1
|
Zhang Y, Ma H, Bai Y, Hou X, Yang Y, Wang G, Li Y. Chronic Neuropathic Pain and Comorbid Depression Syndrome: From Neural Circuit Mechanisms to Treatment. ACS Chem Neurosci 2024; 15:2432-2444. [PMID: 38916052 DOI: 10.1021/acschemneuro.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Chronic neuropathic pain and comorbid depression syndrome (CDS) is a major worldwide health problem that affects the quality of life of patients and imposes a tremendous socioeconomic burden. More than half of patients with chronic neuropathic pain also suffer from moderate or severe depression. Due to the complex pathogenesis of CDS, there are no effective therapeutic drugs available. The lack of research on the neural circuit mechanisms of CDS limits the development of treatments. The purpose of this article is to provide an overview of the various circuits involved in CDS. Notably, activating some neural circuits can alleviate pain and/or depression, while activating other circuits can exacerbate these conditions. Moreover, we discuss current and emerging pharmacotherapies for CDS, such as ketamine. Understanding the circuit mechanisms of CDS may provide clues for the development of novel drug treatments for improved CDS management.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Hui Ma
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yafan Bai
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xiaojuan Hou
- Hebei North University, Zhangjiakou, 075000, China
| | - Yixin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yunfeng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| |
Collapse
|
2
|
Stern DB, Wilke A, Root CM. Anatomical Connectivity of the Intercalated Cells of the Amygdala. eNeuro 2023; 10:ENEURO.0238-23.2023. [PMID: 37775310 PMCID: PMC10576262 DOI: 10.1523/eneuro.0238-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
The intercalated cells of the amygdala (ITCs) are a fundamental processing structure in the amygdala that remain relatively understudied. They are phylogenetically conserved from insectivores through primates, inhibitory, and project to several of the main processing and output stations of the amygdala and basal forebrain. Through these connections, the ITCs are best known for their role in conditioned fear, where they are required for fear extinction learning and recall. Prior work on ITC connectivity is limited, and thus holistic characterization of their afferent and efferent connectivity in a genetically defined manner is incomplete. The ITCs express the FoxP2 transcription factor, affording genetic access to these neurons for viral input-output mapping. To fully characterize the anatomic connectivity of the ITCs, we used cre-dependent viral strategies in FoxP2-cre mice to reveal the projections of the main (mITC), caudal (cITC), and lateral (lITC) clusters along with their presynaptic sources of innervation. Broadly, the results confirm many known pathways, reveal previously unknown ones, and demonstrate important novel insights about each nucleus's unique connectivity profile and relative distributions. We show that the ITCs receive information from a wide range of cortical, subcortical, basal, amygdalar, hippocampal, and thalamic structures, and project broadly to areas of the basal forebrain, hypothalamus, and entire extent of the amygdala. The results provide a comprehensive map of their connectivity and suggest that the ITCs could potentially influence a broad range of behaviors by integrating information from a wide array of sources throughout the brain.
Collapse
Affiliation(s)
- Daniel B Stern
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
- Neuroscience Graduate Program, University of California, San Diego, La Jolla, CA 92093
| | - Anna Wilke
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Cory M Root
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
3
|
Sardar H, Goldstein-Piekarski AN, Giardino WJ. Amygdala neurocircuitry at the interface between emotional regulation and narcolepsy with cataplexy. Front Neurosci 2023; 17:1152594. [PMID: 37266541 PMCID: PMC10230954 DOI: 10.3389/fnins.2023.1152594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/17/2023] [Indexed: 06/03/2023] Open
Abstract
Narcolepsy is a sleep disorder characterized by chronic and excessive daytime sleepiness, and sudden intrusion of sleep during wakefulness that can fall into two categories: type 1 and type 2. Type 1 narcolepsy in humans is widely believed to be caused as a result of loss of neurons in the brain that contain the key arousal neuropeptide Orexin (Orx; also known as Hypocretin). Patients with type 1 narcolepsy often also present with cataplexy, the sudden paralysis of voluntary muscles which is triggered by strong emotions (e.g., laughter in humans, social play in dogs, and chocolate in rodents). The amygdala is a crucial emotion-processing center of the brain; however, little is known about the role of the amygdala in sleep/wake and narcolepsy with cataplexy. A collection of reports across human functional neuroimaging analyses and rodent behavioral paradigms points toward the amygdala as a critical node linking emotional regulation to cataplexy. Here, we review the existing evidence suggesting a functional role for the amygdala network in narcolepsy, and build upon a framework that describes relevant contributions from the central nucleus of the amygdala (CeA), basolateral amygdala (BLA), and the extended amygdala, including the bed nucleus of stria terminalis (BNST). We propose that detailed examinations of amygdala neurocircuitry controlling transitions between emotional arousal states may substantially advance progress in understanding the etiology of narcolepsy with cataplexy, leading to enhanced treatment opportunities.
Collapse
Affiliation(s)
- Haniyyah Sardar
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Center for Sleep and Circadian Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Andrea N. Goldstein-Piekarski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Center for Sleep and Circadian Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - William J. Giardino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Center for Sleep and Circadian Sciences, Stanford University School of Medicine, Stanford, CA, United States
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Gregoriou GC, Patel SD, Pyne S, Winters BL, Bagley EE. Opioid Withdrawal Abruptly Disrupts Amygdala Circuit Function by Reducing Peptide Actions. J Neurosci 2023; 43:1668-1681. [PMID: 36781220 PMCID: PMC10010477 DOI: 10.1523/jneurosci.1317-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/18/2022] [Accepted: 11/21/2022] [Indexed: 02/15/2023] Open
Abstract
While the physical signs of opioid withdrawal are most readily observable, withdrawal insidiously drives relapse and contributes to compulsive drug use, by disrupting emotional learning circuits. How these circuits become disrupted during withdrawal is poorly understood. Because amygdala neurons mediate relapse, and are highly opioid sensitive, we hypothesized that opioid withdrawal would induce adaptations in these neurons, opening a window of disrupted emotional learning circuit function. Under normal physiological conditions, synaptic transmission between the basolateral amygdala (BLA) and the neighboring main island (Im) of GABAergic intercalated cells (ITCs) is strongly inhibited by endogenous opioids. Using patch-clamp electrophysiology in brain slices prepared from male rats, we reveal that opioid withdrawal abruptly reduces the ability of these peptides to inhibit neurotransmission, a direct consequence of a protein kinase A (PKA)-driven increase in the synaptic activity of peptidases. Reduced peptide control of neurotransmission in the amygdala shifts the excitatory/inhibitory balance of inputs onto accumbens-projecting amygdala cells involved in relapse. These findings provide novel insights into how peptidases control synaptic activity within the amygdala and presents restoration of endogenous peptide activity during withdrawal as a viable option to mitigate withdrawal-induced disruptions in emotional learning circuits and rescue the relapse behaviors exhibited during opioid withdrawal and beyond into abstinence.SIGNIFICANCE STATEMENT We find that opioid withdrawal dials down inhibitory neuropeptide activity in the amygdala. This disrupts both GABAergic and glutamatergic transmission through amygdala circuits, including reward-related outputs to the nucleus accumbens. This likely disrupts peptide-dependent emotional learning processes in the amygdala during withdrawal and may direct behavior toward compulsive drug use.
Collapse
Affiliation(s)
- Gabrielle C Gregoriou
- Sydney Pharmacy School, Faculty of Medicine and Health and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia, 2111
| | - Sahil D Patel
- Sydney Pharmacy School, Faculty of Medicine and Health and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia, 2111
| | - Sebastian Pyne
- Sydney Pharmacy School, Faculty of Medicine and Health and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia, 2111
| | - Bryony L Winters
- Sydney Pharmacy School, Faculty of Medicine and Health and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia, 2111
| | - Elena E Bagley
- Sydney Pharmacy School, Faculty of Medicine and Health and Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia, 2111
| |
Collapse
|
5
|
Margolis EB, Moulton MG, Lambeth PS, O'Meara MJ. The life and times of endogenous opioid peptides: Updated understanding of synthesis, spatiotemporal dynamics, and the clinical impact in alcohol use disorder. Neuropharmacology 2023; 225:109376. [PMID: 36516892 PMCID: PMC10548835 DOI: 10.1016/j.neuropharm.2022.109376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The opioid G-protein coupled receptors (GPCRs) strongly modulate many of the central nervous system structures that contribute to neurological and psychiatric disorders including pain, major depressive disorder, and substance use disorders. To better treat these and related diseases, it is essential to understand the signaling of their endogenous ligands. In this review, we focus on what is known and unknown about the regulation of the over two dozen endogenous peptides with high affinity for one or more of the opioid receptors. We briefly describe which peptides are produced, with a particular focus on the recently proposed possible synthesis pathways for the endomorphins. Next, we describe examples of endogenous opioid peptide expression organization in several neural circuits and how they appear to be released from specific neural compartments that vary across brain regions. We discuss current knowledge regarding the strength of neural activity required to drive endogenous opioid peptide release, clues about how far peptides diffuse from release sites, and their extracellular lifetime after release. Finally, as a translational example, we discuss the mechanisms of action of naltrexone (NTX), which is used clinically to treat alcohol use disorder. NTX is a synthetic morphine analog that non-specifically antagonizes the action of most endogenous opioid peptides developed in the 1960s and FDA approved in the 1980s. We review recent studies clarifying the precise endogenous activity that NTX prevents. Together, the works described here highlight the challenges and opportunities the complex opioid system presents as a therapeutic target.
Collapse
Affiliation(s)
- Elyssa B Margolis
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, CA, USA.
| | - Madelyn G Moulton
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Philip S Lambeth
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
6
|
Asede D, Doddapaneni D, Bolton MM. Amygdala Intercalated Cells: Gate Keepers and Conveyors of Internal State to the Circuits of Emotion. J Neurosci 2022; 42:9098-9109. [PMID: 36639901 PMCID: PMC9761677 DOI: 10.1523/jneurosci.1176-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/19/2022] [Accepted: 10/16/2022] [Indexed: 01/09/2023] Open
Abstract
Generating adaptive behavioral responses to emotionally salient stimuli requires evaluation of complex associations between multiple sensations, the surrounding context, and current internal state. Neural circuits within the amygdala parse this emotional information, undergo synaptic plasticity to reflect learned associations, and evoke appropriate responses through their projections to the brain regions orchestrating these behaviors. Information flow within the amygdala is regulated by the intercalated cells (ITCs), which are densely packed clusters of GABAergic neurons that encircle the basolateral amygdala (BLA) and provide contextually relevant feedforward inhibition of amygdala nuclei, including the central and BLA. Emerging studies have begun to delineate the unique contribution of each ITC cluster and establish ITCs as key loci of plasticity in emotional learning. In this review, we summarize the known connectivity and function of individual ITC clusters and explore how different neuromodulators conveying internal state act via ITC gates to shape emotionally motivated behavior. We propose that the behavioral state-dependent function of ITCs, their unique genetic profile, and rich expression of neuromodulator receptors make them potential therapeutic targets for disorders, such as anxiety, schizophrenia spectrum, and addiction.
