties of identified rhythmic excitatory and inhibitory interneurons within respiratory microcircuits of the neonatal rodent pre-Bötzinger complex (pre-BötC), the structure generating inspiratory rhythm in the brainstem. We combined high-resolution structural-functional imaging, molecular assays for neurotransmitter phenotype identification in conjunction with electrophysiological property phenotyping, and morphological reconstruction of interneurons in neonatal rat and mouse slices in vitro. This approach revealed previously undifferentiated structural-functional features that distinguish excitatory and inhibitory interneuronal populations. We identified distinct subpopulations of pre-BötC glutamatergic, glycinergic, GABAergic, and glycine-GABA coexpressing interneurons. Most commissural pre-BötC inspiratory interneurons were glutamatergic, with a substantial subset exhibiting intrinsic oscillatory bursting properties. Commissural excitatory interneurons projected with nearly planar trajectories to the contralateral pre-BötC, many also with axon collaterals to areas containing inspiratory hypoglossal (XII) premotoneurons and motoneurons. Inhibitory neurons as characterized in the present study did not exhibit intrinsic oscillatory bursting properties, but were electrophysiologically distinguished by more pronounced spike frequency adaptation properties. Axons of many inhibitory neurons projected ipsilaterally also to regions containing inspiratory XII premotoneurons and motoneurons, whereas a minority of inhibitory neurons had commissural axonal projections. Dendrites of both excitatory and inhibitory interneurons were arborized asymmetrically, primarily in the coronal plane. The dendritic fields of inhibitory neurons were more spatially compact than those of excitatory interneurons. Our results are consistent with the concepts of a compartmental circuit organization, a bilaterally coupled excitatory rhythmogenic kernel, and a role of pre-BötC inhibitory neurons in shaping inspiratory pattern as well as coordinating inspiratory and expiratory activity.
Collapse
|
24
|
Llewellyn-Smith IJ, Mueller PJ. Immunoreactivity for the NMDA NR1 subunit in bulbospinal catecholamine and serotonin neurons of rat ventral medulla. Auton Neurosci 2013; 177:114-22. [PMID: 23562375 DOI: 10.1016/j.autneu.2013.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 02/11/2013] [Accepted: 02/28/2013] [Indexed: 02/02/2023]
Abstract
Bulbospinal neurons in the ventral medulla play important roles in the regulation of sympathetic outflow. Physiological evidence suggests that these neurons are activated by N-methyl-D-aspartate (NMDA) and non-NMDA subtypes of glutamate receptors. In this study, we examined bulbospinal neurons in the ventral medulla for the presence of immunoreactivity for the NMDA NR1 subunit, which is essential for NMDA receptor function. Rats received bilateral injections of cholera toxin B into the tenth thoracic spinal segment to label bulbospinal neurons. Triple immunofluorescent labeling was used to detect cholera toxin B with a blue fluorophore, NR1 with a red fluorophore, and either tyrosine hydroxylase or tryptophan hydroxylase with a green fluorophore. In the rostral ventrolateral medulla, NR1 occurred in all bulbospinal tyrosine hydroxylase-positive neurons and 96% of bulbospinal tyrosine hydroxylase-negative neurons, which were more common in sections containing the facial nucleus. In the raphe pallidus, the parapyramidal region, and the marginal layer, 98% of bulbospinal tryptophan hydroxylase-positive neurons contained NR1 immunoreactivity. NR1 was also present in all of the bulbospinal tryptophan hydroxylase-negative neurons, which comprised 20% of bulbospinal neurons in raphe pallidus and the parapyramidal region. These results show that virtually all bulbospinal tyrosine hydroxylase and non-tyrosine hydroxylase neurons in the rostral ventrolateral medulla and virtually all bulbospinal serotonin and non-serotonin neurons in raphe pallidus and the parapyramidal region express NR1, the obligatory subunit of the NMDA receptor. NMDA receptors on bulbospinal neurons in the rostral ventral medulla likely influence sympathoexcitation in normal and pathological conditions.
Collapse
Affiliation(s)
- Ida J Llewellyn-Smith
- Cardiovascular Medicine, Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
25
|
Glutamatergic neurotransmission between the C1 neurons and the parasympathetic preganglionic neurons of the dorsal motor nucleus of the vagus. J Neurosci 2013; 33:1486-97. [PMID: 23345223 DOI: 10.1523/jneurosci.4269-12.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The C1 neurons are a nodal point for blood pressure control and other autonomic responses. Here we test whether these rostral ventrolateral medullary catecholaminergic (RVLM-CA) neurons use glutamate as a transmitter in the dorsal motor nucleus of the vagus (DMV). After injecting Cre-dependent adeno-associated virus (AAV2) DIO-Ef1α-channelrhodopsin2(ChR2)-mCherry (AAV2) into the RVLM of dopamine-β-hydroxylase Cre transgenic mice (DβH(Cre/0)), mCherry was detected exclusively in RVLM-CA neurons. Within the DMV >95% mCherry-immunoreactive(ir) axonal varicosities were tyrosine hydroxylase (TH)-ir and the same proportion were vesicular glutamate transporter 2 (VGLUT2)-ir. VGLUT2-mCherry colocalization was virtually absent when AAV2 was injected into the RVLM of DβH(Cre/0);VGLUT2(flox/flox) mice, into the caudal VLM (A1 noradrenergic neuron-rich region) of DβH(Cre/0) mice or into the raphe of ePet(Cre/0) mice. Following injection of AAV2 into RVLM of TH-Cre rats, phenylethanolamine N-methyl transferase and VGLUT2 immunoreactivities were highly colocalized in DMV within EYFP-positive or EYFP-negative axonal varicosities. Ultrastructurally, mCherry terminals from RVLM-CA neurons in DβH(Cre/0) mice made predominantly asymmetric synapses with choline acetyl-transferase-ir DMV neurons. Photostimulation of ChR2-positive axons in DβH(Cre/0) mouse brain slices produced EPSCs in 71% of tested DMV preganglionic neurons (PGNs) but no IPSCs. Photostimulation (20 Hz) activated PGNs up to 8 spikes/s (current-clamp). EPSCs were eliminated by tetrodotoxin, reinstated by 4-aminopyridine, and blocked by ionotropic glutamate receptor blockers. In conclusion, VGLUT2 is expressed by RVLM-CA (C1) neurons in rats and mice regardless of the presence of AAV2, the C1 neurons activate DMV parasympathetic PGNs monosynaptically and this connection uses glutamate as an ionotropic transmitter.
