1
|
Oliveira DM, Rashid A, Brassard P, Silva BM. Exercise-induced potentiation of the acute hypoxic ventilatory response: Neural mechanisms and implications for cerebral blood flow. Exp Physiol 2024; 109:1844-1855. [PMID: 38441858 DOI: 10.1113/ep091330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 11/01/2024]
Abstract
A given dose of hypoxia causes a greater increase in pulmonary ventilation during physical exercise than during rest, representing an exercise-induced potentiation of the acute hypoxic ventilatory response (HVR). This phenomenon occurs independently from hypoxic blood entering the contracting skeletal muscle circulation or metabolic byproducts leaving skeletal muscles, supporting the contention that neural mechanisms per se can mediate the HVR when humoral mechanisms are not at play. However, multiple neural mechanisms might be interacting intricately. First, we discuss the neural mechanisms involved in the ventilatory response to hypoxic exercise and their potential interactions. Current evidence does not support an interaction between the carotid chemoreflex and central command. In contrast, findings from some studies support synergistic interactions between the carotid chemoreflex and the muscle mechano- and metaboreflexes. Second, we propose hypotheses about potential mechanisms underlying neural interactions, including spatial and temporal summation of afferent signals into the medulla, short-term potentiation and sympathetically induced activation of the carotid chemoreceptors. Lastly, we ponder how exercise-induced potentiation of the HVR results in hyperventilation-induced hypocapnia, which influences cerebral blood flow regulation, with multifaceted potential consequences, including deleterious (increased central fatigue and impaired cognitive performance), inert (unchanged exercise) and beneficial effects (protection against excessive cerebral perfusion).
Collapse
Affiliation(s)
- Diogo M Oliveira
- Postgraduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Anas Rashid
- Postgraduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Pneumology, Department of Medicine, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- Research Centre of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Bruno M Silva
- Postgraduate Program in Translational Medicine, Department of Medicine, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Pulmonary Function and Clinical Exercise Physiology Unit (SEFICE), Division of Pneumology, Department of Medicine, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
- Department of Physiology, Paulista School of Medicine (EPM), Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
2
|
Flor KC, Maia OAC, Takakura AC, Moreira TS. The pontine Kölliker-Fuse nucleus is important for reduced postinspiratory airflow elicited by stimulation of the ventral respiratory parafacial region. Am J Physiol Lung Cell Mol Physiol 2024; 327:L452-L463. [PMID: 39104318 DOI: 10.1152/ajplung.00155.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
Considering that the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) would be an important center in the central nervous system involved in the maintenance and modulation of respiratory activity, we hypothesized that neurons in this nucleus would also be involved in the postinspiratory (post-I) phase of the respiratory cycle through a connection with the pontine Kölliker-Fuse (KF) region. Here, we performed pharmacogenetic manipulation (AAV-hM3D(Gq)-mCherry or AAV-hM4D(Gi)-mCherry) in VGlut2-cre, Ai6 conscious mice to evaluate breathing parameters through whole body plethysmography under baseline conditions (normoxia: [Formula: see text] = 0.21) or under hypercapnia or hypoxia challenges ([Formula: see text] = 0.07 or [Formula: see text] = 0.08). Under normoxia, selective stimulation of RTN/pFRG resulted in a smaller increase in V̇e (1,272 ± 102.5, vs. RTN/pFRG stimulation: 1,878 ± 122.1 mL/kg/min), due to a smaller increase in VT (5.4 ± 0.35, vs. RTN/pFRG stimulation: 7.77 ± 0.21 mL/kg) without changing fR in a condition of KF inhibition. However, inhibition of the VGlut2 neurons in the KF did affect the TE1 produced by selective activation of RTN/pFRG (119.9 ± 2.53, vs. RTN/pFRG stimulation: 104 ± 2.46 ms). Both the hypercapnia and hypoxia ventilatory response were reduced after inhibition of VGlut2-expressing KF neurons. Therefore, consistent with anatomical projections RTN/pFRG neurons regulate lung ventilation by controlling all aspects of breathing, i.e., breathing frequency, inspiration, postinspiration, and active expiration. All the modulation seems to be dependent on the integrity of the glutamatergic neurons in the KF region.NEW & NOTEWORTHY Our research reveals specific roles and interactions between the retrotrapezoid nucleus/respiratory parafacial region (RTN/pFRG) and the pontine Kölliker-Fuse (KF) region in controlling respiratory phases. RTN/pFRG neurons are key in regulating all aspects of breathing, including frequency, inspiration, postinspiration, and active expiration. This regulation depends on the functional integrity of glutamatergic neurons in the KF region, aligning with anatomical projections.
Collapse
Affiliation(s)
- Karine C Flor
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Octavio A C Maia
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Johnson NL, Cotelo-Larrea A, Stetzik LA, Akkaya UM, Zhang Z, Gadziola MA, Varga AG, Ma M, Wesson DW. Sniffing can be initiated by dopamine's actions on ventral striatum neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581052. [PMID: 39229099 PMCID: PMC11370338 DOI: 10.1101/2024.02.19.581052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Sniffing is a motivated behavior displayed by nearly all terrestrial vertebrates. While sniffing is associated with acquiring and processing odors, sniffing is also intertwined with affective and motivated states. The neuromodulatory systems which influence the display of sniffing are unclear. Here, we report that dopamine release into the ventral striatum is coupled with bouts of sniffing and that stimulation of dopaminergic terminals in these regions drives increases in respiratory rate to initiate sniffing whereas inhibition of these terminals reduces respiratory rate. Both the firing of individual neurons and the activity of post-synaptic D1 and D2 receptor-expressing neurons in the ventral striatum are also coupled with sniffing and local antagonism of D1 and D2 receptors squelches sniffing. Together, these results support a model whereby sniffing can be initiated by dopamine's actions upon ventral striatum neurons. The nature of sniffing being integral to both olfaction and motivated behaviors implicates this circuit in a wide array of functions.
Collapse
|
4
|
Alvarez-Araos P, Jiménez S, Salazar-Ardiles C, Núñez-Espinosa C, Paez V, Rodriguez-Fernandez M, Raberin A, Millet GP, Iturriaga R, Andrade DC. Baroreflex and chemoreflex interaction in high-altitude exposure: possible role on exercise performance. Front Physiol 2024; 15:1422927. [PMID: 38895516 PMCID: PMC11184637 DOI: 10.3389/fphys.2024.1422927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The hypoxic chemoreflex and the arterial baroreflex are implicated in the ventilatory response to exercise. It is well known that long-term exercise training increases parasympathetic and decreases sympathetic tone, both processes influenced by the arterial baroreflex and hypoxic chemoreflex function. Hypobaric hypoxia (i.e., high altitude [HA]) markedly reduces exercise capacity associated with autonomic reflexes. Indeed, a reduced exercise capacity has been found, paralleled by a baroreflex-related parasympathetic withdrawal and a pronounced chemoreflex potentiation. Additionally, it is well known that the baroreflex and chemoreflex interact, and during activation by hypoxia, the chemoreflex is predominant over the baroreflex. Thus, the baroreflex function impairment may likely facilitate the exercise deterioration through the reduction of parasympathetic tone following acute HA exposure, secondary to the chemoreflex activation. Therefore, the main goal of this review is to describe the main physiological mechanisms controlling baro- and chemoreflex function and their role in exercise capacity during HA exposure.
Collapse
Affiliation(s)
- Pablo Alvarez-Araos
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Kinesiología, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - Sergio Jiménez
- Departamento de Kinesiología, Facultad de Ciencias de la Salud, Universidad de Atacama, Copiapó, Chile
| | - Camila Salazar-Ardiles
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Cristian Núñez-Espinosa
- Escuela de Medicina de la Universidad de Magallanes, Punta Arenas, Chile
- Centro Asistencial de Docencia e Investigación (CADI-UMAG), Santiago, Chile
| | - Valeria Paez
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Antoine Raberin
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gregoire P. Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Rodrigo Iturriaga
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - David C. Andrade
- Exercise Applied Physiology Laboratory, Centro de Investigación en Fisiología y Medicina de Altura, Departamento Biomedico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
5
|
Dereli AS, Oh AYS, McMullan S, Kumar NN. Galaninergic and hypercapnia-activated neuronal projections to the ventral respiratory column. Brain Struct Funct 2024; 229:1121-1142. [PMID: 38578351 PMCID: PMC11147908 DOI: 10.1007/s00429-024-02782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
In mammals, the ventral respiratory column (VRC) plays a pivotal role in integrating neurochemically diverse inputs from brainstem and forebrain regions to generate respiratory motor patterns. VRC microinjection of the neuropeptide galanin has been reported to dampen carbon dioxide (CO2)-mediated chemoreflex responses. Additionally, we previously demonstrated that galaninergic neurons in the retrotrapezoid nucleus (RTN) are implicated in the adaptive response to hypercapnic stimuli, suggesting a link between RTN neuroplasticity and increased neuronal drive to the VRC. VRC neurons express galanin receptor 1, suggesting potential regulatory action by galanin, however, the precise galaninergic chemoreceptor-VRC circuitry remains to be determined. This study aimed to identify sources of galaninergic input to the VRC that contribute to central respiratory chemoreception. We employed a combination of retrograde neuronal tracing, in situ hybridisation and immunohistochemistry to investigate VRC-projecting neurons that synthesise galanin mRNA. In an additional series of experiments, we used acute hypercapnia exposure (10% CO2, 1 h) and c-Fos immunohistochemistry to ascertain which galaninergic nuclei projecting to the VRC are activated. Our findings reveal that a total of 30 brain nuclei and 51 subnuclei project to the VRC, with 12 of these containing galaninergic neurons, including the RTN. Among these galaninergic populations, only a subset of the RTN neurons (approximately 55%) exhibited activation in response to acute hypercapnia. Our findings highlight that the RTN is the likely source of galaninergic transmission to the VRC in response to hypercapnic stimuli.
Collapse
Affiliation(s)
- Ayse S Dereli
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Alice Y S Oh
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Simon McMullan
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Natasha N Kumar
- Department of Pharmacology, School of Biomedical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
6
|
Wang Y, Deng T, Zhao X, Shao L, Chen J, Fu C, He W, Wang X, Wang H, Yuan F, Wang S. Control of breathing by orexinergic signaling in the nucleus tractus solitarii. Sci Rep 2024; 14:7473. [PMID: 38553555 PMCID: PMC10980752 DOI: 10.1038/s41598-024-58075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Orexin signaling plays a facilitatory role in respiration. Abnormalities in orexin levels correlate with disordered breathing patterns and impaired central respiratory chemoreception. Nucleus tractus solitarii (NTS) neurons expressing the transcription factor Phox2b contribute to the chemoreceptive regulation of respiration. However, the extent to which orexinergic signaling modulates respiratory activity in these Phox2b-expressing NTS neurons remains unclear. In the present study, the injection of orexin A into the NTS significantly increased the firing rate of the phrenic nerve. Further analysis using fluorescence in situ hybridization and immunohistochemistry revealed that orexin 1 receptors (OX1Rs) were primarily located in the ventrolateral subdivision of the NTS and expressed in 25% of Phox2b-expressing neurons. Additionally, electrophysiological recordings showed that exposure to orexin A increased the spontaneous firing rate of Phox2b-expressing neurons. Immunostaining experiments with cFos revealed that the OX1R-residing Phox2b-expressing neurons were activated by an 8% CO2 stimulus. Crucially, OX1R knockdown in these NTS neurons notably blunted the ventilatory response to 8% CO2, alongside an increase in sigh-related apneas. In conclusion, orexinergic signaling in the NTS facilitates breathing through the activation of OX1Rs, which induces the depolarization of Phox2b-expressing neurons. OX1Rs are essential for the involvement of Phox2b-expressing NTS neurons in the hypercapnic ventilatory response.
Collapse
Affiliation(s)
- Yakun Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Department of Sleep Medicine, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tianjiao Deng
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xue Zhao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Liuqi Shao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jinting Chen
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Congrui Fu
- Nursing School, Hebei Medical University, Shijiazhuang, China
| | - Wei He
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyi Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hanqiao Wang
- Department of Sleep Medicine, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China.
