1
|
Jackson LR, Alward BA. Sexually dimorphic control of aggression by androgen signaling in a cichlid. Mol Cell Endocrinol 2024; 592:112319. [PMID: 38925266 PMCID: PMC11446503 DOI: 10.1016/j.mce.2024.112319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Innate social behaviors like aggression are modulated by sex steroid hormones such as androgens and estrogens. However, we know little about how the same hormone regulates similar behaviors in both sexes. We investigated the role of androgenic signaling in the regulation of aggression in Astatotilapia burtoni, a social fish in which males and females perform similar aggressive behaviors. We used androgen receptor (AR) α knockout (KO) animals for this study since this gene was recently shown to be required for male-typical aggression and mating. Surprisingly, ARα KO females did not show deficits in aggression. We also determined that females lacking the other AR, ARβ, showed normal levels of aggression. Blocking both ARs pharmacologically confirmed that neither AR is necessary for aggression in females. However, ARα KO males showed clear deficits in attacks. Thus, in A. burtoni there appears to be a sexual dimorphism in the role of ARα in the control of aggression.
Collapse
Affiliation(s)
| | - Beau A Alward
- University of Houston, Department of Psychology, USA; University of Houston, Department of Biology and Biochemistry, USA; University of California, Los Angeles, Department of Integrative Biology and Physiology, USA.
| |
Collapse
|
2
|
Wu T, Wu Y, Li Y, Du Y, Feng S, Wang D, Zhou L. Genome-wide analysis of two different regions of brain reveals the molecular changes of fertility related genes in rln3a -/- mutants in male Nile tilapia (Oreochromis niloticus). Gen Comp Endocrinol 2024; 354:114543. [PMID: 38692521 DOI: 10.1016/j.ygcen.2024.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Relaxin3 (rln3) has been associated with various emotional and cognitive processes, including stress, anxiety, learning, memory, motivational behavior, and circadian rhythm. Notably, previous report revealed that Rln3a played an indispensable role in testicular development and male fertility in Nile tilapia (Oreochromis niloticus). However, the underlying molecular mechanisms remain largely unknown. We found that Rln3a is expressed exclusively in the diencephalon* (Di*) of the brain. Deficiency of Rln3a resulted in a significant increase in serum dopamine level and an upregulation of gene expression of gnrh1 and kisspeptin2. To further elucidate the role of Rln3a in fish fertility, we collected two different regions of Di* and hypothalamus (Hyp) tissues for subsequent RNA-seq analysis of both wild-type (rln3a+/+) and rln3a-/- male tilapia. Upon the transcriptomic data, 1136 and 755 differentially expressed genes (DEGs) were identified in the Di* and Hyp tissues, respectively. In Di*, the up-regulated genes were enriched in circadian rhythm, chemical carcinogenesis, while the down-regulated genes were enriched in type II diabetes mellitus, dopaminergic synapse, and other pathways. In Hyp, the up-regulated genes were enriched in circadian rhythm, pyrimidine metabolism, while the down-regulated genes were enriched in type I diabetes mellitus, autoimmune thyroid disease, and other pathways. Subsequently, the results of both qRT-PCR and FISH assays highlighted a pronounced up-regulation of core circadian rhythm genes, cry1b and per3, whereas genes such as clocka, clockb, and arntl exhibited down-regulation. Furthermore, the genes associated with dopamine biosynthesis were significantly increased in the Hyp. In summary, the mutation of rln3a in male tilapia resulted in notable changes in circadian rhythm and disease-linked signaling pathways in the Di* and Hyp. These changes might account for the fertility defects observed in rln3a-/- male mutants in tilapia.
Collapse
Affiliation(s)
- Tengfei Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - You Wu
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Yanlong Li
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China; Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Yiyun Du
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Saining Feng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China.
| | - Linyan Zhou
- Fisheries Engineering Institute, Chinese Academy of Fishery Sciences, Beijing, China.
| |
Collapse
|
3
|
Dussenne M, Alward BA. Expression of novel androgen receptors in three GnRH neuron subtypes in the cichlid brain. J Neuroendocrinol 2024:e13429. [PMID: 38986626 DOI: 10.1111/jne.13429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
In teleosts, GnRH1 neurons stand at the apex of the Hypothalamo-Pituitary-Gonadal (HPG) axis, which is responsible for the production of sex steroids by the gonads (notably, androgens). To exert their actions, androgens need to bind to their specific receptors, called androgen receptors (ARs). Due to a teleost-specific whole genome duplication, A. burtoni possess two AR paralogs (ARα and ARβ) that are encoded by two different genes, ar1 and ar2, respectively. In A. burtoni, males stratify along dominance hierarchies, in which an individuals' social status determines its physiology and behavior. GnRH1 neurons have been strongly linked with dominance and circulating androgen levels. Similarly, GnRH3 neurons are implicated in the display of male specific behaviors. Some studies have shown that these GnRH neurons are responsive to fluctuations in circulating androgens levels, suggesting a link between GnRH neurons and ARs. While female A. burtoni do not naturally form a social hierarchy, their reproductive state is positively correlated to androgen levels and GnRH1 neuron size. Although there are reports related to the expression of ar genes in GnRH neurons in cichlid species, the expression of each ar gene remains inconclusive due to technical limitations. Here, we used immunohistochemistry, in situ hybridization chain reaction (HCR), and spatial transcriptomics to investigate ar1 and ar2 expression specifically in GnRH neurons. We find that all GnRH1 neurons intensely express ar1 but only a few of them express ar2, suggesting the presence of genetically-distinct GnRH1 subtypes. Very few ar1 and ar2 transcripts were found in GnRH2 neurons. GnRH3 neurons were found to express both ar genes. The presence of distinct ar genes within GnRH neuron subtypes, most clearly observed for GnRH1 neurons, suggests differential control of these neurons by androgenic signaling. These findings provide valuable insight for future studies aimed at disentangling the androgenic control of GnRH neuron plasticity and reproductive plasticity across teleosts.
Collapse
Affiliation(s)
- Mélanie Dussenne
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Beau A Alward
- Department of Psychology, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Dussenne M, Alward BA. Expression of novel androgen receptors in three GnRH neuron subtypes in the cichlid brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578641. [PMID: 38352335 PMCID: PMC10862814 DOI: 10.1101/2024.02.02.578641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Within a social hierarchy, an individuals' social status determines its physiology and behavior. In A. burtoni, subordinate males can rise in rank to become dominant, which is accompanied by the upregulation of the entire HPG axis, including activation of GnRH1 neurons, a rise in circulating androgen levels and the display of specific aggressive and reproductive behaviors. Cichlids possess two other GnRH subtypes, GnRH2 and GnRH3, the latter being implicated in the display of male specific behaviors. Interestingly, some studies showed that these GnRH neurons are responsive to fluctuations in circulating androgen levels, suggesting a link between GnRH neurons and androgen receptors (ARs). Due to a teleost-specific whole genome duplication, A. burtoni possess two AR paralogs (ARα and ARβ) that are encoded by two different genes, ar1 and ar2, respectively. Even though social status has been strongly linked to androgens, whether ARα and/or ARβ are present in GnRH neurons remains unclear. Here, we used immunohistochemistry and in situ hybridization chain reaction (HCR) to investigate ar1 and ar2 expression specifically in GnRH neurons. We find that all GnRH1 neurons intensely express ar1 but only a few of them express ar2, suggesting the presence of genetically-distinct GnRH1 subtypes. Very few ar1 and ar2 transcripts were found in GnRH2 neurons. GnRH3 neurons were found to express both ar genes. The presence of distinct ar genes within GnRH neuron subtypes, most clearly observed for GnRH1 neurons, suggests differential control of these neurons by androgenic signaling. These findings provide valuable insight for future studies aimed at disentangling the androgenic control of GnRH neuron plasticity and reproductive plasticity across teleosts.
Collapse
Affiliation(s)
- Mélanie Dussenne
- University of Houston, Department of Psychology, United States of America
| | - Beau A. Alward
- University of Houston, Department of Psychology, United States of America
- University of Houston, Department of Biology and Biochemistry, United States of America
| |
Collapse
|
5
|
Lopez MS, Alward BA. Androgen receptor deficiency is associated with reduced aromatase expression in the ventromedial hypothalamus of male cichlids. Ann N Y Acad Sci 2024; 1532:73-82. [PMID: 38240562 PMCID: PMC10922992 DOI: 10.1111/nyas.15096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2024]
Abstract
Social behaviors are regulated by sex steroid hormones, such as androgens and estrogens. However, the specific molecular and neural processes modulated by steroid hormones to generate social behaviors remain to be elucidated. We investigated whether some actions of androgen signaling in the control of social behavior may occur through the regulation of estradiol synthesis in the highly social cichlid fish, Astatotilapia burtoni. Specifically, we examined the expression of cyp19a1, a brain-specific aromatase, in the brains of male A. burtoni lacking a functional ARα gene (ar1), which was recently found to be necessary for aggression in this species. We found that cyp19a1 expression is higher in wild-type males compared to ar1 mutant males in the anterior tuberal nucleus (ATn), the putative fish homolog of the mammalian ventromedial hypothalamus, a brain region that is critical for aggression across taxa. Using in situ hybridization chain reaction, we determined that cyp19a1+ cells coexpress ar1 throughout the brain, including in the ATn. We speculate that ARα may modulate cyp19a1 expression in the ATn to govern aggression in A. burtoni. These studies provide novel insights into the hormonal mechanisms of social behavior in teleosts and lay a foundation for future functional studies.
Collapse
Affiliation(s)
- Mariana S. Lopez
- Department of Psychology, University of Houston, Houston, Texas, USA
| | - Beau A. Alward
- Department of Psychology, University of Houston, Houston, Texas, USA
- Department of Biology and Biochemistry. University of Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Wang T, Wang X, Zhao N, Liu Q, Song Z, Li J. Developmental regulation of the male urogenital papilla in the male marine teleost black rockfish, Sebastes schlegelii (Hilgendorf, 1880)†. Biol Reprod 2023; 109:461-473. [PMID: 37552063 DOI: 10.1093/biolre/ioad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/18/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
The male external genitalia of the black rockfish (Sebastes schlegelii Hilgendorf, 1880) is a fleshy protrusion known as the urogenital papilla (UGP), which functions to deliver sperm into the female reproductive tract for internal fertilization. It is not known which genes regulate the development of the UGP. The aim of this study was to identify key genes that regulate the development of the UGP in black rockfish and to determine the distribution of androgen receptor gene (ar) in the UGP. A total of 26 adult males and 560 juvenile fish were used in the experiment, in which we divided all normally developing juveniles into normal development and androgen groups. We added methyltestosterone solution (100 μg/l) to the androgen group-treated fish tank, soaked for 2 h per day for 38 days, and sampled 5~10 samples each time every 5 days during the culture process. Gene expression changes related to UGP were analyzed with tissue specificity between control and androgen groups during sex differentiation, adult male maturation, and the copulation stage (September to December) using real-time quantitative polymerase chain reaction. The expression of ar was also localized by two-color in situ hybridization in the UGP region of juvenile fish. Androgen treatment enhanced ar expression levels and the ar signal was stronger in the UGP region of both adult breeding fish and androgen-treated juvenile fish. This study provides insights into the regulation of the external genitalia of black rockfish and presents vital information for the artificial breeding of viviparous fish.
