1
|
Koebele SV, Bernaud VE, Northup-Smith SN, Willeman MN, Strouse IM, Bulen HL, Schrier AR, Newbern JM, DeNardo DF, Mayer LP, Dyer CA, Bimonte-Nelson HA. Gynecological surgery in adulthood imparts cognitive and brain changes in rats: A focus on hysterectomy at short-, moderate-, and long-term intervals after surgery. Horm Behav 2023; 155:105411. [PMID: 37659358 PMCID: PMC11060888 DOI: 10.1016/j.yhbeh.2023.105411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 09/04/2023]
Abstract
Premenopausal hysterectomy is associated with a greater relative risk of dementia. We previously demonstrated cognitive impairments in adult rats six weeks after hysterectomy with ovarian conservation compared with intact sham-controls and other gynecological surgery variations. Here, we investigated whether hysterectomy-induced cognitive impairments are transient or persistent. Adult rats received sham-control, ovariectomy (Ovx), hysterectomy, or Ovx-hysterectomy surgery. Spatial working memory, reference memory, and anxiety-like behavior were tested either six-weeks post-surgery, in adulthood; seven-months post-surgery, in early middle-age; or twelve-months post-surgery, in late middle-age. Hysterectomy in adulthood yielded spatial working memory deficits at short-, moderate-, and long-term post-surgery intervals. Serum hormone levels did not differ between ovary-intact, but differed from Ovx, groups. Hysterectomy had no significant impact on healthy ovarian follicle or corpora lutea counts for any post-surgery timepoint compared with intact sham-controls. Frontal cortex, dorsal hippocampus, and entorhinal cortex were assessed for activity-dependent markers. In entorhinal cortex, there were alterations in FOSB and ΔFOSB expression during the early middle-age timepoint, and phosphorylated ERK1/2 levels at the adult timepoint. Collectively, results suggest a primary role for the uterus in regulating cognition, and that memory-related neural pathways may be modified following gynecological surgery. This is the first preclinical report of long-term effects of hysterectomy with and without ovarian conservation on cognition, endocrine, ovarian, and brain assessments, initiating a comprehensive framework of gynecological surgery effects. Translationally, findings underscore critical needs to decipher how gynecological surgeries, especially those involving the uterus, impact the brain and its functions, the ovaries, and overall aging from a systems perspective.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Victoria E Bernaud
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Steven N Northup-Smith
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Mari N Willeman
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Isabel M Strouse
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Haidyn L Bulen
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Ally R Schrier
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Dale F DeNardo
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | | | | | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA; Arizona Alzheimer's Consortium, 4745 N 7th St, Phoenix, AZ 85014, USA.
| |
Collapse
|
2
|
Jana B, Całka J, Sikora M, Palus K. Involvement of the calcitonin gene-related peptide system in the modulation of inflamed uterus contractile function in pigs. Sci Rep 2022; 12:19146. [PMID: 36352250 PMCID: PMC9646719 DOI: 10.1038/s41598-022-23867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
This study analyzed severe acute endometritis action on myometrial density and distribution of protein gene product (PGP)9.5- and calcitonin gene-related peptide (CGRP)-like immunoreactive nerve fibers and calcitonin receptor-like receptor (CLR) expression, and on CGRP receptor (CGRPR) participation in uterine contractility in pigs. E. coli suspension (E. coli group) or saline (SAL group) were injected into the uteri, or only laparotomy was performed (CON group). In the E. coli group myometrium, a lack of significant changes in PGP9.5 and CGRP innervation patterns and increased CLR protein level were revealed. In all groups, compared to the pretreatment period, human αCGRP increased amplitude in the myometrium, while reducing it in endometrium/myometrium. In the E. coli group endometrium/myometrium, human αCGRP lowered amplitude vs other groups. Human αCGRP reduced frequency in CON and SAL groups and enhanced it in the E. coli group endometrium/myometrium. The frequency in E. coli group increased vs other groups. CGRPR antagonist, human αCGRP8-37, reversed (CON, SAL groups) and eliminated (E. coli group) the rise in human αCGRP-induced myometrial amplitude. In endometrium/myometrium, human αCGRP8-37 abolished (CON group) and reversed (SAL group) a decrease in frequency, and reduced the rise in frequency (E. coli group) caused by human αCGRP. Collectively, in the myometrium, endometritis did not change PGP9.5 and CGRP innervation patterns and enhanced CLR protein level. CGRPR also mediated in CGRP action on inflamed uterus contractility.
