1
|
Boostani R, Olfati N, Shamshiri H, Salimi Z, Fatehi F, Hedjazi SA, Fakharian A, Ghasemi M, Okhovat AA, Basiri K, Haghi Ashtiani B, Ansari B, Raissi GR, Khatoonabadi SA, Sarraf P, Movahed S, Panahi A, Ziaadini B, Yazdchi M, Bakhtiyari J, Nafissi S. Iranian clinical practice guideline for amyotrophic lateral sclerosis. Front Neurol 2023; 14:1154579. [PMID: 37333000 PMCID: PMC10272856 DOI: 10.3389/fneur.2023.1154579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegeneration involving motor neurons. The 3-5 years that patients have to live is marked by day-to-day loss of motor and sometimes cognitive abilities. Enormous amounts of healthcare services and resources are necessary to support patients and their caregivers during this relatively short but burdensome journey. Organization and management of these resources need to best meet patients' expectations and health system efficiency mandates. This can only occur in the setting of multidisciplinary ALS clinics which are known as the gold standard of ALS care worldwide. To introduce this standard to the care of Iranian ALS patients, which is an inevitable quality milestone, a national ALS clinical practice guideline is the necessary first step. The National ALS guideline will serve as the knowledge base for the development of local clinical pathways to guide patient journeys in multidisciplinary ALS clinics. To this end, we gathered a team of national neuromuscular experts as well as experts in related specialties necessary for delivering multidisciplinary care to ALS patients to develop the Iranian ALS clinical practice guideline. Clinical questions were prepared in the Patient, Intervention, Comparison, and Outcome (PICO) format to serve as a guide for the literature search. Considering the lack of adequate national/local studies at this time, a consensus-based approach was taken to evaluate the quality of the retrieved evidence and summarize recommendations.
Collapse
Affiliation(s)
- Reza Boostani
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Olfati
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Shamshiri
- Department of Neurology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zanireh Salimi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzad Fatehi
- Department of Neurology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Arya Hedjazi
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Atefeh Fakharian
- Pulmonary Rehabilitation Research Center (PRRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Internal Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Ghasemi
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Asghar Okhovat
- Department of Neurology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Keivan Basiri
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahram Haghi Ashtiani
- Department of Neurology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Ansari
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Isfahan Neuroscience Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- AL Zahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholam Reza Raissi
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Payam Sarraf
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Neurology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Movahed
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akram Panahi
- Department of Neurology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bentolhoda Ziaadini
- Department of Neurology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Yazdchi
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Bakhtiyari
- Department of Speech Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahriar Nafissi
- Department of Neurology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
McGinley LM, Chen KS, Mason SN, Rigan DM, Kwentus JF, Hayes JM, Glass ED, Reynolds EL, Murphy GG, Feldman EL. Monoclonal antibody-mediated immunosuppression enables long-term survival of transplanted human neural stem cells in mouse brain. Clin Transl Med 2022; 12:e1046. [PMID: 36101963 PMCID: PMC9471059 DOI: 10.1002/ctm2.1046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/14/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the field of stem cell therapy advances, it is important to develop reliable methods to overcome host immune responses in animal models. This ensures survival of transplanted human stem cell grafts and enables predictive efficacy testing. Immunosuppressive drugs derived from clinical protocols are frequently used but are often inconsistent and associated with toxic side effects. Here, using a molecular imaging approach, we show that immunosuppression targeting costimulatory molecules CD4 and CD40L enables robust survival of human xenografts in mouse brain, as compared to conventional tacrolimus and mycophenolate mofetil. METHODS Human neural stem cells were modified to express green fluorescent protein and firefly luciferase. Cells were implanted in the fimbria fornix of the hippocampus and viability assessed by non-invasive bioluminescent imaging. Cell survival was assessed using traditional pharmacologic immunosuppression as compared to monoclonal antibodies directed against CD4 and CD40L. This paradigm was also implemented in a transgenic Alzheimer's disease mouse model. RESULTS Graft rejection occurs within 7 days in non-immunosuppressed mice and within 14 days in mice on a traditional regimen. The addition of dual monoclonal antibody immunosuppression extends graft survival past 7 weeks (p < .001) on initial studies. We confirm dual monoclonal antibody treatment is superior to either antibody alone (p < .001). Finally, we demonstrate robust xenograft survival at multiple cell doses up to 6 months in both C57BL/6J mice and a transgenic Alzheimer's disease model (p < .001). The dual monoclonal antibody protocol demonstrated no significant adverse effects, as determined by complete blood counts and toxicity screen. CONCLUSIONS This study demonstrates an effective immunosuppression protocol for preclinical testing of stem cell therapies. A transition towards antibody-based strategies may be advantageous by enabling stem cell survival in preclinical studies that could inform future clinical trials.
Collapse
Affiliation(s)
- Lisa M. McGinley
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Kevin S. Chen
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurosurgeryUniversity of MichiganAnn ArborMichiganUSA
| | - Shayna N. Mason
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Diana M. Rigan
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - John M. Hayes
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Emily D. Glass
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
- Michigan Neuroscience InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Evan L. Reynolds
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Geoffrey G. Murphy
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
- Michigan Neuroscience InstituteUniversity of MichiganAnn ArborMichiganUSA
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
3
|
Huang Y, Zhang Y, He Z, Manyande A, Wu D, Feng M, Xiang H. The connectome from the cerebral cortex to skeletal muscle using viral transneuronal tracers: a review. Am J Transl Res 2022; 14:4864-4879. [PMID: 35958450 PMCID: PMC9360884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Connectomics has developed from an initial observation under an electron microscope to the present well-known medical imaging research approach. The emergence of the most popular transneuronal tracers has further advanced connectomics research. Researchers use the virus trans-nerve tracing method to trace the whole brain, mark the brain nerve circuit and nerve connection structure, and construct a complete nerve conduction pathway. This review assesses current methods of studying cortical to muscle connections using viral neuronal tracers and demonstrates their application in disease diagnosis and prognosis.
Collapse
Affiliation(s)
- Yan Huang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
- Department of Interventional Therapy, The First Affiliated Hospital of Dalian Medical UniversityDalian 116000, Liaoning, P. R. China
| | - Yunhua Zhang
- Hubei Provincial Hospital of Traditional Chinese MedicineWuhan 430061, Hubei, P. R. China
- Clinical Medical College of Hubei University of Chinese MedicineWuhan 430061, Hubei, P. R. China
- Hubei Province Academy of Traditional Chinese MedicineWuhan 430061, Hubei, P. R. China
| | - Zhigang He
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| | - Anne Manyande
- School of Human and Social Sciences, University of West LondonLondon, UK
| | - Duozhi Wu
- Department of Anesthesiology, Hainan General HospitalHaikou 570311, Hainan, P. R. China
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study CenterWuhan 430071, Hubei, P. R. China
| | - Hongbing Xiang
- Tongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, P. R. China
| |
Collapse
|
4
|
Lin TJ, Cheng KC, Wu LY, Lai WY, Ling TY, Kuo YC, Huang YH. Potential of Cellular Therapy for ALS: Current Strategies and Future Prospects. Front Cell Dev Biol 2022; 10:851613. [PMID: 35372346 PMCID: PMC8966507 DOI: 10.3389/fcell.2022.851613] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive upper and lower motor neuron (MN) degeneration with unclear pathology. The worldwide prevalence of ALS is approximately 4.42 per 100,000 populations, and death occurs within 3-5 years after diagnosis. However, no effective therapeutic modality for ALS is currently available. In recent years, cellular therapy has shown considerable therapeutic potential because it exerts immunomodulatory effects and protects the MN circuit. However, the safety and efficacy of cellular therapy in ALS are still under debate. In this review, we summarize the current progress in cellular therapy for ALS. The underlying mechanism, current clinical trials, and the pros and cons of cellular therapy using different types of cell are discussed. In addition, clinical studies of mesenchymal stem cells (MSCs) in ALS are highlighted. The summarized findings of this review can facilitate the future clinical application of precision medicine using cellular therapy in ALS.
Collapse
Affiliation(s)
- Ting-Jung Lin
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuang-Chao Cheng
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Luo-Yun Wu
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Yu Lai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung-Che Kuo
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- TMU Research Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Hastings N, Kuan WL, Osborne A, Kotter MRN. Therapeutic Potential of Astrocyte Transplantation. Cell Transplant 2022; 31:9636897221105499. [PMID: 35770772 PMCID: PMC9251977 DOI: 10.1177/09636897221105499] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell transplantation is an attractive treatment strategy for a variety of brain disorders, as it promises to replenish lost functions and rejuvenate the brain. In particular, transplantation of astrocytes has come into light recently as a therapy for amyotrophic lateral sclerosis (ALS); moreover, grafting of astrocytes also showed positive results in models of other conditions ranging from neurodegenerative diseases of older age to traumatic injury and stroke. Despite clear differences in etiology, disorders such as ALS, Parkinson's, Alzheimer's, and Huntington's diseases, as well as traumatic injury and stroke, converge on a number of underlying astrocytic abnormalities, which include inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. In this review, we examine these convergent pathways leading to astrocyte dysfunction, and explore the existing evidence for a therapeutic potential of transplantation of healthy astrocytes in various models. Existing literature presents a wide variety of methods to generate astrocytes, or relevant precursor cells, for subsequent transplantation, while described outcomes of this type of treatment also differ between studies. We take technical differences between methodologies into account to understand the variability of therapeutic benefits, or lack thereof, at a deeper level. We conclude by discussing some key requirements of an astrocyte graft that would be most suitable for clinical applications.
Collapse
Affiliation(s)
- Nataly Hastings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Wei-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
6
|
Therapeutic strategies for C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia. Curr Opin Neurol 2021; 34:748-755. [PMID: 34392299 PMCID: PMC8678157 DOI: 10.1097/wco.0000000000000984] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW An intronic G4C2 expansion mutation in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). Although there are currently no treatments for this insidious, fatal disease, intense research has led to promising therapeutic strategies, which will be discussed here. RECENT FINDINGS Therapeutic strategies for C9-ALS/FTD have primarily focused on reducing the toxic effects of mutant expansion RNAs or the dipeptide repeat proteins (DPRs). The pathogenic effects of G4C2 expansion transcripts have been targeted using approaches aimed at promoting their degradation, inhibiting nuclear export or silencing transcription. Other promising strategies include immunotherapy to reduce the DPRs themselves, reducing RAN translation, removing the repeats using DNA or RNA editing and manipulation of downstream disease-altered stress granule pathways. Finally, understanding the molecular triggers that lead to pheno-conversion may lead to opportunities that can delay symptomatic disease onset. SUMMARY A large body of evidence implicates RAN-translated DPRs as a main driver of C9-ALS/FTD. Promising therapeutic strategies for these devastating diseases are being rapidly developed with several approaches already in or approaching clinical trials.