Collapse
Affiliation(s)
- Tao Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xueying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ning Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinghua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd., Weihai, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
7
|
Bowers JM, Li CY, Parker CG, Westbrook ME, Juntti SA. Pheromone Perception in Fish: Mechanisms and Modulation by Internal Status. Integr Comp Biol 2023; 63:407-427. [PMID: 37263784 PMCID: PMC10445421 DOI: 10.1093/icb/icad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
Pheromones are chemical signals that facilitate communication between animals, and most animals use pheromones for reproduction and other forms of social behavior. The identification of key ligands and olfactory receptors used for pheromonal communication provides insight into the sensory processing of these important cues. An individual's responses to pheromones can be plastic, as physiological status modulates behavioral outputs. In this review, we outline the mechanisms for pheromone sensation and highlight physiological mechanisms that modify pheromone-guided behavior. We focus on hormones, which regulate pheromonal communication across vertebrates including fish, amphibians, and rodents. This regulation may occur in peripheral olfactory organs and the brain, but the mechanisms remain unclear. While this review centers on research in fish, we will discuss other systems to provide insight into how hormonal mechanisms function across taxa.
Collapse
Affiliation(s)
- Jessica M Bowers
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Cheng-Yu Li
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Coltan G Parker
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Molly E Westbrook
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| | - Scott A Juntti
- Department of Biology, University of Maryland, 2128 Bioscience Research Bldg, College Park, MD 20742, USA
| |
Collapse
|
8
|
Costa FG, Gomes CC, Adolfi MC, da Cruz Gallo de Carvalho MC, Zanoni MA, Seiva FRF, Borella MI. New approaches concerning the testis of Astyanax lacustris (Characidae): immunohistochemical studies. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:543-556. [PMID: 37140738 DOI: 10.1007/s10695-023-01194-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/06/2023] [Indexed: 05/05/2023]
Abstract
Astyanax lacustris, locally known as lambari-do-rabo-amarelo, is a study model for Neotropical fish. Testis of A. lacustris shows deep morphophysiological changes throughout the annual reproductive cycle. This work analyzed the distribution of claudin-1, actin, and cytokeratin as elements of the cytoskeleton in germinal epithelium and interstitium; the distribution of type I collagen, fibronectin, and laminin as extracellular matrix compounds; and the localization of androgen receptor in the testis of this species. Claudin-1, cytokeratin, and actin were present in the Sertoli cells and modified Sertoli cells, and actin was also detected in peritubular myoid cells. Type I collagen were in the interstitial tissue, laminin in the basement membrane of germinal epithelium and endothelium, but fibronectin was additionally detected in the germinal epithelium compartment. The labeling of androgen receptor was higher in peritubular myoid cells and undifferentiated spermatogonia, and weaker labeling was detected in type B spermatogonia. Therefore, the present work highlights new aspects of the biology of the testis of A. lacustris, and contribute to amplify the understanding of this organ.
Collapse
Affiliation(s)
- Fabiano Gonçalves Costa
- Center of Biological Science, State University of North of Paraná (CCB/UENP), Bandeirantes -PR, Brazil.
| | - Chayrra Chehade Gomes
- Institute of Biomedical Science, University of São Paulo (ICB/USP), São Paulo-SP, Brazil
| | - Mateus Contar Adolfi
- Developmental Biochemistry, University of Wuerzburg, Biocenter, Wuerzburg, Germany
| | | | - Marco Antônio Zanoni
- Center of Biological Science, State University of North of Paraná (CCB/UENP), Bandeirantes -PR, Brazil
| | | | - Maria Inês Borella
- Institute of Biomedical Science, University of São Paulo (ICB/USP), São Paulo-SP, Brazil
| |
Collapse
|
9
|
Alward BA, Hoadley AP, Jackson LR, Lopez MS. Genetic dissection of steroid-hormone modulated social behavior: Novel paralogous genes are a boon for discovery. Horm Behav 2023; 147:105295. [PMID: 36502603 PMCID: PMC9839648 DOI: 10.1016/j.yhbeh.2022.105295] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Research across species has led to important discoveries on the functions of steroid hormones in the regulation of behavior. However, like in many fields, advancements in transgenic and mutagenic technology allowed mice to become the premier genetic model for conducting many experiments to understand how steroids control social behavior. Since there has been a general lack of parallel methodological developments in other species, many of the findings cannot be generalized. This is especially the case for teleost fish, in which a whole-genome duplication produced novel paralogs for key steroid hormone signaling genes. In this review, we summarize technical advancements over the history of the field of neuroendocrinology that have led to important insights in our understanding of the control of social behavior by steroids. We demonstrate that early mouse genetic models to understand these mechanisms suffered from several issues that were remedied by more precise transgenic technological advancements. We then highlight the importance of CRISPR/Cas9 gene editing tools that will in time bridge the gap between mice and non-traditional model species for understanding principles of steroid hormone action in the modulation of social behavior. We specifically highlight the role of teleost fish in bridging this gap because they are 1) highly genetically tractable and 2) provide a novel advantage in achieving precise genetic control. The field of neuroendocrinology is entering a new "gene editing revolution" that will lead to novel discoveries about the roles of steroid hormones in the regulation and evolutionary trajectories of social behavior.
Collapse
Affiliation(s)
- Beau A Alward
- University of Houston, Department of Psychology, United States of America; University of Houston, Department of Biology and Biochemistry, United States of America.
| | - Andrew P Hoadley
- University of Houston, Department of Psychology, United States of America
| | - Lillian R Jackson
- University of Houston, Department of Psychology, United States of America
| | - Mariana S Lopez
- University of Houston, Department of Psychology, United States of America
| |
Collapse
|
10
|
DiBona E, Haley C, Geist S, Seemann F. Developmental Polyethylene Microplastic Fiber Exposure Entails Subtle Reproductive Impacts in Juvenile Japanese Medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2848-2858. [PMID: 35942914 DOI: 10.1002/etc.5456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Microplastic pollution has been recognized as a potential threat to environmental and human health. Recent studies have shown that microplastics reside in all ecosystems and contaminate human food/water sources. Microplastic exposure has been shown to result in adverse effects related to endocrine disruption; however, data are limited regarding how exposure to current environmental levels of microplastics during development may impact reproductive health. To determine the impact of environmentally relevant, chronic, low-dose microplastic fibers on fish reproductive health, juvenile Japanese medaka were exposed to five concentrations of polyethylene fibers for 21 days, and reproductive maturity was examined to assess the later life consequences. Fecundity, fertility, and hatching rate were evaluated to determine the organismal level impacts. Gonadal tissue integrity and stage were assessed to provide insights into potential tissue level changes. Expression of key reproductive genes in male and female gonads provided a molecular level assessment. A significant delay in hatching was observed, indicating cross-generational and organismal level impacts. A significant decrease in 11-beta-dehydrogenase isozyme 2 (HSD11 β 2) gene expression in male medaka indicated adverse effects at the molecular level. A decrease in male expression of HSD11 β 2 could have an impact on sperm quality because this enzyme is crucial for conversion of testosterone into the androgen 11-ketotestosterone. Our study is one of the first to demonstrate subtle impacts of virgin microplastic exposure during development on later life reproductive health. The results suggest a possible risk of polyethylene fiber exposure for wild fish during reproductive development, and populations should be monitored closely, specifically in spawning and nursery regions. Environ Toxicol Chem 2022;41:2848-2858. © 2022 SETAC.
Collapse
Affiliation(s)
- Elizabeth DiBona
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Carol Haley
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Simon Geist
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| | - Frauke Seemann
- Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
- Department of Life Sciences, Center for Coastal and Marine Studies, Texas A&M University-Corpus Christi, Corpus Christi, Texas, USA
| |
Collapse
|
11
|
Almeida O, Félix AS, Oliveira RF. Interaction between vasotocin and gonadal hormones in the regulation of reproductive behavior in a cichlid fish. Acta Ethol 2022. [DOI: 10.1007/s10211-022-00404-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Dussenne M, Delcourt J, Poncin P, Cornil CA, Parmentier E. Impact of temperature-induced sex reversal on behavior and sound production in Nile tilapia (Oreochromis niloticus). Horm Behav 2022; 142:105173. [PMID: 35550986 DOI: 10.1016/j.yhbeh.2022.105173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 11/04/2022]
Abstract
In some fish species, sex is determined by the combination of genetic and environmental factors. In most species concerned, extreme temperatures during the sensitive period of sex differentiation drives masculinization, independently of the female sex chromosomes. In Nile tilapia (XY male heterogamety), XX juveniles exposed to high temperatures (>32 °C) can masculinize and become phenotypical males (neomales). Whether these neomales exhibit a different behavior than XY males remains however unclear. Sex reversal being naturally relevant, we investigated the agonistic behavior of neomales during dyadic fights and the preference of gravid females for one of the two male types. We quantified the behavior, size of the nest, hormone circulating levels (testosterone, 11-ketotestosterone and cortisol) and sound production of the two male types in both contexts. Independently of the individual they face, neomales seem to display more aggressive behaviors than XY males but often fail to become dominant. Agonistic interactions were mainly silent, suggesting that sounds are unnecessary for the establishment of social hierarchy. Although males and neomales produce different kinds of sounds when facing a gravid female, the female does not exhibit a preference. Overall, no differences were observed for hormone circulating concentrations between the two male types. We suggest that the sex chromosomes and/or the sex reversal procedure may have differently shaped the brain of neomales, resulting in differences in the expression of behavior.