Collapse
Affiliation(s)
- Douglas Asede
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - Divyesh Doddapaneni
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| | - M McLean Bolton
- Disorders of Neural Circuit Function, Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458
| |
Collapse
|
7
|
Limoges A, Yarur HE, Tejeda HA. Dynorphin/kappa opioid receptor system regulation on amygdaloid circuitry: Implications for neuropsychiatric disorders. Front Syst Neurosci 2022; 16:963691. [PMID: 36276608 PMCID: PMC9579273 DOI: 10.3389/fnsys.2022.963691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Amygdaloid circuits are involved in a variety of emotional and motivation-related behaviors and are impacted by stress. The amygdala expresses several neuromodulatory systems, including opioid peptides and their receptors. The Dynorphin (Dyn)/kappa opioid receptor (KOR) system has been implicated in the processing of emotional and stress-related information and is expressed in brain areas involved in stress and motivation. Dysregulation of the Dyn/KOR system has also been implicated in various neuropsychiatric disorders. However, there is limited information about the role of the Dyn/KOR system in regulating amygdala circuitry. Here, we review the literature on the (1) basic anatomy of the amygdala, (2) functional regulation of synaptic transmission by the Dyn/KOR system, (3) anatomical architecture and function of the Dyn/KOR system in the amygdala, (4) regulation of amygdala-dependent behaviors by the Dyn/KOR system, and (5) future directions for the field. Future work investigating how the Dyn/KOR system shapes a wide range of amygdala-related behaviors will be required to increase our understanding of underlying circuitry modulation by the Dyn/KOR system. We anticipate that continued focus on the amygdala Dyn/KOR system will also elucidate novel ways to target the Dyn/KOR system to treat neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aaron Limoges
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- NIH-Columbia University Individual Graduate Partnership Program, National Institutes of Health, Bethesda, MD, United States
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
8
|
Viden A, Ch'ng SS, Walker LC, Shesham A, Hamilton SM, Smith CM, Lawrence AJ. Organisation of enkephalin inputs and outputs of the central nucleus of the amygdala in mice. J Chem Neuroanat 2022; 125:102167. [PMID: 36182026 DOI: 10.1016/j.jchemneu.2022.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2022]
Abstract
The central nucleus of the amygdala (CeA) is a key hub integrating sensory inputs and modulating behavioural outputs. The CeA is a complex structure with discrete subdivisions, high peptidergic heterogeneity and broad CNS afferent and efferent projections. While several neuropeptide systems within the CeA have been examined in detail, less is known about CeA preproenkephalin (ppENK) cells. Here, we used a recently developed transgenic Penk-Cre mouse line to advance our understanding of the efferent and afferent connectivity of ppENK in the CeA. First, to determine the fidelity of Cre expression in Penk-Cre transgenic mice, we conducted RNAscope in the CeA of Penk-Cre mice. Our analysis revealed that 96.6% of CeA Cre+ neurons co-expressed pENK mRNA, and 99.7% of CeA pENK+ neurons co-expressed Cre mRNA, indicating faithful recapitulation of Cre expression in CeA ppENK-expressing cells, supporting the fidelity of the Penk-Cre reporter mouse. Anterograde tracing of CeAPenk cells showed strong efferent projections to the extended amygdala, midbrain and hindbrain PBN and NTS. Retrograde tracing of Penk afferents to the CeA were more restricted, with primary innervation originating within the amygdala complex and bed nucleus of the stria terminalis, and minor innervation from the parabrachial nucleus and nucleus of the solitary tract. Together, our data provide a comprehensive map of ENKergic efferent and afferent connectivity of the CeA in Penk-Cre mice. Further, we highlight both the utility and limitations of the Penk-Cre mice to study the function of CeA, PBN and NTS ppENK cells.
Collapse
Affiliation(s)
- Aida Viden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052
| | - Sarah S Ch'ng
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052
| | - Arnav Shesham
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052; Department of Physiology, Monash University, Clayton, VIC 3800
| | - Sabine M Hamilton
- School of Medicine, IMPACT, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Craig M Smith
- School of Medicine, IMPACT, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052.
| |
Collapse
|
9
|
McPherson KB, Ingram SL. Cellular and circuit diversity determines the impact of endogenous opioids in the descending pain modulatory pathway. Front Syst Neurosci 2022; 16:963812. [PMID: 36045708 PMCID: PMC9421147 DOI: 10.3389/fnsys.2022.963812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 01/31/2023] Open
Abstract
The descending pain modulatory pathway exerts important bidirectional control of nociceptive inputs to dampen and/or facilitate the perception of pain. The ventrolateral periaqueductal gray (vlPAG) integrates inputs from many regions associated with the processing of nociceptive, cognitive, and affective components of pain perception, and is a key brain area for opioid action. Opioid receptors are expressed on a subset of vlPAG neurons, as well as on both GABAergic and glutamatergic presynaptic terminals that impinge on vlPAG neurons. Microinjection of opioids into the vlPAG produces analgesia and microinjection of the opioid receptor antagonist naloxone blocks stimulation-mediated analgesia, highlighting the role of endogenous opioid release within this region in the modulation of nociception. Endogenous opioid effects within the vlPAG are complex and likely dependent on specific neuronal circuits activated by acute and chronic pain stimuli. This review is focused on the cellular heterogeneity within vlPAG circuits and highlights gaps in our understanding of endogenous opioid regulation of the descending pain modulatory circuits.
Collapse
Affiliation(s)
- Kylie B. McPherson
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy,Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States
| | - Susan L. Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, United States,*Correspondence: Susan L. Ingram
| |
Collapse
|
10
|
Zhang SQ, Xia ZX, Deng Q, Yang PF, Long LH, Wang F, Chen JG. Repeated vagus nerve stimulation produces anxiolytic effects via upregulation of AMPAR function in centrolateral amygdala of male rats. Neurobiol Stress 2022; 18:100453. [PMID: 35685681 PMCID: PMC9170826 DOI: 10.1016/j.ynstr.2022.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Abstract
Repeated vagus nerve stimulation (rVNS) exerts anxiolytic effect by activation of noradrenergic pathway. Centrolateral amygdala (CeL), a lateral subdivision of central amygdala, receives noradrenergic inputs, and its neuronal activity is positively correlated to anxiolytic effect of benzodiazepines. The activation of β-adrenergic receptors (β-ARs) could enhance glutamatergic transmission in CeL. However, it is unclear whether the neurobiological mechanism of noradrenergic system in CeL mediates the anxiolytic effect induced by rVNS. Here, we find that rVNS treatment produces an anxiolytic effect in male rats by increasing the neuronal activity of CeL. Electrophysiology recording reveals that rVNS treatment enhances the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR)-mediated excitatory neurotransmission in CeL, which is mimicked by β-ARs agonist isoproterenol or blocked by β-ARs antagonist propranolol. Moreover, chemogenetic inhibition of CeL neurons or pharmacological inhibition of β-ARs in CeL intercepts both enhanced glutamatergic neurotransmission and the anxiolytic effects by rVNS treatment. These results suggest that the amplified AMPAR trafficking in CeL via activation of β-ARs is critical for the anxiolytic effects induced by rVNS treatment. rVNS amplifies the noradrenergic system in CeL and results in anxiolysis. rVNS treatment enhances AMPAR-mediated excitatory neurotransmission CeL via β-ARs. Pharmacological inhibition β-ARs in CeL intercept the anxiolytic effects by rVNS. Exciting CeL neurons lead to an increase in inhibitory inputs into CeM neurons. Inhibiting CeL neurons abate inhibitory inputs into CeM and anxiolysis by rVNS.
Collapse
|
11
|
Hájos N. Interneuron Types and Their Circuits in the Basolateral Amygdala. Front Neural Circuits 2021; 15:687257. [PMID: 34177472 PMCID: PMC8222668 DOI: 10.3389/fncir.2021.687257] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/11/2021] [Indexed: 11/29/2022] Open
Abstract
The basolateral amygdala (BLA) is a cortical structure based on its cell types, connectivity features, and developmental characteristics. This part of the amygdala is considered to be the main entry site of processed and multisensory information delivered via cortical and thalamic afferents. Although GABAergic inhibitory cells in the BLA comprise only 20% of the entire neuronal population, they provide essential control over proper network operation. Previous studies have uncovered that GABAergic cells in the basolateral amygdala are as diverse as those present in other cortical regions, including the hippocampus and neocortex. To understand the role of inhibitory cells in various amygdala functions, we need to reveal the connectivity and input-output features of the different types of GABAergic cells. Here, I review the recent achievements in uncovering the diversity of GABAergic cells in the basolateral amygdala with a specific focus on the microcircuit organization of these inhibitory cells.
Collapse
Affiliation(s)
- Norbert Hájos
- Laboratory of Network Neurophysiology, ELRN Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
12
|
Cano JC, Huang W, Fénelon K. The amygdala modulates prepulse inhibition of the auditory startle reflex through excitatory inputs to the caudal pontine reticular nucleus. BMC Biol 2021; 19:116. [PMID: 34082731 PMCID: PMC8176709 DOI: 10.1186/s12915-021-01050-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/12/2021] [Indexed: 01/20/2023] Open
Abstract
Background Sensorimotor gating is a fundamental pre-attentive process that is defined as the inhibition of a motor response by a sensory event. Sensorimotor gating, commonly measured using the prepulse inhibition (PPI) of the auditory startle reflex task, is impaired in patients suffering from various neurological and psychiatric disorders. PPI deficits are a hallmark of schizophrenia, and they are often associated with attention and other cognitive impairments. Although the reversal of PPI deficits in animal models is widely used in pre-clinical research for antipsychotic drug screening, the neurotransmitter systems and synaptic mechanisms underlying PPI are still not resolved, even under physiological conditions. Recent evidence ruled out the longstanding hypothesis that PPI is mediated by midbrain cholinergic inputs to the caudal pontine reticular nucleus (PnC). Instead, glutamatergic, glycinergic, and GABAergic inhibitory mechanisms are now suggested to be crucial for PPI, at the PnC level. Since amygdalar dysfunctions alter PPI and are common to pathologies displaying sensorimotor gating deficits, the present study was designed to test that direct projections to the PnC originating from the amygdala contribute to PPI. Results Using wild type and transgenic mice expressing eGFP under the control of the glycine transporter type 2 promoter (GlyT2-eGFP mice), we first employed tract-tracing, morphological reconstructions, and immunohistochemical analyses to demonstrate that the central nucleus of the amygdala (CeA) sends glutamatergic inputs lateroventrally to PnC neurons, including GlyT2+ cells. Then, we showed the contribution of the CeA-PnC excitatory synapses to PPI in vivo by demonstrating that optogenetic inhibition of this connection decreases PPI, and optogenetic activation induces partial PPI. Finally, in GlyT2-Cre mice, whole-cell recordings of GlyT2+ PnC neurons in vitro paired with optogenetic stimulation of CeA fibers, as well as photo-inhibition of GlyT2+ PnC neurons in vivo, allowed us to implicate GlyT2+ neurons in the PPI pathway. Conclusions Our results uncover a feedforward inhibitory mechanism within the brainstem startle circuit by which amygdalar glutamatergic inputs and GlyT2+ PnC neurons contribute to PPI. We are providing new insights to the clinically relevant theoretical construct of PPI, which is disrupted in various neuropsychiatric and neurological diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01050-z.