Collapse
|
7
|
Transplantation of Neural Precursors Derived from Induced Pluripotent Cells Preserve Perineuronal Nets and Stimulate Neural Plasticity in ALS Rats. Int J Mol Sci 2020; 21:ijms21249593. [PMID: 33339362 PMCID: PMC7766921 DOI: 10.3390/ijms21249593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/05/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022] Open
Abstract
A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) treatment is stem cell therapy. Neural progenitors derived from induced pluripotent cells (NP-iPS) might rescue or replace dying motoneurons (MNs). However, the mechanisms responsible for the beneficial effect are not fully understood. The aim here was to investigate the mechanism by studying the effect of intraspinally injected NP-iPS into asymptomatic and early symptomatic superoxide dismutase (SOD)1G93A transgenic rats. Prior to transplantation, NP-iPS were characterized in vitro for their ability to differentiate into a neuronal phenotype. Motor functions were tested in all animals, and the tissue was analyzed by immunohistochemistry, qPCR, and Western blot. NP-iPS transplantation significantly preserved MNs, slowed disease progression, and extended the survival of all treated animals. The dysregulation of spinal chondroitin sulfate proteoglycans was observed in SOD1G93A rats at the terminal stage. NP-iPS application led to normalized host genes expression (versican, has-1, tenascin-R, ngf, igf-1, bdnf, bax, bcl-2, and casp-3) and the protection of perineuronal nets around the preserved MNs. In the host spinal cord, transplanted cells remained as progenitors, many in contact with MNs, but they did not differentiate. The findings suggest that NP-iPS demonstrate neuroprotective properties by regulating local gene expression and regulate plasticity by modulating the central nervous system (CNS) extracellular matrix such as perineuronal nets (PNNs).
Collapse
|
8
|
Studying ALS: Current Approaches, Effect on Potential Treatment Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1241:195-217. [PMID: 32383122 DOI: 10.1007/978-3-030-41283-8_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common neurodegenerative diseases, characterized by inevitable progressive paralysis. To date, only two disease modifying therapeutic options are available for the patients with ALS, although they show very modest effect on disease course. The main reason of failure in the field of pharmacological correction of ALS is inability to untangle complex relationships taking place during ALS initiation and progression. Traditional methods of research, based on morphology or transgenic animal models studying provided lots of information about ALS throughout the years. However, translation of these results to humans was unsuccessful due to incomplete recapitulation of molecular pathology and overall inadequacy of the models used in the research.In this review we summarize current knowledge regarding ALS molecular pathology with depiction of novel methods applied recently for the studies. Furthermore we describe present and potential treatment strategies that are based on the recent findings in ALS disease mechanisms.
Collapse
|
9
|
Neural stem cell therapy of foetal onset hydrocephalus using the HTx rat as experimental model. Cell Tissue Res 2020; 381:141-161. [PMID: 32065263 DOI: 10.1007/s00441-020-03182-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/28/2020] [Indexed: 01/01/2023]
Abstract
Foetal onset hydrocephalus is a disease starting early in embryonic life; in many cases it results from a cell junction pathology of neural stem (NSC) and neural progenitor (NPC) cells forming the ventricular zone (VZ) and sub-ventricular zone (SVZ) of the developing brain. This pathology results in disassembling of VZ and loss of NSC/NPC, a phenomenon known as VZ disruption. At the cerebral aqueduct, VZ disruption triggers hydrocephalus while in the telencephalon, it results in abnormal neurogenesis. This may explain why derivative surgery does not cure hydrocephalus. NSC grafting appears as a therapeutic opportunity. The present investigation was designed to find out whether this is a likely possibility. HTx rats develop hereditary hydrocephalus; 30-40% of newborns are hydrocephalic (hyHTx) while their littermates are not (nHTx). NSC/NPC from the VZ/SVZ of nHTx rats were cultured into neurospheres that were then grafted into a lateral ventricle of 1-, 2- or 7-day-old hyHTx. Once in the cerebrospinal fluid, neurospheres disassembled and the freed NSC homed at the areas of VZ disruption. A population of homed cells generated new multiciliated ependyma at the sites where the ependyma was missing due to the inherited pathology. Another population of NSC homed at the disrupted VZ differentiated into βIII-tubulin+ spherical cells likely corresponding to neuroblasts that progressed into the parenchyma. The final fate of these cells could not be established due to the protocol used to label the grafted cells. The functional outcomes of NSC grafting in hydrocephalus remain open. The present study establishes an experimental paradigm of NSC/NPC therapy of foetal onset hydrocephalus, at the etiologic level that needs to be further explored with more analytical methodologies.
Collapse
|
10
|
Ryu J, Vincent PFY, Ziogas NK, Xu L, Sadeghpour S, Curtin J, Alexandris AS, Stewart N, Sima R, du Lac S, Glowatzki E, Koliatsos VE. Optogenetically transduced human ES cell-derived neural progenitors and their neuronal progenies: Phenotypic characterization and responses to optical stimulation. PLoS One 2019; 14:e0224846. [PMID: 31710637 PMCID: PMC6844486 DOI: 10.1371/journal.pone.0224846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023] Open
Abstract
Optogenetically engineered human neural progenitors (hNPs) are viewed as promising tools in regenerative neuroscience because they allow the testing of the ability of hNPs to integrate within nervous system of an appropriate host not only structurally, but also functionally based on the responses of their differentiated progenies to light. Here, we transduced H9 embryonic stem cell-derived hNPs with a lentivirus harboring human channelrhodopsin (hChR2) and differentiated them into a forebrain lineage. We extensively characterized the fate and optogenetic functionality of hChR2-hNPs in vitro with electrophysiology and immunocytochemistry. We also explored whether the in vivo phenotype of ChR2-hNPs conforms to in vitro observations by grafting them into the frontal neocortex of rodents and analyzing their survival and neuronal differentiation. Human ChR2-hNPs acquired neuronal phenotypes (TUJ1, MAP2, SMI-312, and synapsin 1 immunoreactivity) in vitro after an average of 70 days of coculturing with CD1 astrocytes and progressively displayed both inhibitory and excitatory neurotransmitter signatures by immunocytochemistry and whole-cell patch clamp recording. Three months after transplantation into motor cortex of naïve or injured mice, 60–70% of hChR2-hNPs at the transplantation site expressed TUJ1 and had neuronal cytologies, whereas 60% of cells also expressed ChR2. Transplant-derived neurons extended axons through major commissural and descending tracts and issued synaptophysin+ terminals in the claustrum, endopiriform area, and corresponding insular and piriform cortices. There was no apparent difference in engraftment, differentiation, or connectivity patterns between injured and sham subjects. Same trends were observed in a second rodent host, i.e. rat, where we employed longer survival times and found that the majority of grafted hChR2-hNPs differentiated into GABAergic neurons that established dense terminal fields and innervated mostly dendritic profiles in host cortical neurons. In physiological experiments, human ChR2+ neurons in culture generated spontaneous action potentials (APs) 100–170 days into differentiation and their firing activity was consistently driven by optical stimulation. Stimulation generated glutamatergic and GABAergic postsynaptic activity in neighboring ChR2- cells, evidence that hChR2-hNP-derived neurons had established functional synaptic connections with other neurons in culture. Light stimulation of hChR2-hNP transplants in vivo generated complicated results, in part because of the variable response of the transplants themselves. Our findings show that we can successfully derive hNPs with optogenetic properties that are fully transferrable to their differentiated neuronal progenies. We also show that these progenies have substantial neurotransmitter plasticity in vitro, whereas in vivo they mostly differentiate into inhibitory GABAergic neurons. Furthermore, neurons derived from hNPs have the capacity of establishing functional synapses with postsynaptic neurons in vitro, but this outcome is technically challenging to explore in vivo. We propose that optogenetically endowed hNPs hold great promise as tools to explore de novo circuit formation in the brain and, in the future, perhaps launch a new generation of neuromodulatory therapies.
Collapse
Affiliation(s)
- Jiwon Ryu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Philippe F. Y. Vincent
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nikolaos K. Ziogas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leyan Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shirin Sadeghpour
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - John Curtin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Athanasios S. Alexandris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nicholas Stewart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard Sima
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sascha du Lac
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elisabeth Glowatzki
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
Gouel F, Rolland AS, Devedjian JC, Burnouf T, Devos D. Past and Future of Neurotrophic Growth Factors Therapies in ALS: From Single Neurotrophic Growth Factor to Stem Cells and Human Platelet Lysates. Front Neurol 2019; 10:835. [PMID: 31428042 PMCID: PMC6688198 DOI: 10.3389/fneur.2019.00835] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that typically results in death within 3–5 years after diagnosis. To date, there is no curative treatment and therefore an urgent unmet need of neuroprotective and/or neurorestorative treatments. Due to their spectrum of capacities in the central nervous system—e.g., development, plasticity, maintenance, neurogenesis—neurotrophic growth factors (NTF) have been exploited for therapeutic strategies in ALS for decades. In this review we present the initial strategy of using single NTF by different routes of administration to the use of stem cells transplantation to express a multiple NTFs-rich secretome to finally focus on a new biotherapy based on the human platelet lysates, the natural healing system containing a mix of pleitropic NTF and having immunomodulatory function. This review highlights that this latter treatment may be crucial to power the neuroprotection and/or neurorestoration therapy requested in this devastating disease.