Collapse
|
26
|
Stornetta RL, Macon CJ, Nguyen TM, Coates MB, Guyenet PG. Cholinergic neurons in the mouse rostral ventrolateral medulla target sensory afferent areas. Brain Struct Funct 2013; 218:455-75. [PMID: 22460939 PMCID: PMC3459297 DOI: 10.1007/s00429-012-0408-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/14/2012] [Indexed: 02/07/2023]
Abstract
The rostral ventrolateral medulla (RVLM) primarily regulates respiration and the autonomic nervous system. Its medial portion (mRVLM) contains many choline acetyltransferase (ChAT)-immunoreactive (ir) neurons of unknown function. We sought to clarify the role of these cholinergic cells by tracing their axonal projections. We first established that these neurons are neither parasympathetic preganglionic neurons nor motor neurons because they did not accumulate intraperitoneally administered Fluorogold. We traced their axonal projections by injecting a Cre-dependent vector (floxed-AAV2) expressing either GFP or mCherrry into the mRVLM of ChAT-Cre mice. Transduced neurons expressing GFP or mCherry were confined to the injection site and were exclusively ChAT-ir. Their axonal projections included the dorsal column nuclei, medullary trigeminal complex, cochlear nuclei, superior olivary complex and spinal cord lamina III. For control experiments, the floxed-AAV2 (mCherry) was injected into the RVLM of dopamine beta-hydroxylase-Cre mice. In these mice, mCherry was exclusively expressed by RVLM catecholaminergic neurons. Consistent with data from rats, these catecholaminergic neurons targeted brain regions involved in autonomic and endocrine regulation. These regions were almost totally different from those innervated by the intermingled mRVLM-ChAT neurons. This study emphasizes the advantages of using Cre-driver mouse strains in combination with floxed-AAV2 to trace the axonal projections of chemically defined neuronal groups. Using this technique, we revealed previously unknown projections of mRVLM-ChAT neurons and showed that despite their close proximity to the cardiorespiratory region of the RVLM, these cholinergic neurons regulate sensory afferent information selectively and presumably have little to do with respiration or circulatory control.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1300 Jefferson Park Avenue, Charlottesville, VA 22908-0735, USA.
| | | | | | | | | |
Collapse
|
27
|
Mechanisms of a Decapitation-Induced Increase in the Plasma Catecholamine Levels in Rats. NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9289-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Korim WS, Ferreira-Neto ML, Pedrino GR, Pilowsky PM, Cravo SL. Interaction of medullary P2 and glutamate receptors mediates the vasodilation in the hindlimb of rat. Purinergic Signal 2012; 8:715-28. [PMID: 22576313 DOI: 10.1007/s11302-012-9318-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/24/2012] [Indexed: 12/20/2022] Open
Abstract
In the nucleus tractus solitarii (NTS) of rats, blockade of extracellular ATP breakdown to adenosine reduces arterial blood pressure (AP) increases that follow stimulation of the hypothalamic defense area (HDA). The effects of ATP on NTS P2 receptors, during stimulation of the HDA, are still unclear. The aim of this study was to determine whether activation of P2 receptors in the NTS mediates cardiovascular responses to HDA stimulation. Further investigation was taken to establish if changes in hindlimb vascular conductance (HVC) elicited by electrical stimulation of the HDA, or activation of P2 receptors in the NTS, are relayed in the rostral ventrolateral medulla (RVLM); and if those responses depend on glutamate release by ATP acting on presynaptic terminals. In anesthetized and paralyzed rats, electrical stimulation of the HDA increased AP and HVC. Blockade of P2 or glutamate receptors in the NTS, with bilateral microinjections of suramin (10 mM) or kynurenate (50 mM) reduced only the evoked increase in HVC by 75 % or more. Similar results were obtained with the blockade combining both antagonists. Blockade of P2 and glutamate receptors in the RVLM also reduced the increases in HVC to stimulation of the HDA by up to 75 %. Bilateral microinjections of kynurenate in the RVLM abolished changes in AP and HVC to injections of the P2 receptor agonist α,β-methylene ATP (20 mM) into the NTS. The findings suggest that HDA-NTS-RVLM pathways in control of HVC are mediated by activation of P2 and glutamate receptors in the brainstem in alerting-defense reactions.