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, China.
| |
Collapse
|
7
|
Cleary CM, Browning JL, Armbruster M, Sobrinho CR, Strain ML, Jahanbani S, Soto-Perez J, Hawkins VE, Dulla CG, Olsen ML, Mulkey DK. Kir4.1 channels contribute to astrocyte CO 2/H +-sensitivity and the drive to breathe. Commun Biol 2024; 7:373. [PMID: 38548965 PMCID: PMC10978993 DOI: 10.1038/s42003-024-06065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/01/2024] Open
Abstract
Astrocytes in the retrotrapezoid nucleus (RTN) stimulate breathing in response to CO2/H+, however, it is not clear how these cells detect changes in CO2/H+. Considering Kir4.1/5.1 channels are CO2/H+-sensitive and important for several astrocyte-dependent processes, we consider Kir4.1/5.1 a leading candidate CO2/H+ sensor in RTN astrocytes. To address this, we show that RTN astrocytes express Kir4.1 and Kir5.1 transcripts. We also characterized respiratory function in astrocyte-specific inducible Kir4.1 knockout mice (Kir4.1 cKO); these mice breathe normally under room air conditions but show a blunted ventilatory response to high levels of CO2, which could be partly rescued by viral mediated re-expression of Kir4.1 in RTN astrocytes. At the cellular level, astrocytes in slices from astrocyte-specific inducible Kir4.1 knockout mice are less responsive to CO2/H+ and show a diminished capacity for paracrine modulation of respiratory neurons. These results suggest Kir4.1/5.1 channels in RTN astrocytes contribute to respiratory behavior.
Collapse
Affiliation(s)
- Colin M Cleary
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jack L Browning
- School of Neuroscience and Genetics, Genomics and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Moritz Armbruster
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Cleyton R Sobrinho
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Monica L Strain
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Sarvin Jahanbani
- School of Neuroscience and Genetics, Genomics and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Virginia E Hawkins
- Department of Life Sciences, Manchester Metropolitan University, Manchester, UK
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Michelle L Olsen
- School of Neuroscience and Genetics, Genomics and Computational Biology, Virginia Tech, Blacksburg, VA, USA
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
8
|
Rocha I, González-García M, Carrillo-Franco L, Dawid-Milner MS, López-González MV. Influence of Brainstem's Area A5 on Sympathetic Outflow and Cardiorespiratory Dynamics. BIOLOGY 2024; 13:161. [PMID: 38534431 DOI: 10.3390/biology13030161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
Area A5 is a noradrenergic cell group in the brain stem characterised by its important role in triggering sympathetic activity, exerting a profound influence on the sympathetic outflow, which is instrumental in the modulation of cardiovascular functions, stress responses and various other physiological processes that are crucial for adaptation and survival mechanisms. Understanding the role of area A5, therefore, not only provides insights into the basic functioning of the sympathetic nervous system but also sheds light on the neuronal basis of a number of autonomic responses. In this review, we look deeper into the specifics of area A5, exploring its anatomical connections, its neurochemical properties and the mechanisms by which it influences sympathetic nervous system activity and cardiorespiratory regulation and, thus, contributes to the overall dynamics of the autonomic function in regulating body homeostasis.
Collapse
Affiliation(s)
- Isabel Rocha
- Lisbon School of Medicine and CCUL@Rise, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Marta González-García
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Laura Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Marc Stefan Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| | - Manuel Victor López-González
- Department of Human Physiology, Faculty of Medicine, University of Malaga, 29590 Malaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Malaga, 29590 Malaga, Spain
- Biomedical Research Institute of Malaga (IBIMA), 29590 Malaga, Spain
| |
Collapse
|
9
|
González-García M, Carrillo-Franco L, Morales-Luque C, Dawid-Milner MS, López-González MV. Central Autonomic Mechanisms Involved in the Control of Laryngeal Activity and Vocalization. BIOLOGY 2024; 13:118. [PMID: 38392336 PMCID: PMC10886357 DOI: 10.3390/biology13020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
In humans, speech is a complex process that requires the coordinated involvement of various components of the phonatory system, which are monitored by the central nervous system. The larynx in particular plays a crucial role, as it enables the vocal folds to meet and converts the exhaled air from our lungs into audible sounds. Voice production requires precise and sustained exhalation, which generates an air pressure/flow that creates the pressure in the glottis required for voice production. Voluntary vocal production begins in the laryngeal motor cortex (LMC), a structure found in all mammals, although the specific location in the cortex varies in humans. The LMC interfaces with various structures of the central autonomic network associated with cardiorespiratory regulation to allow the perfect coordination between breathing and vocalization. The main subcortical structure involved in this relationship is the mesencephalic periaqueductal grey matter (PAG). The PAG is the perfect link to the autonomic pontomedullary structures such as the parabrachial complex (PBc), the Kölliker-Fuse nucleus (KF), the nucleus tractus solitarius (NTS), and the nucleus retroambiguus (nRA), which modulate cardiovascular autonomic function activity in the vasomotor centers and respiratory activity at the level of the generators of the laryngeal-respiratory motor patterns that are essential for vocalization. These cores of autonomic structures are not only involved in the generation and modulation of cardiorespiratory responses to various stressors but also help to shape the cardiorespiratory motor patterns that are important for vocal production. Clinical studies show increased activity in the central circuits responsible for vocalization in certain speech disorders, such as spasmodic dysphonia because of laryngeal dystonia.
Collapse
Affiliation(s)
- Marta González-García
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Laura Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Carmen Morales-Luque
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
| | - Marc Stefan Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| | - Manuel Víctor López-González
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Málaga, Spain
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Málaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Málaga, Spain
| |
Collapse
|
10
|
Oliveira LM, Moreira TS, Takakura AC. Interaction between Kölliker-Fuse/A7 and the parafacial respiratory region on the control of respiratory regulation. Respir Physiol Neurobiol 2024; 320:104201. [PMID: 38043841 DOI: 10.1016/j.resp.2023.104201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Respiration is regulated by various types of neurons located in the pontine-medullary regions. The Kölliker-Fuse (KF)/A7 noradrenergic neurons play a role in modulating the inspiratory cycle by influencing the respiratory output. These neurons are interconnected and may also project to brainstem and spinal cord, potentially involved in regulating the post-inspiratory phase. In the present study, we hypothesize that the parafacial (pF) neurons, in conjunction with adrenergic mechanisms originating from the KF/A7 region, may provide the neurophysiological basis for breathing modulation. We conducted experiments using urethane-anesthetized, vagotomized, and artificially ventilated male Wistar rats. Injection of L-glutamate into the KF/A7 region resulted in inhibition of inspiratory activity, and a prolonged and high-amplitude genioglossal activity (GGEMG). Blockade of the α1 adrenergic receptors (α1-AR) or the ionotropic glutamatergic receptors in the pF region decrease the activity of the GGEMG without affecting inspiratory cessation. In contrast, blockade of α2-AR in the pF region extended the duration of GG activity. Notably, the inspiratory and GGEMG activities induced by KF/A7 stimulation were completely blocked by bilateral blockade of glutamatergic receptors in the Bötzinger complex (BötC). While our study found a limited role for α1 and α2 adrenergic receptors at the pF level in modulating the breathing response to KF/A7 stimulation, it became evident that BötC neurons are responsible for the respiratory effects induced by KF/A7 stimulation.
Collapse
Affiliation(s)
- Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508, Brazil; Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Avenue, JMB10, Seattle, WA 98101, USA
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, SP 05508, Brazil.
| |
Collapse
|
11
|
Ambrozio-Marques D, Gagnon M, Radcliff AB, Meza AL, Baker TL, Watters JJ, Kinkead R. Gestational intermittent hypoxia increases FosB-immunoreactive perikaryas in the paraventricular nucleus of the hypothalamus of adult male (but not female) rats. Exp Physiol 2023; 108:1376-1385. [PMID: 37642495 PMCID: PMC10841242 DOI: 10.1113/ep091343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Sleep-disordered breathing is a respiratory disorder commonly experienced by pregnant women. The recurrent hypoxaemic events associated with sleep-disordered breathing have deleterious consequences for the mother and fetus. Adult male (but not female) rats born to dams subjected to gestational intermittent hypoxia (GIH) have a higher resting blood pressure than control animals and show behavioural/neurodevelopmental disorders. The origin of this persistent, sex-specific effect of GIH in offspring is unknown, but disruption of the neuroendocrine stress pathways is a key mechanism by which gestational stress increases disease risk in progeny. Using FosB immunolabelling as a chronic marker of neuronal activation, we determined whether GIH augments basal expression of FosB in the perikaryas of cells in the paraventricular nucleus of the hypothalamus (PVN), a key structure in the regulation of the stress response and blood pressure. From gestational day 10, female rats were subjected to GIH for 8 h/day (light phase) until the day before delivery (gestational day 21); GIH consisted of 2 min hypoxic bouts (10.5% O2 ) alternating with normoxia. Control rats were exposed to intermittent normoxia over the same period (GNX). At adulthood (10-15 weeks), the brains of male and female rats were harvested for FosB immunohistochemistry. In males, GIH augmented PVN FosB labelling density by 30%. Conversely, PVN FosB density in GIH females was 28% lower than that of GNX females. We conclude that GIH has persistent and sex-specific impacts on the development of stress pathways, thereby offering a plausible mechanism by which GIH can disturb neural development and blood pressure homeostasis in adulthood. NEW FINDINGS: What is the central question of this study? In pregnant women, sleep apnoea increases the risk of disease for the offspring at various life stages. Given that gestational stress disrupts the programming of the stress pathways, we determined whether exposing female rats to gestational intermittent hypoxia (GIH) activates hypothalamic neurons regulating the stress response in adult rats. What is the main finding and its importance? Using FosB immunolabelling as a marker of marker of neuronal activation, we showed that GIH augmented basal activation of the paraventricular nucleus of the hypothalamus in males, but not females. Disruption of the stress pathways is a new hypothesis to explain the persistent and sex-specific impacts of GIH on offspring health.
Collapse
Affiliation(s)
- Danuzia Ambrozio-Marques
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| | - Marianne Gagnon
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| | - Abigail B Radcliff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Armand L Meza
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Richard Kinkead
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
12
|
Onimaru H, Fukushi I, Ikeda K, Yazawa I, Takeda K, Okada Y, Izumizaki M. Cell Responses of the Ventrolateral Medulla to PAR1 Activation and Changes in Respiratory Rhythm in Newborn Rat En Bloc Brainstem-Spinal Cord Preparations. Neuroscience 2023; 528:89-101. [PMID: 37557948 DOI: 10.1016/j.neuroscience.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Proteinase-activated receptor-1 (PAR1) is expressed in astrocytes of various brain regions, and its activation is involved in the modulation of neuronal activity. Here, we report effects of PAR1 selective agonist TFLLR on respiratory rhythm generation in brainstem-spinal cord preparations. Preparations were isolated from newborn rats (P0-P4) under deep isoflurane anesthesia and were transversely cut at the rostral medulla. Preparations were superfused with artificial cerebrospinal fluid (25-26 °C), and inspiratory C4 ventral root activity was monitored. The responses to TFLLR of cells close to the cut surface were detected by calcium imaging or membrane potential recordings. Application of 10 μM TFLLR (4 min) induced a rapid and transient increase of calcium signal in cells of the ventrolateral respiratory regions of the medulla. More than 88% of responding cells (223/254 cells from 13 preparations) were also activated by low (0.2 mM) K+ solution, suggesting that they were astrocytes. Immunohistochemical examination demonstrated that PAR1 was expressed on many astrocytes. Respiratory-related neurons in the medulla were transiently hyperpolarized (-1.8 mV) during 10 μM TFLLR application, followed by weak membrane depolarization after washout. C4 burst rate decreased transiently in response to application of TFLLR, followed by a slight increase. The inhibitory effect was partially blocked by 50 μM theophylline. In conclusion, activation of astrocytes via PAR1 resulted in a decrease of inspiratory C4 burst rate in association with transient hyperpolarization of respiratory-related neurons. After washout, slow and weak excitatory responses appeared. Adenosine may be partially involved in the inhibitory effect of PAR1 activation.