Collapse
Affiliation(s)
- Flore Gouel
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| | - Anne-Sophie Rolland
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| | - Jean-Christophe Devedjian
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - David Devos
- Department of Medical Pharmacology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France.,Department of Neurology, Lille University, INSERM UMRS_1171, University Hospital Center, LICEND COEN Center, Lille, France
| |
Collapse
|
12
|
Singh RK, Occelli LM, Binette F, Petersen-Jones SM, Nasonkin IO. Transplantation of Human Embryonic Stem Cell-Derived Retinal Tissue in the Subretinal Space of the Cat Eye. Stem Cells Dev 2019; 28:1151-1166. [PMID: 31210100 PMCID: PMC6708274 DOI: 10.1089/scd.2019.0090] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To develop biological approaches to restore vision, we developed a method of transplanting stem cell-derived retinal tissue into the subretinal space of a large-eye animal model (cat). Human embryonic stem cells (hESC) were differentiated to retinal organoids in a dish. hESC-derived retinal tissue was introduced into the subretinal space of wild-type cats following a pars plana vitrectomy. The cats were systemically immunosuppressed with either prednisolone or prednisolone plus cyclosporine A. The eyes were examined by fundoscopy and spectral-domain optical coherence tomography imaging for adverse effects due to the presence of the subretinal grafts. Immunohistochemistry was done with antibodies to retinal and human markers to delineate graft survival, differentiation, and integration into cat retina. We successfully delivered hESC-derived retinal tissue into the subretinal space of the cat eye. We observed strong infiltration of immune cells in the graft and surrounding tissue in the cats treated with prednisolone. In contrast, we showed better survival and low immune response to the graft in cats treated with prednisolone plus cyclosporine A. Immunohistochemistry with antibodies (STEM121, CALB2, DCX, and SMI-312) revealed large number of graft-derived fibers connecting the graft and the host. We also show presence of human-specific synaptophysin puncta in the cat retina. This work demonstrates feasibility of engrafting hESC-derived retinal tissue into the subretinal space of large-eye animal models. Transplanting retinal tissue in degenerating cat retina will enable rapid development of preclinical in vivo work focused on vision restoration.
Collapse
Affiliation(s)
- Ratnesh K Singh
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| | - Laurence M Occelli
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lasing, Michigan
| | - Francois Binette
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lasing, Michigan
| | - Igor O Nasonkin
- Lineage Cell Therapeutics, Inc. (formerly BioTime Inc.), Carlsbad, California
| |
Collapse
|
13
|
Zhang G, Li Y, Reuss JL, Liu N, Wu C, Li J, Xu S, Wang F, Hazel TG, Cunningham M, Zhang H, Dai Y, Hong P, Zhang P, He J, Feng H, Lu X, Ulmer JL, Johe KK, Xu R. Stable Intracerebral Transplantation of Neural Stem Cells for the Treatment of Paralysis Due to Ischemic Stroke. Stem Cells Transl Med 2019; 8:999-1007. [PMID: 31241246 PMCID: PMC6766600 DOI: 10.1002/sctm.18-0220] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
NSI‐566 is a stable, primary adherent neural stem cell line derived from a single human fetal spinal cord and expanded epigenetically with no genetic modification. This cell line is being tested in clinical trials in the U.S. for treatment of amyotrophic lateral sclerosis and spinal cord injury. In a single‐site, phase I study, we evaluated the feasibility and safety of NSI‐566 transplantation for the treatment of hemiparesis due to chronic motor stroke and determined the maximum tolerated dose for future trials. Three cohorts (n = 3 per cohort) were transplanted with one‐time intracerebral injections of 1.2 × 107, 2.4 × 107, or 7.2 × 107 cells. Immunosuppression therapy with tacrolimus was maintained for 28 days. All subjects had sustained chronic motor strokes, verified by magnetic resonance imaging (MRI), initiated between 5 and 24 months prior to surgery with modified Rankin Scores [MRSs] of 2, 3, or 4 and Fugl‐Meyer Motor Scores of 55 or less. At the 12‐month visit, the mean Fugl‐Meyer Motor Score (FMMS, total score of 100) for the nine participants showed 16 points of improvement (p = .0078), the mean MRS showed 0.8 points of improvement (p = .031), and the mean National Institutes of Health Stroke Scale showed 3.1 points of improvement (p = .020). For six participants who were followed up for 24 months, these mean changes remained stable. The treatment was well tolerated at all doses. Longitudinal MRI studies showed evidence indicating cavity‐filling by new neural tissue formation in all nine patients. Although this was a small, one‐arm study of feasibility, the results are encouraging to warrant further studies. stem cells translational medicine2019;8:999–1007
Collapse
Affiliation(s)
- Guangzhu Zhang
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Ying Li
- Neurology Department, Army General Hospital of PLA, Beijing, People's Republic of China
| | - James L Reuss
- Prism Clinical Imaging, Inc., Milwaukee, Wisconsin, USA
| | - Nan Liu
- Neurology Department, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Cuiying Wu
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Jingpo Li
- Suzhou Neuralstem Biopharmaceutical Co., Ltd., Suzhou, People's Republic of China
| | - Shuangshuang Xu
- Suzhou Neuralstem Biopharmaceutical Co., Ltd., Suzhou, People's Republic of China
| | - Feng Wang
- Suzhou Neuralstem Biopharmaceutical Co., Ltd., Suzhou, People's Republic of China
| | | | - Miles Cunningham
- Laboratory for Neural Reconstruction, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Hongtian Zhang
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Yiwu Dai
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Peng Hong
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Ping Zhang
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Jianghong He
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Huiru Feng
- Department of Nuclear Medicine, Army General Hospital of PLA, Beijing, People's Republic of China
| | - Xiangdong Lu
- Department of Nuclear Medicine, Army General Hospital of PLA, Beijing, People's Republic of China
| | - John L Ulmer
- Department of Neuroradiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Ruxiang Xu
- Affiliated BaYi Brain Hospital, Army General Hospital of PLA, Beijing, People's Republic of China
| |
Collapse
|
14
|
Abati E, Bresolin N, Comi G, Corti S. Advances, Challenges, and Perspectives in Translational Stem Cell Therapy for Amyotrophic Lateral Sclerosis. Mol Neurobiol 2019; 56:6703-6715. [DOI: 10.1007/s12035-019-1554-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
|
15
|
Chen KS, McGinley LM, Kashlan ON, Hayes JM, Bruno ES, Chang JS, Mendelson FE, Tabbey MA, Johe K, Sakowski SA, Feldman EL. Targeted intraspinal injections to assess therapies in rodent models of neurological disorders. Nat Protoc 2019; 14:331-349. [PMID: 30610242 DOI: 10.1038/s41596-018-0095-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite decades of research, pharmacological therapies for spinal cord motor pathologies are limited. Alternatives using macromolecular, viral, or cell-based therapies show early promise. However, introducing these substances into the spinal cord, past the blood-brain barrier, without causing injury is challenging. We describe a technique for intraspinal injection targeting the lumbar ventral horn in rodents. This technique preserves motor performance and has a proven track record of translation into phase 1 and 2 clinical trials in amyotrophic lateral sclerosis (ALS) patients. The procedure, in brief, involves exposure of the thoracolumbar spine and dissection of paraspinous muscles over the target vertebrae. Following laminectomy, the spine is affixed to a stereotactic frame, permitting precise and reproducible injection throughout the lumbar spine. We have used this protocol to inject various stem cell types, primarily human spinal stem cells (HSSCs); however, the injection is adaptable to any candidate therapeutic cell, virus, or macromolecule product. In addition to a detailed procedure, we provide stereotactic coordinates that assist in targeting of the lumbar spine and instructional videos. The protocol takes ~2 h per animal.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Lisa M McGinley
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Osama N Kashlan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - John M Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | - Josh S Chang
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Faye E Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Maegan A Tabbey
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
|
17
|
Goutman SA, Brown MB, Glass JD, Boulis NM, Johe K, Hazel T, Cudkowicz M, Atassi N, Borges L, Patil PG, Sakowski SA, Feldman EL. Long-term Phase 1/2 intraspinal stem cell transplantation outcomes in ALS. Ann Clin Transl Neurol 2018; 5:730-740. [PMID: 29928656 PMCID: PMC5989736 DOI: 10.1002/acn3.567] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 12/12/2022] Open
Abstract
Objective Intraspinal human spinal cord‐derived neural stem cell (HSSC) transplantation is a potential therapy for amyotrophic lateral sclerosis (ALS); however, previous trials lack controls. This post hoc analysis compared ambulatory limb‐onset ALS participants in Phase 1 and 2 (Ph1/2) open‐label intraspinal HSSC transplantation studies up to 3 years after transplant to matched participants in Pooled Resource Open‐Access ALS Clinical Trials (PRO‐ACT) and ceftriaxone datasets to provide required analyses to inform future clinical trial designs. Methods Survival, ALSFRS‐R, and a composite statistic (ALS/SURV) combining survival and ALS Functional Rating Scale revised (ALSFRS‐R) functional status were assessed for matched participant subsets: PRO‐ACT n = 1108, Ph1/2 n = 21 and ceftriaxone n = 177, Ph1/2 n = 20. Results Survival did not differ significantly between cohorts: Ph1/2 median survival 4.7 years, 95% CI (1.2, ∞) versus PRO‐ACT 2.3 years (1.9, 2.5), P = 1.0; Ph1/2 3.0 years (1.2, 5.6) versus ceftriaxone 2.3 years (1.8, 2.8), P = 0.88. Mean ALSFRS‐R at 24 months significantly differed between Ph1/2 and both comparison cohorts (Ph1/2 30.1 ± 8.6 vs. PRO‐ACT 24.0 ± 10.2, P = 0.048; Ph1/2 30.7 ± 8.8 vs. ceftriaxone 19.2 ± 9.5, P = 0.0023). Using ALS/SURV, median PRO‐ACT and ceftriaxone participants died by 24 months, whereas median Ph1/2 participant ALSFRS‐Rs were 23 (P = 0.0038) and 19 (P = 0.14) in PRO‐ACT and ceftriaxone comparisons at 24 months, respectively, supporting improved functional outcomes in the Ph1/2 study. Interpretation Comparison of Ph1/2 studies to historical datasets revealed significantly improved survival and function using ALS/SURV versus PRO‐ACT controls. While results are encouraging, comparison against historical populations demonstrate limitations in noncontrolled studies. These findings support continued evaluation of HSSC transplantation in ALS, support the benefit of control populations, and enable necessary power calculations to design a randomized, sham surgery‐controlled efficacy study.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology University of Michigan 109 Zina Pitcher Place 5017 AAT-BSRB Ann Arbor Michigan 48109
| | - Morton B Brown
- Department of Biostatistics University of Michigan 1415 Washington Heights M4039 SPH II Ann Arbor Michigan 48109
| | - Jonathan D Glass
- Department of Neurology Emory University School of Medicine 101 Woodruff Circle Atlanta Georgia 30322
| | - Nicholas M Boulis
- Department of Neurosurgery Emory University School of Medicine 101 Woodruff Circle WMB Room 6309 Atlanta Georgia
| | - Karl Johe
- Neuralstem, Inc. 20271 Goldenrod Lane Suite 2033 Germantown Maryland 20876
| | - Tom Hazel
- Neuralstem, Inc. 20271 Goldenrod Lane Suite 2033 Germantown Maryland 20876
| | - Merit Cudkowicz
- Department of Neurology Massachusetts General Hospital Harvard Medical School 165 Cambridge Street Boston Massachusetts 02114
| | - Nazem Atassi
- Department of Neurology Massachusetts General Hospital Harvard Medical School 165 Cambridge Street Boston Massachusetts 02114
| | - Lawrence Borges
- Department of Neurosurgery Massachusetts General Hospital Harvard Medical School 15 Parkman Street Wand ACC 745 Boston Massachusetts 02114
| | - Parag G Patil
- Department of Neurology University of Michigan 109 Zina Pitcher Place 5017 AAT-BSRB Ann Arbor Michigan 48109.,Department of Neurosurgery University of Michigan 1500 E. Medical Center Drive SPC 5338 Ann Arbor Michigan 48109
| | - Stacey A Sakowski
- Program for Neurology Research and Discovery University of Michigan 109 Zina Pitcher Place 5017 AAT-BSRB Ann Arbor Michigan 48109
| | - Eva L Feldman
- Department of Neurology University of Michigan 109 Zina Pitcher Place 5017 AAT-BSRB Ann Arbor Michigan 48109.,Program for Neurology Research and Discovery University of Michigan 109 Zina Pitcher Place 5017 AAT-BSRB Ann Arbor Michigan 48109
| |
Collapse
|
18
|
Current Perspectives Regarding Stem Cell-Based Therapy for Liver Cirrhosis. Can J Gastroenterol Hepatol 2018; 2018:4197857. [PMID: 29670867 PMCID: PMC5833156 DOI: 10.1155/2018/4197857] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a major cause of mortality and a common end of various progressive liver diseases. Since the effective treatment is currently limited to liver transplantation, stem cell-based therapy as an alternative has attracted interest due to promising results from preclinical and clinical studies. However, there is still much to be understood regarding the precise mechanisms of action. A number of stem cells from different origins have been employed for hepatic regeneration with different degrees of success. The present review presents a synopsis of stem cell research for the treatment of patients with liver cirrhosis according to the stem cell type. Clinical trials to date are summarized briefly. Finally, issues to be resolved and future perspectives are discussed with regard to clinical applications.
