1
|
Zhai F, Li J, Ye M, Jin X. The functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination. Gene X 2022; 832:146562. [PMID: 35580799 DOI: 10.1016/j.gene.2022.146562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 02/09/2023] Open
Abstract
Ubiquitination of substrates usually have two fates: one is degraded by 26S proteasome, and the other is non-degradative ubiquitination modification which is associated with cell cycle regulation, chromosome inactivation, protein transportation, tumorigenesis, achondroplasia, and neurological diseases. Cullin3 (CUL3), a scaffold protein, binding with the Bric-a-Brac-Tramtrack-Broad-complex (BTB) domain of substrates recognition adaptor and RING-finger protein 1 (RBX1) form ubiquitin ligases (E3). Based on the current researches, this review has summarized the functions and effects of CUL3-E3 ligases mediated non-degradative ubiquitination.
Collapse
Affiliation(s)
- Fengguang Zhai
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jingyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Cheng LH, Chou PY, Hou AT, Huang CL, Shiu WL, Wang S. Lactobacillus paracasei PS23 improves cognitive deficits via modulating the hippocampal gene expression and the gut microbiota in D-galactose-induced aging mice. Food Funct 2022; 13:5240-5251. [PMID: 35438699 DOI: 10.1039/d2fo00165a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Probiotic supplements are potential therapeutic agents for age-related cognitive deficits. A prior study showed that probiotic Lactobacillus paracasei PS23 (PS23) supplementation delayed age-related cognitive decline in mice. However, the underlying mechanisms remain unclear. This study aimed to investigate the effects of live or heat-killed PS23 (HK-PS23) on cognitive function in D-galactose (D-gal)-induced aging mice and explore the underlying mechanisms. We designed four groups of mice: control, D-gal aging mice, and PS23 supplemented and HK-PS23 supplemented D-gal aging mice. We evaluated memory function and anxiety using Morris water maze and open field tests, respectively. Neural monoamines and activities of superoxide dismutase (SOD) in the hippocampus were evaluated. RNA-seq was used to evaluate hippocampal gene expression profiles in each group, and the composition of the gut microbiota was analyzed. We revealed that PS23 and HK-PS23 supplementation ameliorated D-gal-induced memory deficits and improved motor and anxiety-behaviors in aging mice. In the hippocampus, serotonin levels (5-HT) were increased and the genes involved in neuroplasticity, anti-inflammatory, and antioxidant functions were upregulated in PS23 and HK-PS23 supplemented groups. The gut microbiota showed specific changes. Our results suggest that PS23 and HK-PS23 supplements could ameliorate age-related cognitive decline, possibly by upregulating the genes involved in synaptic plasticity and preventing oxidation and inflammation.
Collapse
Affiliation(s)
| | | | - An-Tian Hou
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | | | - Wei-Lin Shiu
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Sabrina Wang
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Gómez de San José N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M. Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna) 2022; 129:207-230. [PMID: 34460014 PMCID: PMC8866268 DOI: 10.1007/s00702-021-02411-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
The diagnosis of neurodegenerative disorders is often challenging due to the lack of diagnostic tools, comorbidities and shared pathological manifestations. Synaptic dysfunction is an early pathological event in many neurodegenerative disorders, but the underpinning mechanisms are still poorly characterised. Reliable quantification of synaptic damage is crucial to understand the pathophysiology of neurodegeneration, to track disease status and to obtain prognostic information. Neuronal pentraxins (NPTXs) are extracellular scaffolding proteins emerging as potential biomarkers of synaptic dysfunction in neurodegeneration. They are a family of proteins involved in homeostatic synaptic plasticity by recruiting post-synaptic receptors into synapses. Recent research investigates the dynamic changes of NPTXs in the cerebrospinal fluid (CSF) as an expression of synaptic damage, possibly related to cognitive impairment. In this review, we summarise the available data on NPTXs structure and expression patterns as well as on their contribution in synaptic function and plasticity and other less well-characterised roles. Moreover, we propose a mechanism for their involvement in synaptic damage and neurodegeneration and assess their potential as CSF biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Federico Massa
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
4
|