Collapse
Affiliation(s)
- M Dussenne
- Neuroendocrinology Laboratory, GIGA Neurosciences, avenue Hippocrate, 15 (B36), University of Liege, Liege, Belgium; Aquaculture Research and Education Center (CEFRA), University of Liege, Tihange, Belgium; Laboratory of Functional and Evolutionary Morphology, UR FOCUS, Allée du Six Août 11, University of Liege, Liege, Belgium; Behavioural Biology group, Laboratory of Fish and Amphibian Ethology, Quai Van Beneden 22, University of Liege, Liege, Belgium.
| | - J Delcourt
- Behavioural Biology group, Laboratory of Fish and Amphibian Ethology, Quai Van Beneden 22, University of Liege, Liege, Belgium
| | - P Poncin
- Behavioural Biology group, Laboratory of Fish and Amphibian Ethology, Quai Van Beneden 22, University of Liege, Liege, Belgium
| | - C A Cornil
- Neuroendocrinology Laboratory, GIGA Neurosciences, avenue Hippocrate, 15 (B36), University of Liege, Liege, Belgium
| | - E Parmentier
- Laboratory of Functional and Evolutionary Morphology, UR FOCUS, Allée du Six Août 11, University of Liege, Liege, Belgium
| |
Collapse
|
13
|
Maruska KP, Anselmo CM, King T, Mobley RB, Ray EJ, Wayne R. Endocrine and neuroendocrine regulation of social status in cichlid fishes. Horm Behav 2022; 139:105110. [PMID: 35065406 DOI: 10.1016/j.yhbeh.2022.105110] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 01/07/2023]
Abstract
Position in a dominance hierarchy profoundly impacts group members' survival, health, and reproductive success. Thus, understanding the mechanisms that regulate or are associated with an individuals' social position is important. Across taxa, various endocrine and neuroendocrine signaling systems are implicated in the control of social rank. Cichlid fishes, with their often-limited resources of food, shelter, and mates that leads to competition, have provided important insights on the proximate and ultimate mechanisms related to establishment and maintenance of dominance hierarchies. Here we review the existing information on the relationships between endocrine (e.g., circulating hormones, gonadal and other tissue measures) and neuroendocrine (e.g., central neuropeptides, biogenic amines, steroids) systems and dominant and subordinate social rank in male cichlids. Much of the current literature is focused on only a few representative cichlids, particularly the African Astatotilapia burtoni, and several other African and Neotropical species. Many hormonal regulators show distinct differences at multiple biological levels between dominant and subordinate males, but generalizations are complicated by variations in experimental paradigms, methodological approaches, and in the reproductive and parental care strategies of the study species. Future studies that capitalize on the diversity of hierarchical structures among cichlids should provide insights towards better understanding the endocrine and neuroendocrine mechanisms contributing to social rank. Further, examination of this topic in cichlids will help reveal the selective pressures driving the evolution of endocrine-related phenotypic traits that may facilitate an individual's ability to acquire and maintain a specific social rank to improve survival and reproductive success.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America.
| | - Chase M Anselmo
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Teisha King
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Robert B Mobley
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Emily J Ray
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| | - Rose Wayne
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States of America
| |
Collapse
|
14
|
Control of testes mass by androgen receptor paralogs in a cichlid. J Comp Physiol B 2021; 192:107-114. [PMID: 34643776 DOI: 10.1007/s00360-021-01417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/17/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
Steroid hormones play numerous important and diverse roles in the differentiation and development of vertebrate primary and secondary reproductive characteristics. However, the exact role of androgen receptors-which bind circulating androgens-in this regulatory pathway is unclear. Teleost fishes further complicate this question by having two paralogs of the androgen receptor (ARα and ARβ) resulting from a duplication of their ancestral genome. We investigated the functional role of these two ARs on adult testes mass, by eliminating receptor function of one or both paralogs using CRISPR/Cas9 genome edited Astatotilapia burtoni, an African cichlid fish. Fish with two or more functional AR alleles were more likely to be male compared to fish with one or fewer, suggesting that the two paralogs may play redundant roles in the A. burtoni sex determination system. We replicated previous work showing that fish lacking functional ARβ possess testes smaller than wild-type fish, while fish lacking ARα possess testes larger than wild-type fish. However, we found novel evidence supporting a complex relationship between the two AR paralogs in the regulation of testes mass. For instance, the effects of ARα mutation on testes mass are eliminated in homozygous ARβ mutants but the reverse is not true. These results suggest a dynamic relationship between these two AR paralogs where ARβ functions may be permissive to ARα functions in the control of testes mass. This mechanism may contribute to the robust physiological plasticity displayed by A. burtoni and other social teleost fishes.
Collapse
|
15
|
Tan H, Bertram MG, Martin JM, Ecker TE, Hannington SL, Saaristo M, O'Bryan MK, Wong BBM. The endocrine disruptor 17β-trenbolone alters the relationship between pre- and post-copulatory sexual traits in male mosquitofish (Gambusia holbrooki). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148028. [PMID: 34087738 DOI: 10.1016/j.scitotenv.2021.148028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
It is now well-established that reproduction in wildlife can be disrupted by anthropogenic environmental changes, such as chemical pollution. However, very little is known about how these pollutants might affect the interplay between pre- and post-copulatory mechanisms of sexual selection. Here, we investigated the impacts of 21-day exposure of male eastern mosquitofish (Gambusia holbrooki) to a field-realistic level (average measured concentration: 11 ng/L) of the endocrine-disrupting chemical 17β-trenbolone (17β-TB) on pre- and post-copulatory reproductive traits. We examined male reproductive behaviour by testing the time spent near a female behind a partition, as well as the number of copulation attempts made, and the time spent chasing a female in a free-swimming context. Sperm traits were also assayed for all males. We found that exposure of male fish to 17β-TB altered the relationship between key pre- and post-copulatory reproductive traits. Furthermore, 17β-TB-exposed males had, on average, a higher percentage of motile sperm, and performed fewer copulation attempts than unexposed males. However, there was no overall effect of 17β-TB exposure on either the time males spent associating with or chasing females. Taken together, our findings demonstrate the potential for chemical pollutants to affect both pre- and post-copulatory sexual traits, and the interplay between these mechanisms of sexual selection in contaminated wildlife.
Collapse
Affiliation(s)
- Hung Tan
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Jake M Martin
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Tiarne E Ecker
- School of Biological Sciences, Monash University, Victoria, Australia
| | | | - Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Biosciences, Åbo Akademi University, Turku, Finland; EPA Victoria, Water Sciences, Victoria, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
16
|
Bottalico LN, Korlyakova J, Weljie AM, Habibi HR. Seasonally Related Disruption of Metabolism by Environmental Contaminants in Male Goldfish ( Carassius auratus). FRONTIERS IN TOXICOLOGY 2021; 3:750870. [PMID: 35295106 PMCID: PMC8915895 DOI: 10.3389/ftox.2021.750870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
Endocrine disrupting chemicals mimic or disrupt action of the natural hormones, adversely impacting hormonal function as well as cardiovascular, reproductive, and metabolic health. Goldfish are seasonal breeders with an annual reproductive cycle regulated by neuroendocrine signaling which involves allocation of metabolic energy to sustain growth and reproduction. We hypothesize that seasonal changes in physiology alter overall vulnerability of goldfish to metabolic perturbation induced by environmental contaminants. In this study, we assess effects of endogenous hormones, individual contaminants and their mixture on metabolism of goldfish at different reproductive stages. Exposure effects were assessed using 1H-NMR metabolomics profiling of male goldfish midbrain, gonad and liver harvested during early recrudescence (October), mid-recrudescence (February) and late recrudescence (June). Compounds assessed include bisphenol A, nonylphenol, bis(2-ethylhexyl) phthalate, fucosterol and a tertiary mixture (DEHP + NP + FS). Metabolome-level responses induced by contaminant exposure across tissues and seasons were benchmarked against responses induced by 17β-estradiol, testosterone and thyroid hormone (T3). We observe a clear seasonal dependence to metabolome-level alteration induced by hormone or contaminant exposures, with February (mid-recrudescence) the stage at which male goldfish are most vulnerable to metabolic perturbation. Responses induced by contaminant exposures differed from those induced by the natural hormones in a season-specific manner. Exposure to the tertiary mixture induced a functional gain at the level of biochemical pathways modeling over responses induced by individual components in select tissues and seasons. We demonstrate the importance of seasonally driven changes in physiology altering overall vulnerability of goldfish to metabolic perturbation induced by environmental contaminants, the relevance of which likely extends to other seasonally-breeding species.
Collapse
Affiliation(s)
- Lisa N. Bottalico
- Department of Systems Pharmacology and Translational Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julia Korlyakova
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Aalim M. Weljie
- Department of Systems Pharmacology and Translational Therapeutics, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada,*Correspondence: Hamid R Habibi,
| |
Collapse
|
17
|
Fontaine R, Royan MR, von Krogh K, Weltzien FA, Baker DM. Direct and Indirect Effects of Sex Steroids on Gonadotrope Cell Plasticity in the Teleost Fish Pituitary. Front Endocrinol (Lausanne) 2020; 11:605068. [PMID: 33365013 PMCID: PMC7750530 DOI: 10.3389/fendo.2020.605068] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/26/2022] Open
Abstract
The pituitary gland controls many important physiological processes in vertebrates, including growth, homeostasis, and reproduction. As in mammals, the teleost pituitary exhibits a high degree of plasticity. This plasticity permits changes in hormone production and secretion necessary to meet the fluctuating demands over the life of an animal. Pituitary plasticity is achieved at both cellular and population levels. At the cellular level, hormone synthesis and release can be regulated via changes in cell composition to modulate both sensitivity and response to different signals. At the cell population level, the number of cells producing a given hormone can change due to proliferation, differentiation of progenitor cells, or transdifferentiation of specific cell types. Gonadotropes, which play an important role in the control of reproduction, have been intensively investigated during the last decades and found to display plasticity. To ensure appropriate endocrine function, gonadotropes rely on external and internal signals integrated at the brain level or by the gonadotropes themselves. One important group of internal signals is the sex steroids, produced mainly by the gonadal steroidogenic cells. Sex steroids have been shown to exert complex effects on the teleost pituitary, with differential effects depending on the species investigated, physiological status or sex of the animal, and dose or method of administration. This review summarizes current knowledge of the effects of sex steroids (androgens and estrogens) on gonadotrope cell plasticity in teleost anterior pituitary, discriminating direct from indirect effects.