Collapse
Affiliation(s)
- Willian Seiji Korim
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | | | | | | | | |
Collapse
|
29
|
Frank JG, Mendelowitz D. Synaptic and intrinsic activation of GABAergic neurons in the cardiorespiratory brainstem network. PLoS One 2012; 7:e36459. [PMID: 22570717 PMCID: PMC3343022 DOI: 10.1371/journal.pone.0036459] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/06/2012] [Indexed: 11/18/2022] Open
Abstract
GABAergic pathways in the brainstem play an essential role in respiratory rhythmogenesis and interactions between the respiratory and cardiovascular neuronal control networks. However, little is known about the identity and function of these GABAergic inhibitory neurons and what determines their activity. In this study we have identified a population of GABAergic neurons in the ventrolateral medulla that receive increased excitatory post-synaptic potentials during inspiration, but also have spontaneous firing in the absence of synaptic input. Using transgenic mice that express GFP under the control of the Gad1 (GAD67) gene promoter, we determined that this population of GABAergic neurons is in close apposition to cardioinhibitory parasympathetic cardiac neurons in the nucleus ambiguus (NA). These neurons fire in synchronization with inspiratory activity. Although they receive excitatory glutamatergic synaptic inputs during inspiration, this excitatory neurotransmission was not altered by blocking nicotinic receptors, and many of these GABAergic neurons continue to fire after synaptic blockade. The spontaneous firing in these GABAergic neurons was not altered by the voltage-gated calcium channel blocker cadmium chloride that blocks both neurotransmission to these neurons and voltage-gated Ca2+ currents, but spontaneous firing was diminished by riluzole, demonstrating a role of persistent sodium channels in the spontaneous firing in these cardiorespiratory GABAergic neurons that possess a pacemaker phenotype. The spontaneously firing GABAergic neurons identified in this study that increase their activity during inspiration would support respiratory rhythm generation if they acted primarily to inhibit post-inspiratory neurons and thereby release inspiration neurons to increase their activity. This population of inspiratory-modulated GABAergic neurons could also play a role in inhibiting neurons that are most active during expiration and provide a framework for respiratory sinus arrhythmia as there is an increase in heart rate during inspiration that occurs via inhibition of premotor parasympathetic cardioinhibitory neurons in the NA during inspiration.
Collapse
Affiliation(s)
- Julie G. Frank
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States of America
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
30
|
Abstract
Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. Mitochondrial oxidation in brown adipose tissue (BAT) is a significant source of neurally regulated metabolic heat production in many species from mouse to man. BAT thermogenesis is regulated by neural networks in the central nervous system which responds to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate BAT sympathetic nerve activity. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates BAT thermogenesis and includes the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E(2), to increase body temperature during fever. The cold thermal afferent circuit from cutaneous thermal receptors, through second-order thermosensory neurons in the dorsal horn of the spinal cord ascends to activate neurons in the lateral parabrachial nucleus which drive GABAergic interneurons in the preoptic area (POA) to inhibit warm-sensitive, inhibitory output neurons of the POA. The resulting disinhibition of BAT thermogenesis-promoting neurons in the dorsomedial hypothalamus activates BAT sympathetic premotor neurons in the rostral ventromedial medulla, including the rostral raphe pallidus, which provide excitatory, and possibly disinhibitory, inputs to spinal sympathetic circuits to drive BAT thermogenesis. Other recently recognized central sites influencing BAT thermogenesis and energy expenditure are also described.
Collapse
Affiliation(s)
- Shaun F. Morrison
- Department of Neurological Surgery, Oregon Health and Science UniversityPortland, OR, USA
- *Correspondence: Shaun F. Morrison, Neurological Surgery, Oregon Health and Science University, 3181 South West Sam Jackson Park Road, Portland, OR 97239, USA. e-mail:
| | - Christopher J. Madden
- Department of Neurological Surgery, Oregon Health and Science UniversityPortland, OR, USA
| | - Domenico Tupone
- Department of Neurological Surgery, Oregon Health and Science UniversityPortland, OR, USA
| |
Collapse
|
31
|
Role of the lateral paragigantocellular nucleus in the network of paradoxical (REM) sleep: an electrophysiological and anatomical study in the rat. PLoS One 2012; 7:e28724. [PMID: 22235249 PMCID: PMC3250413 DOI: 10.1371/journal.pone.0028724] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022] Open
Abstract
The lateral paragigantocellular nucleus (LPGi) is located in the ventrolateral medulla and is known as a sympathoexcitatory area involved in the control of blood pressure. In recent experiments, we showed that the LPGi contains a large number of neurons activated during PS hypersomnia following a selective deprivation. Among these neurons, more than two-thirds are GABAergic and more than one fourth send efferent fibers to the wake-active locus coeruleus nucleus. To get more insight into the role of the LPGi in PS regulation, we combined an electrophysiological and anatomical approach in the rat, using extracellular recordings in the head-restrained model and injections of tracers followed by the immunohistochemical detection of Fos in control, PS-deprived and PS-recovery animals. With the head-restrained preparation, we showed that the LPGi contains neurons specifically active during PS (PS-On neurons), neurons inactive during PS (PS-Off neurons) and neurons indifferent to the sleep-waking cycle. After injection of CTb in the facial nucleus, the neurons of which are hyperpolarized during PS, the largest population of Fos/CTb neurons visualized in the medulla in the PS-recovery condition was observed in the LPGi. After injection of CTb in the LPGi itself and PS-recovery, the nucleus containing the highest number of Fos/CTb neurons, moreover bilaterally, was the sublaterodorsal nucleus (SLD). The SLD is known as the pontine executive PS area and triggers PS through glutamatergic neurons. We propose that, during PS, the LPGi is strongly excited by the SLD and hyperpolarizes the motoneurons of the facial nucleus in addition to local and locus coeruleus PS-Off neurons, and by this means contributes to PS genesis.
Collapse
|
32
|
Korim WS, McMullan S, Cravo SL, Pilowsky PM. Asymmetrical changes in lumbar sympathetic nerve activity following stimulation of the sciatic nerve in rat. Brain Res 2011; 1391:60-70. [PMID: 21458430 DOI: 10.1016/j.brainres.2011.03.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/28/2011] [Accepted: 03/23/2011] [Indexed: 01/17/2023]
Abstract
Noxious stimulation of the leg increases hind limb blood flow (HBF) to the ipsilateral side and decreases to the contralateral in rat. Whether or not this asymmetrical response is due to direct control by sympathetic terminals or mediated by other factors such as local metabolism and hormones remains unclear. The aim of this study was to compare responses in lumbar sympathetic nerve activity, evoked by stimulation of the ipsilateral and contralateral sciatic nerve (SN). We also sought to determine the supraspinal mechanisms involved in the observed responses. In anesthetized and paralyzed rats, intermittent electrical stimulation (1 mA, 0.5 Hz) of the contralateral SN evoked a biphasic sympathoexcitation. Following ipsilateral SN stimulation, the response is preceded by an inhibitory potential with a latency of 50 ms (N=26). Both excitatory and inhibitory potentials are abolished following cervical C1 spinal transection (N=6) or bilateral microinjections of muscimol (N=6) in the rostral ventrolateral medulla (RVLM). This evidence is suggestive that both sympathetic potentials are supraspinally mediated in this nucleus. Blockade of RVLM glutamate receptors by microinjection of kynurenic acid (N=4) selectively abolished the excitatory potential elicited by ipsilateral SN stimulation. This study supports the physiological model that activation of hind limb nociceptors evokes a generalized sympathoexcitation, with the exception of the ipsilateral side where there is a withdrawal of sympathetic tone resulting in an increase in HBF.