Collapse
Affiliation(s)
- Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan.
| | - Isato Fukushi
- Faculty of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan; Clinical Research Center, Murayama Medical Center, Musashimurayama, Tokyo, Japan
| | - Keiko Ikeda
- Department of Oral Physiology, Showa University School of Dentistry, Tokyo, Japan
| | - Itaru Yazawa
- Department of Food & Nutrition, Kyushu Nutrition Welfare University, Fukuoka, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, Musashimurayama, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
13
|
Gonye EC, Bayliss DA. Criteria for central respiratory chemoreceptors: experimental evidence supporting current candidate cell groups. Front Physiol 2023; 14:1241662. [PMID: 37719465 PMCID: PMC10502317 DOI: 10.3389/fphys.2023.1241662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
An interoceptive homeostatic system monitors levels of CO2/H+ and provides a proportionate drive to respiratory control networks that adjust lung ventilation to maintain physiologically appropriate levels of CO2 and rapidly regulate tissue acid-base balance. It has long been suspected that the sensory cells responsible for the major CNS contribution to this so-called respiratory CO2/H+ chemoreception are located in the brainstem-but there is still substantial debate in the field as to which specific cells subserve the sensory function. Indeed, at the present time, several cell types have been championed as potential respiratory chemoreceptors, including neurons and astrocytes. In this review, we advance a set of criteria that are necessary and sufficient for definitive acceptance of any cell type as a respiratory chemoreceptor. We examine the extant evidence supporting consideration of the different putative chemoreceptor candidate cell types in the context of these criteria and also note for each where the criteria have not yet been fulfilled. By enumerating these specific criteria we hope to provide a useful heuristic that can be employed both to evaluate the various existing respiratory chemoreceptor candidates, and also to focus effort on specific experimental tests that can satisfy the remaining requirements for definitive acceptance.
Collapse
Affiliation(s)
- Elizabeth C. Gonye
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
14
|
Geraldes V, Laranjo S, Nunes C, Rocha I. Central Autonomic Network Regions and Hypertension: Unveiling Sympathetic Activation and Genetic Therapeutic Perspectives. BIOLOGY 2023; 12:1153. [PMID: 37627036 PMCID: PMC10452088 DOI: 10.3390/biology12081153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/05/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
INTRODUCTION Hypertension, a leading cause of death, was investigated in this study to understand the role of specific brain regions in regulating blood pressure. The lateral parabrachial nucleus (LPBN), Kolliker-fuse nucleus (KF), and periductal grey matter (PAG) were examined for their involvement in hypertension. METHODS Lentiviral vectors were used to alter the activity of these brain regions in hypertensive rats. Over a 75-day period, blood pressure, heart rate, reflex responses, and heart rate variability were measured. RESULTS Decreasing the activity in the LPBN resulted in a reduced sympathetic outflow, lowering the blood pressure and heart rate. In the KF, the sympathetic activity decreased and chemoreflex variation was attenuated, without affecting the blood pressure. Silencing the PAG had no significant impact on blood pressure or sympathetic tone, but decreased cardiac baroreflex gain. DISCUSSION These findings highlight the significant role of the LPBN in hypertension-related sympathetic activation. Additionally, LPBN and KF neurons appear to activate mechanisms that control respiration and sympathetic outflow during chemoreceptor activation. CONCLUSIONS The study provided insights into the contribution of the midbrain and pontine regions to neurogenic hypertension and offers potential avenues for future genetic interventions and developing novel treatment approaches.
Collapse
Affiliation(s)
- Vera Geraldes
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (V.G.); (C.N.)
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| | - Sérgio Laranjo
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Catarina Nunes
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (V.G.); (C.N.)
| | - Isabel Rocha
- Cardiovascular Centre of the University of Lisbon, 1649-028 Lisbon, Portugal; (V.G.); (C.N.)
- Institute of Physiology, Faculty of Medicine of the University of Lisbon, 1649-028 Lisbon, Portugal
| |
Collapse
|
15
|
Kinkead R, Ambrozio-Marques D, Fournier S, Gagnon M, Guay LM. Estrogens, age, and, neonatal stress: panic disorders and novel views on the contribution of non-medullary structures to respiratory control and CO 2 responses. Front Physiol 2023; 14:1183933. [PMID: 37265841 PMCID: PMC10229816 DOI: 10.3389/fphys.2023.1183933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
CO2 is a fundamental component of living matter. This chemical signal requires close monitoring to ensure proper match between metabolic production and elimination by lung ventilation. Besides ventilatory adjustments, CO2 can also trigger innate behavioral and physiological responses associated with fear and escape but the changes in brain CO2/pH required to induce ventilatory adjustments are generally lower than those evoking fear and escape. However, for patients suffering from panic disorder (PD), the thresholds for CO2-evoked hyperventilation, fear and escape are reduced and the magnitude of those reactions are excessive. To explain these clinical observations, Klein proposed the false suffocation alarm hypothesis which states that many spontaneous panics occur when the brain's suffocation monitor erroneously signals a lack of useful air, thereby maladaptively triggering an evolved suffocation alarm system. After 30 years of basic and clinical research, it is now well established that anomalies in respiratory control (including the CO2 sensing system) are key to PD. Here, we explore how a stress-related affective disorder such as PD can disrupt respiratory control. We discuss rodent models of PD as the concepts emerging from this research has influenced our comprehension of the CO2 chemosensitivity network, especially structure that are not located in the medulla, and how factors such as stress and biological sex modulate its functionality. Thus, elucidating why hormonal fluctuations can lead to excessive responsiveness to CO2 offers a unique opportunity to gain insights into the neuroendocrine mechanisms regulating this key aspect of respiratory control and the pathophysiology of respiratory manifestations of PD.
Collapse
|
16
|
Impact of the glutamatergic neurotransmission within the A5 region on the cardiorespiratory response evoked from the midbrain dlPAG. Pflugers Arch 2023; 475:505-516. [PMID: 36543918 PMCID: PMC10011341 DOI: 10.1007/s00424-022-02777-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Stimulation of the dorsolateral periaqueductal grey matter (dlPAG) in rats evokes an active defensive behaviour together with a cardiorespiratory response characterised by tachypnoea, tachycardia and hypertension. The dlPAG neurons involved in these responses are excitatory, presumably glutamatergic, due to the presence of vesicular glutamate transporter VGLUT2 within their axon terminals. Previously, our group described a functional interaction between dlPAG and the pontine A5 region. Accordingly, in the present work, in order to characterize the role of glutamate within this interaction, experiments were carried out in spontaneously breathing anaesthetized rats (sodium pentobarbitone 60 mg/kg i.p., suplemented with 20 mg/kg i.p.). The cardiorespiratory response evoked by electrical stimulation of the dlPAG (1 ms pulses, 20-50 μA, given at 100 Hz, during 5 s) was analysed before and after the microinjection, within the A5 region, of either kynurenic acid (non-specific glutamate receptor antagonist; 5-10 nmol), DAP-5 (NMDA antagonist; 1 pmol), CNQX (non-NMDA antagonist; 1 pmol) or MCPG (metabotropic antagonist; 0,1 nmol). Kynurenic acid decreased the intensity of both the tachypnoea (p < 0,001) and tachycardia (p < 0,001) induced by dl-PAG stimulation. Blockade of no-NMDA receptors reduced the increase of respiratory frequency, heart rate and pressor response to dl-PAG stimulation (p < 0,01, p < 0,001, p < 0,05 respectively). Blockade of either NMDA or metabotropic receptors reduced the dlPAG-evoked tachycardia and pressor response (p < 0,01; p < 0,05 respectively). These results suggest a neuromodulatory role for A5 region via glutamate neurotransmission of the dlPAG-evoked cardiorespiratory response, confirming the role of the ventrolateral pons in the neuronal circuits involved in respiratory and heart rate control.
Collapse
|
17
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
18
|
The Pedunculopontine Tegmental Nucleus is not Important for Breathing Impairments Observed in a Parkinson's Disease Model. Neuroscience 2023; 512:32-46. [PMID: 36690033 DOI: 10.1016/j.neuroscience.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 01/21/2023]
Abstract
Parkinson's disease (PD) is a motor disorder resulting from degeneration of dopaminergic neurons of substantia nigra pars compacta (SNpc), with classical and non-classical symptoms such as respiratory instability. An important region for breathing control, the Pedunculopontine Tegmental Nucleus (PPTg), is composed of cholinergic, glutamatergic, and GABAergic neurons. We hypothesize that degenerated PPTg neurons in a PD model contribute to the blunted respiratory activity. Adult mice (40 males and 29 females) that express the fluorescent green protein in cholinergic, glutamatergic or GABAergic cells were used (Chat-cre Ai6, Vglut2-cre Ai6 and Vgat-cre Ai6) and received bilateral intrastriatal injections of vehicle or 6-hydroxydopamine (6-OHDA). Ten days later, the animals were exposed to hypercapnia or hypoxia to activate PPTg neurons. Vglut2-cre Ai6 animals also received retrograde tracer injections (cholera toxin b) into the retrotrapezoid nucleus (RTN) or preBötzinger Complex (preBötC) and anterograde tracer injections (AAV-mCherry) into the SNpc. In 6-OHDA-injected mice, there is a 77% reduction in the number of dopaminergic neurons in SNpc without changing the number of neurons in the PPTg. Hypercapnia activated fewer Vglut2 neurons in PD, and hypoxia did not activate PPTg neurons. PPTg neurons do not input RTN or preBötC regions but receive projections from SNpc. Although our results did not show a reduction in the number of glutamatergic neurons in PPTg, we observed a reduction in the number of neurons activated by hypercapnia in the PD animal model, suggesting that PPTg may participate in the hypercapnia ventilatory response.
Collapse
|
19
|
Mulkey DK, Milla BM. Perspectives on the basis of seizure-induced respiratory dysfunction. Front Neural Circuits 2022; 16:1033756. [PMID: 36605420 PMCID: PMC9807672 DOI: 10.3389/fncir.2022.1033756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is an umbrella term used to define a wide variety of seizure disorders and sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in epilepsy. Although some SUDEP risk factors have been identified, it remains largely unpredictable, and underlying mechanisms remain poorly understood. Most seizures start in the cortex, but the high mortality rate associated with certain types of epilepsy indicates brainstem involvement. Therefore, to help understand SUDEP we discuss mechanisms by which seizure activity propagates to the brainstem. Specifically, we highlight clinical and pre-clinical evidence suggesting how seizure activation of: (i) descending inhibitory drive or (ii) spreading depolarization might contribute to brainstem dysfunction. Furthermore, since epilepsy is a highly heterogenous disorder, we also considered factors expected to favor or oppose mechanisms of seizure propagation. We also consider whether epilepsy-associated genetic variants directly impact brainstem function. Because respiratory failure is a leading cause of SUDEP, our discussion of brainstem dysfunction focuses on respiratory control.
Collapse
Affiliation(s)
- Daniel K. Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | | |
Collapse
|
20
|
CO 2 exposure enhances Fos expression in hypothalamic neurons in rats during the light and dark phases of the diurnal cycle. Brain Struct Funct 2022; 227:2667-2679. [PMID: 36109371 DOI: 10.1007/s00429-022-02562-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/29/2022] [Indexed: 12/30/2022]
Abstract
Orexinergic (OX) neurons in the lateral hypothalamus (LH), perifornical area (PFA) and dorsomedial hypothalamus (DMH) play a role in the hypercapnic ventilatory response, presumably through direct inputs to central pattern generator sites and/or through interactions with other chemosensitive regions. OX neurons can produce and release orexins, excitatory neuropeptides involved in many functions, including physiological responses to changes in CO2/pH. Thus, in the present study, we tested the hypothesis that different nuclei (LH, PFA and DMH) where the orexinergic neurons are located, show distinct activation by CO2 during the light-dark cycle phases. For this purpose, we evaluated the Fos and OXA expression by immunohistochemistry to identify neurons that co-localize Fos + OXA in the LH, LPeF, MPeF and DMH in the light-inactive and dark-active phase in Wistar rats subjected to 3 h of normocapnia or hypercapnia (7% CO2). Quantitative analyses of immunoreactive neurons show that hypercapnia caused an increase in the number of neurons expressing Fos in the LH, LPeF, MPeF and DMH in the light and dark phases. In addition, the number of Fos + OXA neurons increased in the LPeF and DMH independently of the phases of the diurnal cycle; whereas in the MPeF, this increase was observed exclusively in the light phase. Thus, we suggest that OX neurons are selectively activated by hypercapnia throughout the diurnal cycle, reinforcing the differential role of nuclei in the hypothalamus during central chemosensitivity.