Collapse
|
19
|
Ciervo Y, Ning K, Jun X, Shaw PJ, Mead RJ. Advances, challenges and future directions for stem cell therapy in amyotrophic lateral sclerosis. Mol Neurodegener 2017; 12:85. [PMID: 29132389 PMCID: PMC5683324 DOI: 10.1186/s13024-017-0227-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative condition where loss of motor neurons within the brain and spinal cord leads to muscle atrophy, weakness, paralysis and ultimately death within 3–5 years from onset of symptoms. The specific molecular mechanisms underlying the disease pathology are not fully understood and neuroprotective treatment options are minimally effective. In recent years, stem cell transplantation as a new therapy for ALS patients has been extensively investigated, becoming an intense and debated field of study. In several preclinical studies using the SOD1G93A mouse model of ALS, stem cells were demonstrated to be neuroprotective, effectively delayed disease onset and extended survival. Despite substantial improvements in stem cell technology and promising results in preclinical studies, several questions still remain unanswered, such as the identification of the most suitable and beneficial cell source, cell dose, route of delivery and therapeutic mechanisms. This review will cover publications in this field and comprehensively discuss advances, challenges and future direction regarding the therapeutic potential of stem cells in ALS, with a focus on mesenchymal stem cells. In summary, given their high proliferation activity, immunomodulation, multi-differentiation potential, and the capacity to secrete neuroprotective factors, adult mesenchymal stem cells represent a promising candidate for clinical translation. However, technical hurdles such as optimal dose, differentiation state, route of administration, and the underlying potential therapeutic mechanisms still need to be assessed.
Collapse
Affiliation(s)
- Yuri Ciervo
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK.,Tongji University School of Medicine, 1239 Siping Rd, Yangpu Qu, Shanghai, China
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK.,Tongji University School of Medicine, 1239 Siping Rd, Yangpu Qu, Shanghai, China
| | - Xu Jun
- Tongji University School of Medicine, 1239 Siping Rd, Yangpu Qu, Shanghai, China
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK
| | - Richard J Mead
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, 385a Glossop Rd S10 2HQ, Sheffield, UK.
| |
Collapse
|
20
|
Forostyak S, Sykova E. Neuroprotective Potential of Cell-Based Therapies in ALS: From Bench to Bedside. Front Neurosci 2017; 11:591. [PMID: 29114200 PMCID: PMC5660803 DOI: 10.3389/fnins.2017.00591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Motor neurons (MN) degeneration is a main feature of amyotrophic lateral sclerosis (ALS), a neurological disorder with a progressive course. The diagnosis of ALS is essentially a clinical one. Most common symptoms include a gradual neurological deterioration that reflect the impairment and subsequent loss of muscle functions. Up-to-date ALS has no therapy that would prevent or cure a disease. Modern therapeutic strategies comprise of neuroprotective treatment focused on antiglutamatergic, antioxidant, antiapoptotic, and anti-inflammatory molecules. Stem cells application and gene therapy has provided researchers with a powerful tool for discovery of new mechanisms and therapeutic agents, as well as opened new perspectives for patients and family members. Here, we review latest progress made in basic, translational and clinical stem cell research related to the ALS. We overviewed results of preclinical and clinical studies employing cell-based therapy to treat neurodegenerative disorders. A special focus has been made on the neuroprotective properties of adult mesenchymal stromal cells (MSC) application into ALS patients. Finally, we overviewed latest progress in the field of embryonic and induced pluripotent stem cells used for the modeling and application during neurodegeneration in general and in ALS in particular.
Collapse
Affiliation(s)
- Serhiy Forostyak
- Centre of Reconstructive Neuroscience, Institute of Experimental Medicine (ASCR), Czech Academy of Sciences, Prague, Czechia.,Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czechia
| | - Eva Sykova
- Department of Neuroscience, 2nd Faculty of Medicine, Charles University, Prague, Czechia.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
21
|
Salvadores N, Sanhueza M, Manque P, Court FA. Axonal Degeneration during Aging and Its Functional Role in Neurodegenerative Disorders. Front Neurosci 2017; 11:451. [PMID: 28928628 PMCID: PMC5591337 DOI: 10.3389/fnins.2017.00451] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022] Open
Abstract
Aging constitutes the main risk factor for the development of neurodegenerative diseases. This represents a major health issue worldwide that is only expected to escalate due to the ever-increasing life expectancy of the population. Interestingly, axonal degeneration, which occurs at early stages of neurodegenerative disorders (ND) such as Alzheimer's disease, Amyotrophic lateral sclerosis, and Parkinson's disease, also takes place as a consequence of normal aging. Moreover, the alteration of several cellular processes such as proteostasis, response to cellular stress and mitochondrial homeostasis, which have been described to occur in the aging brain, can also contribute to axonal pathology. Compelling evidence indicate that the degeneration of axons precedes clinical symptoms in NDs and occurs before cell body loss, constituting an early event in the pathological process and providing a potential therapeutic target to treat neurodegeneration before neuronal cell death. Although, normal aging and the development of neurodegeneration are two processes that are closely linked, the molecular basis of the switch that triggers the transition from healthy aging to neurodegeneration remains unrevealed. In this review we discuss the potential role of axonal degeneration in this transition and provide a detailed overview of the literature and current advances in the molecular understanding of the cellular changes that occur during aging that promote axonal degeneration and then discuss this in the context of ND.
Collapse
Affiliation(s)
- Natalia Salvadores
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile.,Fondap Geroscience Center for Brain Health and MetabolismSantiago, Chile
| | - Mario Sanhueza
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile.,Fondap Geroscience Center for Brain Health and MetabolismSantiago, Chile
| | - Patricio Manque
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile
| | - Felipe A Court
- Center for Integrative Biology, Faculty of Sciences, Universidad MayorSantiago, Chile.,Fondap Geroscience Center for Brain Health and MetabolismSantiago, Chile
| |
Collapse
|
22
|
Czarzasta J, Habich A, Siwek T, Czapliński A, Maksymowicz W, Wojtkiewicz J. Stem cells for ALS: An overview of possible therapeutic approaches. Int J Dev Neurosci 2017; 57:46-55. [PMID: 28088365 DOI: 10.1016/j.ijdevneu.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 01/06/2017] [Accepted: 01/06/2017] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an unusual, fatal, neurodegenerative disorder leading to the loss of motor neurons. After diagnosis, the average lifespan ranges from 3 to 5 years, and death usually results from respiratory failure. Although the pathogenesis of ALS remains unclear, multiple factors are thought to contribute to the progression of ALS, such as network interactions between genes, environmental exposure, impaired molecular pathways and many others. The neuroprotective properties of neural stem cells (NSCs) and the paracrine signaling of mesenchymal stem cells (MSCs) have been examined in multiple pre-clinical trials of ALS with promising results. The data from these initial trials indicate a reduction in the rate of disease progression. The mechanism through which stem cells achieve this reduction is of major interest. Here, we review the to-date pre-clinical and clinical therapeutic approaches employing stem cells, and discuss the most promising ones.