Collapse
Affiliation(s)
- Willian Seiji Korim
- Australian School of Advanced Medicine, Macquarie University, Sydney, Australia
| | | | | | | |
Collapse
|
33
|
Morrison SF, Nakamura K. Central neural pathways for thermoregulation. Front Biosci (Landmark Ed) 2011; 16:74-104. [PMID: 21196160 DOI: 10.2741/3677] [Citation(s) in RCA: 429] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Central neural circuits orchestrate a homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the functional organization of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for heat loss, the brown adipose tissue, skeletal muscle and heart for thermogenesis and species-dependent mechanisms (sweating, panting and saliva spreading) for evaporative heat loss. These effectors are regulated by parallel but distinct, effector-specific neural pathways that share a common peripheral thermal sensory input. The thermal afferent circuits include cutaneous thermal receptors, spinal dorsal horn neurons and lateral parabrachial nucleus neurons projecting to the preoptic area to influence warm-sensitive, inhibitory output neurons which control thermogenesis-promoting neurons in the dorsomedial hypothalamus that project to premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, that descend to provide the excitation necessary to drive thermogenic thermal effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus neurons controlling cutaneous vasoconstriction.
Collapse
Affiliation(s)
- Shaun F Morrison
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | |
Collapse
|
34
|
Xin L, Gambarota G, Duarte JMN, Mlynárik V, Gruetter R. Direct in vivo measurement of glycine and the neurochemical profile in the rat medulla oblongata. NMR IN BIOMEDICINE 2010; 23:1097-1102. [PMID: 20963803 DOI: 10.1002/nbm.1537] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The medulla oblongata (MO) contains a high density of glycinergic synapses and a particularly high concentration of glycine. The aims of this study were to measure directly in vivo the neurochemical profile, including glycine, in MO using a spin-echo-based (1)H MRS sequence at TE = 2.8 ms and to compare it with three other brain regions (cortex, striatum and hippocampus) in the rat. Glycine was quantified in MO at TE = 2.8 ms with a Cramér-Rao lower bound (CRLB) of approximately 5%. As a result of the relatively low level of glycine in the other three regions, the measurement of glycine was performed at TE = 20 ms, which provides a favorable J-modulation of overlapping myo-inositol resonance. The other 14 metabolites composing the neurochemical profile were quantified in vivo in MO with CRLBs below 25%. Absolute concentrations of metabolites in MO, such as glutamate, glutamine, γ-aminobutyrate, taurine and glycine, were in the range of previous in vitro quantifications in tissue extracts. Compared with the other regions, MO had a three-fold higher glycine concentration, and was characterised by reduced (p < 0.001) concentrations of glutamate (-50 ± 4%), glutamine (-54 ± 3%) and taurine (-78 ± 3%). This study suggests that the functional specialisation of distinct brain regions is reflected in the neurochemical profile.
Collapse
Affiliation(s)
- Lijing Xin
- Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | | |
Collapse
|
35
|
Cao WH, Madden CJ, Morrison SF. Inhibition of brown adipose tissue thermogenesis by neurons in the ventrolateral medulla and in the nucleus tractus solitarius. Am J Physiol Regul Integr Comp Physiol 2010; 299:R277-90. [PMID: 20410479 DOI: 10.1152/ajpregu.00039.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurons in the ventrolateral medulla (VLM) and in the nucleus tractus solitarius (NTS) play important roles in the regulation of cardiovascular and other autonomic functions. In the present study, we demonstrate an inhibition of brown adipose tissue (BAT) thermogenesis evoked by activation of neurons in the VLM, as well as by neurons in the intermediate NTS, of chloralose/urethane-anesthetized, artificially ventilated rats. Activation of neurons in either rostral VLM or caudal VLM with N-methyl-d-aspartate (12 nmol) reversed the cold-evoked increase in BAT sympathetic nerve activity (SNA), BAT temperature, and end-expired CO(2). Disinhibition of neurons in either VLM or NTS with the GABA(A) receptor antagonist, bicuculline (30 pmol), reversed the increases in BAT SNA, BAT temperature, and end-expired CO(2) that were elicited 1) by cold defense; 2) during the febrile model of nanoinjection of prostaglandin E(2) into the medial preoptic area; 3) by activation of neurons in the dorsomedial hypothalamus or in the rostral raphe pallidus (rRPa); or 4) by the micro-opioid receptor agonist fentanyl. Combined, but not separate, inhibitions of neurons in the VLM and in the NTS, with the GABA(A) receptor agonist, muscimol (120 pmol/site), produced increases in BAT SNA, BAT temperature, and expired CO(2), which were reversed by nanoinjection of glycine (30 nmol) into the rRPa. These findings suggest that VLM and NTS contain neurons whose activation inhibits BAT thermogenesis, that these neurons receive GABAergic inputs that are active under these experimental conditions, and that neurons in both sites contribute to the tonic inhibition of sympathetic premotor neuronal activity in the rRPa that maintains a low level of BAT thermogenesis in normothermic conditions.