Collapse
|
21
|
Bhandare A, van de Wiel J, Roberts R, Braren I, Huckstepp R, Dale N. Analyzing the brainstem circuits for respiratory chemosensitivity in freely moving mice. eLife 2022; 11:e70671. [PMID: 36300918 PMCID: PMC9643001 DOI: 10.7554/elife.70671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of systemic PCO2 is a life-preserving homeostatic mechanism. In the medulla oblongata, the retrotrapezoid nucleus (RTN) and rostral medullary Raphe are proposed as CO2 chemosensory nuclei mediating adaptive respiratory changes. Hypercapnia also induces active expiration, an adaptive change thought to be controlled by the lateral parafacial region (pFL). Here, we use GCaMP6 expression and head-mounted mini-microscopes to image Ca2+ activity in these nuclei in awake adult mice during hypercapnia. Activity in the pFL supports its role as a homogenous neuronal population that drives active expiration. Our data show that chemosensory responses in the RTN and Raphe differ in their temporal characteristics and sensitivity to CO2, raising the possibility these nuclei act in a coordinated way to generate adaptive ventilatory responses to hypercapnia. Our analysis revises the understanding of chemosensory control in awake adult mouse and paves the way to understanding how breathing is coordinated with complex non-ventilatory behaviours.
Collapse
Affiliation(s)
- Amol Bhandare
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | | | - Reno Roberts
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Ingke Braren
- University Medical Center Eppendorf, Vector Facility, Institute of Experimental Pharmacology and ToxicologyHamburgGermany
| | - Robert Huckstepp
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| | - Nicholas Dale
- School of Life Sciences, University of WarwickCoventryUnited Kingdom
| |
Collapse
|
22
|
Sobrinho CR, Milla BM, Soto-Perez J, Moreira TS, Mulkey DK. Histamine/H1 receptor signaling in the parafacial region increases activity of chemosensitive neurons and respiratory activity in rats. J Neurophysiol 2022; 128:218-228. [PMID: 35704395 DOI: 10.1152/jn.00015.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Histaminergic neurons of the tuberomammillary nucleus (TMN) are pH-sensitive and contribute to CO2/H+-dependent behaviors including arousal and respiratory activity. TMN neurons project to several respiratory centers including the ventral parafacial region (pF) where chemosensitive retrotrapezoid (RTN) neurons are located, and since RTN neurons are an important source of CO2/H+-dependent respiratory drive, we wondered whether histamine contributes to RTN chemoreception. To test this, we characterized effects of histamine on mean arterial pressure (MAP) and diaphragm muscle activity (DIAEMG) in urethane-anaesthetized, vagotomized and artificially ventilated male Wistar rats. Unilateral injection of histamine (25 mM) in the pF increased DIAEMG amplitude without changing DIAEMG frequency and MAP. Bilateral pF injections of the H1 receptor antagonist diphenhydramine hydrochloride (DPH; 0.5 mM) decreased baseline DIAEMG amplitude and frequency and MAP. Despite the strong inhibitory effect of DPH on baseline breathing, the hypercapnic ventilatory response was preserved under these experimental conditions. At the cellular level, chemosensitive RTN neurons showed a dose-dependent excitatory response to histamine that was blunted by DPH and mimicked by the H1 receptor agonist 2-pyridylethylamine dihydrochloride (2PYEA) under both control conditions and when fast neurotransmitter receptors are blocked. We also tested effects of 2PYEA in the presence of serotonin, another wake-on neurotransmitter that activates RTN chemoreceptors partly by activation of Gq-coupled receptors. We found the response to 2PYEA was diminished in serotonin, suggesting RTN neurons have a limited capacity to respond to multiple Gq-coupled modulators. These results suggest histamine can modulate breathing at the pF level by a mechanism involving H1 receptors.
Collapse
Affiliation(s)
- Cleyton R Sobrinho
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil.,Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Brenda M Milla
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Jaseph Soto-Perez
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
23
|
Kato K, Morinaga R, Yokoyama T, Fushuku S, Wakai J, Nakamuta N, Yamamoto Y. Effects of CO 2 on time-dependent changes in cardiorespiratory functions under sustained hypoxia. Respir Physiol Neurobiol 2022; 300:103886. [PMID: 35296417 DOI: 10.1016/j.resp.2022.103886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022]
Abstract
Hypercapnia in addition to hypoxia affects the mammalian cardiorespiratory system and has been suggested to exert its effects on cardiorespiratory function by slightly different mechanisms to hypoxia. In the present study, we examined cardiorespiratory changes in urethane-anesthetized rats under hypocapnic (Hypo, 10% O2), isocapnic (Iso, 10% O2 and 4% CO2), and hypercapnic (Hyper, 10% O2 and 8% CO2) hypoxia for 2 h to clarify the effects of CO2 on sustained hypoxia-induced cardiorespiratory responses. Respiratory frequency increased the most in Hypo and tidal volume in Hyper. Minute ventilation, a product of respiratory frequency and tidal volume, increased the most in the latter group. Regarding cardiovascular variables during the hypoxic exposure period, heart rate and mean blood pressure both markedly decreased in Hypo. However, decreases in these parameters were small in Iso, and both increased over the pre-exposure level in Hyper. The present results suggest that CO2 interferes with the hypoxia-activated neural pathway via another pathway under sustained exposure to hypoxia.
Collapse
Affiliation(s)
- Kouki Kato
- Center for Laboratory Animal Science, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Ryosuke Morinaga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Seigo Fushuku
- Center for Laboratory Animal Science, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Jun Wakai
- Department of Laboratory Animal Medicine, Institute for Biomedical Sciences, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
24
|
Toledo C, Ortolani D, Ortiz FC, Marcus NJ, Del Rio R. Potential Role of the Retrotrapezoid Nucleus in Mediating Cardio-Respiratory Dysfunction in Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:863963. [PMID: 35492622 PMCID: PMC9039230 DOI: 10.3389/fphys.2022.863963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 01/15/2023] Open
Abstract
A strong association between chemoreflex hypersensitivity, disordered breathing, and elevated sympathetic activity has been shown in experimental and human heart failure (HF). The contribution of chemoreflex hypersensitivity in HF pathophysiology is incompletely understood. There is ample evidence that increased peripheral chemoreflex drive in HF with reduced ejection fraction (HFrEF; EF<40%) leads to pathophysiological changes in autonomic and cardio-respiratory control, but less is known about the neural mechanisms mediating cardio-respiratory disturbances in HF with preserved EF (HFpEF; EF>50%). Importantly, it has been shown that activation of the central chemoreflex worsens autonomic dysfunction in experimental HFpEF, an effect mediated in part by the activation of C1 catecholaminergic neurons neighboring the retrotrapezoid nucleus (RTN), an important region for central chemoreflex control of respiratory and autonomic function. Accordingly, the main purpose of this brief review is to discuss the possible role played by activation of central chemoreflex pathways on autonomic function and its potential role in precipitating disordered breathing in HFpEF. Improving understanding of the contribution of the central chemoreflex to the pathophysiology of HFpEF may help in development of novel interventions intended to improve cardio-respiratory outcomes in HFpEF.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Domiziana Ortolani
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando C. Ortiz
- Mechanisms of Myelin Formation and Repair Laboratory, Facultad de Ciencias de Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Noah J. Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, United States
| | - Rodrigo Del Rio
- Laboratory Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Rodrigo Del Rio,
| |
Collapse
|
25
|
Feinstein JS, Gould D, Khalsa SS. Amygdala-driven apnea and the chemoreceptive origin of anxiety. Biol Psychol 2022; 170:108305. [PMID: 35271957 DOI: 10.1016/j.biopsycho.2022.108305] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 02/09/2022] [Accepted: 03/03/2022] [Indexed: 12/13/2022]
Abstract
Although the amygdala plays an important part in the pathogenesis of anxiety and generation of exteroceptive fear, recent discoveries have challenged the directionality of this brain-behavior relationship with respect to interoceptive fear. Here we highlight several paradoxical findings including: (1) amygdala lesion patients who experience excessive fear and panic following inhalation of carbon dioxide (CO2), (2) clinically anxious patients who have significantly smaller (rather than larger) amygdalae and a pronounced hypersensitivity toward CO2, and (3) epilepsy patients who exhibit apnea immediately following stimulation of their amygdala yet have no awareness that their breathing has stopped. The above findings elucidate an entirely novel role for the amygdala in the induction of apnea and inhibition of CO2-induced fear. Such a role is plausible given the strong inhibitory connections linking the central nucleus of the amygdala with respiratory and chemoreceptive centers in the brainstem. Based on this anatomical arrangement, we propose a model of Apnea-induced Anxiety (AiA) which predicts that recurring episodes of apnea are being unconsciously elicited by amygdala activation, resulting in transient spikes in CO2 that provoke fear and anxiety, and lead to characteristic patterns of escape and avoidance behavior in patients spanning the spectrum of anxiety. If this new conception of AiA proves to be true, and activation of the amygdala can repeatedly trigger states of apnea outside of one's awareness, then it remains possible that the chronicity of anxiety disorders is being interoceptively driven by a chemoreceptive system struggling to maintain homeostasis in the midst of these breathless states.
Collapse
Affiliation(s)
- Justin S Feinstein
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA, 74136; University of Tulsa, Oxley College of Health Sciences, Tulsa, Oklahoma, USA, 74104; University of Iowa, Department of Neurology, Iowa City, Iowa, USA, 52242.
| | - Dylan Gould
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA, 74136
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Oklahoma, USA, 74136; University of Tulsa, Oxley College of Health Sciences, Tulsa, Oklahoma, USA, 74104
| |
Collapse
|
26
|
Fazekas CL, Szabó A, Török B, Bánrévi K, Correia P, Chaves T, Daumas S, Zelena D. A New Player in the Hippocampus: A Review on VGLUT3+ Neurons and Their Role in the Regulation of Hippocampal Activity and Behaviour. Int J Mol Sci 2022; 23:790. [PMID: 35054976 PMCID: PMC8775679 DOI: 10.3390/ijms23020790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/05/2023] Open
Abstract
Glutamate is the most abundant excitatory amino acid in the central nervous system. Neurons using glutamate as a neurotransmitter can be characterised by vesicular glutamate transporters (VGLUTs). Among the three subtypes, VGLUT3 is unique, co-localising with other "classical" neurotransmitters, such as the inhibitory GABA. Glutamate, manipulated by VGLUT3, can modulate the packaging as well as the release of other neurotransmitters and serve as a retrograde signal through its release from the somata and dendrites. Its contribution to sensory processes (including seeing, hearing, and mechanosensation) is well characterised. However, its involvement in learning and memory can only be assumed based on its prominent hippocampal presence. Although VGLUT3-expressing neurons are detectable in the hippocampus, most of the hippocampal VGLUT3 positivity can be found on nerve terminals, presumably coming from the median raphe. This hippocampal glutamatergic network plays a pivotal role in several important processes (e.g., learning and memory, emotions, epilepsy, cardiovascular regulation). Indirect information from anatomical studies and KO mice strains suggests the contribution of local VGLUT3-positive hippocampal neurons as well as afferentations in these events. However, further studies making use of more specific tools (e.g., Cre-mice, opto- and chemogenetics) are needed to confirm these assumptions.
Collapse
Affiliation(s)
- Csilla Lea Fazekas
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Adrienn Szabó
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Bibiána Török
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Krisztina Bánrévi
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
| | - Pedro Correia
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Tiago Chaves
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, 1085 Budapest, Hungary
| | - Stéphanie Daumas
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, Sorbonne Université, CNRS, 75005 Paris, France;
| | - Dóra Zelena
- Institute of Experimental Medicine, 1083 Budapest, Hungary; (C.L.F.); (A.S.); (B.T.); (K.B.); (P.C.); (T.C.)
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
27
|
Abstract
Brain PCO2 is sensed primarily via changes in [H+]. Small pH changes are detected in the medulla oblongata and trigger breathing adjustments that help maintain arterial PCO2 constant. Larger perturbations of brain CO2/H+, possibly also sensed elsewhere in the CNS, elicit arousal, dyspnea, and stress, and cause additional breathing modifications. The retrotrapezoid nucleus (RTN), a rostral medullary cluster of glutamatergic neurons identified by coexpression of Phoxb and Nmb transcripts, is the lynchpin of the central respiratory chemoreflex. RTN regulates breathing frequency, inspiratory amplitude, and active expiration. It is exquisitely responsive to acidosis in vivo and maintains breathing autorhythmicity during quiet waking, slow-wave sleep, and anesthesia. The RTN response to [H+] is partly an intrinsic neuronal property mediated by proton sensors TASK-2 and GPR4 and partly a paracrine effect mediated by astrocytes and the vasculature. The RTN also receives myriad excitatory or inhibitory synaptic inputs including from [H+]-responsive neurons (e.g., serotonergic). RTN is silenced by moderate hypoxia. RTN inactivity (periodic or sustained) contributes to periodic breathing and, likely, to central sleep apnea. RTN development relies on transcription factors Egr2, Phox2b, Lbx1, and Atoh1. PHOX2B mutations cause congenital central hypoventilation syndrome; they impair RTN development and consequently the central respiratory chemoreflex.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States.