Wu S, Yang S, Bloe CB, Zhuang R, Huang J, Zhang W. Identification of Key Genes and Pathways in Mouse Spinal Cord Involved in ddC-Induced Neuropathic Pain by Transcriptome Sequencing. J Mol Neurosci 2020; 71:651-661. [PMID: 32812184 DOI: 10.1007/s12031-020-01686-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/11/2020] [Indexed: 01/12/2023]
Abstract
Highly active antiretroviral therapy (HAART) works effectively in inhibiting HIV replication in patients. However, the use of nucleoside reverse transcriptase inhibitors (NRTIs) often causes side effects of neuropathic pain, and its mechanism remains to be elucidated. Therefore, we aim to explore the mechanism of NRTIs-induced neuropathic pain at the transcriptome level. C57BL/6 J mice were given intraperitoneal injection of zalcitabine (ddC) or saline (control) for 2 weeks, during which the mechanical pain threshold of the mice was detected by von Frey test. Then the L3~L5 spinal segments of the mice were isolated and subsequently used for RNA sequencing (RNA-seq) on the last day of treatment. The mechanical pain threshold of mice given ddC decreased significantly. Compared with the control group, ddC caused significant changes in the expression of 135 genes, of which 66 upregulated and 69 downregulated. Enrichment analysis showed that the functions of these genes are mainly enriched in regulation of transcription, multicellular organism development, and cell differentiation, and the pathway is mainly enriched in the cGMP-PKG signaling pathway and AMPK signaling pathway. Furthermore, key genes such as Gabrd, Kcnd3, Npcd, Insr, Lypd6, Scd2, and Mef2d were also identified. These may serve as drug targets for the prevention or treatment of NRTI-induced neuropathic pain.
Collapse
Affiliation(s)
- Shengjun Wu
- Clinical Laboratory of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Su Yang
- Clinical Laboratory of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chris Bloe Bloe
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Renjie Zhuang
- The Affiliated Hospital of Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jian Huang
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenping Zhang
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Identification of Protein Tyrosine Phosphatase Receptor Type O (PTPRO) as a Synaptic Adhesion Molecule that Promotes Synapse Formation. J Neurosci 2017; 37:9828-9843. [PMID: 28871037 DOI: 10.1523/jneurosci.0729-17.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/26/2017] [Accepted: 08/22/2017] [Indexed: 01/07/2023] Open
Abstract
The proper formation of synapses-specialized unitary structures formed between two neurons-is critical to mediating information flow in the brain. Synaptic cell adhesion molecules (CAMs) are thought to participate in the initiation of the synapse formation process. However, in vivo functional analysis demonstrates that most well known synaptic CAMs regulate synaptic maturation and plasticity rather than synapse formation, suggesting that either CAMs work synergistically in the process of forming synapses or more CAMs remain to be found. By screening for unknown CAMs using a co-culture system, we revealed that protein tyrosine phosphatase receptor type O (PTPRO) is a potent CAM that induces the formation of artificial synapse clusters in co-cultures of human embryonic kidney 293 cells and hippocampal neurons cultured from newborn mice regardless of gender. PTPRO was enriched in the mouse brain and localized to postsynaptic sites at excitatory synapses. The overexpression of PTPRO in cultured hippocampal neurons increased the number of synapses and the frequency of miniature EPSCs (mEPSCs). The knock-down (KD) of PTPRO expression in cultured neurons by short hairpin RNA (shRNA) reduced the number of synapses and the frequencies of the mEPSCs. The effects of shRNA KD were rescued by expressing either full-length PTPRO or a truncated PTPRO lacking the cytoplasmic domain. Consistent with these results, the N-terminal extracellular domain of PTPRO was required for its synaptogenic activity in the co-culture assay. Our data show that PTPRO is a synaptic CAM that serves as a potent initiator of the formation of excitatory synapses.SIGNIFICANCE STATEMENT The formation of synapses is critical for the brain to execute its function and synaptic cell adhesion molecules (CAMs) play essential roles in initiating the formation of synapses. By screening for unknown CAMs using a co-culture system, we revealed that protein tyrosine phosphatase receptor type O (PTPRO) is a potent CAM that induces the formation of artificial synapse clusters. Using loss-of-function and gain-of-function approaches, we show that PTPRO promotes the formation of excitatory synapses. The N-terminal extracellular domain of PTPRO was required for its synaptogenic activity in cultured hippocampal neurons and the co-culture assay. Together, our data show that PTPRO is a synaptic CAM that serves as a potent initiator of synapse formation.