Collapse
Affiliation(s)
- Wei-Hua Cao
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
36
|
Restrepo CE, Lundfald L, Szabó G, Erdélyi F, Zeilhofer HU, Glover JC, Kiehn O. Transmitter-phenotypes of commissural interneurons in the lumbar spinal cord of newborn mice. J Comp Neurol 2009; 517:177-92. [PMID: 19731323 DOI: 10.1002/cne.22144] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Commissural interneurons (CINs) are a necessary component of central pattern generators (CPGs) for locomotion because they mediate the coordination of left and right muscle activity. The projection patterns and relative locations of different classes of CINs in the ventromedial part of the rodent lumbar cord have been described (Eide et al. [1999] J Comp Neurol 403:332-345; Stokke et al. [2002] J Comp Neurol 446:349-359; Nissen et al. [2005] J Comp Neurol 483:30-47). However, the distribution and relative prevalence of different CIN neurotransmitter phenotypes in the ventral region of the mammalian spinal cord where the locomotor CPG is localized is unknown. In this study we describe the relative proportions and anatomical locations of putative inhibitory and excitatory CINs in the lumbar spinal cord of newborn mice. To directly visualize potential neurotransmitter phenotypes we combined retrograde labeling of CINs with in situ hybridization against the glycine transporter, GlyT2, or the vesicular glutamate transporter, vGluT2, in wildtype mice and in transgenic mice expressing eGFP driven by the promoters of glutamic acid decarboxylase (GAD) 65, GAD67, or GlyT2. Our study shows that putative glycinergic, GABAergic, and glutamatergic CINs are expressed in almost equal numbers, with a small proportion of CINs coexpressing GlyT2 and GAD67::eGFP, indicating a putative combined glycinergic/GABAergic phenotype. These different CIN phenotypes were intermingled in laminas VII and VIII. Our results suggest that glycinergic, GABAergic, and glutamatergic CINs are the principal CIN phenotypes in the CPG region of the lumbar spinal cord in the newborn mouse. We compare these results to descriptions of CIN neurotransmitter phenotypes in other vertebrate species.
Collapse
Affiliation(s)
- Carlos Ernesto Restrepo
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
37
|
Cerri M, Zamboni G, Tupone D, Dentico D, Luppi M, Martelli D, Perez E, Amici R. Cutaneous vasodilation elicited by disinhibition of the caudal portion of the rostral ventromedial medulla of the free-behaving rat. Neuroscience 2009; 165:984-95. [PMID: 19895871 DOI: 10.1016/j.neuroscience.2009.10.068] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/28/2009] [Accepted: 10/30/2009] [Indexed: 11/27/2022]
Abstract
Putative sympathetic premotor neurons controlling cutaneous vasomotion are contained within the rostral ventromedial medulla (RVMM) between levels corresponding, rostrally, to the rostral portion of the nucleus of the facial nerve (RVMM(fn)) and, caudally, to the rostral pole of the inferior olive (RVMM(io)). Cutaneous vasoconstrictor premotor neurons in the RVMM(fn) play a major role in mediating thermoregulatory changes in cutaneous vasomotion that regulate heat loss. To determine the role of neurons in the RVMM(io) in regulating cutaneous blood flow, we examined the changes in the tail and paw skin temperature of free-behaving rats following chemically-evoked changes in the activity of neurons in the RVMM(io). Microinjection of the GABA(A) agonist, muscimol, within either the RVMM(fn) or the RVMM(io) induced a massive peripheral vasodilation; microinjection of the GABA(A) antagonist bicuculline methiodide within the RVMM(fn) reversed the increase in cutaneous blood flow induced by warm exposure and, unexpectedly, disinhibition of RVMM(io) neurons produced a rapid cutaneous vasodilation. We conclude that the tonically-active neurons driving cutaneous vasoconstriction, likely sympathetic premotor neurons previously described in the RVMM(fn), are also located in the RVMM(io). However, in the RVMM(io), these are accompanied by a population of neurons that receives a tonically-active GABAergic inhibition in the conscious animal and that promotes a cutaneous vasodilation upon relief of this inhibition. Whether the vasodilator neurons located in the RVMM(io) play a role in thermoregulation remains to be determined.
Collapse
Affiliation(s)
- M Cerri
- Dipartimento di Fisiologia Umana e Generale, Alma Mater Studiorum Università di Bologna, Piazza di Porta S Donato 2, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Llewellyn-Smith IJ. Anatomy of synaptic circuits controlling the activity of sympathetic preganglionic neurons. J Chem Neuroanat 2009; 38:231-9. [DOI: 10.1016/j.jchemneu.2009.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 01/17/2023]
|
39
|
Stornetta RL. Neurochemistry of bulbospinal presympathetic neurons of the medulla oblongata. J Chem Neuroanat 2009; 38:222-30. [PMID: 19665549 DOI: 10.1016/j.jchemneu.2009.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 01/19/2023]
Abstract
This review focuses on presympathetic neurons in the medulla oblongata including the adrenergic cell groups C1-C3 in the rostral ventrolateral medulla and the serotonergic, GABAergic and glycinergic neurons in the ventromedial medulla. The phenotypes of these neurons including colocalized neuropeptides (e.g., neuropeptide Y, enkephalin, thyrotropin-releasing hormone, substance P) as well as their relative anatomical location are considered in relation to predicting their function in control of sympathetic outflow, in particular the sympathetic outflows controlling blood pressure and thermoregulation. Several explanations are considered for how the neuroeffectors coexisting in these neurons might be functioning, although their exact purpose remains unknown. Although there is abundant data on potential neurotransmitters and neuropeptides contained in the presympathetic neurons, we are still unable to predict function and physiology based solely on the phenotype of these neurons.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States of America.