Collapse
Affiliation(s)
- Jose Carlos Cano
- Department of Biological Sciences, University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79912, USA
| | - Wanyun Huang
- Biology Department, University of Massachusetts Amherst, Life Science Laboratories, 240 Thatcher Road, Amherst, MA, 01002, USA
| | - Karine Fénelon
- Biology Department, University of Massachusetts Amherst, Life Science Laboratories, 240 Thatcher Road, Amherst, MA, 01002, USA.
| |
Collapse
|
13
|
Spool JA, Macedo-Lima M, Scarpa G, Morohashi Y, Yazaki-Sugiyama Y, Remage-Healey L. Genetically identified neurons in avian auditory pallium mirror core principles of their mammalian counterparts. Curr Biol 2021; 31:2831-2843.e6. [PMID: 33989528 DOI: 10.1016/j.cub.2021.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/12/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
In vertebrates, advanced cognitive abilities are typically associated with the telencephalic pallium. In mammals, the pallium is a layered mixture of excitatory and inhibitory neuronal populations with distinct molecular, physiological, and network phenotypes. This cortical architecture is proposed to support efficient, high-level information processing. Comparative perspectives across vertebrates provide a lens to understand the common features of pallium that are important for advanced cognition. Studies in songbirds have established strikingly parallel features of neuronal types between mammalian and avian pallium. However, lack of genetic access to defined pallial cell types in non-mammalian vertebrates has hindered progress in resolving connections between molecular and physiological phenotypes. A definitive mapping of the physiology of pallial cells onto their molecular identities in birds is critical for understanding how synaptic and computational properties depend on underlying molecular phenotypes. Using viral tools to target excitatory versus inhibitory neurons in the zebra finch auditory association pallium (calmodulin-dependent kinase alpha [CaMKIIα] and glutamate decarboxylase 1 [GAD1] promoters, respectively), we systematically tested predictions derived from mammalian pallium. We identified two genetically distinct neuronal populations that exhibit profound physiological and computational similarities with mammalian excitatory and inhibitory pallial cells, definitively aligning putative cell types in avian caudal nidopallium with these molecular identities. Specifically, genetically identified CaMKIIα and GAD1 cell types in avian auditory association pallium exhibit distinct intrinsic physiological parameters, distinct auditory coding principles, and inhibitory-dependent pallial synchrony, gamma oscillations, and local suppression. The retention, or convergence, of these molecular and physiological features in both birds and mammals clarifies the characteristics of pallial circuits for advanced cognitive abilities.
Collapse
Affiliation(s)
- Jeremy A Spool
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Matheus Macedo-Lima
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA; CAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil
| | - Garrett Scarpa
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuichi Morohashi
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Yoko Yazaki-Sugiyama
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
14
|
Ciccarelli A, Weijers D, Kwan W, Warner C, Bourne J, Gross CT. Sexually dimorphic perineuronal nets in the rodent and primate reproductive circuit. J Comp Neurol 2021; 529:3274-3291. [PMID: 33950531 DOI: 10.1002/cne.25167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022]
Abstract
Perineuronal nets are extracellular glycoprotein structures that have been found on some neurons in the central nervous system and that have been shown to regulate their structural plasticity. Until now work on perineuronal nets has been focused on their role in cortical structures where they are selectively expressed on parvalbumin-positive neurons and are reported to restrict the experience-dependent plasticity of inhibitory afferents. Here, we examined the expression of perineuronal nets subcortically, showing that they are expressed in several discrete structures, including nuclei that comprise the brain network controlling reproductive behaviors (e.g., mounting, lordosis, aggression, and social defense). In particular, perineuronal nets were found in the posterior dorsal division of the medial amygdala, the medial preoptic nucleus, the posterior medial bed nucleus of the stria terminalis, the ventrolateral ventromedial hypothalamus and adjacent tuberal nucleus, and the ventral premammillary nucleus in both the mouse and primate brain. Comparison of perineuronal nets in male and female mice revealed a significant sexually dimorphic expression, with expression found prominently on estrogen receptor expressing neurons in the medial amygdala. These findings suggest that perineuronal nets may be involved in regulating neural plasticity in the mammalian reproductive system.
Collapse
Affiliation(s)
- Alessandro Ciccarelli
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Rome
| | - Dilys Weijers
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Rome
| | - William Kwan
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Claire Warner
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - James Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Cornelius T Gross
- Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Rome
| |
Collapse
|
15
|
Rho GTPases in the Amygdala-A Switch for Fears? Cells 2020; 9:cells9091972. [PMID: 32858950 PMCID: PMC7563696 DOI: 10.3390/cells9091972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
Fear is a fundamental evolutionary process for survival. However, excess or irrational fear hampers normal activity and leads to phobia. The amygdala is the primary brain region associated with fear learning and conditioning. There, Rho GTPases are molecular switches that act as signaling molecules for further downstream processes that modulate, among others, dendritic spine morphogenesis and thereby play a role in fear conditioning. The three main Rho GTPases—RhoA, Rac1, and Cdc42, together with their modulators, are known to be involved in many psychiatric disorders that affect the amygdala′s fear conditioning mechanism. Rich2, a RhoGAP mainly for Rac1 and Cdc42, has been studied extensively in such regard. Here, we will discuss these effectors, along with Rich2, as a molecular switch for fears, especially in the amygdala. Understanding the role of Rho GTPases in fear controlling could be beneficial for the development of therapeutic strategies targeting conditions with abnormal fear/anxiety-like behaviors.
Collapse
|
16
|
Fu JY, Yu XD, Zhu Y, Xie SZ, Tang MY, Yu B, Li XM. Whole-Brain Map of Long-Range Monosynaptic Inputs to Different Cell Types in the Amygdala of the Mouse. Neurosci Bull 2020; 36:1381-1394. [PMID: 32691225 PMCID: PMC7674542 DOI: 10.1007/s12264-020-00545-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
The amygdala, which is involved in various behaviors and emotions, is reported to connect with the whole brain. However, the long-range inputs of distinct cell types have not yet been defined. Here, we used a retrograde trans-synaptic rabies virus to generate a whole-brain map of inputs to the main cell types in the mouse amygdala. We identified 37 individual regions that projected to neurons expressing vesicular glutamate transporter 2, 78 regions to parvalbumin-expressing neurons, 104 regions to neurons expressing protein kinase C-δ, and 89 regions to somatostatin-expressing neurons. The amygdala received massive projections from the isocortex and striatum. Several nuclei, such as the caudate-putamen and the CA1 field of the hippocampus, exhibited input preferences to different cell types in the amygdala. Notably, we identified several novel input areas, including the substantia innominata and zona incerta. These findings provide anatomical evidence to help understand the precise connections and diverse functions of the amygdala.
Collapse
Affiliation(s)
- Jia-Yu Fu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiao-Dan Yu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi Zhu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shi-Ze Xie
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Meng-Yu Tang
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bin Yu
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiao-Ming Li
- Center for Neuroscience and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Joint Institute for Genetics and Genome Medicine between Zhejiang University and University of Toronto, Hangzhou, 310058, China.
| |
Collapse
|
17
|
Beyeler A, Dabrowska J. Neuronal diversity of the amygdala and the bed nucleus of the stria terminalis. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020; 26:63-100. [PMID: 32792868 DOI: 10.1016/b978-0-12-815134-1.00003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Anna Beyeler
- Neurocentre Magendie, French National Institutes of Health (INSERM) unit 1215, Neurocampus of Bordeaux University, Bordeaux, France
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
18
|
Neugebauer V, Mazzitelli M, Cragg B, Ji G, Navratilova E, Porreca F. Amygdala, neuropeptides, and chronic pain-related affective behaviors. Neuropharmacology 2020; 170:108052. [PMID: 32188569 DOI: 10.1016/j.neuropharm.2020.108052] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/11/2020] [Indexed: 12/16/2022]
Abstract
Neuropeptides play important modulatory roles throughout the nervous system, functioning as direct effectors or as interacting partners with other neuropeptide and neurotransmitter systems. Limbic brain areas involved in learning, memory and emotions are particularly rich in neuropeptides. This review will focus on the amygdala, a limbic region that plays a key role in emotional-affective behaviors and pain modulation. The amygdala is comprised of different nuclei; the basolateral (BLA) and central (CeA) nuclei and in between, the intercalated cells (ITC), have been linked to pain-related functions. A wide range of neuropeptides are found in the amygdala, particularly in the CeA, but this review will discuss those neuropeptides that have been explored for their role in pain modulation. Calcitonin gene-related peptide (CGRP) is a key peptide in the afferent nociceptive pathway from the parabrachial area and mediates excitatory drive of CeA neurons. CeA neurons containing corticotropin releasing factor (CRF) and/or somatostatin (SOM) are a source of long-range projections and serve major output functions, but CRF also acts locally to excite neurons in the CeA and BLA. Neuropeptide S (NPS) is associated with inhibitory ITC neurons that gate amygdala output. Oxytocin and vasopressin exert opposite (inhibitory and excitatory, respectively) effects on amygdala output. The opioid system of mu, delta and kappa receptors (MOR, DOR, KOR) and their peptide ligands (β-endorphin, enkephalin, dynorphin) have complex and partially opposing effects on amygdala function. Neuropeptides therefore serve as valuable targets to regulate amygdala function in pain conditions. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bryce Cragg
- Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
19
|
Affiliation(s)
- Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Health Care System, Columbia, SC, United States
| | - Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
20
|
McDonald AJ, Jones GC, Mott DD. Diverse glutamatergic inputs target spines expressing M1 muscarinic receptors in the basolateral amygdala: An ultrastructural analysis. Brain Res 2019; 1722:146349. [PMID: 31348911 PMCID: PMC6755062 DOI: 10.1016/j.brainres.2019.146349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 11/19/2022]
Abstract
Although it is known that acetylcholine acting through M1 muscarinic receptors (M1Rs) is essential for memory consolidation in the anterior basolateral nucleus of the amygdala (BLa), virtually nothing is known about the circuits involved. In the hippocampus M1R activation facilitates long-term potentiation (LTP) by potentiating NMDA glutamate receptor (NMDAR) currents. The majority of NMDAR+ profiles in the BLa are spines. Since about half of dendritic spines of BLa pyramidal neurons (PNs) receiving glutamatergic inputs are M1R-immunoreactive (M1R+) it is possible that the role of M1Rs in BLa mnemonic functions also involves potentiation of NMDAR currents in spines. However, the finding that only about half of BLa spines are M1R+ suggests that this proposed mechanism may only apply to a subset of glutamatergic inputs. As a first step in the identification of differential glutamatergic inputs to M1R+ spines in the BLa, the present electron microscopic study used antibodies to two different vesicular glutamate transporter proteins (VGluTs) to label two different subsets of glutamatergic inputs to M1R+ spines. These inputs are largely complimentary with VGluT1+ inputs arising mainly from cortical structures and the basolateral nucleus, and VGluT2+ inputs arising mainly from the thalamus. It was found that about one-half of the spines that were postsynaptic to VGluT1+ or VGluT2+ terminals were M1R+. In addition, a subset of the VGluT1+ or VGluT2+ axon terminals were M1R+, including those that synapsed with M1R+ spines. These results suggest that acetylcholine can modulate glutamatergic inputs to BLa spines by presynaptic as well as postsynaptic M1R-mediated mechanisms.