Collapse
|
6
|
Cummings DM, Benway TA, Ho H, Tedoldi A, Fernandes Freitas MM, Shahab L, Murray CE, Richard-Loendt A, Brandner S, Lashley T, Salih DA, Edwards FA. Neuronal and Peripheral Pentraxins Modify Glutamate Release and may Interact in Blood–Brain Barrier Failure. Cereb Cortex 2017; 27:3437-3448. [DOI: 10.1093/cercor/bhx046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Indexed: 01/12/2023] Open
Affiliation(s)
- Damian M. Cummings
- Department of Neuroscience, Physiology & Pharmacology (NPP), University College London, London WC1E 6BT, UK
| | - Tiffanie A. Benway
- Department of Neuroscience, Physiology & Pharmacology (NPP), University College London, London WC1E 6BT, UK
| | - Hinze Ho
- Department of Neuroscience, Physiology & Pharmacology (NPP), University College London, London WC1E 6BT, UK
- Present address: MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Angelo Tedoldi
- Department of Neuroscience, Physiology & Pharmacology (NPP), University College London, London WC1E 6BT, UK
- Present address: Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Lion Shahab
- Department of Behavioural Science and Health, University College London, London WC1E 6BT, UK
| | - Christina E. Murray
- The Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Angela Richard-Loendt
- Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Tammaryn Lashley
- The Queen Square Brain Bank for Neurological Disorders, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Dervis A. Salih
- Department of Neuroscience, Physiology & Pharmacology (NPP), University College London, London WC1E 6BT, UK
| | - Frances A. Edwards
- Department of Neuroscience, Physiology & Pharmacology (NPP), University College London, London WC1E 6BT, UK
| |
Collapse
|
7
|
Golbabapour S, Majid NA, Hassandarvish P, Hajrezaie M, Abdulla MA, Hadi AHA. Gene silencing and Polycomb group proteins: an overview of their structure, mechanisms and phylogenetics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:283-96. [PMID: 23692361 PMCID: PMC3662373 DOI: 10.1089/omi.2012.0105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
DNA methylation, histone modifications, and chromatin configuration are crucially important in the regulation of gene expression. Among these epigenetic mechanisms, silencing the expression of certain genes depending on developmental stage and tissue specificity is a key repressive system in genome programming. Polycomb (Pc) proteins play roles in gene silencing through different mechanisms. These proteins act in complexes and govern the histone methylation profiles of a large number of genes that regulate various cellular pathways. This review focuses on two main Pc complexes, Pc repressive complexes 1 and 2, and their phylogenetic relationship, structures, and function. The dynamic roles of these complexes in silencing will be discussed herein, with a focus on the recruitment of Pc complexes to target genes and the key factors involved in their recruitment.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | |
Collapse
|
8
|
Liao WH, Cheng CH, Hung KS, Chiu WT, Chen GD, Hwang PP, Hwang SPL, Kuan YS, Huang CJ. Protein tyrosine phosphatase receptor type O (Ptpro) regulates cerebellar formation during zebrafish development through modulating Fgf signaling. Cell Mol Life Sci 2013; 70:2367-81. [PMID: 23361036 PMCID: PMC3676743 DOI: 10.1007/s00018-013-1259-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/13/2012] [Accepted: 01/03/2013] [Indexed: 02/04/2023]
Abstract
Protein activities controlled by receptor protein tyrosine phosphatases (RPTPs) play comparably important roles in transducing cell surface signals into the cytoplasm by protein tyrosine kinases. Previous studies showed that several RPTPs are involved in neuronal generation, migration, and axon guidance in Drosophila, and the vertebrate hippocampus, retina, and developing limbs. However, whether the protein tyrosine phosphatase type O (ptpro), one kind of RPTP, participates in regulating vertebrate brain development is largely unknown. We isolated the zebrafish ptpro gene and found that its transcripts are primarily expressed in the embryonic and adult central nervous system. Depletion of zebrafish embryonic Ptpro by antisense morpholino oligonucleotide knockdown resulted in prominent defects in the forebrain and cerebellum, and the injected larvae died on the 4th day post-fertilization (dpf). We further investigated the function of ptpro in cerebellar development and found that the expression of ephrin-A5b (efnA5b), a Fgf signaling induced cerebellum patterning factor, was decreased while the expression of dusp6, a negative-feedback gene of Fgf signaling in the midbrain-hindbrain boundary region, was notably induced in ptpro morphants. Further analyses demonstrated that cerebellar defects of ptpro morphants were partially rescued by inhibiting Fgf signaling. Moreover, Ptpro physically interacted with the Fgf receptor 1a (Fgfr1a) and dephosphorylated Fgfr1a in a dose-dependant manner. Therefore, our findings demonstrate that Ptpro activity is required for patterning the zebrafish embryonic brain. Specifically, Ptpro regulates cerebellar formation during zebrafish development through modulating Fgf signaling.