| |
Collapse
|
40
|
Goodchild AK, Moon EA. Maps of cardiovascular and respiratory regions of rat ventral medulla: focus on the caudal medulla. J Chem Neuroanat 2009; 38:209-21. [PMID: 19549567 DOI: 10.1016/j.jchemneu.2009.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 06/13/2009] [Accepted: 06/15/2009] [Indexed: 02/07/2023]
Abstract
The ventral medulla oblongata is critical for cardiorespiratory regulation. Here we review previous literature relating to sites within the ventral medulla that have been identified as having a 'cardiovascular' or 'respiratory' function. Together with the maps generated here, of sites from which cardiovascular and respiratory responses were evoked by glutamate microinjection, specific 'cardiovascular' regions have been defined and delineated. Commonly investigated regions, including the vasopressor rostral ventrolateral medulla (RVLM) and vasodepressor caudal ventrolateral medulla (CVLM), or areas only described by others, such as the medullary cerebral vasodilator area, are included for completeness. Emphasis is given to the caudal medulla, where three pressor regions, the caudal pressor area (CPA), the intermediate pressor area (IPA) and the medullo-cervical pressor area (MCPA), caudal to the vasodepressor CVLM were defined in the original data provided. The IPA is most responsive under pentobarbitone rather than urethane anaesthesia clearly delineating it from both the rostrally located CPA and the caudally located MCPA. The description of these multiple pressor areas appears to clarify the confusion that surrounds the identification of the 'CPA'. Also noted is a vasopressor region adjacent to the vasodepressor CVLM. Apart from the well described ventral respiratory column, a region medial to the pre-Bötzinger is described, from which increases in both phrenic nerve frequency and amplitude were evoked. Limitations associated with the technique of glutamate microinjection to define functionally specific regions are discussed. Particular effort has been made to define and delineate the regions with respect to ventrally located anatomical landmarks rather than the commonly used ventral surface or dorsal landmarks such as the obex or calamus scriptorius that may vary with the brain orientation or histological processing. This should ensure that a region can easily be defined by all investigators. Study of defined regions will help expedite the identification of the role of the multiple cell groups with diverse neurotransmitter complements that exist even within each of the regions described, in coordinating the delivery of oxygenated blood to the tissues.
Collapse
Affiliation(s)
- Ann K Goodchild
- The Australian School of Advanced Medicine, Macquarie University, New South Wales, 2109, Australia.
| | | |
Collapse
|
41
|
Stornetta RL. Identification of neurotransmitters and co-localization of transmitters in brainstem respiratory neurons. Respir Physiol Neurobiol 2009; 164:18-27. [PMID: 18722563 DOI: 10.1016/j.resp.2008.07.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/15/2008] [Accepted: 07/17/2008] [Indexed: 11/18/2022]
Abstract
Identifying the major ionotropic neurotransmitter in a respiratory neuron is of critical importance in determining how the neuron fits into the respiratory system, whether in producing or modifying respiratory drive and rhythm. There are now several groups of respiratory neurons whose major neurotransmitters have been identified and in some of these cases, more than one transmitter has been identified in particular neurons. This review will describe the physiologically identified neurons in major respiratory areas that have been phenotyped for major ionotropic transmitters as well as those where more than one transmitter has been identified. Although the purpose of the additional transmitter has not been elucidated for any of the respiratory neurons, some examples from other systems will be discussed.
Collapse
Affiliation(s)
- R L Stornetta
- Department of Pharmacology, University of Virginia Health System, P.O. Box 800735, 1300 Jefferson Park Avenue, Charlottesville, VA 22908, USA.
| |
Collapse
|
42
|
Frank JG, Jameson HS, Gorini C, Mendelowitz D. Mapping and identification of GABAergic neurons in transgenic mice projecting to cardiac vagal neurons in the nucleus ambiguus using photo-uncaging. J Neurophysiol 2009; 101:1755-60. [PMID: 19164103 DOI: 10.1152/jn.91134.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neural control of heart rate is determined primarily by the activity of preganglionic parasympathetic cardiac vagal neurons (CVNs) originating in the nucleus ambiguus (NA) in the brain stem. GABAergic inputs to CVNs play an essential role in determining the activity of these neurons including a robust inhibition during each inspiratory burst. The origin of GABAergic innervation has yet to be determined however. A transgenic mouse line expressing green florescent protein (GFP) in GABAergic cells was used in conjunction with caged glutamate to identify both clusters and individual GABAergic neurons that evoke inhibitory GABAergic synaptic responses in CVNs. Transverse slices were taken with CVNs patch-clamped in the whole cell configuration. Sections containing both the pre-Botzinger complex as well as the calamus scriptorius were divided into approximately 90 quadrants, each 200 x 200 microm and were sequentially photostimulated. Inhibitory post synaptic currents (IPSCs) were recorded in CVNs after a 5-ms photostimulation of 50 microM caged glutamate. The four areas that contained GABAergic cells projecting to CVNs were 200 microm medial, 400 microm medial, 200 microm ventral, and 1,200 microm dorsal and 1,000 microm medial to patched CVNs. Once foci of GABAergic cells projecting to CVNs were determined, photostimulation of individual GABAergic neurons was conducted. The results from this study suggest that GABAergic cells located in four specific areas project to CVNs, and that these cells can be individually identified and stimulated using photouncaging to recruit GABAergic neurotransmission to CVNs.