Collapse
Affiliation(s)
- Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Grace C Jones
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - David D Mott
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| |
Collapse
|
21
|
Carrero JP, Kaigler KF, Hartshorn GH, Fadel JR, Wilson MA. Mu opioid receptor regulation of glutamate efflux in the central amygdala in response to predator odor. Neurobiol Stress 2019; 11:100197. [PMID: 31832510 PMCID: PMC6888766 DOI: 10.1016/j.ynstr.2019.100197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/23/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
The amygdala plays an important role in the responses to predator threat. Glutamatergic processes in amygdala regulate the behavioral responses to predator stress, and we have found that exposure to ferret odor activates glutamatergic neurons of the basolateral amygdala [BLA] which are known to project to the central amygdala [CeA]. Therefore, we tested if predator stress would increase glutamate release in the rat CeA using in vivo microdialysis, while monitoring behavioral responses during a 1 h exposure to ferret odor. Since injections of mu opioid receptor [MOR] agonists and antagonists into the CeA modulate behavioral responses to predator odor, we locally infused the MOR agonist DAMGO or the MOR antagonist CTAP into the CeA during predator stress to examine effects on glutamate efflux and behavior. We found that ferret odor exposure increased glutamate, but not GABA, efflux in the CeA, and this effect was attenuated by tetrodotoxin. Interestingly, increases in glutamate efflux elicited by ferret odor exposure were blocked by infusion of CTAP, but CTAP did not alter the behavioral responses during predator stress. DAMGO alone enhanced glutamate efflux, but did not modulate glutamate efflux during predator stress. These studies demonstrate that ferret odor exposure, like other stressors, enhances glutamate efflux in the CeA. Further, they suggest that activation of MOR in the CeA may help shape the defensive response to predator odor and other threats.
Collapse
Affiliation(s)
- Jeffrey Parrilla Carrero
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| | - Kris F. Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| | - George H. Hartshorn
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| | - Jim R. Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| | - Marlene A. Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
- Columbia VA Health Care System, Columbia, SC, 29209, USA
| |
Collapse
|
22
|
Off-Target Effects in Transgenic Mice: Characterization of Dopamine Transporter (DAT)-Cre Transgenic Mouse Lines Exposes Multiple Non-Dopaminergic Neuronal Clusters Available for Selective Targeting within Limbic Neurocircuitry. eNeuro 2019; 6:ENEURO.0198-19.2019. [PMID: 31481399 PMCID: PMC6873162 DOI: 10.1523/eneuro.0198-19.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 12/21/2022] Open
Abstract
Transgenic mouse lines are instrumental in our attempt to understand brain function. Promoters driving transgenic expression of the gene encoding Cre recombinase are crucial to ensure selectivity in Cre-mediated targeting of floxed alleles using the Cre-Lox system. For the study of dopamine (DA) neurons, promoter sequences driving expression of the Dopamine transporter (Dat) gene are often implemented and several DAT-Cre transgenic mouse lines have been found to faithfully direct Cre activity to DA neurons. While evaluating an established DAT-Cre mouse line, reporter gene expression was unexpectedly identified in cell somas within the amygdala. To indiscriminately explore Cre activity in DAT-Cre transgenic lines, systematic whole-brain analysis of two DAT-Cre mouse lines was performed upon recombination with different types of floxed reporter alleles. Results were compared with data available from the Allen Institute for Brain Science. The results identified restricted DAT-Cre-driven reporter gene expression in cell clusters within several limbic areas, including amygdaloid and mammillary subnuclei, septum and habenula, areas classically associated with glutamatergic and GABAergic neurotransmission. While no Dat gene expression was detected, ample co-localization between DAT-Cre-driven reporter and markers for glutamatergic and GABAergic neurons was found. Upon viral injection of a fluorescent reporter into the amygdala and habenula, distinct projections from non-dopaminergic DAT-Cre neurons could be distinguished. The study demonstrates that DAT-Cre transgenic mice, beyond their usefulness in recombination of floxed alleles in DA neurons, could be implemented as tools to achieve selective targeting in restricted excitatory and inhibitory neuronal populations within the limbic neurocircuitry.
Collapse
|
23
|
Phenotyping neurons activated in the mouse brain during restoration of salt debt. J Chem Neuroanat 2019; 101:101665. [PMID: 31398430 DOI: 10.1016/j.jchemneu.2019.101665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022]
Abstract
Salt overconsumption contributes to hypertension, which is a major risk factor for stroke, heart and kidney disease. Characterising neuronal pathways that may control salt consumption is therefore important for developing novel approaches for reducing salt overconsumption. Here, we identify neurons within the mouse central amygdala (CeA), lateral parabrachial nucleus (LPBN), intermediate nucleus of the solitary tract (iNTS), and caudal NTS (cNTS) that are activated and display Fos immunoreactivity in mice that have consumed salt in order to restore a salt debt, relative to salt replete and salt depleted controls. Double-label immunohistochemical studies revealed that salt restoring mice had significantly greater densities of activated enkephalin neurons within the CeA and iNTS, while statistically significant changes within the LPBN and cNTS were not observed. Furthermore, within the CeA, restoration of salt debt conferred a significant increase in the density of activated calretinin neurons, while there was no change relative to control groups in the density of activated neurons that co-expressed protein kinase C delta (PKC-δ). Taken together, these studies highlight the importance of opioid systems within the CeA and iNTS in neuronal processes associated with salt restoration, and may aid the development of future pharmacological and other strategies for reducing salt overconsumption.
Collapse
|
24
|
Molecular, Morphological, and Functional Characterization of Corticotropin-Releasing Factor Receptor 1-Expressing Neurons in the Central Nucleus of the Amygdala. eNeuro 2019; 6:ENEURO.0087-19.2019. [PMID: 31167849 PMCID: PMC6584068 DOI: 10.1523/eneuro.0087-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/12/2019] [Accepted: 05/25/2019] [Indexed: 01/28/2023] Open
Abstract
The central nucleus of the amygdala (CeA) is a brain region implicated in anxiety, stress-related disorders and the reinforcing effects of drugs of abuse. Corticotropin-releasing factor (CRF, Crh) acting at cognate type 1 receptors (CRF1, Crhr1) modulates inhibitory and excitatory synaptic transmission in the CeA. Here, we used CRF1:GFP reporter mice to characterize the morphological, neurochemical and electrophysiological properties of CRF1-expressing (CRF1+) and CRF1-non-expressing (CRF1-) neurons in the CeA. We assessed these two neuronal populations for distinctions in the expression of GABAergic subpopulation markers and neuropeptides, dendritic spine density and morphology, and excitatory transmission. We observed that CeA CRF1+ neurons are GABAergic but do not segregate with calbindin (CB), calretinin (CR), parvalbumin (PV), or protein kinase C-δ (PKCδ). Among the neuropeptides analyzed, Penk and Sst had the highest percentage of co-expression with Crhr1 in both the medial and lateral CeA subdivisions. Additionally, CeA CRF1+ neurons had a lower density of dendritic spines, which was offset by a higher proportion of mature spines compared to neighboring CRF1- neurons. Accordingly, there was no difference in basal spontaneous glutamatergic transmission between the two populations. Application of CRF increased overall vesicular glutamate release onto both CRF1+ and CRF1- neurons and does not affect amplitude or kinetics of EPSCs in either population. These novel data highlight important differences in the neurochemical make-up and morphology of CRF1+ compared to CRF1- neurons, which may have important implications for the transduction of CRF signaling in the CeA.
Collapse
|
25
|
Paretkar T, Dimitrov E. Activation of enkephalinergic (Enk) interneurons in the central amygdala (CeA) buffers the behavioral effects of persistent pain. Neurobiol Dis 2018; 124:364-372. [PMID: 30572023 DOI: 10.1016/j.nbd.2018.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/23/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Abstract
Enk neurons in CeA modulate the activity of the amygdala projection neurons and it is very likely that changes of Enk signaling cause the heightened anxiety that accompanies chronic pain. We use chemogenetics and transgenic mice to investigate the effects of acute and continuous activation of the amygdala Enk neurons on persistent pain and anxiodepressive-like behavior in mice. Enk-cre mice were injected bilaterally into the CeA with cre-activated AAV-DREADD/Gq/mCherry, while neuropathic pain was induced by sciatic nerve constriction. A single injection of DREADD's ligand CNO decreased the anxiety-like behavior in both, uninjured mice and in mice with neuropathic pain and produced robust analgesia that lasted for 24 h. Furthermore, the activation of Enk neurons by the DREADD ligand led to increased c-Fos expression in PKC-δ interneurons of the CeA and in non-serotonergic neurons in the ventrolateral periaqueductal gray (vlPAG), a brain structure that is an essential part of the descending pain inhibitory system. Next, we added CNO to the drinking water of the experimental mice for 14 days in order to assess the effects of continuous activation of CeA Enk interneurons on anxiodepressive-like behavior, which is affected by chronic pain. The prolonged activation of the CeA Enk interneurons reduced neohypophagia in the novelty suppressed feeding test and increased ΔFosB (a marker for sustained neuronal activation) in the vlPAG of mice with chronic pain. All together, the results of our experiments point to an important role of the CeA Enk neurons in the control of both nociception and emotion. Activation of Enk neurons resulted in sustained analgesia accompanied by anxiolysis and antidepressant effects. Very likely, these effects of CeA Enk neurons are result of the activation of vlPAG, a brain region that is essential not only for descending inhibition of pain but it is also a core element in the resilience to stress.
Collapse
Affiliation(s)
- Tanvi Paretkar
- Department of Physiology and Biophysics, Chicago Medical School Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd., North Chicago, IL 60064, United States.
| | - Eugene Dimitrov
- Department of Physiology and Biophysics, Chicago Medical School Rosalind Franklin University of Medicine and Science, 3333 Green Bay Rd., North Chicago, IL 60064, United States.
| |
Collapse
|
26
|
Wouterlood FG, van Oort S, Bloemhard L, Flierman NA, Spijkerman J, Wright CI, Beliën JAM, Groenewegen HJ. Neurochemical fingerprinting of amygdalostriatal and intra-amygdaloid projections: a tracing-immunofluorescence study in the rat. J Chem Neuroanat 2018; 94:154-172. [PMID: 30412707 DOI: 10.1016/j.jchemneu.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Abstract
Amygdalostriatal and intra-amygdaloid fiber connectivity was studied in rats via injections of one of the tracers Phaseolus vulgaris leucoagglutinin (PHA-L) or biotinylated dextran amine (BDA) into various amygdaloid nuclei. To determine the neurotransmitter identity of labeled fibers we combined tracer detection with immunofluorescence staining, using antibodies against vesicular transporters (VTs) associated with glutamatergic (VGluT1, VGluT2) or GABAergic (VGAT) neurotransmission. High-magnification confocal laser scanning images were screened for overlap: occurrence inside tracer labeled fibers or axon terminals of immunofluorescence signal associated with one of the VTs. Labeled amygdalostriatal fibers were seen when tracer had been injected into the magnocellular and parvicellular portions of the basal amygdaloid nucleus and the lateral amygdaloid nucleus (nuclei belonging to 'cortical type' amygdaloid nuclei). Intra-amygdaloidal projection fibers were mostly found after tracer injections in the central and medial amygdaloid nuclei ('striatal type' amygdaloid nuclei). Terminals of tracer-labeled amygdalostriatal fibers contained immunofluorescence signal associated mostly with VGluT1 and to a lesser degree with VGluT2 or VGAT. Intra-amygdaloid labeled fibers showed colocalization mostly of VGluT1, followed by VGAT. VGluT2 co-occurred in a minority of intra-amygdaloid tracer-containing fiber terminals. We conclude from our observations that both amygdalostriatal and intra-amygdaloid projections, arising from, respectively, 'cortical type' and 'striatal type' amygdaloid nuclei contain strong glutamatergic and modest GABAergic components. The glutamatergic fibers express either VGluT1 or VGluT2. The absence in large numbers of tracer labeled fibers of expression of one of the selected VTs leads us to suspect that amygdalostriatal projection fibers may contain hitherto neglected neurotransmitters in these connections, e.g., aspartate.