Collapse
Affiliation(s)
- Wei-Hao Liao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 104, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Interaction of an intracellular pentraxin with a BTB-Kelch protein is associated with ubiquitylation, aggregation and neuronal apoptosis. Mol Cell Neurosci 2011; 47:254-64. [PMID: 21549840 DOI: 10.1016/j.mcn.2011.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/06/2011] [Accepted: 04/18/2011] [Indexed: 11/21/2022] Open
Abstract
Neuronal pentraxin with chromo domain (NPCD) comprises a group of neuronally expressed pentraxins with both membrane and cytosolic isoforms; the functions of cytosolic NPCD isoforms are not clear. Here, we demonstrate that a cytosolic NPCD isoform selectively interacts with the BTB-Kelch protein Mayven/Kelch-like 2 (KLHL2), an actin-binding protein implicated in process outgrowth in oligodendrocytes. The KLHL2-NPCD interaction was identified by a yeast two-hybrid screen and confirmed through colocalization and co-immunoprecipitation studies. Truncation analysis indicates that the Kelch domains of KLHL2 interact with the pentraxin domain of NPCD. NPCD forms protein inclusion bodies (aggresomes) when overexpressed in tissue culture cells, KLHL2 localizes to these aggresomes, and overexpression of KLHL2 increases NPCD aggresome formation. Since other members of the BTB-Kelch family can act as Cullin-RING type E3 ubiquitin ligases, we tested the potential role of KLHL2 as a ubiquitin ligase for NPCD. We found that KLHL2 interacts selectively with Cullin 3, a key component of BTB-Kelch ubiquitin ligase complexes. Further, overexpression of KLHL2 promotes NPCD ubiquitylation. Together, these results suggest a novel E3 ubiquitin ligase function of KLHL2, with NPCD as a substrate. As the formation of aggresomes is often associated with protein aggregation in neurodegenerative diseases, we tested the effects of NPCD overexpression and KLHL2 coexpression on neuronal viability. Overexpression of NPCD in hippocampal neurons led to cell death and apoptosis; this effect was exacerbated by KLHL2 co-expression. Our findings implicate KLHL2 in ubiquitin ligase activity, and suggest potential roles of NPCD and KLHL2 in neurodegeneration.
Collapse
|
10
|
Martinez de la Torre Y, Fabbri M, Jaillon S, Bastone A, Nebuloni M, Vecchi A, Mantovani A, Garlanda C. Evolution of the pentraxin family: the new entry PTX4. THE JOURNAL OF IMMUNOLOGY 2010; 184:5055-64. [PMID: 20357257 DOI: 10.4049/jimmunol.0901672] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pentraxins (PTXs) are a superfamily of multifunctional conserved proteins, some of which are components of the humoral arm of innate immunity and behave as functional ancestors of Abs. They are divided into short (C-reactive protein and serum amyloid P component) and long pentraxins (PTX3 and neuronal pentraxins). Based on a search for pentraxin domain-containing sequences in databases, a phylogenetic analysis of the pentraxin family from mammals to arthropods was conducted. This effort resulted in the identification of a new long pentraxin (PTX4) conserved from mammals to lower vertebrates, which clusters alone in phylogenetic analysis. The results indicated that the pentraxins consist of five clusters: short pentraxins, which can be found in chordate and arthropods; neuronal pentraxins; the prototypic long pentraxin PTX3, which originated very early at the divergence of the vertebrates; the Drosophila pentraxin-like protein B6; and the long pentraxin PTX4 discovered in this study. Conservation of flanking genes in mammalian evolution indicates maintenance of synteny. Analysis of PTX4, in silico and by transcript expression, shows that the gene is well conserved from mammals to lower vertebrates and has a unique pattern of mRNA expression. Thus, PTX4 is a new unique member of the pentraxin superfamily, conserved in evolution.