Collapse
Affiliation(s)
- Romain Fontaine
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Muhammad Rahmad Royan
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristine von Krogh
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Finn-Arne Weltzien
- Physiology Unit, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Dianne M. Baker
- Department of Biological Sciences, University of Mary Washington, Fredericksburg, VA, United States
| |
Collapse
|
18
|
Abstract
Social hierarchies are ubiquitous in social species and profoundly influence physiology and behavior. Androgens like testosterone have been strongly linked to social status, yet the molecular mechanisms regulating social status are not known. The African cichlid fish Astatotilapia burtoni is a powerful model species for elucidating the role of androgens in social status given their rich social hierarchy and genetic tractability. Dominant A. burtoni males possess large testes and bright coloration and perform aggressive and reproductive behaviors while nondominant males do not. Social status in A. burtoni is in flux, however, as males alter their status depending on the social environment. Due to a teleost-specific whole-genome duplication, A. burtoni possess two androgen receptor (AR) paralogs, ARα and ARβ, providing a unique opportunity to disentangle the role of gene duplication in the evolution of social systems. Here, we used CRISPR/Cas9 gene editing to generate AR mutant A. burtoni and performed a suite of experiments to interrogate the mechanistic basis of social dominance. We find that ARβ, but not ARα, is required for testes growth and bright coloration, while ARα, but not ARβ, is required for the performance of reproductive behavior and aggressive displays. Both receptors are required to reduce flees from females and either AR is sufficient for attacking males. Thus, social status in A. burtoni is inordinately dissociable and under the modular control of two AR paralogs. This type of nonredundancy may be important in facilitating social plasticity in A. burtoni and other species whose social status relies on social experience.
Collapse
|
19
|
Forebrain Transcriptional Response to Transient Changes in Circulating Androgens in a Cichlid Fish. G3-GENES GENOMES GENETICS 2020; 10:1971-1982. [PMID: 32276961 PMCID: PMC7263668 DOI: 10.1534/g3.119.400947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been hypothesized that androgens respond to the social interactions as a way to adjust the behavior of individuals to the challenges of the social environment in an adaptive manner. Therefore, it is expected that transient changes in circulating androgen levels within physiological scope should impact the state of the brain network that regulates social behavior, which should translate into adaptive behavioral changes. Here, we examined the effect that a transient peak in androgen circulating levels, which mimics socially driven changes in androgen levels, has on the forebrain state, which harbors most nuclei of the social decision-making network. For this purpose, we successfully induced transient changes in circulating androgen levels in an African cichlid fish (Mozambique tilapia, Oreochromis mossambicus) commonly used as a model in behavioral neuroendocrinology by injecting 11-ketotestosterone or testosterone, and compared the forebrain transcriptome of these individuals to control fish injected with vehicle. Forebrain samples were collected 30 min and 60 min after injection and analyzed using RNAseq. Our results showed that a transient peak in 11-ketotestosterone drives more accentuated changes in forebrain transcriptome than testosterone, and that transcriptomic impact was greater at the 30 min than at the 60 min post-androgen administration. Several genes involved in the regulation of translation, steroid metabolism, ion channel membrane receptors, and genes involved in epigenetic mechanisms were differentially expressed after 11-ketotestosterone or testosterone injection. In summary, this study identified specific candidate genes that may regulate socially driven changes in behavioral flexibility mediated by androgens.
Collapse
|
20
|
Bertram MG, Tomkins P, Saaristo M, Martin JM, Michelangeli M, Tomkins RB, Wong BBM. Disruption of male mating strategies in a chemically compromised environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134991. [PMID: 31757546 DOI: 10.1016/j.scitotenv.2019.134991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
A leading source of endocrine-disrupting chemicals (EDCs) in the environment is run-off of veterinary pharmaceuticals used in agriculture, including hormonal growth promotants (HGPs). Despite being banned in various countries, HGP use is still common in beef production around the world. The androgenic steroid 17β-trenbolone (17β-TB) is a HGP that commonly enters surface waters via livestock effluent run-off. Here, we used a flow-through system to expose wild-caught adult male guppies (Poecilia reticulata) to an environmentally realistic level of 17β-TB (average measured concentration = 2 ng/L) for 21 days. We then compared the response of exposed and unexposed males to sequentially presented large and small stimulus (unexposed) females. Due to a positive size-fecundity relationship, larger females are generally expected to be preferred by males. While we found no evidence that the size of a previously encountered female affected the amount of courtship or coercive 'sneak' mating behaviour performed by males during the second presentation, males from both exposure treatments conducted more frequent courting events towards larger females during both presentations, suggesting an absolute preference for greater female size. Further, across both presentations, 17β-TB exposure caused a shift in male mating strategy towards increased coercive sneaking behaviour, although male sequential investment into mating effort was not impacted at the tested dosage. In combination, our findings demonstrate that exposure to a field-realistic level of a widespread agricultural pollutant alters male mating strategies in fish, and contribute to a growing understanding of sub-lethal impacts of chemical contaminants on complex behaviours in wildlife.
Collapse
Affiliation(s)
- Michael G Bertram
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Patrick Tomkins
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Jake M Martin
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Marcus Michelangeli
- School of Biological Sciences, Monash University, Victoria, Australia; Department of Environmental Science and Policy, University of California, Davis, USA
| | - Raymond B Tomkins
- Centre for AgriBioscience, Department of Environment, Land, Water and Planning (DELWP), Victoria, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Victoria, Australia
| |
Collapse
|
21
|
Hilliard AT, Xie D, Ma Z, Snyder MP, Fernald RD. Genome-wide effects of social status on DNA methylation in the brain of a cichlid fish, Astatotilapia burtoni. BMC Genomics 2019; 20:699. [PMID: 31506062 PMCID: PMC6737626 DOI: 10.1186/s12864-019-6047-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Successful social behavior requires real-time integration of information about the environment, internal physiology, and past experience. The molecular substrates of this integration are poorly understood, but likely modulate neural plasticity and gene regulation. In the cichlid fish species Astatotilapia burtoni, male social status can shift rapidly depending on the environment, causing fast behavioral modifications and a cascade of changes in gene transcription, the brain, and the reproductive system. These changes can be permanent but are also reversible, implying the involvement of a robust but flexible mechanism that regulates plasticity based on internal and external conditions. One candidate mechanism is DNA methylation, which has been linked to social behavior in many species, including A. burtoni. But, the extent of its effects after A. burtoni social change were previously unknown. RESULTS We performed the first genome-wide search for DNA methylation patterns associated with social status in the brains of male A. burtoni, identifying hundreds of Differentially Methylated genomic Regions (DMRs) in dominant versus non-dominant fish. Most DMRs were inside genes supporting neural development, synapse function, and other processes relevant to neural plasticity, and DMRs could affect gene expression in multiple ways. DMR genes were more likely to be transcription factors, have a duplicate elsewhere in the genome, have an anti-sense lncRNA, and have more splice variants than other genes. Dozens of genes had multiple DMRs that were often seemingly positioned to regulate specific splice variants. CONCLUSIONS Our results revealed genome-wide effects of A. burtoni social status on DNA methylation in the brain and strongly suggest a role for methylation in modulating plasticity across multiple biological levels. They also suggest many novel hypotheses to address in mechanistic follow-up studies, and will be a rich resource for identifying the relationships between behavioral, neural, and transcriptional plasticity in the context of social status.
Collapse
Affiliation(s)
| | - Dan Xie
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Zhihai Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | | |
Collapse
|
22
|
Zhang YT, Hong WS, Qiu HT, Wang Q, Chen SX. Androgen induces olfactory expression of prostaglandin E 2 receptor Ep1 in the burrow-living fish Bostrychus sinensis. J Steroid Biochem Mol Biol 2019; 188:156-165. [PMID: 30659898 DOI: 10.1016/j.jsbmb.2019.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
Abstract
It is well documented that androgens modify olfactory processing in vertebrates. In fish, several lines of evidence indicate that androgens increase olfactory sensitivity to prostaglandin pheromone, but the molecular mechanism is still unclear. Our previous studies showed that prostaglandin E2 (PGE2) is a sex pheromone in the burrowing-living fish Chinese black sleeper (Bostrychus sinensis) and that the PGE2 receptor 1 (Ep1) in the olfactory rosette is a candidate receptor for sensing sex pheromone PGE2. In the present study, we found that testosterone (T) and 11-ketotestosterone (11-KT) exhibited stimulatory effects on the expression of ep1 in the olfactory rosette in vivo and ex vivo. Moreover, the androgen receptor (Ar) agonist R1881 had similar effects to 11-KT on the expression of ep1 ex vivo, suggesting the up-regulatory effect is mediated by Ar. The amount of arα transcripts (˜1500 copies/100 ng total RNA) was greater than that of arβ (˜300 copies/100 ng total RNA) in the olfactory rosette, and the expression levels of arα increased with spermatogenesis and peaked at late meiosis stage. Moreover, activated Arα but not Arβ transactivated a 2k bp ep1 promoter in HEK293T cell, and some OSNs exhibited co-localization of arα mRNA and Ep1 protein signals. Taken together, our results suggest that Arα, but not Arβ, plays a crucial role in mediating the androgen-induced up-regulation of ep1 expression in B. sinensis. The present study is the first to shed light on the molecular mechanisms whereby androgens enhance responsiveness to prostaglandin sex pheromones in teleosts.
Collapse
Affiliation(s)
- Yu Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, 361102, PR China
| | - Wan Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, 361102, PR China
| | - Heng Tong Qiu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, 361102, PR China
| | - Qiong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, 361102, PR China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Fujian, 361102, PR China; Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Fujian, 361102, PR China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Fujian, 361102, PR China.
| |
Collapse
|
23
|
Nugent BM, Stiver KA, Hofmann HA, Alonzo SH. Experimentally induced variation in neuroendocrine processes affects male reproductive behaviour, sperm characteristics and social interactions. Mol Ecol 2019; 28:3464-3481. [PMID: 30586201 DOI: 10.1111/mec.14999] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/17/2018] [Accepted: 11/27/2018] [Indexed: 01/24/2023]
Abstract
While extensive research has focused on how social interactions evolve, the fitness consequences of the neuroendocrine mechanisms underlying these interactions have rarely been documented, especially in the wild. Here, we measure how the neuroendocrine mechanisms underlying male behaviour affect mating success and sperm competition in the ocellated wrasse (Symphodus ocellatus). In this species, males exhibit three alternative reproductive types. "Nesting males" provide parental care, defend territories and form cooperative associations with unrelated "satellites," who cheat by sneaking fertilizations but help by reducing sperm competition from "sneakers" who do not cooperate or provide care. To measure the fitness consequences of the mechanisms underlying these social interactions, we used "phenotypic engineering" that involved administering an androgen receptor antagonist (flutamide) to wild, free-living fish. Nesting males treated with flutamide shifted their aggression from sneakers to satellite males and experienced decreased submissiveness by sneaker males (which correlated with decreased nesting male mating success). The preoptic area (POA), a region controlling male reproductive behaviours, exhibited dramatic down-regulation of androgen receptor (AR) and vasotocin 1a receptor (V1aR) mRNA following experimental manipulation of androgen signalling. We did not find a direct effect of the manipulation on male mating success, paternity or larval production. However, variation in neuroendocrine mechanisms generated by the experimental manipulation was significantly correlated with changes in behaviour and mating success: V1aR expression was negatively correlated with satellite-directed aggression, and expression of its ligand arginine vasotocin (AVT) was positively correlated with courtship and mating success, thus revealing the potential for sexual selection on these mechanisms.