Collapse
Affiliation(s)
- Floris G Wouterlood
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| | - Sanne van Oort
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lucian Bloemhard
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nico A Flierman
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jorik Spijkerman
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Christopher I Wright
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jeroen A M Beliën
- Department of Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Hendrik J Groenewegen
- Amsterdam UMC, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Pathology, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Sarkar S, Atoji Y. Distribution of vesicular glutamate transporters in the brain of the turtle (Pseudemys scripta elegans). J Comp Neurol 2018; 526:1690-1702. [PMID: 29603220 DOI: 10.1002/cne.24439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
The distribution of glutamatergic neurons has been extensively studied in mammalian and avian brains, but its distribution in a reptilian brain remains unknown. In the present study, the distribution of subpopulations of glutamatergic neurons in the turtle brain was examined by in situ hybridization using probes for vesicular glutamate transporter (VGLUT) 1-3. Strong VGLUT1 expression was observed in the telencephalic pallium; the mitral cells of the olfactory bulb, the medial, dorsomedial, dorsal, and lateral parts of the cerebral cortex, pallial thickening, and dorsal ventricular ridge; and also, in granule cells of the cerebellar cortex. Moderate to weak expression was found in the lateral and medial amygdaloid nuclei, the periventricular cellular layer of the optic tectum, and in some brainstem nuclei. VGLUT2 was weakly expressed in the telencephalon but was intensely expressed in the dorsal thalamic nuclei, magnocellular part of the isthmic nucleus, brainstem nuclei, and the rostral cervical segment of the spinal cord. The cerebellar cortex was devoid of VGLUT2 expression. The central amygdaloid nucleus did not express VGLUT1 or VGLUT2. VGLUT3 was localized in the parvocellular part of the isthmic nucleus, superior and inferior raphe nuclei, and cochlear nucleus. Our results indicate that the distribution of VGLUTs in the turtle brain is similar to that in the mammalian brain rather than that in the avian brain.
Collapse
Affiliation(s)
- Sonjoy Sarkar
- Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yasuro Atoji
- Laboratory of Veterinary anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
28
|
Tenorio-Lopes L, Henry MS, Marques D, Tremblay MÈ, Drolet G, Bretzner F, Kinkead R. Neonatal maternal separation opposes the facilitatory effect of castration on the respiratory response to hypercapnia of the adult male rat: Evidence for the involvement of the medial amygdala. J Neuroendocrinol 2017; 29. [PMID: 29063642 DOI: 10.1111/jne.12550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/09/2023]
Abstract
Respiratory manifestations of panic disorder (PD) include a greater respiratory instability and enhanced responsiveness to CO2 compared to normal individuals. Although the prevalence of PD is approximately three times greater in women compared to men, the origins of this sexual dimorphism remain poorly understood. Similar to PD patients, adult female rats previously subjected to neonatal maternal separation (NMS) show an increase in their ventilatory response to CO2 . Because this effect of NMS is not observed in males, we hypothesised that testosterone prevents NMS-induced hyper-responsiveness to CO2 . Pups subjected to NMS were placed in an incubator for 3 h d-1 from postnatal days 3-12. Control pups remained undisturbed. At adulthood (8-10 weeks of age), rats were then subjected either to sham surgery or castration. Fourteen days later, breathing was measured at rest (room air) and during acute exposure to hypercapnia (5 and 10% CO2 for 10 minutes each) using plethysmography. To gain insight into the mechanisms involved, c-fos expression was used as an indicator of neuronal activation. Brains were collected following air or CO2 exposure for quantification of c-fos positive cells by immunohistochemistry in selected regions, including the paraventricular nucleus of the hypothalamus, the dorsomedial hypothalamus and the amygdalar complex. Castration produced a 100% increase of hyperventilatory response to 10% CO2 in control rats. Unexpectedly, castration had no effect on the hyperventilatory response of NMS rats. The intensity of the hypercapnic response was inversely correlated with c-fos expression in the medial amygdala. We conclude that testosterone prevents the hyper-responsiveness to CO2 , whereas NMS attenuates sensitivity to hormone withdrawal. We propose that an inhibitory influence from the medial amygdala contributes to this effect.
Collapse
Affiliation(s)
- L Tenorio-Lopes
- Department of Pediatrics, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - M S Henry
- Department of Molecular Medicine, Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, Université Laval, Québec, QC, Canada
| | - D Marques
- Departamento de Morfologia e Fisiologia Animal Fac. de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista, Jaboticabal, Brazil
| | - M-È Tremblay
- Department of Molecular Medicine, Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, Université Laval, Québec, QC, Canada
| | - G Drolet
- Department of Molecular Medicine, Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, Université Laval, Québec, QC, Canada
| | - F Bretzner
- Department of Molecular Medicine, Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, Université Laval, Québec, QC, Canada
| | - R Kinkead
- Department of Pediatrics, Centre de Recherche de l'Institut Universitaire de Cardiologie et Pneumologie de Québec, Université Laval, Québec, QC, Canada
| |
Collapse
|
29
|
Granholm L, Todkar A, Bergman S, Nilsson K, Comasco E, Nylander I. The expression of opioid genes in non-classical reward areas depends on early life conditions and ethanol intake. Brain Res 2017; 1668:36-45. [PMID: 28511993 DOI: 10.1016/j.brainres.2017.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/21/2017] [Accepted: 05/08/2017] [Indexed: 12/28/2022]
Abstract
The young brain is highly sensitive to environmental influences that can cause long-term changes in neuronal function, possibly through altered gene expression. The endogenous opioid system continues to mature after birth and because of its involvement in reward, an inadequate maturation of this system could lead to enhanced susceptibility for alcohol use disorder. Recent studies show that the classical reward areas nucleus accumbens and ventral tegmental area are less affected by early life stress whereas endogenous opioids in non-classical areas, e.g. dorsal striatum and amygdala, are highly responsive. The aim was to investigate the interaction between early life conditions and adult voluntary ethanol intake on opioid gene expression. Male Wistar rats were exposed to conventional rearing, 15, or 360min of daily maternal separation (MS) postnatal day 1-21, and randomly assigned to ethanol or water drinking postnatal week 10-16. Rats exposed to early life stress (MS360) had increased opioid receptor gene (Oprm1, Oprd1 and Oprk1) expression in the dorsal striatum. Ethanol drinking was associated with lower striatal Oprd1 and Oprk1 expression solely in rats exposed to early life stress. Furthermore, rats exposed to early life stress had high inherent Pomc expression in the amygdala but low expression after ethanol intake. Thus, adverse events early in life induced changes in opioid gene expression and also influenced the central molecular response to ethanol intake. These long-term consequences of early life stress can contribute to the enhanced risk for excessive ethanol intake and alcohol use disorder seen after exposure to childhood adversity.
Collapse
Affiliation(s)
- Linnea Granholm
- Neuropharmacology, Addiction and Behaviour, Dept. Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Aniruddah Todkar
- Neuropsychopharmacology, Dept. Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Sofia Bergman
- Neuropsychopharmacology, Dept. Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Kent Nilsson
- Västerås Centre for Clinical Research, Uppsala University, Uppsala, Sweden.
| | - Erika Comasco
- Neuropsychopharmacology, Dept. Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Ingrid Nylander
- Neuropharmacology, Addiction and Behaviour, Dept. Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
30
|
Endogenous opioids regulate moment-to-moment neuronal communication and excitability. Nat Commun 2017; 8:14611. [PMID: 28327612 PMCID: PMC5364458 DOI: 10.1038/ncomms14611] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 01/14/2017] [Indexed: 01/12/2023] Open
Abstract
Fear and emotional learning are modulated by endogenous opioids but the cellular basis for this is unknown. The intercalated cells (ITCs) gate amygdala output and thus regulate the fear response. Here we find endogenous opioids are released by synaptic stimulation to act via two distinct mechanisms within the main ITC cluster. Endogenously released opioids inhibit glutamate release through the δ-opioid receptor (DOR), an effect potentiated by a DOR-positive allosteric modulator. Postsynaptically, the opioids activate a potassium conductance through the μ-opioid receptor (MOR), suggesting for the first time that endogenously released opioids directly regulate neuronal excitability. Ultrastructural localization of endogenous ligands support these functional findings. This study demonstrates a new role for endogenously released opioids as neuromodulators engaged by synaptic activity to regulate moment-to-moment neuronal communication and excitability. These distinct actions through MOR and DOR may underlie the opposing effect of these receptor systems on anxiety and fear. The endogenous opioid system regulates fear and anxiety, but the underlying cellular mechanism is unclear. Winters et al. shows that in the intercalated cells (ITC) of the amygdala, endogenous opioids suppress glutamatergic inputs via the δ-opioid receptor presynaptically, and reduce the excitability of ITCs via the μ-opioid receptor postsynaptically.
Collapse
|
31
|
Immunohistochemical investigation of the internal structure of the mouse subiculum. Neuroscience 2016; 337:242-266. [PMID: 27664459 DOI: 10.1016/j.neuroscience.2016.09.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/27/2022]
Abstract
The subiculum is the output component of the hippocampal formation and holds a key position in the neural circuitry of memory. Previous studies have demonstrated the subiculum's connectivity to other brain areas in detail; however, little is known regarding its internal structure. We investigated the cytoarchitecture of the temporal and mid-septotemporal parts of the subiculum using immunohistochemistry. The border between the CA1 region and subiculum was determined by both cytoarchitecture and zinc transporter 3 (ZnT3)-immunoreactivity (IR), whereas the border between the subiculum and presubiculum (PreS) was partially indicated by glutamate receptor 1 (GluR1)-IR. The subiculum was divided into proximal and distal subfields based on cytoarchitecture and immunohistochemistry for calbindin (CB), nitric oxide synthase (NOS) and Purkinje cell protein 4 (PCP4). The proximal subiculum (defined here as subiculum 2) was composed of five layers: the molecular layer (layer 1), the medium-sized pyramidal cell layer (layer 2) that contained NOS- and PCP4-positive neurons, the large pyramidal cell layer (layer 3) characterized by the accumulation of ZnT3- (more proximally) and vesicular glutamate transporter 2-positive (more distally) boutons, layer 4 containing polymorphic cells, and the deepest layer 5 composed of PCP4-positive cells with long apical dendrites that reached layer 1. The distal subiculum (subiculum 1) consisting of smaller neurons did not show these features. Quantitative analyses of the size and numerical density of somata substantiated this delineation. Both the proximal-distal division and five-layered structure in the subiculum 2 were confirmed throughout the temporal two-thirds of the subiculum. These findings will provide a new structural basis for hippocampal investigations.