Collapse
Affiliation(s)
- Yeny Martinez de la Torre
- Laboratorio di Immunologia e Infiammazione, Istituto Clinico Humanitas, Istituto Di Ricovero e Cura a Carattere Scientifico, Rozzano
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hower AE, Beltran PJ, Bixby JL. Dimerization of tyrosine phosphatase PTPRO decreases its activity and ability to inactivate TrkC. J Neurochem 2009; 110:1635-47. [PMID: 19573017 DOI: 10.1111/j.1471-4159.2009.06261.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Receptor-protein tyrosine phosphatases (RPTPs), like receptor tyrosine kinases, regulate neuronal differentiation. While receptor tyrosine kinases are dimerized and activated by extracellular ligands, the extent to which RPTPs dimerize, and the effects of dimerization on phosphatase activity, are poorly understood. We have examined a neuronal type III RPTP, PTPRO; we find that PTPRO can form dimers in living cells, and that disulfide linkages in PTPROs intracellular domain likely regulate dimerization. Dimerization of PTPROs transmembrane and intracellular domains, achieved by ligand binding to a chimeric fusion protein, decreases activity toward artificial peptides and toward a putative substrate, tropomyosin-related kinase C (TrkC). Dephosphorylation of TrkC by PTPRO may be physiologically relevant, as it is efficient, and TrkC and PTPRO can be co-precipitated from transfected cells. Inhibition of PTPROs phosphatase activity by dimerization is interesting, as dimerization of a related RPTP, CD148/PTPRJ, increases activity. Thus, our results suggest a complex relationship between dimerization and activity in type III RPTPs.
Collapse
|
12
|
Charba DS, Wiggins RC, Goyal M, Wharram BL, Wiggins JE, McCarthy ET, Sharma R, Sharma M, Savin VJ. Antibodies to protein tyrosine phosphatase receptor type O (PTPro) increase glomerular albumin permeability (P(alb)). Am J Physiol Renal Physiol 2009; 297:F138-44. [PMID: 19403647 DOI: 10.1152/ajprenal.00122.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Glomerular capillary filtration barrier characteristics are determined in part by the slit-pore junctions of glomerular podocytes. Protein tyrosine phosphatase receptor-O (PTPro) is a transmembrane protein expressed on the apical surface of podocyte foot processes. Tyrosine phosphorylation of podocyte proteins including nephrin may control the filtration barrier. To determine whether PTPro activity is required to maintain glomerular macromolecular permeability, albumin permeability (P(alb)) was studied after incubation of glomeruli from normal animals with a series of monoclonal (mAb) and polyclonal antibodies. Reagents included mAbs to rabbit and rat PTPro and polyclonal rabbit immune IgG to rat PTPro. mAb 4C3, specific to the amino acid core of PTPro, decreased its phosphatase activity and increased P(alb) of rabbit glomeruli in a time- and concentration-dependent manner. In contrast, mAb P8E7 did not diminish phosphatase activity and did not alter P(alb). Preincubation of 4C3 with PTPro extracellular domain fusion protein blocked glomerular binding and abolished permeability activity. In parallel experiments, P(alb) of rat glomeruli was increased by two mAbs (1B4 and 1D1) or by polyclonal anti-rat PTPro. We conclude that PTPro interaction with specific antibodies acutely increases P(alb). The identity of the normal ligand for PTPro and of its substrate, as well as the mechanism by which phosphatase activity of this receptor affects the filtration barrier, remain to be determined.
Collapse
|
13
|
Harvey M, Karolat J, Sakai Y, Sokolowski B. PPTX, a pentraxin domain-containing protein, interacts with the T1 domain of K v 4. J Neurosci Res 2009; 87:1841-7. [PMID: 19185023 DOI: 10.1002/jnr.22016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Voltage-gated K(+) (K(v)) channels reside as tetramers in the membrane. The events that coordinate folding, trafficking, and tetramerization are mediated by an array of associated proteins and phospholipids whose identification is vital to understanding the dynamic nature of channel expression and activity. An interaction between an A-type K(+) channel, K(v)4.2, and a protein containing a pentraxin domain (PPTX) was demonstrated in the cochlea (Duzhyy et al. [ 2005] J. Biol. Chem. 280:15165-15172). Here, we present results based on fold recognition and homology modeling that revealed the tetramerization (T1) domain of K(v)4.2 as a potential docking site for interacting proteins such as PPTX. By using this model, putative sites were experimentally tested with the yeast two-hybrid system to assay interactions between PPTX and the T1 domain of K(v)4.2 wild type (wt) and mutants (mut). Results showed that amino acid residues 86 and 118 in the T1 domain are essential for interaction, because replacing these negatively charged with neutrally charged amino acids inhibits interactions. Cotransfections of Chinese hamster ovary cells with PPTX and K(v)4.2wt further revealed that PPTX increases K(v)4.2 wt expression in vitro when analyzing total lysates, whereas interactions with K(v)4.2 microt resulted in a decrease. These studies suggest that portions of the T1 domain can act as docking sites for proteins such as PPTX, further underscoring the significance of this domain.