Collapse
Affiliation(s)
- J G Frank
- Dept. of Pharmacology and Physiology, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Thermogenesis, the production of heat energy, is an essential component of the homeostatic repertoire to maintain body temperature in mammals and birds during the challenge of low environmental temperature and plays a key role in elevating body temperature during the febrile response to infection. The primary sources of neurally regulated metabolic heat production are mitochondrial oxidation in brown adipose tissue, increases in heart rate and shivering in skeletal muscle. Thermogenesis is regulated in each of these tissues by parallel networks in the central nervous system, which respond to feedforward afferent signals from cutaneous and core body thermoreceptors and to feedback signals from brain thermosensitive neurons to activate the appropriate sympathetic and somatic efferents. This review summarizes the research leading to a model of the feedforward reflex pathway through which environmental cold stimulates thermogenesis and discusses the influence on this thermoregulatory network of the pyrogenic mediator, prostaglandin E(2), to increase body temperature. The cold thermal afferent circuit from cutaneous thermal receptors ascends via second-order thermosensory neurons in the dorsal horn of the spinal cord to activate neurons in the lateral parabrachial nucleus, which drive GABAergic interneurons in the preoptic area to inhibit warm-sensitive, inhibitory output neurons of the preoptic area. The resulting disinhibition of thermogenesis-promoting neurons in the dorsomedial hypothalamus and possibly of sympathetic and somatic premotor neurons in the rostral ventromedial medulla, including the raphe pallidus, activates excitatory inputs to spinal sympathetic and somatic motor circuits to drive thermogenesis.
Collapse
Affiliation(s)
- Shaun F Morrison
- Neurological Sciences Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| | | | | |
Collapse
|
44
|
Fortuna MG, West GH, Stornetta RL, Guyenet PG. Botzinger expiratory-augmenting neurons and the parafacial respiratory group. J Neurosci 2008; 28:2506-15. [PMID: 18322095 PMCID: PMC6671197 DOI: 10.1523/jneurosci.5595-07.2008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/21/2008] [Accepted: 01/22/2008] [Indexed: 11/21/2022] Open
Abstract
In neonatal rat brains in vitro, the rostral ventral respiratory column (rVRC) contains neurons that burst just before the phrenic nerve discharge (PND) and rebound after inspiration (pre-I neurons). These neurons, called parafacial respiratory group (pfRG), have been interpreted as a master inspiratory oscillator, an expiratory rhythm generator or simply as neonatal precursors of retrotrapezoid (RTN) chemoreceptor neurons. pfRG neurons have not been identified in adults, and their phenotype is unknown. Here, we confirm that the rVRC normally lacks pre-I neurons in adult anesthetized rats. However, we show that, during hypercapnic hypoxia, a population of rVRC expiratory-augmenting (E-AUG) neurons consistently develops a pre-I discharge. These cells reside in the Bötzinger region of the rVRC, they express glycine-transporter-2, and their axons arborize throughout the VRC. Hypoxia triggers an identical pre-I pattern in retroambigual expiratory bulbospinal neurons, but this pattern is not elicited in Bötzinger expiratory-decrementing neurons, Bötzinger inspiratory neurons, RTN neurons, and blood pressure-regulating neurons. In conclusion, under hypoxia in vivo, abdominal expiratory premotor neurons of adult rats develop a pre-I pattern reminiscent of that observed in neonate brainstems in vitro. In the rVRC of adult rats, pre-I cells include selected rhythmogenic neurons (glycinergic Bötzinger neurons) but not RTN chemoreceptors. We suggest that the pfRG may not be an independent rhythm generator but a heterogeneous collection of E-AUG neurons (glycinergic Bötzinger neurons, possibly facial motor and premotor neurons), the discharge of which becomes preinspiratory under specific experimental conditions resulting from, in part, a prolonged and intensified activity of postinspiratory neurons.
Collapse
Affiliation(s)
- Michal G. Fortuna
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Gavin H. West
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Ruth L. Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Patrice G. Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
45
|
Dehkordi O, Millis RM, Dennis GC, Jazini E, Williams C, Hussain D, Jayam-Trouth A. Expression of alpha-7 and alpha-4 nicotinic acetylcholine receptors by GABAergic neurons of rostral ventral medulla and caudal pons. Brain Res 2007; 1185:95-102. [DOI: 10.1016/j.brainres.2007.09.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 09/05/2007] [Accepted: 09/06/2007] [Indexed: 11/17/2022]
|
46
|
Seddik R, Schlichter R, Trouslard J. Corelease of GABA/glycine in lamina-X of the spinal cord of neonatal rats. Neuroreport 2007; 18:1025-9. [PMID: 17558289 DOI: 10.1097/wnr.0b013e3281667c0c] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Spinal-cord slices from neonatal rats were used to record lamina-X neurons using the patch-clamp technique under whole cell recording configuration. Lamina-X surrounds the central canal of the spinal cord and contains sympathetic preganglionic neurons of the central autonomic nucleus. Miniature inhibitory postsynaptic currents were recorded in the presence of tetrodotoxin and kynurenic acid to block action potential-dependent transmitter release and glutamatergic transmissions, respectively. We recorded mixed gamma-amino-n-butyric acid/glycine miniature synaptic currents suggesting that gamma-amino-n-butyric acid and glycine can be coreleased from the same single synaptic vesicles, and that this corelease can be detected by the postsynaptic cell. In addition, acetylcholine can induce the release of gamma-amino-n-butyric acid/glycine by acting presynaptically at nicotinic receptors located on the gamma-amino-n-butyric acid ergic/glycinergic terminals.