Collapse
Affiliation(s)
- Barbara Jana
- grid.433017.20000 0001 1091 0698Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-078 Olsztyn, Poland
| | - Jarosław Całka
- grid.412607.60000 0001 2149 6795Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland
| | - Małgorzata Sikora
- grid.433017.20000 0001 1091 0698Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-078 Olsztyn, Poland
| | - Katarzyna Palus
- grid.412607.60000 0001 2149 6795Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-718 Olsztyn, Poland
| |
Collapse
|
3
|
Pinsard M, Mouchet N, Dion L, Bessede T, Bertrand M, Darai E, Bellaud P, Loget P, Mazaud-Guittot S, Morandi X, Leveque J, Lavoué V, Duraes M, Nyangoh Timoh K. Anatomic and functional mapping of human uterine innervation. Fertil Steril 2022; 117:1279-1288. [PMID: 35367063 DOI: 10.1016/j.fertnstert.2022.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To better understand the physiology of pain in pelvic pain pathological conditions, such as endometriosis, in which alterations of uterine innervation have been highlighted, we performed an anatomic and functional mapping of the macro- and microinnervation of the human uterus. Our aim was to provide a 3-dimensional reconstruction model of uterine innervation. DESIGN This was an experimental study. We dissected the pelvises of 4 human female fetuses into serial sections, and treated them with hematoxylin and eosin staining before immunostaining. SETTING Academic Research Unit. PATIENTS None. INTERVENTIONS None. MAIN OUTCOME MEASURES Detection of nerves (S100 +) and characterization of the types of nerves. The slices obtained were aligned to construct a 3-dimensional model. RESULTS A 3-dimensional model of uterine innervation was constructed. The nerve fibers appeared to have a centripetal path from the uterine serosa to the endometrium. Within the myometrium, innervation was dense. Endometrial innervation was sparse but present in the functional layer of the endometrium. Overall innervation was richest in the supravaginal cervix and rarer in the body of the uterus. Innervation was rich particularly laterally to the cervix next to the parametrium and paracervix. Four types of nerve fibers were identified: autonomic sympathetic (TH+), parasympathetic (VIP+), and sensitive (NPY+, CGRP1+ and VIP+). They were found in the 3 portions and the 3 layers of the uterus. CONCLUSIONS We constructed a 3-dimensional model of the human uterine innervation. This model could provide a solid base for studying uterine innervation in pathologic situations, in order to find new therapeutic approaches.
Collapse
Affiliation(s)
- Marion Pinsard
- Department of Obstetrics and Gynecology, Hopital Universitaire de Rennes, Rennes, France
| | - Nicolas Mouchet
- University Rennes 1, CNRS, Inserm UMS Biosit, France BioImaging, Core Facility H2P2 Rennes, France
| | - Ludivine Dion
- Department of Obstetrics and Gynecology, Hopital Universitaire de Rennes, Rennes, France; Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) Rennes, France
| | - Thomas Bessede
- UMR 1195, University Paris-Sud, INSERM, Université Paris-Saclay, Le Kremlin-Bicetre, France; Urology Department, Hopitaux Universitaires Paris-Sud, Le Kremlin-Bicetre, France
| | | | - Emile Darai
- Service de gynécologie obstétrique et médecine de la reproduction, Hôpital Tenon, Paris, France; Centre de Recherche Saint-Antoine, Paris, France
| | - Pascale Bellaud
- University Rennes 1, CNRS, Inserm UMS Biosit, France BioImaging, Core Facility H2P2 Rennes, France
| | - Philippe Loget
- Service d'Anatomie et Cytologie Pathologiques, Rennes, France
| | - Séverine Mazaud-Guittot
- Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) Rennes, France
| | - Xavier Morandi
- Laboratoire d'Anatomie et d'Organogenèse, Faculté de Médecine, Centre Hospitalier Universitaire de Rennes, Rennes, France; Department of Neurosurgery, Rennes University Hospital, Rennes, France
| | - Jean Leveque
- Department of Obstetrics and Gynecology, Hopital Universitaire de Rennes, Rennes, France
| | - Vincent Lavoué
- Department of Obstetrics and Gynecology, Hopital Universitaire de Rennes, Rennes, France; Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) Rennes, France
| | - Martha Duraes
- Urology Department, Hopitaux Universitaires Paris-Sud, Le Kremlin-Bicetre, France
| | - Krystel Nyangoh Timoh
- Department of Obstetrics and Gynecology, Hopital Universitaire de Rennes, Rennes, France; Laboratoire d'Anatomie et d'Organogenèse, Faculté de Médecine, Centre Hospitalier Universitaire de Rennes, Rennes, France; University Rennes, INSERM, LTSI - UMR 1099, F35000, Rennes, France.