Collapse
Affiliation(s)
- Joanna Czarzasta
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland.
| | - Aleksandra Habich
- Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Tomasz Siwek
- Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Adam Czapliński
- Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland; Neurocentrum Bellevue, Neurology, Zurich, Switzerland
| | - Wojciech Maksymowicz
- Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland; Laboratory of Regenerative Medicine, University of Warmia and Mazury, Olsztyn, Poland; Foundation for nerve cells regeneration, Olsztyn, Poland
| |
Collapse
|
23
|
Lunn JS, Sakowski SA, McGinley LM, Pacut C, Hazel TG, Johe K, Feldman EL. Autocrine production of IGF-I increases stem cell-mediated neuroprotection. Stem Cells 2016; 33:1480-9. [PMID: 25532472 DOI: 10.1002/stem.1933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/01/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder resulting in motor neuron (MN) loss. There are currently no effective therapies; however, cellular therapies using neural progenitor cells protect MNs and attenuate disease progression in G93A-SOD1 ALS rats. Recently, we completed a phase I clinical trial examining intraspinal human spinal stem cell (HSSC) transplantation in ALS patients which demonstrated our approach was safe and feasible, supporting the phase II trial currently in progress. In parallel, efforts focused on understanding the mechanisms underlying the preclinical benefit of HSSCs in vitro and in animal models of ALS led us to investigate how insulin-like growth factor-I (IGF-I) production contributes to cellular therapy neuroprotection. IGF-I is a potent growth factor with proven efficacy in preclinical ALS studies, and we contend that autocrine IGF-I production may enhance the salutary effects of HSSCs. By comparing the biological properties of HSSCs to HSSCs expressing sixfold higher levels of IGF-I, we demonstrate that IGF-I production augments the production of glial-derived neurotrophic factor and accelerates neurite outgrowth without adversely affecting HSSC proliferation or terminal differentiation. Furthermore, we demonstrate that increased IGF-I induces more potent MN protection from excitotoxicity via both indirect and direct mechanisms, as demonstrated using hanging inserts with primary MNs or by culturing with organotypic spinal cord slices, respectively. These findings support our theory that combining autocrine growth factor production with HSSC transplantation may offer a novel means to achieve additive neuroprotection in ALS.
Collapse
|
24
|
Chen KS, Sakowski SA, Feldman EL. Intraspinal stem cell transplantation for amyotrophic lateral sclerosis. Ann Neurol 2016; 79:342-53. [PMID: 26696091 DOI: 10.1002/ana.24584] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 12/18/2015] [Accepted: 12/18/2015] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder in which the loss of upper and lower motor neurons produces progressive weakness and eventually death. In the decades since the approval of riluzole, the only US Food and Drug Administration-approved medication to moderately slow progression of ALS, no new therapeutics have arisen to alter the course of the disease. This is partly due to our incomplete understanding of the complex pathogenesis of motor neuron degeneration. Stem cells have emerged as an attractive option in treating ALS, because they come armed with equally complex cellular machinery and may modulate the local microenvironment in many ways to rescue diseased motor neurons. Various stem cell types are being evaluated in preclinical and early clinical applications; here, we review the preclinical strategies and advances supporting the recent clinical translation of neural progenitor cell therapy for ALS. Specifically, we focus on the use of spinal cord neural progenitor cells and the pipeline starting from preclinical studies to the designs of phase I and IIa clinical trials involving direct intraspinal transplantation in humans.
Collapse
Affiliation(s)
- Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI
| | - Stacey A Sakowski
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, MI
| | - Eva L Feldman
- A. Alfred Taubman Medical Research Institute and Department of Neurology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
25
|
McGinley LM, Sims E, Lunn JS, Kashlan ON, Chen KS, Bruno ES, Pacut CM, Hazel T, Johe K, Sakowski SA, Feldman EL. Human Cortical Neural Stem Cells Expressing Insulin-Like Growth Factor-I: A Novel Cellular Therapy for Alzheimer's Disease. Stem Cells Transl Med 2016; 5:379-91. [PMID: 26744412 PMCID: PMC4807660 DOI: 10.5966/sctm.2015-0103] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/19/2015] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent age-related neurodegenerative disorder and a leading cause of dementia. Current treatment fails to modify underlying disease pathologies and very little progress has been made to develop effective drug treatments. Cellular therapies impact disease by multiple mechanisms, providing increased efficacy compared with traditional single-target approaches. In amyotrophic lateral sclerosis, we have shown that transplanted spinal neural stem cells (NSCs) integrate into the spinal cord, form synapses with the host, improve inflammation, and reduce disease-associated pathologies. Our current goal is to develop a similar "best in class" cellular therapy for AD. Here, we characterize a novel human cortex-derived NSC line modified to express insulin-like growth factor-I (IGF-I), HK532-IGF-I. Because IGF-I promotes neurogenesis and synaptogenesis in vivo, this enhanced NSC line offers additional environmental enrichment, enhanced neuroprotection, and a multifaceted approach to treating complex AD pathologies. We show that autocrine IGF-I production does not impact the cell secretome or normal cellular functions, including proliferation, migration, or maintenance of progenitor status. However, HK532-IGF-I cells preferentially differentiate into gamma-aminobutyric acid-ergic neurons, a subtype dysregulated in AD; produce increased vascular endothelial growth factor levels; and display an increased neuroprotective capacity in vitro. We also demonstrate that HK532-IGF-I cells survive peri-hippocampal transplantation in a murine AD model and exhibit long-term persistence in targeted brain areas. In conclusion, we believe that harnessing the benefits of cellular and IGF-I therapies together will provide the optimal therapeutic benefit to patients, and our findings support further preclinical development of HK532-IGF-I cells into a disease-modifying intervention for AD.
Collapse
Affiliation(s)
- Lisa M McGinley
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Erika Sims
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Osama N Kashlan
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin S Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Elizabeth S Bruno
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Crystal M Pacut
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Tom Hazel
- Neuralstem, Inc., Germantown, Maryland, USA
| | - Karl Johe
- Neuralstem, Inc., Germantown, Maryland, USA
| | - Stacey A Sakowski
- A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA A. Alfred Taubman Medical Research Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Xu L, Nguyen JV, Lehar M, Menon A, Rha E, Arena J, Ryu J, Marsh-Armstrong N, Marmarou CR, Koliatsos VE. Repetitive mild traumatic brain injury with impact acceleration in the mouse: Multifocal axonopathy, neuroinflammation, and neurodegeneration in the visual system. Exp Neurol 2016; 275 Pt 3:436-449. [DOI: 10.1016/j.expneurol.2014.11.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/29/2014] [Accepted: 11/04/2014] [Indexed: 10/24/2022]
|
27
|
Clark R, Blizzard C, Dickson T. Inhibitory dysfunction in amyotrophic lateral sclerosis: future therapeutic opportunities. Neurodegener Dis Manag 2015; 5:511-25. [DOI: 10.2217/nmt.15.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In amyotrophic lateral sclerosis, motor neuron hyperexcitability and inhibitory dysfunction is emerging as a potential causative link in the dysfunction and degeneration of the motoneuronal circuitry that characterizes the disease. Interneurons, as key regulators of excitability, may mediate much of this imbalance, yet we know little about the way in which inhibitory deficits perturb excitability. In this review, we explore inhibitory control of excitability and the potential contribution of altered inhibition to amyotrophic lateral sclerosis disease processes and vulnerabilities, identifying important windows of therapeutic opportunity and potential interventions, specifically targeting inhibitory control at key disease stages.
Collapse
Affiliation(s)
- Rosemary Clark
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Catherine Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| | - Tracey Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart TAS 7000, Australia
| |
Collapse
|
28
|
Forostyak S, Homola A, Turnovcova K, Svitil P, Jendelova P, Sykova E. Intrathecal delivery of mesenchymal stromal cells protects the structure of altered perineuronal nets in SOD1 rats and amends the course of ALS. Stem Cells 2015; 32:3163-72. [PMID: 25113670 PMCID: PMC4321196 DOI: 10.1002/stem.1812] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/29/2014] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder resulting in a lethal outcome. We studied changes in ventral horn perineuronal nets (PNNs) of superoxide dismutase 1 (SOD1) rats during the normal disease course and after the intrathecal application (5 × 105 cells) of human bone marrow mesenchymal stromal cells (MSCs) postsymptom manifestation. We found that MSCs ameliorated disease progression, significantly improved motor activity, and prolonged survival. For the first time, we report that SOD1 rats have an abnormal disorganized PNN structure around the spinal motoneurons and give different expression profiles of chondroitin sulfate proteoglycans (CSPGs), such as versican, aggrecan, and phosphacan, but not link protein-1. Additionally, SOD1 rats had different profiles for CSPG gene expression (Versican, Hapln1, Neurocan, and Tenascin-R), whereas Aggrecan and Brevican profiles remained unchanged. The application of MSCs preserved PNN structure, accompanied by better survival of motorneurons. We measured the concentration of cytokines (IL-1α, MCP-1, TNF-α, GM-CSF, IL-4, and IFN-γ) in the rats' cerebrospinal fluid and found significantly higher concentrations of IL-1α and MCP-1. Our results show that PNN and cytokine homeostasis are altered in the SOD1 rat model of ALS. These changes could potentially serve as biological markers for the diagnosis, assessment of treatment efficacy, and prognosis of ALS. We also show that the administration of human MSCs is a safe procedure that delays the loss of motor function and increases the overall survival of symptomatic ALS animals, by remodeling the recipients' pattern of gene expression and having neuroprotective and immunomodulatory effects. Stem Cells2014;32:3163–3172
Collapse
Affiliation(s)
- Serhiy Forostyak
- Institute of Experimental Medicine, Academy of Science of the Czech Republic, Prague, Czech Republic; Department of Neuroscience, 2nd Medical Faculty, Charles University, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
29
|
Ottoboni L, De Feo D, Merlini A, Martino G. Commonalities in immune modulation between mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs). Immunol Lett 2015; 168:228-39. [DOI: 10.1016/j.imlet.2015.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023]
|
30
|
Koliatsos VE, Xu L, Cummings BJ. Stem cell therapies for traumatic brain injury. Regen Med 2015; 10:917-20. [PMID: 26542417 DOI: 10.2217/rme.15.62] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Vassilis E Koliatsos
- Department of Pathology, Division of Neuropathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Psychiatry & Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leyan Xu
- Department of Pathology, Division of Neuropathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Brian J Cummings
- Departments of Physical & Medical Rehabilitation, Neurological Surgery, & Anatomy & Neurobiology, Sue & Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
31
|
Xu L, Ryu J, Nguyen JV, Arena J, Rha E, Vranis P, Hitt D, Marsh-Armstrong N, Koliatsos VE. Evidence for accelerated tauopathy in the retina of transgenic P301S tau mice exposed to repetitive mild traumatic brain injury. Exp Neurol 2015; 273:168-76. [DOI: 10.1016/j.expneurol.2015.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/01/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022]
|
32
|
Eom YW, Kim G, Baik SK. Mesenchymal stem cell therapy for cirrhosis: Present and future perspectives. World J Gastroenterol 2015; 21:10253-10261. [PMID: 26420953 PMCID: PMC4579873 DOI: 10.3748/wjg.v21.i36.10253] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/01/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Cirrhosis occurs as a result of various chronic liver injuries, which may be caused by viral infections, alcohol abuse and the administration of drugs and chemicals. Recently, bone marrow cells (BMCs), hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) have been used for developing treatments for cirrhosis. Clinical trials have investigated the therapeutic potential of BMCs, HSCs and MSCs for the treatment of cirrhosis based on their potential to differentiate into hepatocytes. Although the therapeutic mechanisms of BMC, HSC and MSC treatments are still not fully characterized, the evidence thus far has indicated that the potential therapeutic mechanisms of MSCs are clearer than those of BMCs or HSCs with respect to liver regenerative medicine. MSCs suppress inflammatory responses, reduce hepatocyte apoptosis, increase hepatocyte regeneration, reverse liver fibrosis and enhance liver functionality. This paper summarizes the clinical studies that have used BMCs, HSCs and MSCs in patients with liver failure or cirrhosis. We also present the potential therapeutic mechanisms of BMCs, HSCs and MSCs for the improvement of liver function.