Collapse
Affiliation(s)
- Bridget M Nugent
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut.,Department of Integrative Biology, Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Kelly A Stiver
- Department of Psychology, Southern Connecticut State University, New Haven, Connecticut
| | - Hans A Hofmann
- Department of Integrative Biology, Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Suzanne H Alonzo
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut.,Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California
| |
Collapse
|
24
|
Alward BA, Hilliard AT, York RA, Fernald RD. Hormonal regulation of social ascent and temporal patterns of behavior in an African cichlid. Horm Behav 2019; 107:83-95. [PMID: 30578818 DOI: 10.1016/j.yhbeh.2018.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
Abstract
For many species, social rank determines which individuals perform certain social behaviors and when. Higher ranking or dominant (DOM) individuals maintain status through aggressive interactions and perform courtship behaviors while non-dominant (ND) individuals do not. In some species ND individuals ascend (ASC) in social rank when the opportunity arises. Many important questions related to the mechanistic basis of social ascent remain to be answered. We probed whether androgen signaling regulates social ascent in male Astatotilapia burtoni, an African cichlid whose social hierarchy can be readily controlled in the laboratory. As expected, androgen receptor (AR) antagonism abolished reproductive behavior during social ascent. However, we discovered multiple AR- and status-dependent temporal behavioral patterns that typify social ascent and dominance. AR antagonism in ASC males increased the time between successive behaviors compared to DOM males. Socially ascending males, independent of AR activation, were more likely than DOM males to follow aggressive displays with another aggressive display. Further analyses revealed differences in the sequencing of aggressive and courtship behaviors, wherein DOM males were more likely than ASC males to follow male-directed aggression with courtship displays. Strikingly, this difference was driven mostly by ASC males taking longer to transition from aggression to courtship, suggesting ASC males can perform certain DOM-typical temporal behavioral patterns. Our results indicate androgen signaling is necessary for social ascent and hormonal signaling and social experience may shape the full suite of DOM-typical behavioral patterns.
Collapse
Affiliation(s)
- Beau A Alward
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Austin T Hilliard
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Ryan A York
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Russell D Fernald
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Androstenedione and 17α-methyltestosterone induce early ovary development of Anguilla japonica. Theriogenology 2018; 120:16-24. [PMID: 30081244 DOI: 10.1016/j.theriogenology.2018.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/11/2018] [Accepted: 07/14/2018] [Indexed: 11/22/2022]
Abstract
Endocrine effects as 11-ketotestosterone (11-KT), an unaromatizable androgen, regulating the follicles growth in the previtellogenic stage of eel reproduction have been widely elucidated. However, the influence of aromatizable androgens on the brain-pituitary-gonad axis during oogenesis in A. japonica has not been clearly elaborated. In the study, androstenedione (AD) and 17α-methyltestosterone (MT) were employed together to induce ovary development of seven-year-old female Anguilla japonica through feeding or exposure in the migration season. After female A. japonica had been fed with commercial diet containing 5 mg AD and MT kg d-1 body weight respectively for 45 d in fresh water (Trial I), the development of oocytes still remained at the oil droplet stage, but the GSI and follicle diameter increased significantly. The serum 11-KT level and expression of liver vitellogenin mRNA were significantly elevated. After female fish had been exposed to seawater containing 50 μg L-1 AD and MT respectively for 45 d (Trial II), the ovaries of A. japonica almost reached midvitellogenic stage and the GSI and follicle diameter increased significantly. Yolk granular layer was observed in the peripheral ooplasm. The serum 11-KT level maintained consistently low, and the serum E2 level declined significantly to a relatively low level. The expression levels of ovarian arα and cyp19a1, brain (with pituitary together) mGnRH and lhβ increased significantly. The results showed that A. japonica in Trial II appeared a higher ovarian development than those in Trial I. These findings indicated that AD and MT increased the oil droplet and enlarged follicle diameter in previtellogenic stage, while the vitellogenesis and gonadotropin release did not occur in Trial I. In Trial II, AD and MT promoted vitellogenesis by stimulating the ovary expression of arα and by up-regulating brain mGnRH and pituitary lhβ expression.
Collapse
|
26
|
Bertram MG, Saaristo M, Ecker TE, Baumgartner JB, Wong BBM. An androgenic endocrine disruptor alters male mating behavior in the guppy (Poecilia reticulata). Behav Ecol 2018. [DOI: 10.1093/beheco/ary121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael G Bertram
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Minna Saaristo
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
- Department of Biosciences, Åbo Akademi University, Tykistökatu, Turku, Finland
| | - Tiarne E Ecker
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | | | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Zhang R, Zhang Y, Wu M, Yan P, Izaz A, Wang R, Zhu H, Zhou Y, Wu X. Molecular cloning of androgen receptor and gene expression of sex steroid hormone receptors in the brain of newborn Chinese alligator (Alligator sinensis). Gene 2018; 674:178-187. [DOI: 10.1016/j.gene.2018.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/29/2018] [Accepted: 06/11/2018] [Indexed: 12/16/2022]
|
28
|
Woltering JM, Holzem M, Schneider RF, Nanos V, Meyer A. The skeletal ontogeny of Astatotilapia burtoni - a direct-developing model system for the evolution and development of the teleost body plan. BMC DEVELOPMENTAL BIOLOGY 2018; 18:8. [PMID: 29614958 PMCID: PMC5883283 DOI: 10.1186/s12861-018-0166-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/01/2018] [Indexed: 12/20/2022]
Abstract
Background The experimental approach to the evolution and development of the vertebrate skeleton has to a large extent relied on “direct-developing” amniote model organisms, such as the mouse and the chicken. These organisms can however only be partially informative where it concerns secondarily lost features or anatomical novelties not present in their lineages. The widely used anamniotes Xenopus and zebrafish are “indirect-developing” organisms that proceed through an extended time as free-living larvae, before adopting many aspects of their adult morphology, complicating experiments at these stages, and increasing the risk for lethal pleiotropic effects using genetic strategies. Results Here, we provide a detailed description of the development of the osteology of the African mouthbrooding cichlid Astatotilapia burtoni, primarily focusing on the trunk (spinal column, ribs and epicentrals) and the appendicular skeleton (pectoral, pelvic, dorsal, anal, caudal fins and scales), and to a lesser extent on the cranium. We show that this species has an extremely “direct” mode of development, attains an adult body plan within 2 weeks after fertilization while living off its yolk supply only, and does not pass through a prolonged larval period. Conclusions As husbandry of this species is easy, generation time is short, and the species is amenable to genetic targeting strategies through microinjection, we suggest that the use of this direct-developing cichlid will provide a valuable model system for the study of the vertebrate body plan, particularly where it concerns the evolution and development of fish or teleost specific traits. Based on our results we comment on the development of the homocercal caudal fin, on shared ontogenetic patterns between pectoral and pelvic girdles, and on the evolution of fin spines as novelty in acanthomorph fishes. We discuss the differences between “direct” and “indirect” developing actinopterygians using a comparison between zebrafish and A. burtoni development.
Collapse
Affiliation(s)
- Joost M Woltering
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.
| | - Michaela Holzem
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.,Current address: Department of Biological an Medical Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0 BP, UK
| | - Ralf F Schneider
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany
| | - Vasilios Nanos
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Constance, Germany.
| |
Collapse
|
29
|
Seasonal variation of pituitary gonadotropin subunit, brain-type aromatase and sex steroid receptor mRNAs, and plasma steroids during gametogenesis in wild sablefish. Comp Biochem Physiol A Mol Integr Physiol 2018; 219-220:48-57. [PMID: 29496550 DOI: 10.1016/j.cbpa.2018.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/19/2018] [Accepted: 02/20/2018] [Indexed: 11/22/2022]
Abstract
Pituitary-hormone signaling plays critical roles in the onset and progression of gametogenesis in vertebrates. This study characterized expression patterns of pituitary gonadotropin beta-subunits (fshb and lhb), brain-type aromatase (cyp19a1b), androgen (ar1, ar2) and estrogen receptors (esr1, esr2a, esr2b), and changes in plasma steroid levels by liquid chromatography/tandem mass spectrometry in wild sablefish (Anoplopoma fimbria, order Scorpaeniformes) during a complete reproductive cycle. Transcripts for fshb increased during early gametogenesis and peaked in late vitellogenic females and late recrudescent males, while expression of lhb reached maximum levels in periovulatory and spermiating fish. Pituitary levels of cyp19a1b and ar1 were strongly correlated with those of lhb in females and males, increasing during gametogenesis and reaching maximum levels prior to spawning. By contrast, expression of ar2, and the three estrogen receptors differed between female and male sablefish. 17β-estradiol (E2) was the dominant steroid in females during vitellogenesis, while a range of at least 6 steroids (11β-hydroxyandrostenedione, testosterone [T], E2, 11-ketotestosterone [11KT], 11-deoxycortisol, and 17α,20β,21-trihydroxyprogesterone) were detected at similar levels in males during testicular development. Prior to spawning, a marked increase in 4-androstenedione, T, 11KT and E2 was found in both periovulatory females and spermiating males. In conclusion, the concomitant changes in plasma androgen levels and pituitary ar1 expression during gametogenesis suggest a specific role for androgens in pituitary hormone regulation of reproduction in sablefish. Further, our data highlight the importance of E2 during final stages of maturation in this species, which may regulate the transcription of pituitary lhb in a paracrine fashion.
Collapse
|
30
|
Diotel N, Charlier TD, Lefebvre d'Hellencourt C, Couret D, Trudeau VL, Nicolau JC, Meilhac O, Kah O, Pellegrini E. Steroid Transport, Local Synthesis, and Signaling within the Brain: Roles in Neurogenesis, Neuroprotection, and Sexual Behaviors. Front Neurosci 2018; 12:84. [PMID: 29515356 PMCID: PMC5826223 DOI: 10.3389/fnins.2018.00084] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/02/2018] [Indexed: 01/18/2023] Open
Abstract
Sex steroid hormones are synthesized from cholesterol and exert pleiotropic effects notably in the central nervous system. Pioneering studies from Baulieu and colleagues have suggested that steroids are also locally-synthesized in the brain. Such steroids, called neurosteroids, can rapidly modulate neuronal excitability and functions, brain plasticity, and behavior. Accumulating data obtained on a wide variety of species demonstrate that neurosteroidogenesis is an evolutionary conserved feature across fish, birds, and mammals. In this review, we will first document neurosteroidogenesis and steroid signaling for estrogens, progestagens, and androgens in the brain of teleost fish, birds, and mammals. We will next consider the effects of sex steroids in homeostatic and regenerative neurogenesis, in neuroprotection, and in sexual behaviors. In a last part, we will discuss the transport of steroids and lipoproteins from the periphery within the brain (and vice-versa) and document their effects on the blood-brain barrier (BBB) permeability and on neuroprotection. We will emphasize the potential interaction between lipoproteins and sex steroids, addressing the beneficial effects of steroids and lipoproteins, particularly HDL-cholesterol, against the breakdown of the BBB reported to occur during brain ischemic stroke. We will consequently highlight the potential anti-inflammatory, anti-oxidant, and neuroprotective properties of sex steroid and lipoproteins, these latest improving cholesterol and steroid ester transport within the brain after insults.