Collapse
|
32
|
Vicario A, Mendoza E, Abellán A, Scharff C, Medina L. Genoarchitecture of the extended amygdala in zebra finch, and expression of FoxP2 in cell corridors of different genetic profile. Brain Struct Funct 2016; 222:481-514. [PMID: 27160258 PMCID: PMC5225162 DOI: 10.1007/s00429-016-1229-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 04/21/2016] [Indexed: 02/01/2023]
Abstract
We used a battery of genes encoding transcription factors (Pax6, Islet1, Nkx2.1, Lhx6, Lhx5, Lhx9, FoxP2) and neuropeptides to study the extended amygdala in developing zebra finches. We identified different components of the central extended amygdala comparable to those found in mice and chickens, including the intercalated amygdalar cells, the central amygdala, and the lateral bed nucleus of the stria terminalis. Many cells likely originate in the dorsal striatal domain, ventral striatal domain, or the pallidal domain, as is the case in mice and chickens. Moreover, a cell subpopulation of the central extended amygdala appears to originate in the prethalamic eminence. As a general principle, these different cells with specific genetic profiles and embryonic origin form separate or partially intermingled cell corridors along the extended amygdala, which may be involved in different functional pathways. In addition, we identified the medial amygdala of the zebra finch. Like in the chickens and mice, it is located in the subpallium and is rich in cells of pallido-preoptic origin, containing minor subpopulations of immigrant cells from the ventral pallium, alar hypothalamus and prethalamic eminence. We also proposed that the medial bed nucleus of the stria terminalis is composed of several parallel cell corridors with different genetic profile and embryonic origin: preoptic, pallidal, hypothalamic, and prethalamic. Several of these cell corridors with distinct origin express FoxP2, a transcription factor implicated in synaptic plasticity. Our results pave the way for studies using zebra finches to understand the neural basis of social behavior, in which the extended amygdala is involved.
Collapse
Affiliation(s)
- Alba Vicario
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain
| | | | - Antonio Abellán
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain
| | | | - Loreta Medina
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Avda. Alcalde Rovira Roure 80, Catalunya, 25198, Lleida, Spain.
| |
Collapse
|
33
|
Zhang J, McDonald AJ. Light and electron microscopic analysis of enkephalin-like immunoreactivity in the basolateral amygdala, including evidence for convergence of enkephalin-containing axon terminals and norepinephrine transporter-containing axon terminals onto common targets. Brain Res 2016; 1636:62-73. [PMID: 26835559 DOI: 10.1016/j.brainres.2016.01.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/20/2016] [Accepted: 01/25/2016] [Indexed: 12/21/2022]
Abstract
Modulatory interactions of opioids and norepinephrine (NE) in the anterior subdivision of the basolateral nucleus of the amygdala (BLa) are critical for the consolidation of memories of emotionally arousing experiences. Although there have been several studies of the noradrenergic system in the amygdalar basolateral nuclear complex (BLC), little is known about the chemical neuroanatomy of opioid systems in this region. To address this knowledge gap the present study first examined the distribution of met-enkephalin-like immunoreactivity (ENK-ir) in the BLC at the light microscopic level, and then utilized dual-labeling immunocytochemistry combined with electron microscopy to investigate the extent of convergence of NE and ENK terminals onto common structures in the BLa. Antibodies to ENK and the norepinephrine transporter (NET) were used in these studies. Light microscopic examination revealed that a subpopulation of small nonpyramidal neurons expressed ENK-ir in all nuclei of the BLC. In addition, the somata of some pyramidal cells exhibited light to moderate ENK-ir. ENK+ axon terminals were also observed. Ultrastructural analysis confined to the BLa revealed that most ENK+ axon terminals formed asymmetrical synapses that mainly contacted spines and shafts of thin dendrites. ENK+ terminals forming symmetrical synapses mainly contacted dendritic shafts. Approximately 20% of NET+ terminals contacted a structure that was also contacted by an ENK+ terminal and 6% of NET+ terminals contacted an ENK+ terminal. These findings suggest that ENK and NE terminals in the BLa may interact by targeting common dendrites and by direct interactions between the two types of terminals.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States.
| |
Collapse
|
34
|
Evanson NK, Herman JP. Role of Paraventricular Nucleus Glutamate Signaling in Regulation of HPA Axis Stress Responses. ACTA ACUST UNITED AC 2015; 21:253-260. [PMID: 26472933 DOI: 10.4036/iis.2015.b.10] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The hypothalamus-pituitary-adrenal (HPA) axis is the main neuroendocrine arm of the stress response, activation of which leads to the production of glucocorticoid hormones. Glucocorticoids are steroid hormones that are secreted from the adrenal cortex, and have a variety of effects on the body, including modulation of the immune system, suppression of reproductive hormones maintenance of blood glucose levels, and maintenance of blood pressure. Glutamate plays an important role in coordination of HPA axis output. There is strong evidence that glutamate drives HPA axis stress responses through excitatory signaling via ionotropic glutamate receptor signaling. However, glutamate signaling via kainate receptors and group I metabotropic receptors inhibit HPA drive, probably via presynaptic inhibitory mechanisms. Notably, kainate receptors are also localized in the median eminence, and appear to play an excitatory role in control of CRH release at the nerve terminals. Finally, glutamate innervation of the PVN undergoes neuroplastic changes under conditions of chronic stress, and may be involved in sensitization of HPA axis responses. Altogether, the data suggest that glutamate plays a complex role in excitation of CRH neurons, acting at multiple levels to both drive HPA axis responses and limit over-activation.
Collapse
Affiliation(s)
- Nathan K Evanson
- Cincinnati Children's Hospital Medical Center, Department of Pediatrics, Pediatric rehabilitation division. 3333 Burnet Ave, MLC 4009, Cincinnati, OH, USA. 45229
| | - James P Herman
- Department of Psychiatry, University of Cincinnati. 2170 E. Galbraith Road, Cincinnati, OH, USA. 45237
| |
Collapse
|
35
|
Zhang J, Muller JF, McDonald AJ. Mu opioid receptor localization in the basolateral amygdala: An ultrastructural analysis. Neuroscience 2015; 303:352-63. [PMID: 26164501 DOI: 10.1016/j.neuroscience.2015.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Receptor binding studies have shown that the density of mu opioid receptors (MORs) in the basolateral amygdala is among the highest in the brain. Activation of these receptors in the basolateral amygdala is critical for stress-induced analgesia, memory consolidation of aversive events, and stress adaptation. Despite the importance of MORs in these stress-related functions, little is known about the neural circuits that are modulated by amygdalar MORs. In the present investigation light and electron microscopy combined with immunohistochemistry was used to study the expression of MORs in the anterior basolateral nucleus (BLa). At the light microscopic level, light to moderate MOR-immunoreactivity (MOR-ir) was observed in a small number of cell bodies of nonpyramidal interneurons and in a small number of processes and puncta in the neuropil. At the electron microscopic level most MOR-ir was observed in dendritic shafts, dendritic spines, and axon terminals. MOR-ir was also observed in the Golgi apparatus of the cell bodies of pyramidal neurons (PNs) and interneurons. Some of the MOR-positive (MOR+) dendrites were spiny, suggesting that they belonged to PNs, while others received multiple asymmetrical synapses typical of interneurons. The great majority of MOR+ axon terminals (80%) that formed synapses made asymmetrical (excitatory) synapses; their main targets were spines, including some that were MOR+. The main targets of symmetrical (inhibitory and/or neuromodulatory) synapses were dendritic shafts, many of which were MOR+, but some of these terminals formed synapses with somata or spines. All of our observations were consistent with the few electrophysiological studies which have been performed on MOR activation in the basolateral amygdala. Collectively, these findings suggest that MORs may be important for filtering out weak excitatory inputs to PNs, allowing only strong inputs or synchronous inputs to influence pyramidal neuronal firing.
Collapse
Affiliation(s)
- J Zhang
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - J F Muller
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - A J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States.
| |
Collapse
|
36
|
Gafford GM, Ressler KJ. Mouse models of fear-related disorders: Cell-type-specific manipulations in amygdala. Neuroscience 2015; 321:108-120. [PMID: 26102004 DOI: 10.1016/j.neuroscience.2015.06.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/06/2015] [Accepted: 06/09/2015] [Indexed: 11/15/2022]
Abstract
Fear conditioning is a model system used to study threat responses, fear memory and their dysregulation in a variety of organisms. Newly developed tools such as optogenetics, Cre recombinase and DREADD technologies have allowed researchers to manipulate anatomically or molecularly defined cell subtypes with a high degree of temporal control and determine the effect of this manipulation on behavior. These targeted molecular techniques have opened up a new appreciation for the critical contributions different subpopulations of cells make to fear behavior and potentially to treatment of fear and anxiety disorders. Here we review progress to date across a variety of techniques to understand fear-related behavior through the manipulation of different cell subtypes within the amygdala.
Collapse
Affiliation(s)
- G M Gafford
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA; Center for Behavioral Neuroscience, Yerkes National Primate Research Center, Atlanta, GA, USA; Howard Hughes Medical Institute, Bethesda, MD, USA.
| |
Collapse
|
37
|
Vicario A, Abellán A, Medina L. Embryonic Origin of the Islet1 and Pax6 Neurons of the Chicken Central Extended Amygdala Using Cell Migration Assays and Relation to Different Neuropeptide-Containing Cells. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:139-69. [DOI: 10.1159/000381004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022]
Abstract
In a recent study, we tentatively identified different subdivisions of the central extended amygdala (EAce) in chicken based on the expression of region-specific transcription factors (including Pax6 and Islet1) and several phenotypic markers during embryonic development. Such a proposal was partially based on the suggestion that, similarly to the subdivisions of the EAce of mammals, the Pax6 and Islet1 neurons of the comparable chicken subdivisions derive from the dorsal (Std) or ventral striatal embryonic domains (Stv), respectively. To investigate whether this is true, in the present study, we carried out cell migration assays from chicken Std or Stv combined with immunofluorescence for Pax6 or Islet1. Our results showed that the cells of the proposed chicken EAce truly originate in either Std (expressing Pax6) or Stv (expressing Islet1). This includes lateral subdivisions previously compared to the intercalated amygdalar cells and the central amygdala of mammals, also rich in Std-derived Pax6 cells and/or Stv-derived Islet1 cells. In the medial region of the chicken EAce, the dorsal part of the lateral bed nucleus of the stria terminalis (BSTL) contains numerous cells expressing Nkx2.1 (mostly derived from the pallidal domain), but our migration assays showed that it also contains neuron subpopulations from the Stv (expressing Islet1) and Std (expressing Pax6), resembling the mouse BSTL. These findings, together with those previously published in different species of mammals, birds and reptiles, support the homology of the chicken EAce to that of other vertebrates, and reinforce the existence of several cell subcorridors inside the EAce. In addition, together with previously published data on neuropeptidergic cells, these results led us to propose the existence of at least seventeen neuron subtypes in the EAce in rodents and/or some birds (chicken and pigeon). The functional significance and the evolutionary origin of each subtype needs to be analyzed separately, and such studies are mandatory in order to understand the multifaceted modulation by the EAce of fear responses, ingestion, motivation and pain in different vertebrates.