Collapse
|
33
|
Abstract
Currently, the most effective treatment for end-stage liver fibrosis is liver transplantation; however, transplantation is limited by a shortage of donor organs, surgical complications, immunological rejection, and high medical costs. Recently, mesenchymal stem cell (MSC) therapy has been suggested as an effective alternate approach for the treatment of hepatic diseases. MSCs have the potential to differentiate into hepatocytes, and therapeutic value exists in their immune-modulatory properties and secretion of trophic factors, such as growth factors and cytokines. In addition, MSCs can suppress inflammatory responses, reduce hepatocyte apoptosis, increase hepatocyte regeneration, regress liver fibrosis and enhance liver functionality. Despite these advantages, issues remain; MSCs also have fibrogenic potential and the capacity to promote tumor cell growth and oncogenicity. This paper summarizes the properties of MSCs for regenerative medicine and their therapeutic mechanisms and clinical application in the treatment of liver fibrosis. We also present several outstanding risks, including their fibrogenic potential and their capacity to promote pre-existing tumor cell growth and oncogenicity.
Collapse
Affiliation(s)
- Young Woo Eom
- Cell Therapy and Tissue Engineering Center, Wonju, Korea
| | - Kwang Yong Shim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Soon Koo Baik
- Cell Therapy and Tissue Engineering Center, Wonju, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Correspondence to Soon Koo Baik, M.D. Department of Internal Medicine, Yonsei University Wonju College of Medicine, 20 Ilsan-ro, Wonju 26426, Korea Tel: +82-33-741-1223 Fax: +82-33-745-6782 E-mail:
| |
Collapse
|
34
|
Bradford AB, McNutt PM. Importance of being Nernst: Synaptic activity and functional relevance in stem cell-derived neurons. World J Stem Cells 2015; 7:899-921. [PMID: 26240679 PMCID: PMC4515435 DOI: 10.4252/wjsc.v7.i6.899] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/28/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
Functional synaptogenesis and network emergence are signature endpoints of neurogenesis. These behaviors provide higher-order confirmation that biochemical and cellular processes necessary for neurotransmitter release, post-synaptic detection and network propagation of neuronal activity have been properly expressed and coordinated among cells. The development of synaptic neurotransmission can therefore be considered a defining property of neurons. Although dissociated primary neuron cultures readily form functioning synapses and network behaviors in vitro, continuously cultured neurogenic cell lines have historically failed to meet these criteria. Therefore, in vitro-derived neuron models that develop synaptic transmission are critically needed for a wide array of studies, including molecular neuroscience, developmental neurogenesis, disease research and neurotoxicology. Over the last decade, neurons derived from various stem cell lines have shown varying ability to develop into functionally mature neurons. In this review, we will discuss the neurogenic potential of various stem cells populations, addressing strengths and weaknesses of each, with particular attention to the emergence of functional behaviors. We will propose methods to functionally characterize new stem cell-derived neuron (SCN) platforms to improve their reliability as physiological relevant models. Finally, we will review how synaptically active SCNs can be applied to accelerate research in a variety of areas. Ultimately, emphasizing the critical importance of synaptic activity and network responses as a marker of neuronal maturation is anticipated to result in in vitro findings that better translate to efficacious clinical treatments.
Collapse
|
35
|
Buzhor E, Leshansky L, Blumenthal J, Barash H, Warshawsky D, Mazor Y, Shtrichman R. Cell-based therapy approaches: the hope for incurable diseases. Regen Med 2015; 9:649-72. [PMID: 25372080 DOI: 10.2217/rme.14.35] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cell therapies aim to repair the mechanisms underlying disease initiation and progression, achieved through trophic effect or by cell replacement. Multiple cell types can be utilized in such therapies, including stem, progenitor or primary cells. This review covers the current state of cell therapies designed for the prominent disorders, including cardiovascular, neurological (Parkinson's disease, amyotrophic lateral sclerosis, stroke, spinal cord injury), autoimmune (Type 1 diabetes, multiple sclerosis, Crohn's disease), ophthalmologic, renal, liver and skeletal (osteoarthritis) diseases. Various cell therapies have reached advanced clinical trial phases with potential marketing approvals in the near future, many of which are based on mesenchymal stem cells. Advances in pluripotent stem cell research hold great promise for regenerative medicine. The information presented in this review is based on the analysis of the cell therapy collection detailed in LifeMap Discovery(®) (LifeMap Sciences Inc., USA) the database of embryonic development, stem cell research and regenerative medicine.
Collapse
|
36
|
Gutierrez J, Lamanna JJ, Grin N, Hurtig CV, Miller JH, Riley J, Urquia L, Avalos P, Svendsen CN, Federici T, Boulis NM. Preclinical Validation of Multilevel Intraparenchymal Stem Cell Therapy in the Porcine Spinal Cord. Neurosurgery 2015; 77:604-12; discussion 612. [DOI: 10.1227/neu.0000000000000882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
BACKGROUND:
Although multiple clinical trials are currently testing different stem cell therapies as treatment alternatives for many neurodegenerative diseases and spinal cord injury, the optimal injection parameters have not yet been defined.
OBJECTIVE:
To test the spinal cord's tolerance to increasing volumes and numbers of stem cell injections in the pig.
METHODS:
Twenty-seven female Göttingen minipigs received human neural progenitor cell injections using a stereotactic platform device. Cell transplantation in groups 1 to 5 (5–7 pigs in each) was undertaken with the intent of assessing the safety of an injection volume escalation (10, 25, and 50 µL) and an injection number escalation (20, 30, and 40 injections). Motor function and general morbidity were assessed for 21 days. Full necropsy was performed; spinal cords were analyzed for graft survival and microscopic tissue damage.
RESULTS:
No mortality or permanent surgical complications were observed during the 21-day study period. All animals returned to preoperative baseline within 14 days, showing complete motor function recovery. The histological analysis showed that there was no significant decrease in neuronal density between groups, and cell engraftment ranged from 12% to 31% depending on the injection paradigm. However, tissue damage was identified when injecting large volumes into the spinal cord (50 μL).
CONCLUSION:
This series supports the functional safety of various injection volumes and numbers in the spinal cord and gives critical insight into important safety thresholds. These results are relevant to all translational programs delivering cell therapeutics to the spinal cord.
Collapse
Affiliation(s)
- Juanmarco Gutierrez
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Jason J. Lamanna
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia
| | - Natalia Grin
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Carl V. Hurtig
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Joseph H. Miller
- Department of Neurosurgery, School of Medicine, University of Alabama, Birmingham, Alabama
| | - Jonathan Riley
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Lindsey Urquia
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Pablo Avalos
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Clive N. Svendsen
- Regenerative Medicine Institute, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Thais Federici
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
| | - Nicholas M. Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia
- Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, Georgia
| |
Collapse
|
37
|
Xu L, Ryu J, Hiel H, Menon A, Aggarwal A, Rha E, Mahairaki V, Cummings BJ, Koliatsos VE. Transplantation of human oligodendrocyte progenitor cells in an animal model of diffuse traumatic axonal injury: survival and differentiation. Stem Cell Res Ther 2015; 6:93. [PMID: 25971252 PMCID: PMC4453242 DOI: 10.1186/s13287-015-0087-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/13/2015] [Accepted: 05/01/2015] [Indexed: 12/14/2022] Open
Abstract
Introduction Diffuse axonal injury is an extremely common type of traumatic brain injury encountered in motor vehicle crashes, sports injuries, and in combat. Although many cases of diffuse axonal injury result in chronic disability, there are no current treatments for this condition. Its basic lesion, traumatic axonal injury, has been aggressively modeled in primate and rodent animal models. The inexorable axonal and perikaryal degeneration and dysmyelination often encountered in traumatic axonal injury calls for regenerative therapies, including therapies based on stem cells and precursors. Here we explore the proof of concept that treatments based on transplants of human oligodendrocyte progenitor cells can replace or remodel myelin and, eventually, contribute to axonal regeneration in traumatic axonal injury. Methods We derived human oligodendrocyte progenitor cells from the human embryonic stem cell line H9, purified and characterized them. We then transplanted these human oligodendrocyte progenitor cells into the deep sensorimotor cortex next to the corpus callosum of nude rats subjected to traumatic axonal injury based on the impact acceleration model of Marmarou. We explored the time course and spatial distribution of differentiation and structural integration of these cells in rat forebrain. Results At the time of transplantation, over 90 % of human oligodendrocyte progenitor cells expressed A2B5, PDGFR, NG2, O4, Olig2 and Sox10, a profile consistent with their progenitor or early oligodendrocyte status. After transplantation, these cells survived well and migrated massively via the corpus callosum in both injured and uninjured brains. Human oligodendrocyte progenitor cells displayed a striking preference for white matter tracts and were contained almost exclusively in the corpus callosum and external capsule, the striatopallidal striae, and cortical layer 6. Over 3 months, human oligodendrocyte progenitor cells progressively matured into myelin basic protein(+) and adenomatous polyposis coli protein(+) oligodendrocytes. The injured environment in the corpus callosum of impact acceleration subjects tended to favor maturation of human oligodendrocyte progenitor cells. Electron microscopy revealed that mature transplant-derived oligodendrocytes ensheathed host axons with spiral wraps intimately associated with myelin sheaths. Conclusions Our findings suggest that, instead of differentiating locally, human oligodendrocyte progenitor cells migrate massively along white matter tracts and differentiate extensively into ensheathing oligodendrocytes. These features make them appealing candidates for cellular therapies of diffuse axonal injury aiming at myelin remodeling and axonal protection or regeneration. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0087-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leyan Xu
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Jiwon Ryu
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Hakim Hiel
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Adarsh Menon
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Ayushi Aggarwal
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Elizabeth Rha
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Vasiliki Mahairaki
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Brian J Cummings
- Departments of Physical and Medical Rehabilitation, Neurological Surgery, and Anatomy and Neurobiology, Sue and Bill Gross Stem Cell Research Center, Institute for Memory Impairments and Neurological Disorders, University of California at Irvine, Irvine, CA, 92697, USA.
| | - Vassilis E Koliatsos
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
38
|
Goutman SA, Chen KS, Feldman EL. Recent Advances and the Future of Stem Cell Therapies in Amyotrophic Lateral Sclerosis. Neurotherapeutics 2015; 12:428-48. [PMID: 25776222 PMCID: PMC4404436 DOI: 10.1007/s13311-015-0339-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease of the motor neurons without a known cure. Based on the possibility of cellular neuroprotection and early preclinical results, stem cells have gained widespread enthusiasm as a potential treatment strategy. Preclinical models demonstrate a protective role of engrafted stem cells and provided the basis for human trials carried out using various types of stem cells, as well as a range of cell delivery methods. To date, no trial has demonstrated a clear therapeutic benefit; however, results remain encouraging and are the basis for ongoing studies. In addition, stem cell technology continues to improve, and induced pluripotent stem cells may offer additional therapeutic options in the future. Improved disease models and clinical trials will be essential in order to validate stem cells as a beneficial therapy.