Collapse
Affiliation(s)
- Nicolas Diotel
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - Thierry D. Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Christian Lefebvre d'Hellencourt
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
| | - David Couret
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | | | - Joel C. Nicolau
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Olivier Meilhac
- Université de La Réunion, Institut National de la Santé et de la Recherche Médicale, UMR 1188, Diabète athérothrombose Thérapies Réunion Océan Indien, Saint-Denis de La Réunion, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Kah
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | - Elisabeth Pellegrini
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
31
|
von Krogh K, Bjørndal GT, Nourizadeh-Lillabadi R, Hodne K, Ropstad E, Haug TM, Weltzien FA. Sex steroids differentially regulate fshb, lhb and gnrhr expression in Atlantic cod ( Gadus morhua). Reproduction 2017; 154:581-594. [PMID: 28780570 DOI: 10.1530/rep-17-0208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/23/2017] [Accepted: 07/31/2017] [Indexed: 01/03/2023]
Abstract
Depending on the stage of gonad maturation, as well as other factors, gonadal steroids can exert either a positive or negative feedback at the brain and pituitary level. While this has been demonstrated in many teleost species, little is known about the nature of steroid feedback in Gadiform fish. Using an optimized in vitro model system of the Atlantic cod pituitary, the present study investigated the potential effects of two physiologically relevant doses of estradiol, testosterone (TS) or dihydrotestosterone (DHTS) on cell viability and gene expression of gonadotropin subunits (fshb/lhb) and two suggested reproduction-relevant gonadotropin-releasing hormone receptors (gnrhr1b/gnrhr2a) during three stages of sexual maturity. In general, all steroids stimulated cell viability in terms of metabolic activity and membrane integrity. Furthermore, all steroids affected fshb expression, with the effect depending on both the specific steroid, dose and maturity status. Conversely, only DHTS exposure affected lhb levels, and this occurred only during the spawning season. Using single-cell qPCR, co-transcription of gnrhr1b and gnrhr2a was confirmed to both fshb- and lhb- expressing gonadotropes, with gnrhr2a being the most prominently expressed isoform. While steroid exposure had no effect on gnrhr1b expression, all steroids affected gnrhr2a transcript levels in at least one maturity stage. These and previous results from our group point to Gnrhr2a as the main modulator of gonadotropin regulation in cod and that regulation of its gene expression level might function as a direct mechanism for steroid feedback at the pituitary level.
Collapse
Affiliation(s)
- Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | | | | | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Science, Oslo, Norway
| | - Trude M Haug
- Department of Biosciences, University of Oslo, Oslo, Norway.,Department of Oral Biology, University of Oslo, Oslo, Norway
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
32
|
Ramallo MR, Morandini L, Birba A, Somoza GM, Pandolfi M. From molecule to behavior: Brain aromatase (cyp19a1b) characterization, expression analysis and its relation with social status and male agonistic behavior in a Neotropical cichlid fish. Horm Behav 2017; 89:176-188. [PMID: 28167134 DOI: 10.1016/j.yhbeh.2017.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 11/28/2022]
Abstract
The enzyme aromatase, responsible for the conversion of C19 androgens to C18 estrogens, exists as two paralogue copies in teleost fish: Cyp19a1a mostly expressed in the gonads, referred as gonadal aromatase, and Cyp19a1b, mostly expressed in the brain, accordingly known as brain aromatase. The neural localization of Cyp19a1b is greatly contained within the social behavior network and mesolimbic reward system in fish, suggesting a strong role of estrogen synthesis in the regulation of social behavior. In this work we aimed to analyze the variation in cyp19a1b expression in brain and pituitary of males of a highly social cichlid, Cichlasoma dimerus (locally known as chanchita), and its relation with inter-individual variability in agonistic behavior in a communal social environment. We first characterized chanchita's cyp19a1b mRNA and deduced amino acid sequence, which showed a high degree of conservation when compared to other teleost brain aromatase sequences, and its tissue expression patterns. Within the brain, Cyp19a1b was solely detected at putative radial glial cells of the forebrain, close to the brain ventricles. We then studied the relative expression levels of cyp19a1b by Real Time PCR in the brain and pituitary of males of different social status, territorial vs. non-territorial, and its relationship with an index of agonistic behavior. We found that even though, brain aromatase expression did not differ between types of males, pituitary cyp19a1b expression levels positively correlated with the index of agonistic behavior. This suggests a novel role of the pituitary in the regulation of social behavior by local estrogen synthesis.
Collapse
Affiliation(s)
- Martín R Ramallo
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Leonel Morandini
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina
| | - Agustina Birba
- Laboratorio de Ictiofisiología y Acuicultura, IIB-INTECH, CONICET, UNSAM, Chascomús, Buenos Aires, Argentina
| | - Gustavo M Somoza
- Laboratorio de Ictiofisiología y Acuicultura, IIB-INTECH, CONICET, UNSAM, Chascomús, Buenos Aires, Argentina
| | - Matías Pandolfi
- Laboratorio de Neuroendocrinología y Comportamiento, DBBE, IBBEA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CABA, Argentina.
| |
Collapse
|
33
|
Abstract
How do animal social skills influence evolution? Complex animal social behaviors require many cognitive skills including individual recognition and observational learning. For social systems to evolve, these abilities need to be transmitted genetically or culturally and supported by the evolution of underlying neural systems. Because animal skill sets are so varied, it seems best to describe animal cognitive behaviors as being a social calculus that can change with experience, which has evolved to match and facilitate the complexity of the social system where it arose. That is, acquiring and using social information in response to a rapidly changing complex world leads to social competence enabling success in essential behavioral interactions. Here, we describe the remarkable suite of social skills discovered in the African cichlid fish Astatotilapia burtoni, including an attention hierarchy, male deception, transitive inference, the mechanistic bases of social dominance, female mate choice and the neural control of female reproductive behavior. The social calculus of this species is presented as an example of a potential causal factor in the evolution of sophisticated social behavior necessary for the evolutionary success of their social system.
Collapse
|
34
|
Göppert C, Harris RM, Theis A, Boila A, Hohl S, Rüegg A, Hofmann HA, Salzburger W, Böhne A. Inhibition of Aromatase Induces Partial Sex Change in a Cichlid Fish: Distinct Functions for Sex Steroids in Brains and Gonads. Sex Dev 2016; 10:97-110. [DOI: 10.1159/000445463] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2016] [Indexed: 11/19/2022] Open
|
35
|
Evolutionary Fate of the Androgen Receptor-Signaling Pathway in Ray-Finned Fishes with a Special Focus on Cichlids. G3-GENES GENOMES GENETICS 2015; 5:2275-83. [PMID: 26333839 PMCID: PMC4632047 DOI: 10.1534/g3.115.020685] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The emergence of the steroid system is coupled to the evolution of multicellular animals. In vertebrates in particular, the steroid receptor repertoire has been shaped by genome duplications characteristic to this lineage. Here, we investigate for the first time the composition of the androgen receptor–signaling pathway in ray-finned fish genomes by focusing in particular on duplicates that emerged from the teleost-specific whole-genome duplication. We trace lineage- and species-specific duplications and gene losses for the genomic and nongenomic pathway of androgen signaling and subsequently investigate the sequence evolution of these genes. In one particular fish lineage, the cichlids, we find evidence for differing selection pressures acting on teleost-specific whole-genome duplication paralogs at a derived evolutionary stage. We then look into the expression of these duplicated genes in four cichlid species from Lake Tanganyika indicating, once more, rapid changes in expression patterns in closely related fish species. We focus on a particular case, the cichlid specific duplication of the rac1 GTPase, which shows possible signs of a neofunctionalization event.
Collapse
|
36
|
Lee MR, Loux-Turner JR, Oliveira K. Evaluation of the 5α-reductase inhibitor finasteride on reproduction and gonadal development in medaka, Oryzias latipes. Gen Comp Endocrinol 2015; 216:64-76. [PMID: 25910435 DOI: 10.1016/j.ygcen.2015.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/11/2015] [Accepted: 04/11/2015] [Indexed: 11/19/2022]
Abstract
5-α reductase (5αR) inhibitors have an anti-androgenic effect in mammals because they inhibit the conversion of testosterone to the potent androgen, dihydrotestosterone. Finasteride is a type-2 5αR inhibitor that is used as a human pharmaceutical for the treatment of prostate cancer, benign prostate hyperplasia and male pattern baldness. This study evaluated the impacts of finasteride (50, 500 and 5000μg/L) on the development and reproduction of medaka (Oryzias latipes) exposed continuously over multiple generations (F0, F1 and F2). The exposure was initiated with reproductively mature fish (F0 generation) and continued until the hatching of the F2 generation. There were no significant effects on survival, fecundity or fertility in the F0 (50, 500, 5000μg/L) and F1 (50, 500μg/L) generations. The F1 generation exposed to 5000μg/L exhibited significant mortality. Histopathology of the gonads demonstrated that medaka and pre-clinical species respond similarly to finasteride exposure. Intersex condition and maldeveloped gonads were observed in F0 generation males exposed to 5000μg/L and F1 generation males exposed to 500μg/L. F1 generation males exposed to 500μg/L displayed reduced gonadosomatic index with an increased incidence of testicular degeneration. Males in both generations exhibited an increased incidence of Leydig cell hyperplasia at concentrations ⩾500μg/L. F0 generation females exposed to 5000μg/L exhibited increased gonadosomatic index. An increased prevalence of accelerated post-ovulatory follicle involution was observed in females at concentrations ⩾500μg/L in both generations. The gonadal changes induced by finasteride support the idea that 5-α reductase inhibition impacts androgen signaling in fish. Results from this study are discussed in the context of differential expression of the androgen receptor between species of fish.