| |
Collapse
|
4
|
Sadraei H, Khakboo M, Asghari G. Spasmolytic effect of Lonicera japonica extracts on isolated uterus smooth muscle contractions. JOURNAL OF HERBMED PHARMACOLOGY 2021. [DOI: 10.34172/jhp.2021.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Honeysuckle (Lonicera japonica) is an ornamental flowering plant with numerous traditional medicinal uses. It has been claimed to have anti-spasmodic activities, but only limited studies have been done to support this. The objective of this research was to investigate anti-spasmodic effect of L. japonica flower extract on uterus contractions. Methods: Hydroalcoholic extract was prepared using the maceration technique. In addition, chloroform and ethyl acetate fractions were prepared using a solvent in solvent fractionation technique. Essential oils were collected using the hydro-distillation technique. Rat isolated uterus was suspended in an organ bath and contracted with oxytocin, acetylcholine (ACh), KCl, or application of electrical field stimulation (EFS). The relaxant effects of the extract, its fractions, and nifedipine were examined on uterine contrition induced by the above-mentioned stimuli. Results: Nifedipine in a concentration-dependent manner inhibited uterine contraction induced by oxytocin, KCl, ACh, and EFS. L. japonica flower extract also exhibited an inhibitory effect on the isolated rat uterus. Comparison of the hydroalcoholic extract with its chloroform and ethyl acetate fractions showed that the chloroform fraction was the most potent and the ethyl acetate the weakest part of the plant with antispasmodic activity. The relaxant effect of essential oil had close similarities to that of chloroform extract. Conclusion: Lipophilic compounds isolated by the chloroform partition of crude hydroalcoholic extract of L. japonica flower exhibited the most antispasmodic activity. Ethyl acetate partition of the same extract exhibited the least activity. Therefore, it can be concluded that the spasmolytic constituents of L. japonica flower reside in chloroform partitioning. The nonpolar essential oils may also have a contribution.
Collapse
Affiliation(s)
- Hassan Sadraei
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mona Khakboo
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Gholamreza Asghari
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
5
|
Kaliush PR, Terrell S, Vlisides-Henry RD, Lin B, Neff D, Shakiba N, Conradt E, Crowell SE. Influences of adversity across the lifespan on respiratory sinus arrhythmia during pregnancy. Dev Psychobiol 2021; 63:e22132. [PMID: 34053065 DOI: 10.1002/dev.22132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/26/2021] [Accepted: 04/28/2021] [Indexed: 12/27/2022]
Abstract
There is limited understanding of factors across the lifespan that influence pregnant women's respiratory sinus arrhythmia (RSA), which could have implications for their health and offspring development. We examined associations among 162 English- and Spanish-speaking pregnant women's childhood maltreatment history, emotion dysregulation, recent life stress, and resting RSA during the third trimester. Moderated mediation analyses indicated that more severe childhood maltreatment history (95% confidence interval (CI) [0.26, 0.63]) and higher emotion dysregulation (95% CI [0.001, 0.006]) predicted more stress during pregnancy, and childhood maltreatment history interacted with emotion dysregulation to predict resting RSA (95% CI [-0.04, -0.0003]). Exploratory analyses revealed that women's health-related stress during pregnancy mediated the relation between emotion dysregulation and RSA regardless of childhood maltreatment severity (95% CI [-0.007, -0.002]). These findings suggest that women's resting RSA during pregnancy may reflect physical and emotional stress accumulation across the lifespan and that relations between early life adversity and prenatal psychophysiology may be buffered by protective factors, such as emotion regulation. In addition, these findings underscore the importance of distinguishing between types of prenatal stress. Given the implications for women's health and offspring development, we urge researchers to continue exploring factors associated with pregnant women's psychophysiology.