Collapse
Affiliation(s)
- Riad Seddik
- Department of Physiology, University of Basel, Pharmazentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
47
|
Hoffman JM, Brown JW, Sirlin EA, Benoit AM, Gill WH, Harris MB, Darnall RA. Activation of 5-HT1A receptors in the paragigantocellularis lateralis decreases shivering during cooling in the conscious piglet. Am J Physiol Regul Integr Comp Physiol 2007; 293:R518-27. [PMID: 17409258 DOI: 10.1152/ajpregu.00816.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activation of 5-HT1A receptors in the medullary raphé decreases sympathetic outflow to thermoregulatory mechanisms, including brown adipose tissue (BAT), thermogenesis, and peripheral vasoconstriction when these mechanisms are previously activated with leptin, prostaglandins, or cooling. These same mechanisms are also inhibited during rapid eye movement (REM) sleep. It is not known whether shivering is also modulated by medullary raphé neurons. We previously showed in the conscious piglet that activation of 5-HT1A receptors with 8-OH-DPAT (DPAT) in the paragigantocellularis lateralis (PGCL), a medullary region lateral to the midline raphé that contains 5-HT neurons, decreases heart rate, body temperature and muscle activity during non-rapid eye movement (NREM) sleep. We therefore hypothesized that activation of 5-HT1A receptors in the PGCL would also attenuate shivering and peripheral vasoconstriction during cooling. During REM sleep in a cool environment, shivering, carbon dioxide production, and body temperature decreased, and ear capillary blood flow and ear skin temperature increased. Shivering associated with rapid cooling was attenuated after dialysis of DPAT into the PGCL. In animals maintained in a continuously cool environment, dialysis of DPAT into the PGCL attenuated shivering and decreased body temperature, but there were no significant increases in ear capillary blood flow or ear skin temperature. We conclude that both naturally occurring REM sleep and exogenous activation of 5-HT1A receptors in the PGCL are associated with a suspension of shivering during cooling. Our data are consistent with the hypothesis that 5-HT neurons in the PGCL facilitate oscillating spinal motor circuits involved in shivering but are less involved in modulating sympathetically mediated thermoregulatory mechanisms.
Collapse
Affiliation(s)
- J M Hoffman
- Department of Physiology, Dartmouth Medical School, One Medical Center Drive, Lebanon, NH, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Chen HK, Su CK. Endogenous activation of nicotinic receptors underlies sympathetic tone generation in neonatal rat spinal cord in vitro. Neuropharmacology 2006; 51:1120-8. [PMID: 16904709 DOI: 10.1016/j.neuropharm.2006.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 06/16/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
Without the brainstem, thoracic spinal cords of neonatal rats in vitro spontaneously generate tonic sympathetic nerve discharge (SND) in the splanchnic nerves. Activation of nicotinic receptors in cords is known to alter a repertoire of neurotransmitter releases to sympathetic preganglionic neurons (SPNs). Using in vitro nerve-cord preparations, we investigated whether endogenous nicotinic receptor activity is essential for SND genesis. Application of mecamylamine, an open-channel nicotinic receptor blocker, reduced SND in a progressive manner. Exogenous activation of nicotinic receptors by application of various nicotinic agonists generally excited SND at low agonistic concentrations. At higher concentrations, however, agonists induced biphasic responses characterized by an initial excitation followed by prolonged SND suppression. Whether ionotropic glutamate, GABA(A), or glycine receptors are downstream signals of nicotinic receptor activation was explored by pretreatment of cords with selective antagonists. The initial excitation of SND persisted in the presence of ionotropic glutamate receptor antagonists. In contrast, the SND suppression was partially reversed by glycine or GABA(A) receptor antagonists. Incubation of the cord in a low Ca(2+)/high Mg(2+) bath solution to block Ca(2+)-dependent synaptic transmission did not affect SND excitation induced by nicotinic agonists, confirming direct activation of postsynaptic nicotinic receptors on SPNs. In conclusion, the endogenous activity of nicotinic receptors is essential for SND genesis in the thoracic spinal cord. Nicotinic activation of glycinergic and GABAergic interneurons may provide a recurrent inhibition of SPNs for homeostatic regulation of sympathetic outflow.
Collapse
Affiliation(s)
- Hsin-Kai Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | | |
Collapse
|
49
|
Abstract
Hypertension - the chronic elevation of blood pressure - is a major human health problem. In most cases, the root cause of the disease remains unknown, but there is mounting evidence that many forms of hypertension are initiated and maintained by an elevated sympathetic tone. This review examines how the sympathetic tone to cardiovascular organs is generated, and discusses how elevated sympathetic tone can contribute to hypertension.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, Health Sciences Center, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908-0735, USA.
| |
Collapse
|
50
|
Seddik R, Schlichter R, Trouslard J. Modulation of GABAergic synaptic transmission by terminal nicotinic acetylcholine receptors in the central autonomic nucleus of the neonatal rat spinal cord. Neuropharmacology 2006; 51:77-89. [PMID: 16678861 DOI: 10.1016/j.neuropharm.2006.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 02/09/2006] [Accepted: 03/05/2006] [Indexed: 11/20/2022]
Abstract
Using patch clamp recordings from an in vitro spinal cord slice preparation of neonatal rats (9-15days old), we characterized the GABAergic synaptic transmission in sympathetic preganglionic neurones (SPN) of the central autonomic nucleus (CA) of lamina X. Local applications of isoguvacine (100microM), a selective agonist at GABA(A) receptors, induced in all cells tested a chloride current which was abolished by bicuculline, a competitive antagonist at GABA(A) receptors. In addition, 25% of the recorded cells displayed spontaneous tetrodotoxin-insensitive and bicuculline-sensitive chloride miniature inhibitory postsynaptic currents (mIPSCs). Acetylcholine (100microM) increased the frequency of GABAergic mIPSCs without affecting their amplitudes or their kinetic properties indicating a presynaptic site of action. The presynaptic effect of ACh was restricted to GABAergic neurones synapsing onto sympathetic preganglionic neurones. The facilitatory effect of ACh was abolished in the absence of external calcium or in the presence of 100microM cadmium added to the bath solution. Choline 10mM, an agonist at alpha7 nicotinic acetylcholine receptors (nAChRs) or muscarine (10microM), a muscarinic receptor agonist, did not reproduce the presynaptic effect of ACh. The presynaptic effect of ACh was blocked by 1microM of dihydro-beta-erythroidine (DHbetaE), an antagonist of non-alpha7 nAChRs but was insensitive to alpha7 nAChRs antagonists (strychnine, alpha-bungarotoxin and methyllycaconitine) or to the muscarinic receptor antagonist atropine (10microM). It was concluded that SPNs of the central autonomic nucleus displayed a functional GABAergic transmission which is facilitated by terminal non alpha7 nAChRs.
Collapse
Affiliation(s)
- Riad Seddik
- Department of Physiology, University of Basel, Pharmazentrum, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|