Collapse
Affiliation(s)
- Margaret Harvey
- Department of Otolaryngology-HNS, Otology Laboratory, University of South Florida College of Medicine, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
14
|
Nagy A, Hegyi H, Farkas K, Tordai H, Kozma E, Bányai L, Patthy L. Identification and correction of abnormal, incomplete and mispredicted proteins in public databases. BMC Bioinformatics 2008; 9:353. [PMID: 18752676 PMCID: PMC2542381 DOI: 10.1186/1471-2105-9-353] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Accepted: 08/27/2008] [Indexed: 01/21/2023] Open
Abstract
Background Despite significant improvements in computational annotation of genomes, sequences of abnormal, incomplete or incorrectly predicted genes and proteins remain abundant in public databases. Since the majority of incomplete, abnormal or mispredicted entries are not annotated as such, these errors seriously affect the reliability of these databases. Here we describe the MisPred approach that may provide an efficient means for the quality control of databases. The current version of the MisPred approach uses five distinct routines for identifying abnormal, incomplete or mispredicted entries based on the principle that a sequence is likely to be incorrect if some of its features conflict with our current knowledge about protein-coding genes and proteins: (i) conflict between the predicted subcellular localization of proteins and the absence of the corresponding sequence signals; (ii) presence of extracellular and cytoplasmic domains and the absence of transmembrane segments; (iii) co-occurrence of extracellular and nuclear domains; (iv) violation of domain integrity; (v) chimeras encoded by two or more genes located on different chromosomes. Results Analyses of predicted EnsEMBL protein sequences of nine deuterostome (Homo sapiens, Mus musculus, Rattus norvegicus, Monodelphis domestica, Gallus gallus, Xenopus tropicalis, Fugu rubripes, Danio rerio and Ciona intestinalis) and two protostome species (Caenorhabditis elegans and Drosophila melanogaster) have revealed that the absence of expected signal peptides and violation of domain integrity account for the majority of mispredictions. Analyses of sequences predicted by NCBI's GNOMON annotation pipeline show that the rates of mispredictions are comparable to those of EnsEMBL. Interestingly, even the manually curated UniProtKB/Swiss-Prot dataset is contaminated with mispredicted or abnormal proteins, although to a much lesser extent than UniProtKB/TrEMBL or the EnsEMBL or GNOMON-predicted entries. Conclusion MisPred works efficiently in identifying errors in predictions generated by the most reliable gene prediction tools such as the EnsEMBL and NCBI's GNOMON pipelines and also guides the correction of errors. We suggest that application of the MisPred approach will significantly improve the quality of gene predictions and the associated databases.
Collapse
Affiliation(s)
- Alinda Nagy
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, H-1113 Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
15
|
Pungercar J, Krizaj I. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2. Toxicon 2007; 50:871-92. [PMID: 17905401 DOI: 10.1016/j.toxicon.2007.07.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 07/13/2007] [Accepted: 07/20/2007] [Indexed: 11/24/2022]
Abstract
An important group of toxins, whose action at the molecular level is still a matter of debate, is secreted phospholipases A(2) (sPLA(2)s) endowed with presynaptic or beta-neurotoxicity. The current belief is that these beta-neurotoxins (beta-ntxs) exert their toxicity primarily due to their extracellular enzymatic action on the plasma membrane of motoneurons at the neuromuscular junction. However, the discovery of several extra- and intracellular proteins, with high binding affinity for snake venom beta-ntxs, has raised the question as to whether this explanation is adequate to account for all the observed phenomena in the process of presynaptic toxicity. The purpose of this review is to critically examine the various published studies, including the most recent results on internalization of a beta-ntx into motor nerve terminals, in order to contribute to a better understanding of the molecular mechanism of beta-neurotoxicity. As a result, we propose that presynaptic neurotoxicity of sPLA(2)s is a result of both extra- and intracellular actions of beta-ntxs, involving enzymatic activity as well as interaction of the toxins with intracellular proteins affecting the cycling of synaptic vesicles in the axon terminals of vertebrate motoneurons.