Collapse
Affiliation(s)
| | - Sarah Terrell
- Department of Human Development and Family Studies, Pennsylvania State University, Pennsylvania, USA
| | | | - Betty Lin
- Department of Psychology, University at Albany, State University of New York, New York, USA
| | - Dylan Neff
- Department of Psychology, University of Utah, Utah, USA
| | - Nila Shakiba
- Department of Psychology, University of Utah, Utah, USA
| | - Elisabeth Conradt
- Department of Psychology, University of Utah, Utah, USA.,Department of Pediatrics, University of Utah, Utah, USA.,Department of Obstetrics and Gynecology, University of Utah, Utah, USA
| | - Sheila E Crowell
- Department of Psychology, University of Utah, Utah, USA.,Department of Obstetrics and Gynecology, University of Utah, Utah, USA.,Department of Psychiatry, University of Utah, Utah, USA
| |
Collapse
|
6
|
de Barros JWF, Villela E Silva P, da Silva GV, da Silva KP, Borges CDS, Mueller A, Valencise L, Pupo AS, Kempinas WDG. Rosuvastatin exposure in female Wistar rats alters uterine contractility and do not show evident (anti)estrogenic effects. Drug Chem Toxicol 2021; 45:2233-2245. [PMID: 33934680 DOI: 10.1080/01480545.2021.1919139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Statins are 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase inhibitor drugs that lead to serum-cholesterol-lowering effects. Rosuvastatin, a third-generation statin, has shown better results in reducing cholesterol concentrations when compared to other widely prescribed statins. Recent studies by our group reported that rosuvastatin impairs reproductive function in rats possibly by disrupting the reproductive-endocrine axis. In this study, we evaluated whether rosuvastatin presents estrogenic or antiestrogenic effects, by an in vivo uterotrophic assay in rats, and investigated the direct effect of this drug upon rat uterine tissue contractility both in non-gravid and gravid periods. Rosuvastatin exposure in vivo at doses of 0 (control), 3, and 10 mg/kg/d was not associated with estrogenic or antiestrogenic effects on uterine tissue. However, in vivo (doses of 0, 3, and 10 mg/kg/d) and ex vivo (concentrations of 0, 1, 10, and 100 µg/mL) exposures to this drug were related to alterations in uterine basal contraction pattern. Furthermore, in vivo and ex vivo rosuvastatin exposures potentially modulate the action of uterine contraction inducers carbachol, norepinephrine, and prostaglandin E2. Thus, rosuvastatin can affect uterine physiology not necessarily by an endocrine mechanism related to the estrogen signaling, but possibly by its pleiotropic effects, with indirect tissue and cellular interactions, since in vivo and ex vivo exposures of uterine fragments to rosuvastatin presented different responses in uterine contractile parameters, which require further studies upon the precise mechanism of action of this drug in female reproductive function.
Collapse
Affiliation(s)
- Jorge Willian Franco de Barros
- Department of Structural and Functional Biology, Institute of Biosciences, Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (UNESP), Botucatu, Brazil
| | - Patrícia Villela E Silva
- Department of Structural and Functional Biology, Institute of Biosciences, Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (UNESP), Botucatu, Brazil
| | - Gustavo Venâncio da Silva
- Department of Structural and Functional Biology, Institute of Biosciences, Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (UNESP), Botucatu, Brazil
| | - Katiussia Pinho da Silva
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu, Brazil
| | - Cibele Dos Santos Borges
- Department of Structural and Functional Biology, Institute of Biosciences, Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (UNESP), Botucatu, Brazil
| | - André Mueller
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu, Brazil
| | - Lethícia Valencise
- Department of Structural and Functional Biology, Institute of Biosciences, Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (UNESP), Botucatu, Brazil
| | - André Sampaio Pupo
- Department of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu, Brazil
| | - Wilma De Grava Kempinas
- Department of Structural and Functional Biology, Institute of Biosciences, Laboratory of Reproductive and Developmental Biology and Toxicology, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
7
|
Palus K, Całka J, Jana B. Alterations in the relative abundance of the vasoactive intestinal peptide receptors (VPAC1 and VPAC2) and functions in uterine contractility during inflammation. Anim Reprod Sci 2020; 225:106680. [PMID: 33388613 DOI: 10.1016/j.anireprosci.2020.106680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Vasoactive intestinal peptide (VIP) receptor (VPAC1, VPAC2) abundances in the myometrium and functions in the regulation of inflamed uterine contractility in pigs were studied. In the CON group with gilts, only laparotomy was performed. The gilts of SAL- and E. coli-treated groups were administered saline or E. coli into the uterine horns, respectively. The E. coli-induced endometritis resulted in a lesser myometrial relative abundance of VPAC1 and VPAC2 receptor mRNA transcripts and larger abundance of protein for these receptors. In the myometrium, treatment with VIP resulted in a lesser contractility amplitude than in the tissues of the CON- and SAL- and E. coli-treated groups and in frequency in the CON- and E.coli-treated group compared to the period before VIP treatment. Compared to when there was VIP treatment alone, treatment with VPAC1 and VPAC2 receptor antagonists resulted in a lesser inhibitory effect of VIP on contractility amplitude in the myometrium of the CON and SAL-treated groups and there was complete abolishment of the inhibitory VIP effect on frequency of myometrial contractility of the CON group. In the myometrium of E. coli-treated group, treatment with VPAC1 and VPAC2 receptor antagonists resulted in a reversal of the inhibitory effect of VIP on contractility amplitude, while treatment with VPAC2 receptor antagonist resulted in elimination of contractility and a lesser endometrium/myometrium inhibitory effect of VIP on frequency of these contractions. Results indicate VIP functions to decrease myometrial contractility of the inflamed pig uterus by having functions at VPAC1 and VPAC2 receptors.