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
28
|
Díaz-Jara E, Díaz HS, Rios-Gallardo A, Ortolani D, Andrade DC, Toledo C, Pereyra KV, Schwarz K, Ramirez G, Ortiz FC, Andía ME, Del Rio R. Exercise training reduces brainstem oxidative stress and restores normal breathing function in heart failure. Free Radic Biol Med 2021; 172:470-481. [PMID: 34216779 DOI: 10.1016/j.freeradbiomed.2021.06.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 10/21/2022]
Abstract
Enhanced central chemoreflex drive and irregular breathing are both hallmarks in heart failure (HF) and closely related to disease progression. Central chemoreceptor neurons located within the retrotrapezoid nucleus (RTN) are known to play a role in breathing alterations in HF. It has been shown that exercise (EX) effectively reduced reactive oxygen species (ROS) in HF rats. However, the link between EX and ROS, particularly at the RTN, with breathing alterations in HF has not been previously addressed. Accordingly, we aimed to determine: i) ROS levels in the RTN in HF and its association with chemoreflex drive, ii) whether EX improves chemoreflex/breathing function by reducing ROS levels, and iii) determine molecular alterations associated with ROS generation within the RTN of HF rats and study EX effects on these pathways. Adult male Sprague-Dawley rats were allocated into 3 experimental groups: Sham (n = 5), volume overloaded HF (n = 6) and HF (n = 8) rats that underwent EX training for 6 weeks (60 min/day, 25 m/min, 10% inclination). At 8 weeks post-HF induction, breathing patterns and chemoreflex function were analyzed by unrestrained plethysmography. ROS levels and anti/pro-oxidant enzymes gene expression were analyzed in the RTN. Our results showed that HF rats have high ROS levels in the RTN which were closely linked to the enhanced central chemoreflex and breathing disorders. Also, HF rats displayed decreased expression of antioxidant genes in the RTN compared with control rats. EX training increases antioxidant defense in the RTN, reduces ROS formation and restores normal central chemoreflex drive and breathing regularity in HF rats. This study provides evidence for a role of ROS in central chemoreception in the setting of HF and support the use of EX to reduce ROS in the brainstem of HF animals and reveal its potential as an effective mean to normalize chemoreflex and breathing function in HF.
Collapse
Affiliation(s)
- Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Angélica Rios-Gallardo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 621-0427, Punta Arenas, Chile.
| | - Domiziana Ortolani
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, 1270300, Antofagasta, Chile.
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 621-0427, Punta Arenas, Chile.
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Karla Schwarz
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Gigliola Ramirez
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| | - Fernando C Ortiz
- Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile.
| | - Marcelo E Andía
- Radiology Department & ANID - Millennium Nucleus for Cardiovascular Magnetic Resonance, 8331150, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile; Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, 621-0427, Punta Arenas, Chile; Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, 8331150, Santiago, Chile.
| |
Collapse
|
29
|
Yu H, Shi L, Chen J, Jun S, Hao Y, Wang S, Fu C, Zhang X, Lu H, Wang S, Yuan F. A Neural Circuit Mechanism Controlling Breathing by Leptin in the Nucleus Tractus Solitarii. Neurosci Bull 2021; 38:149-165. [PMID: 34212297 PMCID: PMC8821766 DOI: 10.1007/s12264-021-00742-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/07/2021] [Indexed: 02/03/2023] Open
Abstract
Leptin, an adipocyte-derived peptide hormone, has been shown to facilitate breathing. However, the central sites and circuit mechanisms underlying the respiratory effects of leptin remain incompletely understood. The present study aimed to address whether neurons expressing leptin receptor b (LepRb) in the nucleus tractus solitarii (NTS) contribute to respiratory control. Both chemogenetic and optogenetic stimulation of LepRb-expressing NTS (NTSLepRb) neurons notably activated breathing. Moreover, stimulation of NTSLepRb neurons projecting to the lateral parabrachial nucleus (LPBN) not only remarkably increased basal ventilation to a level similar to that of the stimulation of all NTSLepRb neurons, but also activated LPBN neurons projecting to the preBötzinger complex (preBötC). By contrast, ablation of NTSLepRb neurons projecting to the LPBN notably eliminated the enhanced respiratory effect induced by NTSLepRb neuron stimulation. In brainstem slices, bath application of leptin rapidly depolarized the membrane potential, increased the spontaneous firing rate, and accelerated the Ca2+ transients in most NTSLepRb neurons. Therefore, leptin potentiates breathing in the NTS most likely via an NTS-LPBN-preBötC circuit.
Collapse
Affiliation(s)
- Hongxiao Yu
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Luo Shi
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Jinting Chen
- grid.256883.20000 0004 1760 8442Core Facilities and Centers, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Shirui Jun
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Yinchao Hao
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Shuang Wang
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Congrui Fu
- grid.256883.20000 0004 1760 8442School of Nursing, Hebei Medical University, Shijiazhuang, 050000 Hebei China
| | - Xiang Zhang
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Haiyan Lu
- grid.256883.20000 0004 1760 8442Department of Orthodontics, College of Stomatology, Hebei Medical University, Shijiazhuang, 050017 Hebei China
| | - Sheng Wang
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China ,Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017 Hebei China
| | - Fang Yuan
- grid.256883.20000 0004 1760 8442Department of Physiology, Hebei Medical University, Shijiazhuang, 050017 Hebei China ,Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017 Hebei China
| |
Collapse
|
30
|
Levy J, Droz-Bartholet F, Achour M, Facchinetti P, Parratte B, Giuliano F. Parafacial neurons in the human brainstem express specific markers for neurons of the retrotrapezoid nucleus. J Comp Neurol 2021; 529:3313-3320. [PMID: 34008871 DOI: 10.1002/cne.25191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/08/2021] [Accepted: 05/13/2021] [Indexed: 11/06/2022]
Abstract
The retrotrapezoid nucleus (RTN) is a hub for respiratory chemoregulation in the mammal brainstem that integrates chemosensory information from peripheral sites and central relays. Chemosensitive neurons of the RTN express specific genetic and molecular determinants, which have been used to identify RTN precise location within the brainstem of rodents and nonhuman primates. Based on a comparative approach, we hypothesized that among mammals, neurons exhibiting the same specific molecular and genetic signature would have the same function. The co-expression of preprogalanin (PPGAL) and SLC17A6 (VGluT2) mRNAs with duplex in situ hybridization has been studied in formalin fixed paraffin-embedded postmortem human brainstems. Two specimens were processed and analyzed in line with RTN descriptions in adult rats and macaques. Double-labeled PPGAL+/SLC17A6+ neurons were only identified in the parafacial region of the brainstem. These neurons were found surrounding the nucleus of the facial nerve, located ventrally to the nucleus VII on caudal sections, and slightly more dorsally on rostral sections. The expression of neuromedin B (NMB) mRNA as a single marker of chemosensitive RTN neurons has not been confirmed in humans. The location of the RTN in human adults is provided. This should help to develop investigation tools combining anatomic high-resolution imaging and respiratory functional investigations to explore the pathogenic role of the RTN in congenital or acquired neurodegenerative diseases.
Collapse
Affiliation(s)
- Jonathan Levy
- UMR 1179 (Inserm-UVSQ) Neuromuscular Handicap - UFR des sciences de la Santé Simone Veil, Université de Versailles St. Quentin, Montigny-le-Bretonneux, Paris Saclay campus, France.,Service de Médecine Physique et de Réadaptation - APHP, Hôpital Raymond Poincaré, Garches, France.,Fondation Garches - Hôpital Raymond Poincaré, Garches, France
| | - François Droz-Bartholet
- Laboratoire d'Anatomie - Faculté de Médecine de Besançon, Université de Franche-Comté, Besançon, France.,Service de Médecine Physique et de Réadaptation - CHRU Jean Minjoz, Besançon, France
| | - Melyna Achour
- UMR 1179 (Inserm-UVSQ) Neuromuscular Handicap - UFR des sciences de la Santé Simone Veil, Université de Versailles St. Quentin, Montigny-le-Bretonneux, Paris Saclay campus, France
| | - Patricia Facchinetti
- UMR 1179 (Inserm-UVSQ) Neuromuscular Handicap - UFR des sciences de la Santé Simone Veil, Université de Versailles St. Quentin, Montigny-le-Bretonneux, Paris Saclay campus, France
| | - Bernard Parratte
- Laboratoire d'Anatomie - Faculté de Médecine de Besançon, Université de Franche-Comté, Besançon, France.,Service de Médecine Physique et de Réadaptation - CHRU Jean Minjoz, Besançon, France
| | - François Giuliano
- UMR 1179 (Inserm-UVSQ) Neuromuscular Handicap - UFR des sciences de la Santé Simone Veil, Université de Versailles St. Quentin, Montigny-le-Bretonneux, Paris Saclay campus, France.,Service de Médecine Physique et de Réadaptation - APHP, Hôpital Raymond Poincaré, Garches, France
| |
Collapse
|
31
|
Ramirez JM, Burgraff NJ, Wei AD, Baertsch NA, Varga AG, Baghdoyan HA, Lydic R, Morris KF, Bolser DC, Levitt ES. Neuronal mechanisms underlying opioid-induced respiratory depression: our current understanding. J Neurophysiol 2021; 125:1899-1919. [PMID: 33826874 DOI: 10.1152/jn.00017.2021] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Opioid-induced respiratory depression (OIRD) represents the primary cause of death associated with therapeutic and recreational opioid use. Within the United States, the rate of death from opioid abuse since the early 1990s has grown disproportionally, prompting the classification as a nationwide "epidemic." Since this time, we have begun to unravel many fundamental cellular and systems-level mechanisms associated with opioid-related death. However, factors such as individual vulnerability, neuromodulatory compensation, and redundancy of opioid effects across central and peripheral nervous systems have created a barrier to a concise, integrative view of OIRD. Within this review, we bring together multiple perspectives in the field of OIRD to create an overarching viewpoint of what we know, and where we view this essential topic of research going forward into the future.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Nicholas J Burgraff
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Aguan D Wei
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Nathan A Baertsch
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington
| | - Adrienn G Varga
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida.,Center for Respiratory Research and Rehabilitation, Department of Physical Therapy, University of Florida, Gainesville, Florida
| | - Helen A Baghdoyan
- Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Ralph Lydic
- Department of Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Kendall F Morris
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Donald C Bolser
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Erica S Levitt
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, Florida.,Center for Respiratory Research and Rehabilitation, Department of Physical Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
32
|
Tian Y, Geng D, Wang Y, Shi L, Yu H, He W, Zhu Y, Jun S, Fu C, Wang X, Zhang X, Yuan F, Wang S. Contribution of retrotrapezoid nucleus neurons to CO 2 -amplified cardiorespiratory activity in spontaneously hypertensive rats. J Physiol 2020; 599:1115-1130. [PMID: 33347681 DOI: 10.1113/jp280246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/04/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS This study demonstrates that both CO2 -induced respiratory and cardiovascular responses are augmented in spontaneously hypertensive rats (SHRs). Genetic ablation of the retrotrapezoid nucleus (RTN) neurons depresses enhanced hypercapnic ventilatory response and eliminates CO2 -stimulated increase in arterial pressure and heart rate in SHRs. SHRs have a high protein level of pH-sensitive channels in the RTN, including the TASK-2 channel, Kv12.1 channel and acid-sensing ion channel 3. The inhibition of putative TASK-2 channel activity by clofilium diminishes amplified hypercapnic ventilatory and cardiovascular responses, and reduces the number of CO2 -activated RTN neurons in SHRs. These results indicate that RTN neurons contribute to enhanced CO2 -stimulated respiratory and cardiovascular responses in SHRs. ABSTRACT The respiratory regulation of cardiovascular activity is essential for maintaining an efficient ventilation and perfusion ratio. Activation of central respiratory chemoreceptors not only elicits a ventilatory response but also regulates sympathetic nerve activity and arterial blood pressure (ABP). The retrotrapezoid nucleus (RTN) is the most completely characterized cluster of central respiratory chemoreceptors. We hypothesize that RTN neurons contribute to augmented CO2 -stimulated respiratory and cardiovascular responses in adult spontaneously hypertensive rats (SHRs). Our findings indicate that SHRs exhibit more enhanced hypercapnic cardiorespiratory responses than age-matched normotensive Wistar-Kyoto rats. Genetic ablation of RTN neurons notably depresses an enhanced hypercapnic ventilatory response (HCVR) and eliminates a CO2 -stimulated greater increase in ABP and heart rate in SHRs. In addition, SHRs have a higher protein level of pH-sensitive channels in the RTN, including TASK-2 channels, Kv12.1 channels and acid-sensing ion channel 3. Administration of clofilium (i.p.), an unselective inhibitor of TASK-2 channels, not only significantly reduces the enhanced HCVR but also inhibits CO2 -amplified increases in ABP and heart rate in SHRs. Moreover, clofilium significantly decreases the number of CO2 -activated RTN neurons in SHRs. Taken together, we suggest that RTN neurons play an important role in enhanced hypercapnic ventilatory and cardiovascular responses in SHRs and the putative mechanism involved is associated with TASK-2 channel activity in the RTN.