Collapse
|
38
|
Hernández J, Prieto I, Segarra AB, de Gasparo M, Wangensteen R, Villarejo AB, Banegas I, Vives F, Cobo J, Ramírez-Sánchez M. Interaction of neuropeptidase activities in cortico-limbic regions after acute restraint stress. Behav Brain Res 2015; 287:42-8. [PMID: 25819424 DOI: 10.1016/j.bbr.2015.03.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/14/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Brain enkephalin, vasopressin and oxytocin are anxiolytic agents involved in the stress response. Acute restraint stress influences certain neuropeptidase activities, such as some enkephalin-degrading peptidases and vasopressinase/oxytocinase, in the medial prefrontal cortex (mPFC), amygdala (AM) or hippocampus (HC), which are involved in this response. Because these regions form a unified circuit and cooperate in their response to stress, it is important to analyze the profile of the regional distribution of these activities as well as their inter-regional model of interaction in this circuit. Regarding the regional study, although most activities showed a marked predominance of the AM over the HC and mPFC, both in control and stressed animals, enkephalin-degrading activity, assayed as membrane-bound alanyl aminopeptidase activity, showed a change after stress, increasing in the HC and decreasing in the AM. The correlational study in controls indicated essentially a positive interaction between the mPFC and AM. In marked contrast, there was a highly significant change in the functional status of this circuit after stress, showing mainly a positive correlation between the mPFC and HC and between the AM and HC. The existence of correlations does not demonstrate a direct relationship between regions. However, reasons for such strong associations after restraint stress should be examined. The present study may indicate a connection between neuropeptidase activities and their corresponding neuropeptidergic substrates due to significant changes in the functional status of the cortico-limbic circuit after restraint stress.
Collapse
Affiliation(s)
- Joaquín Hernández
- Unit of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Isabel Prieto
- Unit of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Ana B Segarra
- Unit of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Marc de Gasparo
- Cardiovascular and Metabolic Syndrome Adviser, Rue es Planches 5, 2842 Rossemaison, Switzerland
| | - Rosemary Wangensteen
- Unit of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Ana B Villarejo
- Unit of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Inmaculada Banegas
- Unit of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain
| | - Francisco Vives
- Instituto de Neurociencia 'Federico Oloriz', University of Granada, Granada, Spain
| | - Justo Cobo
- Department of Inorganic and Organic Chemistry, University of Jaen, Spain
| | - Manuel Ramírez-Sánchez
- Unit of Physiology, Department of Health Sciences, University of Jaén, 23071 Jaén, Spain.
| |
Collapse
|
39
|
Nordenankar K, Bergfors A, Wallén-Mackenzie Å. Targeted deletion of Vglut2 expression in the embryonal telencephalon promotes an anxiolytic phenotype of the adult mouse. Ups J Med Sci 2015; 120:144-56. [PMID: 25857802 PMCID: PMC4526870 DOI: 10.3109/03009734.2015.1032454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Anxiety is a natural emotion experienced by all individuals. However, when anxiety becomes excessive, it contributes to the substantial group of anxiety disorders that affect one in three people and thus are among the most common psychiatric disorders. Anxiolysis, the reduction of anxiety, is mediated via several large groups of therapeutical compounds, but the relief is often only temporary, and increased knowledge of the neurobiology underlying anxiety is needed in order to improve future therapies. AIM We previously demonstrated that mice lacking forebrain expression of the Vesicular glutamate transporter 2 (Vglut2) from adolescence showed a strong anxiolytic behaviour as adults. In the current study, we wished to analyse if removal of Vglut2 expression already from mid-gestation of the mouse embryo would give rise to similar anxiolysis in the adult mouse. METHODS We produced transgenic mice lacking Vglut2 from mid-gestation and analysed their affective behaviour, including anxiety, when they had reached adulthood. RESULTS The transgenic mice lacking Vglut2 expression from mid-gestation showed certain signs of anxiolytic behaviour, but this phenotype was not as prominent as when Vglut2 was removed during adolescence. CONCLUSION Our results suggest that both embryonal and adolescent forebrain expression of Vglut2 normally contributes to balancing the level of anxiety. As the neurobiological basis for anxiety is similar across species, our results in mice may help improve the current understanding of the neurocircuitry of anxiety, and hence anxiolysis, also in humans.
Collapse
Affiliation(s)
- Karin Nordenankar
- Department of Neuroscience, Unit of Functional Neurobiology and Unit of Developmental Genetics, Uppsala University, Box 593, S-75214 Uppsala, Sweden
| | - Assar Bergfors
- Department of Neuroscience, Unit of Functional Neurobiology and Unit of Developmental Genetics, Uppsala University, Box 593, S-75214 Uppsala, Sweden
| | - Åsa Wallén-Mackenzie
- Department of Neuroscience, Unit of Functional Neurobiology and Unit of Developmental Genetics, Uppsala University, Box 593, S-75214 Uppsala, Sweden
| |
Collapse
|
40
|
Govic A, Paolini AG. In vivo electrophysiological recordings in amygdala subnuclei reveal selective and distinct responses to a behaviorally identified predator odor. J Neurophysiol 2014; 113:1423-36. [PMID: 25475347 DOI: 10.1152/jn.00373.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chemosensory cues signaling predators reliably stimulate innate defensive responses in rodents. Despite the well-documented role of the amygdala in predator odor-induced fear, evidence for the relative contribution of the specific nuclei that comprise this structurally heterogeneous structure is conflicting. In an effort to clarify this we examined neural activity, via electrophysiological recordings, in amygdala subnuclei to controlled and repeated presentations of a predator odor: cat urine. Defensive behaviors, characterized by avoidance, decreased exploration, and increased risk assessment, were observed in adult male hooded Wistar rats (n = 11) exposed to a cloth impregnated with cat urine. Electrophysiological recordings of the amygdala (777 multiunit clusters) were subsequently obtained in freely breathing anesthetized rats exposed to cat urine, distilled water, and eugenol via an air-dilution olfactometer. Recorded units selectively responded to cat urine, and frequencies of responses were distributed differently across amygdala nuclei; medial amygdala (MeA) demonstrated the greatest frequency of responses to cat urine (51.7%), followed by the basolateral and basomedial nuclei (18.8%) and finally the central amygdala (3.0%). Temporally, information transduction occurred primarily from the cortical amygdala and MeA (ventral divisions) to other amygdala nuclei. Interestingly, MeA subnuclei exhibited distinct firing patterns to predator urine, potentially revealing aspects of the underlying neurocircuitry of predator odor processing and defensiveness. These findings highlight the critical involvement of the MeA in processing olfactory cues signaling predator threat and converge with previous studies to indicate that amygdala regulation of predator odor-induced fear is restricted to a particular set of subnuclei that primarily include the MeA, particularly the ventral divisions.
Collapse
Affiliation(s)
- Antonina Govic
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia; and
| | - Antonio G Paolini
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia; and School of Psychological Science, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
41
|
Hao Y, Guan XH, Liu TT, He ZG, Xiang HB. Hypothesis: the central medial amygdala may be implicated in sudden unexpected death in epilepsy by melanocortinergic-sympathetic signaling. Epilepsy Behav 2014; 41:30-2. [PMID: 25269692 DOI: 10.1016/j.yebeh.2014.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022]
Affiliation(s)
- Yan Hao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Xue-Hai Guan
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Tao-Tao Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China.
| |
Collapse
|
42
|
Vicario A, Abellán A, Desfilis E, Medina L. Genetic identification of the central nucleus and other components of the central extended amygdala in chicken during development. Front Neuroanat 2014; 8:90. [PMID: 25309337 PMCID: PMC4159986 DOI: 10.3389/fnana.2014.00090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/19/2014] [Indexed: 01/11/2023] Open
Abstract
In mammals, the central extended amygdala shows a highly complex organization, and is essential for animal survival due to its implication in fear responses. However, many aspects of its evolution are still unknown, and this structure is especially poorly understood in birds. The aim of this study was to define the central extended amygdala in chicken, by means of a battery of region-specific transcription factors (Pax6, Islet1, Nkx2.1) and phenotypic markers that characterize these different subdivisions in mammals. Our results allowed the identification of at least six distinct subdivisions in the lateral part of the avian central extended amygdala: (1) capsular central subdivision; (2) a group of intercalated-like cell patches; (3) oval central nucleus; (4) peri-intrapeduncular (peri-INP) island field; (5) perioval zone; and (6) a rostral part of the subpallial extended amygdala. In addition, we identified three subdivisions of the laterodorsal bed nucleus of the stria terminalis (BSTLd) belonging to the medial region of the chicken central extended amygdala complex. Based on their genetic profile, cellular composition and apparent embryonic origin of the cells, we discuss the similarity of these different subdivisions of chicken with different parts of the mouse central amygdala and surrounding cell masses, including the intercalated amygdalar masses and the sublenticular part of the central extended amygdala. Most of the subdivisions include various subpopulations of cells that apparently originate in the dorsal striatal, ventral striatal, pallidal, and preoptic embryonic domains, reaching their final location by either radial or tangential migrations. Similarly to mammals, the central amygdala and BSTLd of chicken project to the hypothalamus, and include different neurons expressing proenkephalin, corticotropin-releasing factor, somatostatin or tyrosine hydroxylase, which may be involved in the control of different aspects of fear/anxiety-related behavior.
Collapse
Affiliation(s)
- Alba Vicario
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| | - Loreta Medina
- Department of Experimental Medicine, Laboratory of Brain Development and Evolution, Institute of Biomedical Research of Lleida, University of Lleida Lleida, Spain
| |
Collapse
|
43
|
Abstract
We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning.
Collapse
|
44
|
Melo I, Drews E, Zimmer A, Bilkei-Gorzo A. Enkephalin knockout male mice are resistant to chronic mild stress. GENES BRAIN AND BEHAVIOR 2014; 13:550-8. [PMID: 24804898 DOI: 10.1111/gbb.12139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/08/2014] [Accepted: 04/24/2014] [Indexed: 12/12/2022]
Abstract
Enhanced stress reactivity or sensitivity to chronic stress increases the susceptibility to mood pathologies such as major depression. The opioid peptide enkephalin is an important modulator of the stress response. Previous studies using preproenkephalin knockout (PENK KO) mice showed that these animals exhibit abnormal stress reactivity and show increased anxiety behavior in acute stress situations. However, the consequence of enkephalin deficiency in the reactivity to chronic stress conditions is not known. In this study, we therefore submitted wild-type (WT) and PENK KO male mice to chronic stress conditions, using the chronic mild stress (CMS) protocol. Subsequently, we studied the CMS effects on the behavioral and hormonal level and also performed gene expression analyses. In WT animals, CMS increased the expression of the enkephalin gene in the paraventricular nucleus (PVN) of the hypothalamus and elevated the corticosterone levels. In addition, WT mice exhibited enhanced anxiety in the zero-maze test and depression-related behaviors in the sucrose preference and forced swim tests. Surprisingly, in PENK KO mice, we did not detect anxiety and depression-related behavioral changes after the CMS procedure, and even measured a decreased hormonal stress response. These results indicate that PENK KO mice are resistant to the CMS effects, suggesting that enkephalin enhances the reactivity to chronic stress.