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13 Str., 10-718, Olsztyn, Poland
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13 Str., 10-718, Olsztyn, Poland
| | - Barbara Jana
- Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
8
|
Ma Q, Mo G, Tan Y. Micro RNAs and the biological clock: a target for diseases associated with a loss of circadian regulation. Afr Health Sci 2020; 20:1887-1894. [PMID: 34394254 PMCID: PMC8351835 DOI: 10.4314/ahs.v20i4.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Circadian clocks are self-sustaining oscillators that coordinate behavior and physiology over a 24 hour period, achieving time-dependent homeostasis with the external environment. The molecular clocks driving circadian rhythmic changes are based on intertwined transcriptional/translational feedback loops that combine with a range of environmental and metabolic stimuli to generate daily internal programing. Understanding how biological rhythms are generated throughout the body and the reasons for their dysregulation can provide avenues for temporally directed therapeutics. Summary In recent years, microRNAs have been shown to play important roles in the regulation of the circadian clock, particularly in Drosophila, but also in some small animal and human studies. This review will summarize our current understanding of the role of miRNAs during clock regulation, with a particular focus on the control of clock regulated gene expression.
Collapse
Affiliation(s)
- Qianwen Ma
- Gynecology department, Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang, China
- Reproductive medicine department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Genlin Mo
- Advanced manufacturing institution, Jiangsu University, Zhenjiang, China
| | - Yong Tan
- Reproductive medicine department, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Dodds KN, Kyloh MA, Travis L, Beckett EAH, Spencer NJ. Morphological identification of thoracolumbar spinal afferent nerve endings in mouse uterus. J Comp Neurol 2020; 529:2029-2041. [PMID: 33190293 DOI: 10.1002/cne.25070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 11/06/2022]
Abstract
Major sensory innervation to the uterus is provided by spinal afferent nerves, whose cell bodies lie predominantly in thoracolumbar dorsal root ganglia (DRG). While the origin of the cell bodies of uterine spinal afferents is clear, the identity of their sensory endings has remained unknown. Hence, our major aim was to identify the location, morphology, and calcitonin gene-related peptide (CGRP)-immunoreactivity of uterine spinal afferent endings supplied by thoracolumbar DRG. We also sought to determine the degree of uterine afferent innervation provided by the vagus nerve. Using an anterograde tracing technique, nulliparous female C57BL/6 mice were injected unilaterally with biotinylated dextran into thoracolumbar DRG (T13-L3). After 7-9 days, uterine horns were stained to visualize traced nerve axons and endings immunoreactive to CGRP. Whole uteri from a separate cohort of animals were injected with retrograde neuronal tracer (DiI) and dye uptake in nodose ganglia was examined. Anterogradely labeled axons innervated each uterine horn, these projected rostrally or caudally from their site of entry, branching to form varicose endings in the myometrium and/or vascular plexus. Most spinal afferent endings were CGRP-immunoreactive and morphologically classified as "simple-type." Rarely, uterine nerve cell bodies were labeled in nodose ganglia. Here, we provide the first detailed description of spinal afferent nerve endings in the uterus of a vertebrate. Distinct morphological types of spinal afferent nerve endings were identified throughout multiple anatomical layers of the uterine wall. Compared to other visceral organs, uterine spinal afferent endings displayed noticeably less morphological diversity. Few neurons in nodose ganglia innervate the uterus.