Collapse
Affiliation(s)
- Joze Pungercar
- Department of Molecular and Biomedical Sciences, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | | |
Collapse
|
16
|
Abad MA, Enguita M, DeGregorio-Rocasolano N, Ferrer I, Trullas R. Neuronal pentraxin 1 contributes to the neuronal damage evoked by amyloid-beta and is overexpressed in dystrophic neurites in Alzheimer's brain. J Neurosci 2006; 26:12735-47. [PMID: 17151277 PMCID: PMC6674827 DOI: 10.1523/jneurosci.0575-06.2006] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulation of amyloid-beta (Abeta) is thought to play a central role in the progressive loss of synapses, the neurite damage, and the neuronal death that are characteristic in brains affected by Alzheimer's disease. However, the mechanisms through which Abeta produces such neurotoxicity remain unclear. Because Abeta depresses synaptic activity, we investigated whether the neurotoxicity of Abeta depends on the expression of NP1, a protein involved in excitatory synapse remodeling that has recently been shown to mediate neuronal death induced by reduction in neuronal activity in mature neurons. We found that treatment of cortical neurons in culture with Abeta produces a marked increase in NP1 protein that precedes apoptotic neurotoxicity. Silencing NP1 gene expression by RNA interference (short hairpin RNA for RNA interference) prevents the loss of synapses, the reduction in neurite outgrowth, and the apoptosis evoked by Abeta. Transgene overexpression of NP1 reproduced these neurotoxic effects of Abeta. Moreover, we found that NP1 was increased in dystrophic neurites of brains from patients with sporadic late-onset Alzheimer's disease. Dual immunohistochemistry for NP1 and tau showed that NP1 colocalizes with tau deposits in dystrophic neurites. Furthermore, NP1 colocalized with SNAP-25 (synaptosomal-associated protein of 25 kDa) in the majority of dystrophic neurites surrounding amyloid deposits. NP1 was also increased in cell processes surrounding amyloid plaques in the cerebral cortex and hippocampus of APP/PS1 (mutant amyloid precursor protein/presenilin 1) transgenic mice. These findings show that NP1 is a key factor for the synapse loss, the neurite damage, and the apoptotic neuronal death evoked by Abeta and indicate that Abeta contributes to the pathology of Alzheimer's disease by regulating NP1 expression.
Collapse
Affiliation(s)
- Maria A. Abad
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, and
| | - Marta Enguita
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, and
| | - Nuria DeGregorio-Rocasolano
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, and
| | - Isidre Ferrer
- Institut de Neuropatologia, Servei Anatomia Patològica, Hospital Universitari de Bellvitge, Universitat de Barcelona, Hospitalet de Llobregat, 08097 Barcelona, Spain
| | - Ramon Trullas
- Neurobiology Unit, Institut d'Investigacions Biomèdiques de Barcelona, Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain, and
| |
Collapse
|
17
|
Stepanek L, Stoker AW, Stoeckli E, Bixby JL. Receptor tyrosine phosphatases guide vertebrate motor axons during development. J Neurosci 2006; 25:3813-23. [PMID: 15829633 PMCID: PMC6724933 DOI: 10.1523/jneurosci.4531-04.2005] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Receptor-type protein tyrosine phosphatases (RPTPs) are required for appropriate growth of axons during nervous system development in Drosophila. In the vertebrate, type IIa RPTPs [protein tyrosine phosphatase (PTP)-delta, PTP-sigma, and LAR (leukocyte common-antigen-related)] and the type III RPTP, PTP receptor type O (PTPRO), have been implicated in the regulation of axon growth, but their roles in developmental axon guidance are unclear. PTPRO, PTP-delta, and PTP-sigma are each expressed in chick motor neurons during the period of axonogenesis. To examine potential roles of RPTPs in axon growth and guidance in vivo, we used double-stranded RNA (dsRNA) interference combined with in ovo electroporation to knock down RPTP expression levels in the embryonic chick lumbar spinal cord. Although most branches of the developing limb nerves appeared grossly normal, a dorsal nerve identified as the anterior iliotibialis was clearly affected by dsRNA knock-down of RPTPs. In experimental embryos treated with dsRNA targeting PTP-delta, PTP-sigma, or PTPRO, this nerve showed abnormal fasciculation, was reduced in size, or was missing entirely; interference with PTPRO produced the most severe phenotypes. Control embryos electroporated with vehicle, or with dsRNA targeting choline acetyltransferase or axonin-1, did not exhibit this phenotype. Surprisingly, embryos electroporated with dsRNA targeting PTP-delta together with PTPRO, or all three RPTPs combined, had less severe phenotypes than embryos treated with PTPRO alone. This result suggests that competition between type IIa and type III RPTPs can regulate motor axon outgrowth, consistent with findings in Drosophila. Our results indicate that RPTPs, and especially PTPRO, are required for axon growth and guidance in the developing vertebrate limb.