Collapse
Affiliation(s)
- Michael R Lee
- University of Massachusetts Dartmouth, 238 Old Westport Road, North Dartmouth, MA 02747, USA; Smithers Viscient, 790 Main Street, Wareham, MA 02571, USA.
| | | | - Kenneth Oliveira
- University of Massachusetts Dartmouth, 238 Old Westport Road, North Dartmouth, MA 02747, USA
| |
Collapse
|
37
|
Abstract
Dominance hierarchies are ubiquitous in social species. Social status is established initially through physical conflict between individuals and then communicated directly by a variety of signals. Social interactions depend critically on the relative social status of those interacting. But how do individuals acquire the information they need to modulate their behaviour and how do they use that information to decide what to do? What brain mechanisms might underlie such animal cognition? Using a particularly suitable fish model system that depends on complex social interactions, we report how the social context of behaviour shapes the brain and, in turn, alters the behaviour of animals as they interact. Animals observe social interactions carefully to gather information vicariously that then guides their future behaviour. Social opportunities produce rapid changes in gene expression in key nuclei in the brain and these genomic responses may prepare the individual to modify its behaviour to move into a different social niche. Both social success and failure produce changes in neuronal cell size and connectivity in key nuclei. Understanding mechanisms through which social information is transduced into cellular and molecular changes will provide a deeper understanding of the brain systems responsible for animal cognition.
Collapse
|
38
|
Fernald RD. Cognitive Skills Needed for Social Hierarchies. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2015; 79:229-36. [PMID: 25746062 PMCID: PMC5501702 DOI: 10.1101/sqb.2014.79.024752] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dominance hierarchies are ubiquitous in social species that require social cognition to maintain. Status may be established initially through physical conflict but is maintained by social signals between individuals that depend critically on the relative social status of those interacting. How do individuals collect information they need to modulate their behavior? Using a particularly suitable fish model system living in a complex social environment, we describe how the social context of behavior shapes the brain and, in turn, alters the behavior of animals as they interact. These fish observe social interactions carefully to gather information vicariously that guides future behavior. Social opportunities produce rapid changes in gene expression in key brain nuclei, and both social success and failure produce changes in neuronal cell size and connectivity in reproductive centers of the brain. It remains unknown how social information is transduced into cellular and molecular changes. Understanding the cellular and molecular changes underlying animal cognition will yield unique insights into how the brain works.
Collapse
|
39
|
Bain PA, Ogino Y, Miyagawa S, Iguchi T, Kumar A. Differential ligand selectivity of androgen receptors α and β from Murray-Darling rainbowfish (Melanotaenia fluviatilis). Gen Comp Endocrinol 2015; 212:84-91. [PMID: 25644213 DOI: 10.1016/j.ygcen.2015.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/20/2015] [Accepted: 01/24/2015] [Indexed: 11/16/2022]
Abstract
Androgen receptors (ARs) mediate the physiological effects of androgens in vertebrates. In fishes, AR-mediated pathways can be modulated by aquatic contaminants, resulting in the masculinisation of female fish or diminished secondary sex characteristics in males. The Murray-Darling rainbowfish (Melanotaenia fluviatilis) is a small-bodied freshwater teleost used in Australia as a test species for environmental toxicology research. We determined concentration-response profiles for selected agonists and antagonists of rainbowfish ARα and ARβ using transient transactivation assays. For both ARα and ARβ, the order of potency of natural agonists was 11-ketotestosterone (11-KT)>5α-dihydrotestosterone>testosterone>androstenedione. Methyltestosterone was a highly potent agonist of both receptors relative to 11-KT. The relative potency of the veterinary growth-promoting androgen, 17β-trenbolone, varied by more than a factor of 5 between ARα and ARβ. The non-steroidal anti-androgen bicalutamide exhibited high inhibitory potency relative to the structurally related model anti-androgen, flutamide. The inhibitory potency of the agricultural fungicide, vinclozolin, was approximately 1.7-fold relative to flutamide for ARα, but over 20-fold in the case of ARβ. Fluorescent protein tagging of ARs showed that the rainbowfish ARα subtype is constitutively localised to the nucleus, while ARβ is cytoplasmic in the absence of ligand, an observation which agrees with the reported subcellular localisation of AR subtypes from other teleost species. Collectively, these data suggest that M. fluviatilis ARα and ARβ respond differently to environmental AR modulators and that in vivo sensitivity to contaminants may depend on the tissue distribution of the AR subtypes at the time of exposure.
Collapse
Affiliation(s)
- Peter A Bain
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation, PMB 2, Glen Osmond, South Australia 5064, Australia.
| | - Yukiko Ogino
- Division of Molecular Environmental Endocrinology, National Institute for Basic Biology, Nishigonaka-38 Myodaijicho, Okazaki, Aichi Prefecture 444-0867, Japan
| | - Shinichi Miyagawa
- Division of Molecular Environmental Endocrinology, National Institute for Basic Biology, Nishigonaka-38 Myodaijicho, Okazaki, Aichi Prefecture 444-0867, Japan
| | - Taisen Iguchi
- Division of Molecular Environmental Endocrinology, National Institute for Basic Biology, Nishigonaka-38 Myodaijicho, Okazaki, Aichi Prefecture 444-0867, Japan
| | - Anupama Kumar
- Land and Water Flagship, Commonwealth Scientific and Industrial Research Organisation, PMB 2, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
40
|
|
41
|
Korzan WJ, Grone BP, Fernald RD. Social regulation of cortisol receptor gene expression. ACTA ACUST UNITED AC 2014; 217:3221-8. [PMID: 25013108 DOI: 10.1242/jeb.104430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In many social species, individuals influence the reproductive capacity of conspecifics. In a well-studied African cichlid fish species, Astatotilapia burtoni, males are either dominant (D) and reproductively competent or non-dominant (ND) and reproductively suppressed as evidenced by reduced gonadotropin releasing hormone (GnRH1) release, regressed gonads, lower levels of androgens and elevated levels of cortisol. Here, we asked whether androgen and cortisol levels might regulate this reproductive suppression. Astatotilapia burtoni has four glucocorticoid receptors (GR1a, GR1b, GR2 and MR), encoded by three genes, and two androgen receptors (ARα and ARβ), encoded by two genes. We previously showed that ARα and ARβ are expressed in GnRH1 neurons in the preoptic area (POA), which regulates reproduction, and that the mRNA levels of these receptors are regulated by social status. Here, we show that GR1, GR2 and MR mRNAs are also expressed in GnRH1 neurons in the POA, revealing potential mechanisms for both androgens and cortisol to influence reproductive capacity. We measured AR, MR and GR mRNA expression levels in a microdissected region of the POA containing GnRH1 neurons, comparing D and ND males. Using quantitative PCR (qPCR), we found D males had higher mRNA levels of ARα, MR, total GR1a and GR2 in the POA compared with ND males. In contrast, ND males had significantly higher levels of GR1b mRNA, a receptor subtype with a reduced transcriptional response to cortisol. Through this novel regulation of receptor type, neurons in the POA of an ND male will be less affected by the higher levels of cortisol typical of low status, suggesting GR receptor type change as a potential adaptive mechanism to mediate high cortisol levels during social suppression.
Collapse
Affiliation(s)
- Wayne J Korzan
- Department of Biology, Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| | - Brian P Grone
- Department of Biology, Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| | - Russell D Fernald
- Department of Biology, Neuroscience Program, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
42
|
Shao YT, Wang FY, Fu WC, Yan HY, Anraku K, Chen IS, Borg B. Androgens increase lws opsin expression and red sensitivity in male three-spined sticklebacks. PLoS One 2014; 9:e100330. [PMID: 24963891 PMCID: PMC4070989 DOI: 10.1371/journal.pone.0100330] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/22/2014] [Indexed: 11/17/2022] Open
Abstract
Optomotor studies have shown that three-spined sticklebacks (Gasterosteus aculeatus) are more sensitive to red during summer than winter, which may be related to the need to detect the red breeding colour of males. This study aimed to determine whether this change of red light sensitivity is specifically related to reproductive physiology. The mRNA levels of opsin genes were examined in the retinae of sexually mature and immature fish, as well as in sham-operated males, castrated control males, or castrated males implanted with androgen 11-ketoandrostenedione (11 KA), maintained under stimulatory (L16:D8) or inhibitory (L8:D16) photoperiods. In both sexes, red-sensitive opsin gene (lws) mRNA levels were higher in sexually mature than in immature fish. Under L16:D8, lws mRNA levels were higher in intact than in castrated males, and were up-regulated by 11 KA treatment in castrated males. Moreover, electroretinogram data confirmed that sexual maturation resulted in higher relative red spectral sensitivity. Mature males under L16:D8 were more sensitive to red light than males under L8:D16. Red light sensitivity under L16:D8 was diminished by castration, but increased by 11 KA treatment. Thus, in sexually mature male sticklebacks, androgen is a key factor in enhancing sensitivity to red light via regulation of opsin gene expression. This is the first study to demonstrate that sex hormones can regulate spectral vision sensitivity.
Collapse
Affiliation(s)
- Yi Ta Shao
- Department of Zoology, Stockholm University, Stockholm, Sweden
- Sensory Physiology Laboratory, Marine Research Station, Academia Sinica, I-lain, Taiwan
| | - Feng-Yu Wang
- Taiwan Ocean Research Institute, National Applied Research Laboratories, Kaohsiung, Taiwan
| | - Wen-Chun Fu
- Sensory Physiology Laboratory, Marine Research Station, Academia Sinica, I-lain, Taiwan
| | - Hong Young Yan
- Sensory Physiology Laboratory, Marine Research Station, Academia Sinica, I-lain, Taiwan
- Hanse-Wissenschaftskolleg Institute for Advanced Study, Delmenhorst, Germany
| | - Kazuhiko Anraku
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - I-Shiung Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Bertil Borg
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
43
|
Peñaranda DS, Mazzeo I, Gallego V, Hildahl J, Nourizadeh-Lillabadi R, Pérez L, Weltzien FA, Asturiano JF. The regulation of aromatase and androgen receptor expression during gonad development in male and female European eel. Reprod Domest Anim 2014; 49:512-21. [PMID: 24750538 DOI: 10.1111/rda.12321] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/23/2014] [Indexed: 11/27/2022]
Abstract
This research investigated the regulation of aromatase and androgen receptor gene expression in the brain-pituitary-gonad (BPG) axis of male and female European eels (Anguilla anguilla) during induced sexual maturation. Complete A. anguilla aromatase (aa-cyp19a1) and partial androgen receptor α and β (aa-ara and aa-arb) sequences were isolated, and qPCR assays were validated and used for quantification of transcript levels for these three genes. Expression levels of the genes varied with sex, tissue and stage of maturation. aa-arb was expressed at higher levels than aa-ara in the pituitary and gonad in both sexes, suggesting aa-arb is the physiologically most important androgen receptor in these tissues. In the female brain, a decrease in aa-ara and an increase in aa-cyp19a1 were observed at the vitellogenic stage. In contrast, a progressive increase in all three genes was observed in the pituitary and ovaries throughout gonadal development, with aa-arb and aa-cyp19a1 reaching significantly higher levels at the vitellogenic stage. In the male pituitary, a decrease in aa-arb and an increase in aa-cyp19a1 were observed at the beginning of spermatogenesis, and thereafter remained low and high, respectively. In the testis, the transcript levels of androgen receptors and aa-cyp19a1 were higher during the early stages of spermatogenesis and decreased thereafter. These sex-dependent differences in the regulation of the expression of aa-ara, aa-arb and cyp19a1 are discussed in relation to the role of androgens and their potential aromatization in the European eel during gonadal maturation.