Collapse
Affiliation(s)
- Kelsi N Dodds
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Melinda A Kyloh
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Lee Travis
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, South Australia, Australia
| | - Elizabeth A H Beckett
- Discipline of Physiology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Nick J Spencer
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University of South Australia, Bedford Park, South Australia, Australia
| |
Collapse
|
10
|
Inflammation changes the expression of neuropeptide Y receptors in the pig myometrium and their role in the uterine contractility. PLoS One 2020; 15:e0236044. [PMID: 32649683 PMCID: PMC7351157 DOI: 10.1371/journal.pone.0236044] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/28/2020] [Indexed: 01/23/2023] Open
Abstract
In the experiment the influence of inflammation on neuropeptide Y (NPY) receptor subtype 1 (Y1Rs) and 2 (Y2Rs) expression pattern in the gilt myometrium and NPY effect alone or with Y1Rs and Y2Rs antagonists on contractility of an inflamed uterus were recognized. On Day 3 of the estrous cycle, either E.coli suspension (E.coli group) or saline (SAL group) were administered into uterine horns. In the control gilts (CON group), only laparotomy was carried out. Eight days later, E.coli treatment evoked severe acute endometritis, significantly reduced Y1Rs mRNA and protein expression and increased Y2Rs protein expression in myometrium in relation to the CON and SAL groups. Compared to period before NPY application, NPY (10−7 M) significantly reduced amplitude in myometrium and endometrium/myometrium and frequency in myometrium of the CON and SAL groups and amplitude in endometrium/myometrium and frequency in strips of the E.coli group. In this group, after using NPY (10−7 M), the amplitude rose significantly in both kinds of strips, while frequency fell in endometrium/myometrium in relation to the SAL group. In the CON and SAL groups, NPY (10−7 M) with Y1Rs antagonist significantly increased the amplitude in endometrium/myometrium, while with Y2Rs antagonist caused a rise in myometrium. In the E.coli group after using Y1Rs or Y2Rs antagonist and NPY (10−7 M) amplitude did not significantly change in endometrium/myometrium, and this parameter was significantly lower after using the NPY and Y1Rs antagonist than in other groups. Y1Rs antagonist and NPY (10−8, 10−7 M) significantly increased frequency in endometrium/myometrium of the CON and SAL groups. In the E.coli group, Y1Rs or Y2Rs antagonists and NPY (10−7 M) significantly increased frequency in myometrium and it was significantly higher than in the CON group. Inflammation changes Y1Rs and Y2Rs expression in myometrium of the inflamed pig uterus and NPY reduces this organ contractility by Y1Rs and Y2Rs.
Collapse
|
11
|
Rytel L, Gonkowski S. The Influence of Bisphenol a on the Nitrergic Nervous Structures in the Domestic Porcine Uterus. Int J Mol Sci 2020; 21:E4543. [PMID: 32604714 PMCID: PMC7353066 DOI: 10.3390/ijms21124543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/21/2022] Open
Abstract
Bisphenol A (BPA) is one of the most common environmental pollutants among endocrine disruptors. Due to its similarity to estrogen, BPA may affect estrogen receptors and show adverse effects on many internal organs. The reproductive system is particularly vulnerable to the impact of BPA, but knowledge about BPA-induced changes in the innervation of the uterus is relatively scarce. Therefore, this study aimed to investigate the influence of various doses of BPA on nitrergic nerves supplying the uterus with the double immunofluorescence method. It has been shown that even low doses of BPA caused an increase in the number of nitrergic nerves in the uterine wall and changed their neurochemical characterization. During the present study, changes in the number of nitrergic nerves simultaneously immunoreactive to substance P, vasoactive intestinal polypeptide, pituitary adenylate cyclase-activating peptide, and/or cocaine- and amphetamine-regulated transcript were found under the influence of BPA. The obtained results strongly suggest that nitrergic nerves in the uterine wall participate in adaptive and/or protective processes aimed at homeostasis maintenance in the uterine activity under the impact of BPA.
Collapse
Affiliation(s)
- Liliana Rytel
- Department of Internal Disease with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland;
| |
Collapse
|
12
|
Sadraei H, Sajjadi SE, Asghari G, Khalili M. Effect of Matricaria chamomilla hydro-alcoholic and flavonoids rich extracts on rat isolated uterus. JOURNAL OF HERBMED PHARMACOLOGY 2020. [DOI: 10.15171/jhp.2020.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Introduction: Pharmacological studies confirm antispasmodic activities of chamomile (Matricaria chamomilla) extract on intestinal smooth muscles and it has been suggested that chamomile increases uterus tone, but so far there is no scientific studies which support this assumption. Therefore, this study was designed to determine spasmodic and spasmolytic activities of M. chamomilla extracts on rat isolated uterus. Methods: Hydro-alcoholic extract of M. chamomilla was prepared by maceration technique. Flavonoids rich extract was prepared by liquid in liquid extraction technique. The spasmodic effects of the extracts were assessed on spontaneously contracting rat uterus. The myorelaxant effect of M. chamomilla extracts was validated on isolated uterus contractions induced by KCl, acetylcholine (ACh), electrical field stimulation (EFS) and oxytocin. Results: Hydro-alcoholic extract of M. chamomilla (0.8 and 1.6 mg/mL) enhanced spontaneous movement of rat isolated uterus smooth muscle suspended in an organ bath. On the other hand, flavonoids rich fraction only diminished uterus contractile activities. Flavonoids rich extract of the plant at bath concentration ranges of 40 μg/mL to 400 μg/mL attenuated uterus response to ACh, KCl, EFS and oxytocin. The hydro-alcoholic extract of M. chamomilla at higher concentration ranges (250 μg/mL to 1.5 mg/mL) inhibited uterus contractions induced by the above spasmogens. Conclusion: The present study confirms both spasmodic and spasmolytic activities M. chamomilla hydro-alcoholic extract. Therefore, medicinal use of the crude extract of M. chamomilla may initiate uterus contraction which could increase risk of spontaneous miscarriage or premature parturition.