Collapse
Affiliation(s)
- Yanming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Danyang Geng
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yakun Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Luo Shi
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Hongxiao Yu
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Wei He
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yufang Zhu
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Shirui Jun
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Congrui Fu
- School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xin Wang
- Physiology Laboratory of Teaching Experiment Center, Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Xiangjian Zhang
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, Hebei, 050000, China
| | - Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.,Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei, 050017, China
| |
Collapse
|
33
|
Díaz HS, Andrade DC, Toledo C, Schwarz KG, Pereyra KV, Díaz-Jara E, Marcus NJ, Del Rio R. Inhibition of Brainstem Endoplasmic Reticulum Stress Rescues Cardiorespiratory Dysfunction in High Output Heart Failure. Hypertension 2020; 77:718-728. [PMID: 33307852 DOI: 10.1161/hypertensionaha.120.16056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent evidence shows that chronic activation of catecholaminergic neurons of the rostral ventrolateral medulla is crucial in promoting autonomic imbalance and cardiorespiratory dysfunction in high output heart failure (HF). Brainstem endoplasmic reticulum stress (ERS) is known to promote cardiovascular dysfunction; however, no studies have addressed the potential role of brainstem ERS in cardiorespiratory dysfunction in high output HF. In this study, we assessed the presence of brainstem ERS and its potential role in cardiorespiratory dysfunction in an experimental model of HF induced by volume overload. High output HF was surgically induced via creation of an arterio-venous fistula in adult male Sprague-Dawley rats. Tauroursodeoxycholic acid (TUDCA), an inhibitor of ERS, or vehicle was administered intracerebroventricularly for 4 weeks post-HF induction. Compared with vehicle treatment, TUDCA improved cardiac autonomic balance (LFHRV/HFHRV ratio, 3.02±0.29 versus 1.14±0.24), reduced cardiac arrhythmia incidence (141.5±26.7 versus 35.67±12.5 events/h), and reduced abnormal respiratory patterns (Apneas: 11.83±2.26 versus 4.33±1.80 events/h). TUDCA administration (HF+Veh versus HF+TUDCA, P<0.05) attenuated cardiac hypertrophy (HW/BW 4.4±0.3 versus 4.0±0.1 mg/g) and diastolic dysfunction. Analysis of rostral ventrolateral medulla gene expression confirmed the presence of ERS, inflammation, and activation of renin-angiotensin system pathways in high output HF and showed that TUDCA treatment completely abolished ERS and ERS-related signaling. Taken together, these results support the notion that ERS plays a role in cardiorespiratory dysfunction in high output HF and more importantly that reducing brain ERS with TUDCA treatment has a potent salutary effect on cardiac function in this model.
Collapse
Affiliation(s)
- Hugo S Díaz
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - David C Andrade
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile (D.C.A.)
| | - Camilo Toledo
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Karla G Schwarz
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Envejecimiento y Regeneración (CARE) (K.G.S., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Katherin V Pereyra
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Esteban Díaz-Jara
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, IA (N.J.M.)
| | - Rodrigo Del Rio
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Envejecimiento y Regeneración (CARE) (K.G.S., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile (R.D.R.)
| |
Collapse
|
34
|
Bazilio DS, Rodrigues KL, Moraes DJA, Machado BH. Distinct cardiovascular and respiratory responses to short-term sustained hypoxia in juvenile Sprague Dawley and Wistar Hannover rats. Auton Neurosci 2020; 230:102746. [PMID: 33260056 DOI: 10.1016/j.autneu.2020.102746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/01/2022]
Abstract
Short-term sustained hypoxia (SH) elicits active expiration, augmented late-expiratory (late-E) sympathetic activity, increased arterial pressure and ventilation, and amplified sympathetic and abdominal expiratory responses to chemoreflex activation in rats of the Wistar-Ribeirão Preto (WRP) strain. Herein, we investigated whether SH can differentially affect the cardiovascular and respiratory outcomes of Sprague-Dawley (SD) and Wistar Hannover (WH) rats and compared the results with previous data using WRP rats. For this, we exposed SD and WH rats to SH (FiO2 = 0.1) for 24 h and evaluated arterial pressure, sympathetic activity, and respiratory pattern. SD rats presented increased arterial pressure, respiratory rate and tidal volume, as well as augmented late-E expiratory motor output and increased sympathetic outflow due to post-inspiratory and late-E sympathetic overactivity. WH rats presented reduced changes, suggesting lower responsiveness of this strain to this SH protocol. The magnitudes of changes in sympathetic and abdominal expiratory motor activities to chemoreflex activation in SD rats were reduced by SH. Pressor responses to chemoreflex activation were shown to be blunted in SD and WH rats after SH. The data are showing that SD, WH, and WRP rat strains exhibit marked differences in their cardiovascular, autonomic and respiratory responses to 24-h SH and draw attention to the importance of rat strain for studies exploring the underlying mechanisms involved in the neuronal changes induced by the experimental model of SH.
Collapse
Affiliation(s)
- Darlan S Bazilio
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Karla L Rodrigues
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Benedito H Machado
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil.
| |
Collapse
|
35
|
Moreira TS, Sobrinho CR, Falquetto B, Oliveira LM, Lima JD, Mulkey DK, Takakura AC. The retrotrapezoid nucleus and the neuromodulation of breathing. J Neurophysiol 2020; 125:699-719. [PMID: 33427575 DOI: 10.1152/jn.00497.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.
Collapse
Affiliation(s)
- Thiago S Moreira
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Cleyton R Sobrinho
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Barbara Falquetto
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Luiz M Oliveira
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Janayna D Lima
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| | - Daniel K Mulkey
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut
| | - Ana C Takakura
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo (USP), São Paulo, Brazil
| |
Collapse
|
36
|
Leirão IP, Colombari DSA, da Silva GSF, Zoccal DB. Lesion of Serotonergic Afferents to the Retrotrapezoid Nucleus Impairs the Tachypneic Response to Hypercapnia in Unanesthetized Animals. Neuroscience 2020; 452:63-77. [PMID: 33212216 DOI: 10.1016/j.neuroscience.2020.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Hypercapnia promotes an increase in pulmonary ventilation due to the stimulation of brainstem chemosensory cells that are connected to the respiratory network. Among these cells are the raphe serotonergic neurons which widely send projections to distinct central respiratory compartments. Nevertheless, the physiological role of specific raphe serotonergic projections to other chemosensitive sites on the emergence of hypercapnia ventilatory response in vivo still remains to be elucidated. Here we investigated whether the ventilatory response to hypercapnia requires serotonergic inputs to the chemosensitive cells of the retrotrapezoid nucleus (RTN) in the ventrolateral medulla. To test this, pulmonary ventilation was evaluated under baseline conditions and during hypercapnia (7% CO2) in unanesthetized juvenile Holtzman rats (60-90 g) that received bilateral microinjections of either vehicle (control) or anti-SERT-SAP (0.1 mM, 10 pmol/100 nl) toxin in the RTN to retrogradely destroy serotonergic afferents to this region. Fifteen days after microinjections, baseline ventilation was not different between anti-SERT-SAP (n = 8) and control animals (n = 9). In contrast, the ablation of RTN-projecting serotonergic neurons markedly attenuated the hypercapnia-induced increase in respiratory frequency which was correlated with reduced numbers of serotonergic neurons in the raphe obscurus and magnus, but not in the raphe pallidus. The increase in tidal volume during hypercapnia was not significantly affected by anti-SERT-SAP microinjections in the RTN. Our data indicate that serotoninergic neurons that send projections to the RTN region are required for the processing of ventilatory reflex response during exposure to high CO2 in unanesthetized conditions.
Collapse
Affiliation(s)
- Isabela P Leirão
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Glauber S F da Silva
- Department of Physiology and Biophysics. Institute of Biological Sciences, Federal University of Minas Gerais (ICB/UFMG), Belo Horizonte, MG, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University (UNESP), Araraquara, SP, Brazil.
| |
Collapse
|
37
|
Yang CF, Kim EJ, Callaway EM, Feldman JL. Monosynaptic Projections to Excitatory and Inhibitory preBötzinger Complex Neurons. Front Neuroanat 2020; 14:58. [PMID: 33013329 PMCID: PMC7507425 DOI: 10.3389/fnana.2020.00058] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
The key driver of breathing rhythm is the preBötzinger Complex (preBötC) whose activity is modulated by various functional inputs, e.g., volitional, physiological, and emotional. While the preBötC is highly interconnected with other regions of the breathing central pattern generator (bCPG) in the brainstem, there is no data about the direct projections to either excitatory and inhibitory preBötC subpopulations from other elements of the bCPG or from suprapontine regions. Using modified rabies tracing, we identified neurons throughout the brain that send monosynaptic projections to identified excitatory and inhibitory preBötC neurons in mice. Within the brainstem, neurons from sites in the bCPG, including the contralateral preBötC, Bötzinger Complex, the nucleus of the solitary tract (NTS), parafacial region (pF L /pF V ), and parabrachial nuclei (PB), send direct projections to both excitatory and inhibitory preBötC neurons. Suprapontine inputs to the excitatory and inhibitory preBötC neurons include the superior colliculus, red nucleus, amygdala, hypothalamus, and cortex; these projections represent potential direct pathways for volitional, emotional, and physiological control of breathing.
Collapse
Affiliation(s)
- Cindy F. Yang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Euiseok J. Kim
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Edward M. Callaway
- Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jack L. Feldman
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
38
|
López-González MV, González-García M, Peinado-Aragonés CA, Barbancho MÁ, Díaz-Casares A, Dawid-Milner MS. Pontine A5 region modulation of the cardiorespiratory response evoked from the midbrain dorsolateral periaqueductal grey. J Physiol Biochem 2020; 76:561-572. [PMID: 32812210 DOI: 10.1007/s13105-020-00761-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/09/2020] [Indexed: 12/19/2022]
Abstract
Connections between the midbrain dorsolateral periaqueductal grey (dlPAG) and the pontine A5 region have been shown. The stimulation of both regions evokes similar cardiovascular responses: tachycardia and hypertension. Accordingly, we have studied the interactions between dlPAG and A5 region in spontaneously breathing anesthetized rats. dlPAG was electrically stimulated (20-30 μA 1-ms pulses were given for 5 s at 100 Hz). Changes in the evoked cardiorespiratoy response were analysed before and after ipsilateral microinjections of muscimol (GABAergic agonist, 50 nl, 0.25 nmol, 5 s) within the A5 region. Electrical stimulation of the dlPAG produces, in the rat, a response characterized by tachypnoea (p < 0.001), hypertension (p < 0.001) and tachycardia (p < 0.001). The increase in respiratory rate was due to a decrease in expiratory time (p < 0.01). Pharmacological inhibition of the A5 region with muscimol produced a marked reduction of the tachycardia (p < 0.001) and the tachypnoea (p < 0.01) evoked from the dlPAG. Finally, to assess functional interactions between A5 and dlPAG, extracellular activity of putative A5 neurones were recorded during dlPAG electrical stimulation. Forty A5 cells were recorded, 16 of which were affected by dlPAG stimulation (40%). 4 cells showed activation, 5 cells excitation and 7 cells decreased spontaneous activity to dlPAG stimulation (p < 0.001). These results confirm a link between the A5 region and dlPAG. The potential role of these connections in the modulation of dlPAG evoked cardiorespiratory responses and their possible clinical implications are discussed.