Collapse
Affiliation(s)
- D S Peñaranda
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain; Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Maruska KP, Fernald RD. Social regulation of male reproductive plasticity in an African cichlid fish. Integr Comp Biol 2013; 53:938-50. [PMID: 23613320 PMCID: PMC3836007 DOI: 10.1093/icb/ict017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Social interactions with the outcome of a position in a dominance hierarchy can have profound effects on reproductive behavior and physiology, requiring animals to integrate environmental information with their internal physiological state; but how is salient information from the animal's dynamic social environment transformed into adaptive behavioral, physiological, and molecular-level changes? The African cichlid fish, Astatotilapia burtoni, is ideally suited to understand socially controlled reproductive plasticity because activity of the male reproductive (brain-pituitary-gonad) axis is tightly linked to social status. Males form hierarchies in which a small percentage of brightly colored dominant individuals have an active reproductive axis, defend territories, and spawn with females, while the remaining males are subordinate, drably colored, do not hold a territory, and have a suppressed reproductive system with minimal opportunities for spawning. These social phenotypes are plastic and quickly reversible, meaning that individual males may switch between dominant and subordinate status multiple times within a lifetime. Here, we review the rapid and remarkable plasticity that occurs along the entire reproductive axis when males rise in social rank, a transition that has important implications for the operational sex ratio of the population. When males rise in rank, transformations occur in the brain, pituitary, circulation, and testes over short time-scales (minutes to days). Changes are evident in overt behavior, as well as modifications at the physiological, cellular, and molecular levels that regulate reproductive capacity. Widespread changes triggered by a switch in rank highlight the significance of external social information in shaping internal physiology and reproductive competence.
Collapse
Affiliation(s)
- Karen P. Maruska
- *Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Russell D. Fernald
- *Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
45
|
Zempo B, Kanda S, Okubo K, Akazome Y, Oka Y. Anatomical distribution of sex steroid hormone receptors in the brain of female medaka. J Comp Neurol 2013; 521:1760-80. [PMID: 23124931 DOI: 10.1002/cne.23255] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 01/27/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
Estrogen and androgen play crucial roles in coordinating reproductive functions through estrogen receptors (ERs) and androgen receptors (ARs), respectively. These receptors are considered important for regulation of the hypothalamo-pituitary-gonadal (HPG) axis. Despite their biological importance, the distribution of sex steroid receptors has not been fully analyzed anatomically in the teleost brain. The teleosts have many characteristic features, which allow unique approaches toward an understanding of the regulatory mechanisms of reproductive functions. Medaka serves as a good model system for studying the mechanisms by which steroid receptor-mediated systems are regulated, because (1) their breeding conditions can be easily manipulated; (2) we can take advantage of the genome database; and 3) molecular genetic tools, such as transgenic techniques, are applicable. We analyzed the distribution of ERα, ERβ1, ERβ2, ARα, and ARβ mRNA by in situ hybridization in the brain of female medaka. We found that all subtypes of ERs and ARs were expressed in the following nuclei: the dorsal part of the ventral telencephalic area (Vd), supracommissural part of the ventral telencephalic area (Vs), postcommissural part of the ventral telencephalic area (Vp), preoptic area (POA), and nucleus ventralis tuberis (NVT). These regions are known to be involved in the regulation of sexual behavior (Vd, Vs, Vp, POA) or the HPG axis (NVT). These ER- and/or AR-expressing neurons may regulate sexual behavior or the HPG axis according to their axonal projections. Future analysis should be targeted to the neurons described in the present study to extend our understanding of the central regulatory mechanisms of reproduction.
Collapse
Affiliation(s)
- Buntaro Zempo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
46
|
Pu L, Han K, Xie F, Zou Z, Close D, Zhang Z, Wang Y. Molecular cloning, characterization, and gene expression of the androgen receptor in the large yellow croaker, Larimichthys crocea. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:309-324. [PMID: 22864706 DOI: 10.1007/s10695-012-9701-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/20/2012] [Indexed: 06/01/2023]
Abstract
Androgens mediate a wide range of physiological responses and developmental processes in vertebrates, involving both reproductive and nonreproductive systems. The activity of androgens is mediated by the androgen receptor (AR), a member of the nuclear receptor superfamily. In this study, an AR gene was cloned from the large yellow croaker (Larimichthys crocea) for the first time. qRT-PCR revealed ubiquitous expression of AR in all adult tissues examined, with higher expression in the gonad and liver of both sexes and highest expression in the blastula stage of embryonic development. Using in situ hybridization, we detected positive signals of AR in the spermatogonium, spermatocyte, spermatid, and spermatozoon during spermatogenesis, in the cytoplasm of all oocytes during oogenesis and in the follicle cells of stage IV oocytes. Our findings support the important role that AR plays in gametogenesis, gonadal development, and the early stages of embryonic development.
Collapse
Affiliation(s)
- Lulu Pu
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen 361021, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Hiraki T, Takeuchi A, Tsumaki T, Zempo B, Kanda S, Oka Y, Nagahama Y, Okubo K. Female-specific target sites for both oestrogen and androgen in the teleost brain. Proc Biol Sci 2012; 279:5014-23. [PMID: 23075834 DOI: 10.1098/rspb.2012.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To dissect the molecular and cellular basis of sexual differentiation of the teleost brain, which maintains marked sexual plasticity throughout life, we examined sex differences in neural expression of all subtypes of nuclear oestrogen and androgen receptors (ER and AR) in medaka. All receptors were differentially expressed between the sexes in specific nuclei in the forebrain. The most pronounced sex differences were found in several nuclei in the ventral telencephalic and preoptic areas, where ER and AR expression were prominent in females but almost completely absent in males, indicating that these nuclei represent female-specific target sites for both oestrogen and androgen in the brain. Subsequent analyses revealed that the female-specific expression of ER and AR is not under the direct control of sex-linked genes but is instead regulated positively by oestrogen and negatively by androgen in a transient and reversible manner. Taken together, the present study demonstrates that sex-specific target sites for both oestrogen and androgen occur in the brain as a result of the activational effects of gonadal steroids. The consequent sex-specific but reversible steroid sensitivity of the adult brain probably contributes substantially to the process of sexual differentiation and the persistent sexual plasticity of the teleost brain.
Collapse
Affiliation(s)
- Towako Hiraki
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
In the course of evolution, social behavior has been a strikingly potent selective force in shaping brains to control action. Physiological, cellular, and molecular processes reflect this evolutionary force, particularly in the regulation of reproductive behavior and its neural circuitry. Typically, experimental analysis is directed at how the brain controls behavior, but the brain is also changed by behavior over evolution, during development, and through its ongoing function. Understanding how the brain is influenced by behavior offers unusual experimental challenges. General principles governing the social regulation of the brain are most evident in the control of reproductive behavior. This is most likely because reproduction is arguably the most important event in an animal's life and has been a powerful and essential selective force over evolution. Here I describe the mechanisms through which behavior changes the brain in the service of reproduction using a teleost fish model system.
Collapse
Affiliation(s)
- Russell D Fernald
- Biology Department, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|
49
|
Hoffmann E, Walstad A, Karlsson J, Olsson PE, Borg B. Androgen receptor-beta mRNA levels in different tissues in breeding and post-breeding male and female sticklebacks, Gasterosteus aculeatus. Reprod Biol Endocrinol 2012; 10:23. [PMID: 22455382 PMCID: PMC3358246 DOI: 10.1186/1477-7827-10-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Androgens induce male characters by activating androgen receptors (AR). Previous quantitative studies on AR in fishes have been limited to few tissues and/or a single season/reproductive state. The aim of this investigation was to study the possible role of AR-beta expression levels in the control of male traits in the three-spined stickleback. To that end, AR-beta expression levels in major tissues in breeding and post-breeding male and female sticklebacks were examined. METHODS AR-beta mRNA levels were quantified in ten tissues; eye, liver, axial muscle, heart, brain, intestine, ovary, testis, kidney and pectoral muscle in six breeding and post-breeding males and females using reverse transcription quantitative PCR. RESULTS Breeding in contrast to post-breeding males built nests and showed secondary sexual characters (e.g. kidney hypertrophy) and elevated androgen levels. Post-breeding females had lower ovarian weights and testosterone levels than breeding females. AR-beta was expressed in all studied tissues in both sexes and reproductive states with the highest expression in the gonads and in the kidneys. The kidney is an androgen target organ in sticklebacks, from which breeding males produce the protein spiggin, which is used in nest-building. There was also high AR-beta expression in the intestine, an organ that appears to take over hyperosmo-regulation in fresh water when the kidney hypertrophies in mature males and largely loses this function. The only tissue that showed effects of sex or reproductive state on AR-beta mRNA levels was the kidneys, where post-breeding males displayed higher AR-beta mRNA levels than breeding males. CONCLUSION The results indicate that changes in AR-beta mRNA levels play no or little role in changes in androgen dependent traits in the male stickleback.
Collapse
Affiliation(s)
- Erik Hoffmann
- Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden
| | - Anders Walstad
- School of Science and Technology, Örebro Life Science Center, Örebro University, SE-701 82 Örebro, Sweden
| | - Johnny Karlsson
- School of Science and Technology, Örebro Life Science Center, Örebro University, SE-701 82 Örebro, Sweden
| | - Per-Erik Olsson
- School of Science and Technology, Örebro Life Science Center, Örebro University, SE-701 82 Örebro, Sweden
| | - Bertil Borg
- Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden
| |
Collapse
|
50
|
Raoult V, Brown C, Zuberi A, Williamson JE. Blood cortisol concentrations predict boldness in juvenile mulloway (Argyosomus japonicus). J ETHOL 2011. [DOI: 10.1007/s10164-011-0314-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|