Collapse
Affiliation(s)
- Hassan Sadraei
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ebrahim Sajjadi
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Asghari
- Department of Pharmacognosy and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Khalili
- Department of Pharmacology and Toxicology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Humenick A, Chen BN, Lauder CIW, Wattchow DA, Zagorodnyuk VP, Dinning PG, Spencer NJ, Costa M, Brookes SJH. Characterization of projections of longitudinal muscle motor neurons in human colon. Neurogastroenterol Motil 2019; 31:e13685. [PMID: 31355986 DOI: 10.1111/nmo.13685] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/08/2022]
Abstract
BACKGROUND The enteric nervous system contains inhibitory and excitatory motor neurons which modulate smooth muscle contractility. Cell bodies of longitudinal muscle motor neurons have not been identified in human intestine. METHODS We used retrograde tracing ex vivo with DiI, with multiple labeling immunohistochemistry, to characterize motor neurons innervating tenial and inter-tenial longitudinal muscle of human colon. KEY RESULTS The most abundant immunohistochemical markers in the tertiary plexus were vesicular acetylcholine transporter, nitric oxide synthase (NOS), and vasoactive intestinal polypeptide (VIP). Of retrogradely traced motor neurons innervating inter-tenial longitudinal muscle, 95% were located within 6mm oral or anal to the DiI application site. Excitatory motor neuron cell bodies, immunoreactive for choline acetyltransferase (ChAT), were clustered aborally, whereas NOS-immunoreactive cell bodies were distributed either side of the DiI application site. Motor neurons had small cell bodies, averaging 438 + 18µm2 in cross-sectional area, similar for ChAT- and NOS-immunoreactive subtypes. Motor neurons innervating the tenia had slightly longer axial projections, with 95% located within 9mm. ChAT-immunoreactive excitatory motor neurons to tenia were clustered aborally, whereas NOS-immunoreactive inhibitory motor neurons had both ascending and descending projections. VIP immunoreactivity was rarely present without NOS immunoreactivity in motor neurons. CONCLUSIONS AND INFERENCES Tenial and inter-tenial motor neurons innervating the longitudinal muscle have short projections. Inhibitory motor neurons have less polarized projections than cholinergic excitatory motor neurons. Longitudinal and circular muscle layers are innervated by distinct local populations of excitatory and inhibitory motor neurons. A population of human enteric neurons that contribute significantly to colonic motility has been characterized.
Collapse
Affiliation(s)
- Adam Humenick
- Human Physiology, Medical Bioscience, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Bao Nan Chen
- Human Physiology, Medical Bioscience, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Chris I W Lauder
- Department of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | - David A Wattchow
- Department of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | - Vladimir P Zagorodnyuk
- Human Physiology, Medical Bioscience, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Phil G Dinning
- Department of Surgery, Flinders Medical Centre, Adelaide, SA, Australia
| | - Nick J Spencer
- Human Physiology, Medical Bioscience, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Marcello Costa
- Human Physiology, Medical Bioscience, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Simon J H Brookes
- Human Physiology, Medical Bioscience, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
14
|
The Myometrium: From Excitation to Contractions and Labour. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:233-263. [PMID: 31183830 DOI: 10.1007/978-981-13-5895-1_10] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
We start by describing the functions of the uterus, its structure, both gross and fine, innervation and blood supply. It is interesting to note the diversity of the female's reproductive tract between species and to remember it when working with different animal models. Myocytes are the overwhelming cell type of the uterus (>95%) and our focus. Their function is to contract, and they have an intrinsic pacemaker and rhythmicity, which is modified by hormones, stretch, paracrine factors and the extracellular environment. We discuss evidence or not for pacemaker cells in the uterus. We also describe the sarcoplasmic reticulum (SR) in some detail, as it is relevant to calcium signalling and excitability. Ion channels, including store-operated ones, their contributions to excitability and action potentials, are covered. The main pathway to excitation is from depolarisation opening voltage-gated Ca2+ channels. Much of what happens downstream of excitability is common to other smooth muscles, with force depending upon the balance of myosin light kinase and phosphatase. Mechanisms of maintaining Ca2+ balance within the myocytes are discussed. Metabolism, and how it is intertwined with activity, blood flow and pH, is covered. Growth of the myometrium and changes in contractile proteins with pregnancy and parturition are also detailed. We finish with a description of uterine activity and why it is important, covering progression to labour as well as preterm and dysfunctional labours. We conclude by highlighting progress made and where further efforts are required.