Collapse
Affiliation(s)
- I Melo
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | | | | | | |
Collapse
|
45
|
Lkhagvasuren B, Oka T, Nakamura Y, Hayashi H, Sudo N, Nakamura K. Distribution of Fos-immunoreactive cells in rat forebrain and midbrain following social defeat stress and diazepam treatment. Neuroscience 2014; 272:34-57. [PMID: 24797330 DOI: 10.1016/j.neuroscience.2014.04.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/02/2014] [Accepted: 04/21/2014] [Indexed: 02/04/2023]
Abstract
The anxiolytic diazepam selectively inhibits psychological stress-induced autonomic and behavioral responses without causing noticeable suppression of other central performances. This pharmacological property of diazepam led us to the idea that neurons that exhibit diazepam-sensitive, psychological stress-induced activation are potentially those recruited for stress responses. To obtain neuroanatomical clues for the central stress circuitries, we examined the effects of diazepam on psychological stress-induced neuronal activation in broad brain regions. Rats were exposed to a social defeat stress, which caused an abrupt increase in body temperature by up to 2°C. Pretreatment with diazepam (4mg/kg, i.p.) attenuated the stress-induced hyperthermia, confirming an inhibitory physiological effect of diazepam on the autonomic stress response. Subsequently, the distribution of cells expressing Fos, a marker of neuronal activation, was examined in 113 forebrain and midbrain regions of these rats after the stress exposure and diazepam treatment. The stress following vehicle treatment markedly increased Fos-immunoreactive (IR) cells in most regions of the cerebral cortex, limbic system, thalamus, hypothalamus and midbrain, which included parts of the autonomic, neuroendocrine, emotional and arousal systems. The diazepam treatment significantly reduced the stress-induced Fos expression in many brain regions including the prefrontal, sensory and motor cortices, septum, medial amygdaloid nucleus, medial and lateral preoptic areas, parvicellular paraventricular hypothalamic nucleus, dorsomedial hypothalamus, perifornical nucleus, tuberomammillary nucleus, association, midline and intralaminar thalami, and median and dorsal raphe nuclei. In contrast, diazepam increased Fos-IR cells in the central amygdaloid nucleus, medial habenular nucleus, ventromedial hypothalamic nucleus and magnocellular lateral hypothalamus. These results provide important information for elucidating the neural circuitries that mediate the autonomic and behavioral responses to psychosocial stressors.
Collapse
Affiliation(s)
- B Lkhagvasuren
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - T Oka
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Y Nakamura
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - H Hayashi
- Division of Psychosomatic Medicine, Department of Neurology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahata-Nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - N Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - K Nakamura
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
46
|
Bérubé P, Poulin JF, Laforest S, Drolet G. Enkephalin knockdown in the basolateral amygdala reproduces vulnerable anxiety-like responses to chronic unpredictable stress. Neuropsychopharmacology 2014; 39:1159-68. [PMID: 24213354 PMCID: PMC3957109 DOI: 10.1038/npp.2013.316] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/29/2022]
Abstract
The endogenous enkephalins (ENKs) are potential candidates participating in the naturally occurring variations in coping styles and determining the individual capacities for adaptation during chronic stress exposure. Here we demonstrate that there is a large variance in individual behavioral, as well as in physiological outcomes, in a population of Sprague-Dawley rats subjected to 3 weeks of chronic unpredictable stress (CUS). Separation of resilient and vulnerable subpopulations reveals specific long-term neuroadaptation in the ENKergic brain circuits. ENK mRNA expression was greatly reduced in the posterior basolateral nucleus of amygdala (BLAp) in vulnerable individuals. In contrast, ENK mRNA levels were similar in resilient and control (unstressed) individuals. Another group of rats were used for lentiviral-mediated knockdown of ENK to assess whether a decrease of ENK expression in the BLAp reproduces the behavioral disturbances found in vulnerable individuals. ENK knockdown specifically located in the BLAp was sufficient to increase anxiety in the behavioral tests, such as social interaction and elevated plus maze when compared with control individuals. These results show that specific neuroadaptation mediated by the ENKergic neurotransmission in the BLAp is a key regulator of resilience, whereas a decrease of the ENK in the BLAp is a maladaptation mechanism, which mediates the behavioral dichotomy observed between vulnerable and resilient following 3 weeks of CUS.
Collapse
Affiliation(s)
- Patrick Bérubé
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval, Quebec, QC, Canada
| | - Jean-François Poulin
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval, Quebec, QC, Canada
| | - Sylvie Laforest
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval, Quebec, QC, Canada
| | - Guy Drolet
- Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval, Quebec, QC, Canada,Centre de recherche du CHU de Québec, Axe Neurosciences, Université Laval, CHUL P-09800, 2705 Laurier, Québec, QC, Canada G1V 4G2. Tel: +418 525 4444, ext. 47979, Fax: +418 654 2753, E-mail:
| |
Collapse
|
47
|
Myers B, McKlveen JM, Herman JP. Glucocorticoid actions on synapses, circuits, and behavior: implications for the energetics of stress. Front Neuroendocrinol 2014; 35:180-196. [PMID: 24361584 PMCID: PMC4422101 DOI: 10.1016/j.yfrne.2013.12.003] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/02/2013] [Accepted: 12/06/2013] [Indexed: 01/11/2023]
Abstract
Environmental stimuli that signal real or potential threats to homeostasis lead to glucocorticoid secretion by the hypothalamic-pituitary-adrenocortical (HPA) axis. Glucocorticoids promote energy redistribution and are critical for survival and adaptation. This adaptation requires the integration of multiple systems and engages key limbic-neuroendocrine circuits. Consequently, glucocorticoids have profound effects on synaptic physiology, circuit regulation of stress responsiveness, and, ultimately, behavior. While glucocorticoids initiate adaptive processes that generate energy for coping, prolonged or inappropriate glucocorticoid secretion becomes deleterious. Inappropriate processing of stressful information may lead to energetic drive that does not match environmental demand, resulting in risk factors for pathology. Thus, dysregulation of the HPA axis may promote stress-related illnesses (e.g. depression, PTSD). This review summarizes the latest developments in central glucocorticoid actions on synaptic, neuroendocrine, and behavioral regulation. Additionally, these findings will be discussed in terms of the energetic integration of stress and the importance of context-specific regulation of glucocorticoids.
Collapse
Affiliation(s)
- Brent Myers
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati, Cincinnati, OH
| | - Jessica M McKlveen
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati, Cincinnati, OH
| | - James P Herman
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati, Cincinnati, OH
| |
Collapse
|
48
|
Abstract
Restraint and immobilization have been extensively used to study habituation of the neuroendocrine response to a repeated stressor, but behavioral consequences of this stress regimen remain largely uncharacterized. In this study, we used sucrose preference and the elevated-plus maze to probe behavioral alterations resulting from 14 days of restraint in rats. We observed a decrease in sucrose preference in stressed animals, particularly in a subgroup of individuals, but no alteration in anxiety behaviors (as measured in the elevated-plus maze) four days following the last restraint. In these low-sucrose preference animals, we observed a downregulation of the expression of preproenkephalin mRNA in the nucleus accumbens. Furthermore, we observed a strong correlation between enkephalin expression and sucrose preference in the shell part of the nucleus accumbens, with a lower level of enkephalin expression being associated with lower sucrose preference. Interestingly, quantification of the corticosterone response revealed a delayed habituation to restraint in the low-sucrose preference population, which suggests that vulnerability to stress-induced deficits might be associated with prolonged exposure to glucocorticoids. The induction of ΔFosB is also reduced in the nucleus accumbens shell of the low-sucrose preference population and this transcription factor is expressed in enkephalin neurons. Taken together, these results suggest that a ΔFosB-mediated downregulation of enkephalin in the nucleus accumbens might underlie the susceptibility to chronic stress. Further experiments will be needed to determine causality between these two phenomena.
Collapse
Affiliation(s)
- Jean-François Poulin
- Centre de recherche du CHU, Axe Neurosciences and Université Laval , Québec, QC , Canada
| | | | | |
Collapse
|
49
|
Dimitrov EL, Yanagawa Y, Usdin TB. Forebrain GABAergic projections to locus coeruleus in mouse. J Comp Neurol 2013; 521:2373-97. [PMID: 23296594 DOI: 10.1002/cne.23291] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 10/30/2012] [Accepted: 12/27/2012] [Indexed: 01/10/2023]
Abstract
The noradrenergic locus coeruleus (LC) regulates arousal, memory, sympathetic nervous system activity, and pain. Forebrain projections to LC have been characterized in rat, cat, and primates, but not systematically in mouse. We surveyed mouse forebrain LC-projecting neurons by examining retrogradely labeled cells following LC iontophoresis of Fluoro-Gold and anterograde LC labeling after forebrain injection of biotinylated dextran amine or viral tracer. Similar to other species, the central amygdalar nucleus (CAmy), anterior hypothalamus, paraventricular nucleus, and posterior lateral hypothalamic area (PLH) provide major LC inputs. By using mice expressing green fluorescent protein in γ-aminobutyric acid (GABA)ergic neurons, we found that more than one-third of LC-projecting CAmy and PLH neurons are GABAergic. LC colocalization of biotinylated dextran amine, following CAmy or PLH injection, with either green fluorescent protein or glutamic acid decarboxylase (GAD)65/67 immunoreactivity confirmed these GABAergic projections. CAmy injection of adeno-associated virus encoding channelrhodopsin-2-Venus showed similar fiber labeling and association with GAD65/67-immunoreactive (ir) and tyrosine hydroxylase (TH)-ir neurons. CAmy and PLH projections were densest in a pericoerulear zone, but many fibers entered the LC proper. Close apposition between CAmy GABAergic projections and TH-ir processes suggests that CAmy GABAergic neurons may directly inhibit noradrenergic principal neurons. Direct LC neuron targeting was confirmed by anterograde transneuronal labeling of LC TH-ir neurons following CAmy or PLH injection of a herpes virus that expresses red fluorescent protein following activation by Cre recombinase in mice that express Cre recombinase in GABAergic neurons. This description of GABAergic projections from the CAmy and PLH to the LC clarifies important forebrain sources of inhibitory control of central nervous system noradrenergic activity.
Collapse
Affiliation(s)
- Eugene L Dimitrov
- Section on Fundamental Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
50
|
Partin AC, Hosek MP, Luong JA, Lella SK, Sharma SAR, Ploski JE. Amygdala nuclei critical for emotional learning exhibit unique gene expression patterns. Neurobiol Learn Mem 2013; 104:110-21. [PMID: 23831498 DOI: 10.1016/j.nlm.2013.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 01/09/2023]
Abstract
The amygdala is a heterogeneous, medial temporal lobe structure that has been implicated in the formation, expression and extinction of emotional memories. This structure is composed of numerous nuclei that vary in cytoarchitectonics and neural connections. In particular the lateral nucleus of the amygdala (LA), central nucleus of the amygdala (CeA), and the basal (B) nucleus contribute an essential role to emotional learning. However, to date it is still unclear to what extent these nuclei differ at the molecular level. Therefore we have performed whole genome gene expression analysis on these nuclei to gain a better understanding of the molecular differences and similarities among these nuclei. Specifically the LA, CeA and B nuclei were laser microdissected from the rat brain, and total RNA was isolated from these nuclei and subjected to RNA amplification. Amplified RNA was analyzed by whole genome microarray analysis which revealed that 129 genes are differentially expressed among these nuclei. Notably gene expression patterns differed between the CeA nucleus and the LA and B nuclei. However gene expression differences were not considerably different between the LA and B nuclei. Secondary confirmation of numerous genes was performed by in situ hybridization to validate the microarray findings, which also revealed that for many genes, expression differences among these nuclei were consistent with the embryological origins of these nuclei. Knowing the stable gene expression differences among these nuclei will provide novel avenues of investigation into how these nuclei contribute to emotional arousal and emotional learning, and potentially offer new genetic targets to manipulate emotional learning and memory.
Collapse
Affiliation(s)
- Alexander C Partin
- School of Behavioral and Brain Sciences,Department of Molecular & Cell Biology, University of Texas at Dallas, USA
| | | | | | | | | | | |
Collapse
|