Collapse
Affiliation(s)
- Manuel Víctor López-González
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain. .,Unidad de Neurofisiología del Sistema Nervioso Autónomo (CIMES), Universidad de Málaga, Málaga, Spain.
| | - Marta González-García
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.,Unidad de Neurofisiología del Sistema Nervioso Autónomo (CIMES), Universidad de Málaga, Málaga, Spain
| | - Carlos Antonio Peinado-Aragonés
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Miguel Ángel Barbancho
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Amelia Díaz-Casares
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.,Unidad de Neurofisiología del Sistema Nervioso Autónomo (CIMES), Universidad de Málaga, Málaga, Spain
| | - Marc Stefan Dawid-Milner
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Facultad de Medicina, Universidad de Málaga, Málaga, Spain.,Unidad de Neurofisiología del Sistema Nervioso Autónomo (CIMES), Universidad de Málaga, Málaga, Spain
| |
Collapse
|
39
|
Biancardi V, Saini J, Pageni A, Prashaad M. H, Funk GD, Pagliardini S. Mapping of the excitatory, inhibitory, and modulatory afferent projections to the anatomically defined active expiratory oscillator in adult male rats. J Comp Neurol 2020; 529:853-884. [DOI: 10.1002/cne.24984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Vivian Biancardi
- Department of Physiology University of Alberta Edmonton Canada
- Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
| | - Jashan Saini
- Department of Physiology University of Alberta Edmonton Canada
| | - Anileen Pageni
- Department of Physiology University of Alberta Edmonton Canada
| | | | - Gregory D. Funk
- Department of Physiology University of Alberta Edmonton Canada
- Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
- Neuroscience and Mental Health Institute University of Alberta Edmonton Canada
| | - Silvia Pagliardini
- Department of Physiology University of Alberta Edmonton Canada
- Women and Children's Health Research Institute, Faculty of Medicine and Dentistry University of Alberta Edmonton Canada
- Neuroscience and Mental Health Institute University of Alberta Edmonton Canada
| |
Collapse
|
40
|
Spiller PF, da Silva CAA, Francescato HDC, Moraes DJA. The role of carotid bodies in the generation of active inspiratory and expiratory responses to exercise in rats. Exp Physiol 2020; 105:1349-1359. [PMID: 32362040 DOI: 10.1113/ep088203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/28/2020] [Indexed: 01/01/2023]
Abstract
NEW FINDINGS What is the central question of this study? What is the carotid bodies' contribution to active inspiratory and expiratory response to exercise? What is the main finding and its importance? Removal of the carotid bodies reduced the active inspiratory and expiratory responses of diaphragm and abdominal internal oblique muscles, respectively, to high-intensity, but not to low-intensity, exercise in rats. Removal of the carotid bodies increased P aC O 2 and decreased arterial pH in response to high-intensity exercise. The carotid bodies contribute to the inspiratory and expiratory adjustments to high-intensity exercise in rats. ABSTRACT Exercise involves the interaction of several physiological processes, in which adjustments in pulmonary ventilation occur in response to increased O2 consumption, CO2 production and altered acid-base equilibrium. The peripheral chemoreceptors (carotid bodies; CBs) are sensitive to changes in the chemical composition of arterial blood, and their activation induces active inspiratory and expiratory responses. Herein, we tested the hypothesis that the CBs contribute to the active inspiratory and expiratory responses to exercise in rats. We performed electromyographic recordings of the diaphragm (DiaEMG ) and abdominal internal oblique (AbdEMG ) muscles in rats before and after bilateral removal of the CBs (CBX) during constant-load low-intensity and high-intensity progressive treadmill exercise. We also collected arterial blood samples for gaseous and pH analyses. Similar increases in DiaEMG frequency in both experimental conditions (before and after CBX) during low-intensity exercise were observed, without significant changes in the DiaEMG amplitude. During high-intensity exercise, lower responses of both DiaEMG frequency and DiaEMG amplitude were observed in rats after CBX. The AbdEMG phasic active expiratory response was not significant either before or after CBX during low-intensity exercise. However, CBX reduced the phasic active expiratory responses during high-intensity exercise. The blunted responses of inspiratory and expiratory adjustments to high-intensity exercise after CBX were associated with higher P aC O 2 levels and lower arterial pH values. Our data show that in rats the CBs do not participate in the inspiratory and expiratory responses to low-intensity exercise, but are involved in the respiratory compensation against the metabolic acidosis induced by high-intensity exercise.
Collapse
Affiliation(s)
- Pedro F Spiller
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carlos A A da Silva
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Heloísa D C Francescato
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Davi J A Moraes
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
41
|
Venner A, Todd WD, Fraigne J, Bowrey H, Eban-Rothschild A, Kaur S, Anaclet C. Newly identified sleep-wake and circadian circuits as potential therapeutic targets. Sleep 2020; 42:5306564. [PMID: 30722061 DOI: 10.1093/sleep/zsz023] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/25/2019] [Indexed: 02/06/2023] Open
Abstract
Optogenetics and chemogenetics are powerful tools, allowing the specific activation or inhibition of targeted neuronal subpopulations. Application of these techniques to sleep and circadian research has resulted in the unveiling of several neuronal populations that are involved in sleep-wake control, and allowed a comprehensive interrogation of the circuitry through which these nodes are coordinated to orchestrate the sleep-wake cycle. In this review, we discuss six recently described sleep-wake and circadian circuits that show promise as therapeutic targets for sleep medicine. The parafacial zone (PZ) and the ventral tegmental area (VTA) are potential druggable targets for the treatment of insomnia. The brainstem circuit underlying rapid eye movement sleep behavior disorder (RBD) offers new possibilities for treating RBD and neurodegenerative synucleinopathies, whereas the parabrachial nucleus, as a nexus linking arousal state control and breathing, is a promising target for developing treatments for sleep apnea. Therapies that act upon the hypothalamic circuitry underlying the circadian regulation of aggression or the photic regulation of arousal and mood pathway carry enormous potential for helping to reduce the socioeconomic burden of neuropsychiatric and neurodegenerative disorders on society. Intriguingly, the development of chemogenetics as a therapeutic strategy is now well underway and such an approach has the capacity to lead to more focused and less invasive therapies for treating sleep-wake disorders and related comorbidities.
Collapse
Affiliation(s)
- Anne Venner
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Neurology, Harvard Medical School, Boston, MA
| | - William D Todd
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Neurology, Harvard Medical School, Boston, MA
| | - Jimmy Fraigne
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Hannah Bowrey
- Department of Psychiatry, Rutgers Biomedical Health Sciences, Rutgers University, Newark, NJ.,Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Satvinder Kaur
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA.,Department of Neurology, Harvard Medical School, Boston, MA
| | - Christelle Anaclet
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, NeuroNexus Institute, Graduate Program in Neuroscience - Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
42
|
Mastitskaya S, Turovsky E, Marina N, Theparambil SM, Hadjihambi A, Kasparov S, Teschemacher AG, Ramage AG, Gourine AV, Hosford PS. Astrocytes Modulate Baroreflex Sensitivity at the Level of the Nucleus of the Solitary Tract. J Neurosci 2020; 40:3052-3062. [PMID: 32132265 PMCID: PMC7141885 DOI: 10.1523/jneurosci.1438-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/16/2019] [Accepted: 01/12/2020] [Indexed: 11/21/2022] Open
Abstract
Maintenance of cardiorespiratory homeostasis depends on autonomic reflexes controlled by neuronal circuits of the brainstem. The neurophysiology and neuroanatomy of these reflex pathways are well understood, however, the mechanisms and functional significance of autonomic circuit modulation by glial cells remain largely unknown. In the experiments conducted in male laboratory rats we show that astrocytes of the nucleus of the solitary tract (NTS), the brain area that receives and integrates sensory information from the heart and blood vessels, respond to incoming afferent inputs with [Ca2+]i elevations. Astroglial [Ca2+]i responses are triggered by transmitters released by vagal afferents, glutamate acting at AMPA receptors and 5-HT acting at 5-HT2A receptors. In conscious freely behaving animals blockade of Ca2+-dependent vesicular release mechanisms in NTS astrocytes by virally driven expression of a dominant-negative SNARE protein (dnSNARE) increased baroreflex sensitivity by 70% (p < 0.001). This effect of compromised astroglial function was specific to the NTS as expression of dnSNARE in astrocytes of the ventrolateral brainstem had no effect. ATP is considered the principle gliotransmitter and is released by vesicular mechanisms blocked by dnSNARE expression. Consistent with this hypothesis, in anesthetized rats, pharmacological activation of P2Y1 purinoceptors in the NTS decreased baroreflex gain by 40% (p = 0.031), whereas blockade of P2Y1 receptors increased baroreflex gain by 57% (p = 0.018). These results suggest that glutamate and 5-HT, released by NTS afferent terminals, trigger Ca2+-dependent astroglial release of ATP to modulate baroreflex sensitivity via P2Y1 receptors. These data add to the growing body of evidence supporting an active role of astrocytes in brain information processing.SIGNIFICANCE STATEMENT Cardiorespiratory reflexes maintain autonomic balance and ensure cardiovascular health. Impaired baroreflex may contribute to the development of cardiovascular disease and serves as a robust predictor of cardiovascular and all-cause mortality. The data obtained in this study suggest that astrocytes are integral components of the brainstem mechanisms that process afferent information and modulate baroreflex sensitivity via the release of ATP. Any condition associated with higher levels of "ambient" ATP in the NTS would be expected to decrease baroreflex gain by the mechanism described here. As ATP is the primary signaling molecule of glial cells (astrocytes, microglia), responding to metabolic stress and inflammatory stimuli, our study suggests a plausible mechanism of how the central component of the baroreflex is affected in pathological conditions.
Collapse
Affiliation(s)
- Svetlana Mastitskaya
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Egor Turovsky
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russian Federation
| | - Nephtali Marina
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Anna Hadjihambi
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Sergey Kasparov
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
- Baltic Federal University, Kaliningrad 236041, Russian Federation, and
| | - Anja G Teschemacher
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Andrew G Ramage
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom,
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London WC1E 6BT, United Kingdom,
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| |
Collapse
|
43
|
Breathing under Anesthesia: A Key Role for the Retrotrapezoid Nucleus Revealed by Conditional Phox2b Mutant Mice. Anesthesiology 2020; 130:995-1006. [PMID: 31091200 DOI: 10.1097/aln.0000000000002675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Optimal management of anesthesia-induced respiratory depression requires identification of the neural pathways that are most effective in maintaining breathing during anesthesia. Lesion studies point to the brainstem retrotrapezoid nucleus. We therefore examined the respiratory effects of common anesthetic/analgesic agents in mice with selective genetic loss of retrotrapezoid nucleus neurons (Phox2b mice, hereafter designated "mutants"). METHODS All mice received intraperitoneal ketamine doses ranging from 100 mg/kg at postnatal day (P) 8 to 250 mg/kg at P60 to P62. Anesthesia effects in P8 and P14 to P16 mice were then analyzed by administering propofol (100 and 150 mg/kg at P8 and P14 to P16, respectively) and fentanyl at an anesthetic dose (1 mg/kg at P8 and P14 to P16). RESULTS Most mutant mice died of respiratory arrest within 13 min of ketamine injection at P8 (12 of 13, 92% vs. 0 of 8, 0% wild type; Fisher exact test, P < 0.001) and P14 to P16 (32 of 42, 76% vs. 0 of 59, 0% wild type; P < 0.001). Cardiac activity continued after terminal apnea, and mortality was prevented by mechanical ventilation, supporting respiratory arrest as the cause of death in the mutants. Ketamine-induced mortality in mutants compared to wild types was confirmed at P29 to P31 (24 of 36, 67% vs. 9 of 45, 20%; P < 0.001) and P60 to P62 (8 of 19, 42% vs. 0 of 12, 0%; P = 0.011). Anesthesia-induced mortality in mutants compared to wild types was also observed with propofol at P8 (7 of 7, 100% vs. 0 of 17,7/7, 100% vs. 0/17, 0%; P < 0.001) and P14 to P16 (8 of 10, 80% vs. 0 of 10, 0%; P < 0.001) and with fentanyl at P8 (15 of 16, 94% vs. 0 of 13, 0%; P < 0.001) and P14 to P16 (5 of 7, 71% vs. 0 of 11, 0%; P = 0.002). CONCLUSIONS Ketamine, propofol, and fentanyl caused death by respiratory arrest in most mice with selective loss of retrotrapezoid nucleus neurons, in doses that were safe in their wild type littermates. The retrotrapezoid nucleus is critical to sustain breathing during deep anesthesia and may prove to be a pharmacologic target for this purpose.