Collapse
Affiliation(s)
- Stephen A Goutman
- Department of Neurology, University of Michigan, F2647 UH South, SPC 5223, 1500 East Medical Center Drive, Ann Arbor, MI, 48109-5036, USA,
| | | | | |
Collapse
|
39
|
Nicaise C, Mitrecic D, Falnikar A, Lepore AC. Transplantation of stem cell-derived astrocytes for the treatment of amyotrophic lateral sclerosis and spinal cord injury. World J Stem Cells 2015; 7:380-398. [PMID: 25815122 PMCID: PMC4369494 DOI: 10.4252/wjsc.v7.i2.380] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/07/2014] [Accepted: 11/19/2014] [Indexed: 02/06/2023] Open
Abstract
Neglected for years, astrocytes are now recognized to fulfill and support many, if not all, homeostatic functions of the healthy central nervous system (CNS). During neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and spinal cord injury (SCI), astrocytes in the vicinity of degenerating areas undergo both morphological and functional changes that might compromise their intrinsic properties. Evidence from human and animal studies show that deficient astrocyte functions or loss-of-astrocytes largely contribute to increased susceptibility to cell death for neurons, oligodendrocytes and axons during ALS and SCI disease progression. Despite exciting advances in experimental CNS repair, most of current approaches that are translated into clinical trials focus on the replacement or support of spinal neurons through stem cell transplantation, while none focus on the specific replacement of astroglial populations. Knowing the important functions carried out by astrocytes in the CNS, astrocyte replacement-based therapies might be a promising approach to alleviate overall astrocyte dysfunction, deliver neurotrophic support to degenerating spinal tissue and stimulate endogenous CNS repair abilities. Enclosed in this review, we gathered experimental evidence that argue in favor of astrocyte transplantation during ALS and SCI. Based on their intrinsic properties and according to the cell type transplanted, astrocyte precursors or stem cell-derived astrocytes promote axonal growth, support mechanisms and cells involved in myelination, are able to modulate the host immune response, deliver neurotrophic factors and provide protective molecules against oxidative or excitotoxic insults, amongst many possible benefits. Embryonic or adult stem cells can even be genetically engineered in order to deliver missing gene products and therefore maximize the chance of neuroprotection and functional recovery. However, before broad clinical translation, further preclinical data on safety, reliability and therapeutic efficiency should be collected. Although several technical challenges need to be overcome, we discuss the major hurdles that have already been met or solved by targeting the astrocyte population in experimental ALS and SCI models and we discuss avenues for future directions based on latest molecular findings regarding astrocyte biology.
Collapse
|
40
|
Nam H, Lee KH, Nam DH, Joo KM. Adult human neural stem cell therapeutics: Current developmental status and prospect. World J Stem Cells 2015; 7:126-136. [PMID: 25621112 PMCID: PMC4300923 DOI: 10.4252/wjsc.v7.i1.126] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/01/2014] [Accepted: 10/16/2014] [Indexed: 02/06/2023] Open
Abstract
Over the past two decades, regenerative therapies using stem cell technologies have been developed for various neurological diseases. Although stem cell therapy is an attractive option to reverse neural tissue damage and to recover neurological deficits, it is still under development so as not to show significant treatment effects in clinical settings. In this review, we discuss the scientific and clinical basics of adult neural stem cells (aNSCs), and their current developmental status as cell therapeutics for neurological disease. Compared with other types of stem cells, aNSCs have clinical advantages, such as limited proliferation, inborn differentiation potential into functional neural cells, and no ethical issues. In spite of the merits of aNSCs, difficulties in the isolation from the normal brain, and in the in vitro expansion, have blocked preclinical and clinical study using aNSCs. However, several groups have recently developed novel techniques to isolate and expand aNSCs from normal adult brains, and showed successful applications of aNSCs to neurological diseases. With new technologies for aNSCs and their clinical strengths, previous hurdles in stem cell therapies for neurological diseases could be overcome, to realize clinically efficacious regenerative stem cell therapeutics.
Collapse
|
41
|
Knippenberg S, Rath KJ, Böselt S, Thau-Habermann N, Schwarz SC, Dengler R, Wegner F, Petri S. Intraspinal administration of human spinal cord-derived neural progenitor cells in the G93A-SOD1 mouse model of ALS delays symptom progression, prolongs survival and increases expression of endogenous neurotrophic factors. J Tissue Eng Regen Med 2015; 11:751-764. [PMID: 25641599 DOI: 10.1002/term.1972] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/15/2014] [Accepted: 10/28/2014] [Indexed: 12/14/2022]
Abstract
Neural stem or progenitor cells are considered to be a novel therapeutic strategy for amyotrophic lateral sclerosis (ALS), based on their potential to generate a protective environment rather than to replace degenerating motor neurons. Following local injection to the spinal cord, neural progenitor cells may generate glial cells and release neurotrophic factors. In the present study, human spinal cord-derived neural progenitor cells (hscNPCs) were injected into the lumbar spinal cord of G93A-SOD1 ALS transgenic mice. We evaluated the potential effect of hscNPC treatment by survival analysis and behavioural/phenotypic assessments. Immunohistological and real-time PCR experiments were performed at a defined time point to study the underlying mechanisms. Symptom progression in hscNPC-injected mice was significantly delayed at the late stage of disease. On average, survival was only prolonged for 5 days. Animals treated with hscNPCs performed significantly better in motor function tests between weeks 18 and 19. Increased production of GDNF and IGF-1 mRNA was detectable in spinal cord tissue of hscNPC-treated mice. In summary, treatment with hscNPCs led to increased endogenous production of several growth factors and increased the preservation of innervated motor neurons but had only a small effect on overall survival. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Klaus Jan Rath
- Department of Neurology, Hannover Medical School, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Sebastian Böselt
- Department of Neurology, Hannover Medical School, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | - Nadine Thau-Habermann
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Sigrid C Schwarz
- German Centre for Neurodegenerative Diseases (DZNE), Technical University of Munich, Germany
| | - Reinhard Dengler
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Germany.,Centre for Systems Neuroscience, Hannover, Germany.,Integriertes Forschungs- und Behandlungszentrum Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| |
Collapse
|
42
|
Application of human induced pluripotent stem cells for modeling and treating neurodegenerative diseases. N Biotechnol 2015; 32:212-28. [DOI: 10.1016/j.nbt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 05/01/2014] [Accepted: 05/01/2014] [Indexed: 02/06/2023]
|
43
|
Human glial progenitor engraftment and gene expression is independent of the ALS environment. Exp Neurol 2014; 264:188-99. [PMID: 25523812 DOI: 10.1016/j.expneurol.2014.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/22/2014] [Accepted: 12/07/2014] [Indexed: 12/12/2022]
Abstract
Although Amyotrophic Lateral Sclerosis (ALS) is a motor neuron disease, basic research studies have highlighted that astrocytes contribute to the disease process. Therefore, strategies which replace the diseased astrocyte population with healthy astrocytes may protect against motor neuron degeneration. Our studies have sought to evaluate astrocyte replacement using glial-restricted progenitors (GRPs), which are lineage-restricted precursors capable of differentiating into astrocytes after transplantation. The goal of our current study was to evaluate how transplantation to the diseased ALS spinal cord versus a healthy, wild-type spinal cord may affect human GRP engraftment and selected gene expression. Human GRPs were transplanted into the spinal cord of either an ALS mouse model or wild-type littermate mice. Mice were sacrificed for analysis at either the onset of disease course or at the endstage of disease. The transplanted GRPs were analyzed by immunohistochemistry and NanoString gene profiling which showed no gross differences in the engraftment or gene expression of the cells. Our data indicate that human glial progenitor engraftment and gene expression is independent of the neurodegenerative ALS spinal cord environment. These findings are of interest given that human GRPs are currently in clinical development for spinal cord transplantation into ALS patients.
Collapse
|
44
|
Lunn JS, Sakowski SA, Feldman EL. Concise review: Stem cell therapies for amyotrophic lateral sclerosis: recent advances and prospects for the future. Stem Cells 2014; 32:1099-109. [PMID: 24448926 DOI: 10.1002/stem.1628] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal disease involving the loss of motor neurons. Although the mechanisms responsible for motor neuron degeneration in ALS remain elusive, the development of stem cell-based therapies for the treatment of ALS has gained widespread support. Here, we review the types of stem cells being considered for therapeutic applications in ALS, and emphasize recent preclinical advances that provide supportive rationale for clinical translation. We also discuss early trials from around the world translating cellular therapies to ALS patients, and offer important considerations for future clinical trial design. Although clinical translation is still in its infancy, and additional insight into the mechanisms underlying therapeutic efficacy and the establishment of long-term safety are required, these studies represent an important first step toward the development of effective cellular therapies for the treatment of ALS.