Collapse
Affiliation(s)
- Laurie Stepanek
- Neuroscience Program, Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
18
|
Chen B, Bixby JL. A novel substrate of receptor tyrosine phosphatase PTPRO is required for nerve growth factor-induced process outgrowth. J Neurosci 2005; 25:880-8. [PMID: 15673668 PMCID: PMC6725615 DOI: 10.1523/jneurosci.4365-04.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The receptor protein tyrosine phosphatase PTPRO may be involved in axon guidance both as a ligand and as a neuronal receptor. We have begun to characterize signaling by PTPRO as a receptor by screening for proteins interacting with the intracellular domain of PTPRO. In a yeast-two hybrid screen, we identified a novel class of protein, which we named neuronal pentraxin with chromo domain (NPCD), as a PTPRO-interacting protein. We have shown recently that NPCD has multiple cytoplasmic isoforms as a result of alternative splicing and that these proteins are present in many neurons, mainly associated with the inner side of the plasma membrane. Through additional two-hybrid experiments, cotransfection and reciprocal coprecipitation, glutathione S-transferase pulldown, and immunoprecipitation in vivo, we confirm that NPCD isoforms interact with the catalytic phosphatase domain of PTPRO. We also find that at least one NPCD isoform is tyrosine phosphorylated in vivo and can serve as a substrate for PTPRO in vitro. Analysis of PTPRO knock-out mice demonstrates that normal localization of NPCD at the plasma membrane requires PTPRO expression, suggesting a physiological role for the NPCD/PTPRO interaction. NPCD is likely to be relevant to axon growth and/or guidance, because RNA interference mediated knock-down of NPCD expression in pheochromocytoma cells inhibits NGF-induced neuronal process outgrowth without affecting NGF-dependent survival or initial NGF signaling.
Collapse
Affiliation(s)
- Bo Chen
- Department of Molecular and Cellular Pharmacology, The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | |
Collapse
|
19
|
Duzhyy D, Harvey M, Sokolowski B. A secretory-type protein, containing a pentraxin domain, interacts with an A-type K+ channel. J Biol Chem 2005; 280:15165-72. [PMID: 15708850 DOI: 10.1074/jbc.m500111200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A-type K(+) channels belonging to the Shal subfamily are found in various receptor and neuronal cells. Although their kinetics and cell surface expression are regulated by auxiliary subunits, little is known about the proteins that may interact with Kv4 during development. A yeast two-hybrid screening of a cDNA library made from the sensory epithelium of embryonic chick cochlea revealed a novel association of Kv4.2 with a protein containing a pentraxin domain (PPTX). Sequence analysis shows that PPTX is a member of the long pentraxin family, is 53% identical to mouse PTX3, and has a signal peptide at the N terminus. Studies with chick cochlear tissues reveal that Kv4.2 coprecipitates PPTX and that both proteins are colocalized to the sensory and ganglion cells. A yeast two-hybrid assay demonstrated that the last 22 amino acids of the PPTX C terminus interact with the N terminus of Kv4.2. Chinese hamster ovary cells transfected with recombinant PPTX reveal secretory products in both non-truncated and truncated forms. Among the secreted variants are several blocked by Brefeldin A, suggesting export via a classical pathway. PPTX is soluble in the presence of sodium carbonate, suggesting localization to the cytosolic side of the plasmalemma. Immunohistochemical studies show that Kv4.2 and PPTX colocalize in the region of the plasmalemma of Chinese hamster ovary cells; however, both are locked in the endoplasmic reticulum of COS-7 cells, suggesting that PPTX does not act as a shuttle protein. Reverse transcription-PCR demonstrates that PPTX mRNA is found in tissues that include brain, eye, heart, and blood vessels.
Collapse
Affiliation(s)
- Dmytro Duzhyy
- University of South Florida, Department of Otolaryngology, Head and Neck Surgery, Tampa, Florida 33612, USA
| | | | | |
Collapse
|