Collapse
|
44
|
Cummings KJ, Leiter JC. Take a deep breath and wake up: The protean role of serotonin preventing sudden death in infancy. Exp Neurol 2020; 326:113165. [PMID: 31887304 PMCID: PMC6956249 DOI: 10.1016/j.expneurol.2019.113165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/14/2019] [Accepted: 12/26/2019] [Indexed: 01/24/2023]
Abstract
Recordings from infants who died suddenly and unexpectedly demonstrate the occurrence of recurring apneas, ineffective gasping, and finally, failure to restore eupnea and arouse prior to death. Immunohistochemical and autoradiographic data demonstrate a constellation of serotonergic defects in the caudal raphe nuclei in infants who died of Sudden Infant Death Syndrome (SIDS). The purpose of this review is to synthesize what is known about adaptive responses of the infant to severely hypoxic conditions, which unleash a flood of neuromodulators that inhibit cardiorespiratory function, thermogenesis, and arousal and the emerging role of serotonin, which combats this cardiorespiratory inhibition to foster autoresuscitation, eupnea, and arousal to ensure survival following an hypoxic episode. The laryngeal and carotid body chemoreflexes are potent in newborns and infants, and both reflexes can induce apnea and bradycardia, which may be adaptive initially, but must be terminated if an infant is to survive. Serotonin has a unique ability to touch on each of the processes that may be required to recover from hypoxic reflex apnea: gasping, the restoration of heart rate and blood pressure, termination of apneas and, eventually, stimulation of eupnea and arousal. Recurrent apneic events, bradycardia, ineffective gasping and a failure to terminate apneas and restore eupnea are observed in animals harboring defects in the caudal serotonergic system models - all of these phenotypes are reminiscent of and compatible with the cardiorespiratory recordings made in infants who subsequently died of SIDS. The caudal serotonergic system provides an organized, multi-pronged defense against reflex cardiorespiratory inhibition and the hypoxia that accompanies prolonged apnea, bradycardia and hypotension, and any deficiency of caudal serotonergic function will increase the propensity for sudden unexplained infant death.
Collapse
Affiliation(s)
- Kevin J Cummings
- Department of Biomedical Sciences, University of Missouri-Columbia, Dalton Cardiovascular Research Center, 134 Research Park Drive, Columbia, MO 65203, USA
| | - James C Leiter
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, One Rope Ferry Road, Hanover, NH 03755, USA.
| |
Collapse
|
45
|
Barnett S, Li A. Orexin in Respiratory and Autonomic Regulation, Health and Diseases. Compr Physiol 2020; 10:345-363. [DOI: 10.1002/cphy.c190013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
46
|
Maternal cigarette smoke exposure disturbs glutamate/GABA balance in pFRG of neonatal rats. Respir Physiol Neurobiol 2020; 274:103383. [PMID: 31923590 DOI: 10.1016/j.resp.2020.103383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/21/2019] [Accepted: 01/06/2020] [Indexed: 01/14/2023]
Abstract
We previously found that maternal cigarette smoke (CS) exposure resulted in impairment of central chemoreception and oxidative stress and mitochondrial dysfunction of parafacial respiratory group (pFRG, a critical site for mammalian central chemoreception) in neonatal rats. The present work was carried out to identify if maternal CS exposure could disturb the glutamate (GLU)-ergic and γ-aminobutyric acid (GABA)-ergic balance in pFRG of neonatal rats. We found that maternal CS exposure induced a decrease in GLU content and consequently in GLU/GABA ratio in pFRG of neonatal rats. Maternal CS exposure also decreased glutamine content and glutaminase and glutamine synthetase activity in offspring pFRG. In addition, expression of vesicular glutamate transporter 2 was depressed, and those of glutamate transporter 1 and GABA transporter 3 were elevated by maternal CS exposure. These results indicate that maternal CS exposure leads to a disturbance of GLU/GABA balance in pFRG of the neonatal rats, which might contribute to the suppression of central chemoreception in maternal CS-exposed offspring.
Collapse
|
47
|
Debi RA, Spector SP. Heart to breathe: partial ablation of rostral ventrolateral medulla catecholaminergic neurons mediates disordered breathing in volume overload heart failure rats. J Physiol 2020; 598:447-449. [PMID: 31900936 DOI: 10.1113/jp279368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ryan Andrew Debi
- York University, Biology, 4700 Keele St., Toronto, Ontario, M3J 1P3, Canada
| | | |
Collapse
|
48
|
Mirzaei-Damabi N, Rostami B, Hatam M. Role of the Kölliker-Fuse nucleus in cardiovascular responses to hypoxia and baroreceptor activation in anesthetized rats. BIOIMPACTS : BI 2020; 10:55-61. [PMID: 31988857 PMCID: PMC6977589 DOI: 10.15171/bi.2020.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/09/2019] [Accepted: 10/13/2019] [Indexed: 11/09/2022]
Abstract
Introduction: Parabrachial Kölliker-Fuse (KF) complex, located in dorsolateral part of the pons, is involved in the respiratory control, however, its role in the baroreflex and chemoreflex responses has not been established yet. This study was performed to test the contribution of the KF to chemoreflex and baroreflex and the effect of microinjection of a reversible synaptic blocker (Cocl2) into the KF in urethane anesthetized rats. Methods: Activation of chemoreflex was induced by systemic hypoxia caused by N2 breathing for 30 seconds "hypoxic- hypoxia methods" and baroreflex was evoked by intravenous injection (i.v.) of phenylephrine (Phe, 20 µg /kg/0.05-0.1 mL). N2 induced generalized vasodilatation followed by tachycardia reflex and Phe evoked vasoconstriction followed by bradycardia. Results: Microinjection of Cocl2 (5 mM/100 nL/side) produced no significant changes in the Phe-induced hypertension and bradycardia, whereas the cardiovascular effect of N2 was significantly attenuated by the injection of CoCl2 to the KF. Conclusion: The KF played no significant role in the baroreflex, but could account for cardiovascular chemoreflex in urethane anesthetized rats.
Collapse
|
49
|
Furuya WI, Bassi M, Menani JV, Colombari E, Zoccal DB, Colombari DSA. Modulation of hypercapnic respiratory response by cholinergic transmission in the commissural nucleus of the solitary tract. Pflugers Arch 2019; 472:49-60. [PMID: 31884528 DOI: 10.1007/s00424-019-02341-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 01/16/2023]
Abstract
The nucleus of the solitary tract (NTS) is an important area of the brainstem that receives and integrates afferent cardiorespiratory sensorial information, including those from arterial chemoreceptors and baroreceptors. It was described that acetylcholine (ACh) in the commissural subnucleus of the NTS (cNTS) promotes an increase in the phrenic nerve activity (PNA) and antagonism of nicotinic receptors in the same region reduces the magnitude of tachypneic response to peripheral chemoreceptor stimulation, suggesting a functional role of cholinergic transmission within the cNTS in the chemosensory control of respiratory activity. In the present study, we investigated whether cholinergic receptor antagonism in the cNTS modifies the sympathetic and respiratory reflex responses to hypercapnia. Using an arterially perfused in situ preparation of juvenile male Holtzman rats, we found that the nicotinic antagonist (mecamylamine, 5 mM), but not the muscarinic antagonist (atropine, 5 mM), into the cNTS attenuated the hypercapnia-induced increase of hypoglossal activity. Furthermore, mecamylamine in the cNTS potentiated the generation of late-expiratory (late-E) activity in abdominal nerve induced by hypercapnia. None of the cholinergic antagonists microinjected in the cNTS changed either the sympathetic or the phrenic nerve responses to hypercapnia. Our data provide evidence for the role of cholinergic transmission in the cNTS, acting on nicotinic receptors, modulating the hypoglossal and abdominal responses to hypercapnia.
Collapse
Affiliation(s)
- Werner I Furuya
- Department of Physiology and Pathology, School of Dentistry, UNESP - São Paulo State University, Araraquara, SP, Brazil
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, UNESP - São Paulo State University, Araraquara, SP, Brazil
| | - José V Menani
- Department of Physiology and Pathology, School of Dentistry, UNESP - São Paulo State University, Araraquara, SP, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, UNESP - São Paulo State University, Araraquara, SP, Brazil
| | - Daniel B Zoccal
- Department of Physiology and Pathology, School of Dentistry, UNESP - São Paulo State University, Araraquara, SP, Brazil
| | - Débora S A Colombari
- Department of Physiology and Pathology, School of Dentistry, UNESP - São Paulo State University, Araraquara, SP, Brazil.
| |
Collapse
|
50
|
Toledo C, Andrade DC, Díaz HS, Pereyra KV, Schwarz KG, Díaz-Jara E, Oliveira LM, Takakura AC, Moreira TS, Schultz HD, Marcus NJ, Del Rio R. Rostral ventrolateral medullary catecholaminergic neurones mediate irregular breathing pattern in volume overload heart failure rats. J Physiol 2019; 597:5799-5820. [PMID: 31642520 DOI: 10.1113/jp278845] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/14/2019] [Indexed: 08/25/2023] Open
Abstract
KEY POINTS A strong association between disordered breathing patterns, elevated sympathetic activity, and enhanced central chemoreflex drive has been shown in experimental and human heart failure (HF). The aim of this study was to determine the contribution of catecholaminergic rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) to both haemodynamic and respiratory alterations in HF. Apnoea/hypopnoea incidence (AHI), breathing variability, respiratory-cardiovascular coupling, cardiac autonomic control and cardiac function were analysed in HF rats with or without selective ablation of RVLM-C1 neurones. Partial lesion (∼65%) of RVLM-C1 neurones reduces AHI, respiratory variability, and respiratory-cardiovascular coupling in HF rats. In addition, the deleterious effects of central chemoreflex activation on cardiac autonomic balance and cardiac function in HF rats was abolished by ablation of RVLM-C1 neurones. Our findings suggest that RVLM-C1 neurones play a pivotal role in breathing irregularities in volume overload HF, and mediate the sympathetic responses induced by acute central chemoreflex activation. ABSTRACT Rostral ventrolateral medulla catecholaminergic neurones (RVLM-C1) modulate sympathetic outflow and breathing under normal conditions. Heart failure (HF) is characterized by chronic RVLM-C1 activation, increased sympathetic activity and irregular breathing patterns. Despite studies showing a relationship between RVLM-C1 and sympathetic activity in HF, no studies have addressed a potential contribution of RVLM-C1 neurones to irregular breathing in this context. Thus, the aim of this study was to determine the contribution of RVLM-C1 neurones to irregular breathing patterns in HF. Sprague-Dawley rats underwent surgery to induce volume overload HF. Anti-dopamine β-hydroxylase-saporin toxin (DβH-SAP) was used to selectively lesion RVLM-C1 neurones. At 8 weeks post-HF induction, breathing pattern, blood pressures (BP), respiratory-cardiovascular coupling (RCC), central chemoreflex function, cardiac autonomic control and cardiac function were studied. Reduction (∼65%) of RVLM-C1 neurones resulted in attenuation of irregular breathing, decreased apnoea-hypopnoea incidence (11.1 ± 2.9 vs. 6.5 ± 2.5 events h-1 ; HF+Veh vs. HF+DβH-SAP; P < 0.05) and improved cardiac autonomic control in HF rats. Pathological RCC was observed in HF rats (peak coherence >0.5 between breathing and cardiovascular signals) and was attenuated by DβH-SAP treatment (coherence: 0.74 ± 0.12 vs. 0.54 ± 0.10, HF+Veh vs. HF+DβH-SAP rats; P < 0.05). Central chemoreflex activation had deleterious effects on cardiac function and cardiac autonomic control in HF rats that were abolished by lesion of RVLM-C1 neurones. Our findings reveal that RVLM-C1 neurones play a major role in irregular breathing patterns observed in volume overload HF and highlight their contribution to cardiac dysautonomia and deterioration of cardiac function during chemoreflex activation.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Investigación en Fisiología del Ejercicio, Universidad Mayor, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luiz M Oliveira
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana C Takakura
- Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|