Collapse
Affiliation(s)
- J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
45
|
Tadesse T, Gearing M, Senitzer D, Saxe D, Brat DJ, Bray R, Gebel H, Hill C, Boulis N, Riley J, Feldman E, Johe K, Hazel T, Polak M, Bordeau J, Federici T, Glass JD. Analysis of graft survival in a trial of stem cell transplant in ALS. Ann Clin Transl Neurol 2014; 1:900-8. [PMID: 25540804 PMCID: PMC4265061 DOI: 10.1002/acn3.134] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 09/20/2014] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The first US Food and Drug Administration-approved clinical trial to treat amyotrophic lateral sclerosis (ALS) with neural stem cell-based therapy is in progress. The goal of the current study was to identify and assess the survival of human spinal cord-derived neural stem cells (HSSCs) transplanted into the spinal cord in patients with ALS. METHODS Spinal cords transplanted with HSSCs were examined from six autopsy cases. Homogenized tissues were interrogated for the presence of donor versus recipient DNA using real-time PCR methods (qPCR). Fluorescence in situ hybridization (FISH) was performed using DNA probes for XY chromosomes to identify male donor HSSCs in one female case, and immunohistochemistry (IHC) was used to characterize the identified donor cells. RESULTS Genomic DNA from donor HSSCs was identified in all cases, comprising 0.67-5.4% of total tissue DNA in patients surviving 196 to 921 days after transplantation. In the one female patient a "nest" of cells identified on H&E staining were XY-positive by FISH, confirming donor origin. A subset of XY-positive cells labeled for the neuronal marker NeuN and stem cell marker SOX2. INTERPRETATION This is the first study to identify human neural stem cells transplanted into a human spinal cord. Transplanted HSSCs survived up to 2.5 years posttransplant. Some cells differentiated into neurons, while others maintained their stem cell phenotype. This work is a proof of concept of the survival and differentiation of human stems cell transplanted into the spinal cord of ALS patients.
Collapse
Affiliation(s)
- Tezeta Tadesse
- Department of Neurology, Emory University School of Medicine Atlanta, Georgia
| | - Marla Gearing
- Department of Neurology, Emory University School of Medicine Atlanta, Georgia ; Department of Pathology and Laboratory Medicine, Emory University School of Medicine Atlanta, Georgia
| | - David Senitzer
- Histocompatibility Laboratory, City of Hope Cancer Center Duarte, California
| | - Debra Saxe
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine Atlanta, Georgia
| | - Daniel J Brat
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine Atlanta, Georgia
| | - Robert Bray
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine Atlanta, Georgia
| | - Howard Gebel
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine Atlanta, Georgia
| | - Charles Hill
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine Atlanta, Georgia ; Molecular Diagnostics Laboratory, Emory University Hospital Atlanta, Georgia
| | - Nicholas Boulis
- Department of Neurosurgery, Emory University School of Medicine Atlanta, Georgia
| | - Jonathan Riley
- Department of Neurosurgery, Emory University School of Medicine Atlanta, Georgia
| | - Eva Feldman
- Department of Neurology, University of Michigan School of Medicine Ann Arbor, Michigan
| | - Karl Johe
- Neuralstem, Inc. Rockville, Maryland
| | | | - Meraida Polak
- Department of Neurology, Emory University School of Medicine Atlanta, Georgia
| | - Jane Bordeau
- Department of Neurology, Emory University School of Medicine Atlanta, Georgia
| | - Thais Federici
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine Atlanta, Georgia
| | - Jonathan D Glass
- Department of Neurology, Emory University School of Medicine Atlanta, Georgia ; Department of Pathology and Laboratory Medicine, Emory University School of Medicine Atlanta, Georgia
| |
Collapse
|
46
|
Zhao WJ, Sun QJ, Guo RC, Pilowsky PM. Catecholamine inputs to expiratory laryngeal motoneurons in rats. J Comp Neurol 2014; 523:381-90. [PMID: 25224923 DOI: 10.1002/cne.23677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 12/18/2022]
Abstract
Many respiration-related interneurons and motoneurons receive a catecholaminergic input, but the extent and distribution of this input to recurrent laryngeal motoneurons that innervate intrinsic muscles of the larynx are not clear. In the present study, we examined the catecholaminergic input to expiratory laryngeal motoneurons in the caudal nucleus ambiguus by combining intracellular labeling of single identified motoneurons, with immunohistochemistry to reveal tyrosine hydroxylase immunoreactive (catecholaminergic) terminal varicosities. Close appositions were found between the two structures, with 18 ± 5 close appositions per motoneuron (n = 7). Close appositions were more frequently observed on distal rather than proximal dendrites. Axosomatic appositions were not seen. In order to determine the source of this input, microinjections of cholera toxin B subunit (1%, 20 nl) were made into the caudal nucleus ambiguus. Retrogradely labeled neurons, located in the ipsilateral nucleus tractus solitarius and the area postrema, were tyrosine hydroxylase-positive. Our results not only demonstrate details of the extent and distribution of potential catecholamine inputs to the expiratory laryngeal motoneuron, but further indicate that the inputs, at least in part, originate from the dorsomedial medulla, providing a potential anatomical basis for previously reported catecholaminergic effects on the laryngeal adductor reflex.
Collapse
Affiliation(s)
- Wen-Jing Zhao
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | | | | | | |
Collapse
|
47
|
Riley J, Glass J, Feldman EL, Polak M, Bordeau J, Federici T, Johe K, Boulis NM. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I trial, cervical microinjection, and final surgical safety outcomes. Neurosurgery 2014; 74:77-87. [PMID: 24018694 DOI: 10.1227/neu.0000000000000156] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The first US Food and Drug Administration approved clinical trial for a stem cell-based treatment of amyotrophic lateral sclerosis has now been completed. OBJECTIVE Primary aims assessed the safety of a direct microinjection-based technique and the toxicity of neural stem cell transplantation to the ventral horn of the cervical and thoracolumbar spinal cord. Results from thoracolumbar-only microinjection groups have been previously published. Cervical and cervical plus thoracolumbar microinjection group perioperative morbidity results are presented. METHODS Eighteen microinjection procedures (n = 12 thoracolumbar [T10/11], n = 6 cervical [C3-5]) delivered NSI-566RSC (Neuralstem, Inc), a human neural stem cell, to 15 patients in 5 cohorts. Each injection series comprised 5 injections of 10 μL at 4-mm intervals. The patients in group A (n = 6) were nonambulatory and received unilateral (n = 3) or bilateral (n = 3) thoracolumbar microinjections. The patients in groups B to E were ambulatory and received either unilateral (group B, n = 3) or bilateral (group C, n = 3) thoracolumbar microinjection. Group D and E patients received unilateral cervical (group D, n = 3) or cervical plus bilateral thoracolumbar microinjection (group E, n = 3). RESULTS Unilateral cervical (group D, n = 3) and cervical plus thoracolumbar (group E, n = 3) microinjections to the ventral horn have been completed in ambulatory patients. One patient developed a postoperative kyphotic deformity prompting completion of a laminoplasty in subsequent patients. Another required reoperation for wound dehiscence and infection. The solitary patient with bulbar amyotrophic lateral sclerosis required perioperative reintubation. CONCLUSION Delivery of a cellular payload to the cervical or thoracolumbar spinal cord was well tolerated by the spinal cord in this vulnerable population. This encouraging finding supports consideration of this delivery approach for neurodegenerative, oncologic, and traumatic spinal cord afflictions.
Collapse
Affiliation(s)
- Jonathan Riley
- *Department of Neurosurgery, Emory University, Atlanta, Georgia; ‡Department of Neurology, Emory University, Atlanta, Georgia; §Department of Neurology, University of Michigan, Ann Arbor, Michigan; ¶Neuralstem, Inc, Rockville, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Goyal NA, Mozaffar T. Experimental trials in amyotrophic lateral sclerosis: a review of recently completed, ongoing and planned trials using existing and novel drugs. Expert Opin Investig Drugs 2014; 23:1541-51. [DOI: 10.1517/13543784.2014.933807] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Vucic S, Rothstein JD, Kiernan MC. Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci 2014; 37:433-42. [PMID: 24927875 DOI: 10.1016/j.tins.2014.05.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 05/18/2014] [Accepted: 05/19/2014] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most frequently occurring of the neuromuscular degenerative disorders, with a median survival time of 3-5 years. The pathophysiological mechanisms underlying ALS are multifactorial, with a complex interaction between genetic factors and molecular pathways. To date 16 genes and loci have been associated with ALS, with mutations in DNA/RNA-regulating genes including the recently described c9orf72 (chromosome 9 open reading frame 72) gene, suggesting an important role for dysregulation of RNA metabolism in ALS pathogenesis. Further, dysfunction of molecular pathways, including glutamate-mediated excitotoxicity, has been identified in sporadic and familial ALS, indicating the existence of a common pathogenic pathway. These pathophysiological insights have suggested novel therapeutic approaches, including stem cell and genetics-based strategies, providing hope for feasible treatment of ALS.
Collapse
Affiliation(s)
- Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, Australia; Neurosciences Research Australia, Sydney, Australia.
| | - Jeffrey D Rothstein
- Brain Science Institute, Robert Packard Center for Amyotrophic Lateral Sclerosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew C Kiernan
- Neurosciences Research Australia, Sydney, Australia; Brain and Mind Research Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
50
|
Zhu T, Tang Q, Gao H, Shen Y, Chen L, Zhu J. Current status of cell-mediated regenerative therapies for human spinal cord injury. Neurosci Bull 2014; 30:671-82. [PMID: 24817389 DOI: 10.1007/s12264-013-1438-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/28/2013] [Indexed: 01/01/2023] Open
Abstract
During the past decade, significant advances have been made in refinements for regenerative therapies following human spinal cord injury (SCI). Positive results have been achieved with different types of cells in various clinical studies of SCI. In this review, we summarize recently-completed clinical trials using cell-mediated regenerative therapies for human SCI, together with ongoing trials using neural stem cells. Specifically, clinical studies published in Chinese journals are included. These studies show that current transplantation therapies are relatively safe, and have provided varying degrees of neurological recovery. However, many obstacles exist, hindering the introduction of a specific clinical therapy, including complications and their causes, selection of the target population, and optimization of transplantation material. Despite these and other challenges, with the collaboration of research groups and strong support from various organizations, cell-mediated regenerative therapies will open new perspectives for SCI treatment.
Collapse
Affiliation(s)
- Tongming Zhu
- Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China
| | | | | | | | | | | |
Collapse
|