Collapse
|
15
|
Koebele SV, Palmer JM, Hadder B, Melikian R, Fox C, Strouse IM, DeNardo DF, George C, Daunis E, Nimer A, Mayer LP, Dyer CA, Bimonte-Nelson HA. Hysterectomy Uniquely Impacts Spatial Memory in a Rat Model: A Role for the Nonpregnant Uterus in Cognitive Processes. Endocrinology 2019; 160:1-19. [PMID: 30535329 PMCID: PMC6293088 DOI: 10.1210/en.2018-00709] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022]
Abstract
Approximately one-third of women experience hysterectomy, or the surgical removal of the uterus, by 60 years of age, with most surgeries occurring prior to the onset of natural menopause. The ovaries are retained in about half of these surgeries, whereas for the other half hysterectomy occurs concurrently with oophorectomy. The dogma is that the nonpregnant uterus is dormant. There have been no preclinical assessments of surgical variations in menopause, including hysterectomy, with and without ovarian conservation, on potential endocrine and cognitive changes. We present a novel rat model of hysterectomy alongside sham, ovariectomy (Ovx), and Ovx-hysterectomy groups to assess effects of surgical menopause variations. Rats without ovaries learned the working memory domain of a complex cognitive task faster than did those with ovaries. Moreover, uterus removal alone had a unique detrimental impact on the ability to handle a high-demand working memory load. The addition of Ovx, that is, Ovx-hysterectomy, prevented this hysterectomy-induced memory deficit. Performance did not differ amongst groups in reference memory-only tasks, suggesting that the working memory domain is particularly sensitive to variations in surgical menopause. Following uterus removal, ovarian histology and estrous cycle monitoring demonstrated that ovaries continued to function, and serum assays indicated altered ovarian hormone and gonadotropin profiles by 2 months after surgery. These results underscore the critical need to further study the contribution of the uterus to the female phenotype, including effects of hysterectomy with and without ovarian conservation, on the trajectory of brain and endocrine aging to decipher the impact of common variations in gynecological surgery in women. Moreover, findings demonstrate that the nonpregnant uterus is not dormant, and indicate that there is an ovarian-uterus-brain system that becomes interrupted when the reproductive tract has been disrupted, leading to alterations in brain functioning.
Collapse
Affiliation(s)
- Stephanie V Koebele
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Justin M Palmer
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Bryanna Hadder
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Ryan Melikian
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Carly Fox
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Isabel M Strouse
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
| | - Dale F DeNardo
- School of Life Sciences, Arizona State University, Tempe, Arizona
| | | | | | | | | | | | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, Arizona
- Arizona Alzheimer’s Consortium, Phoenix, Arizona
- Correspondence: Heather A. Bimonte-Nelson, PhD, Arizona State University, Department of Psychology, Behavioral Neuroscience Division, Arizona Alzheimer’s Consortium, P.O. Box 871104, Tempe, Arizona 85287. E-mail:
| |
Collapse
|
16
|
Liliana R, Slawomir G, Tomasz J, Joanna W, Andrzej P. The effects of Bisphenol A (BPA) on sympathetic nerve fibers in the uterine wall of the domestic pig. Reprod Toxicol 2018; 84:39-48. [PMID: 30562551 DOI: 10.1016/j.reprotox.2018.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022]
Abstract
Bisphenol A (BPA), used in the production of plastic, shows multidirectional negative effects on the living organism. BPA may affect the reproductive and nervous systems; however, its influence on the nerves supplying the uterus has not been studied. During the present study, the impact of BPA on the sympathetic nerves in the uterus was investigated using a double immunofluorescence technique. The results have shown that even low doses of BPA may change the neurochemical characterization of uterine sympathetic nerves, and the severity of these changes depends on the part of the uterus and the dose of the toxic substance. Probably the changes observed during the present study resulted from the neurotoxic and/or pro-inflammatory activity of BPA, but the exact mechanism for the observed fluctuation still remains unknown. The fluctuations of the neurochemical characterization of the uterine intramural nerves may be the first subclinical signs of harmful exposure to BPA.
Collapse
Affiliation(s)
- Rytel Liliana
- Department of Internal Disease with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Poland.
| | - Gonkowski Slawomir
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Poland
| | - Janowski Tomasz
- Department of Animal Reproduction with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Poland
| | - Wojtkiewicz Joanna
- Department of Pathophysiology, School of Medicine, University of Warmia and Mazury, Poland
| | - Pomianowski Andrzej
- Department of Internal Disease with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury, Poland
| |
Collapse
|
17
|
Mondal M, Sarkar K, Nath PP, Khatun A, Pal S, Paul G. Monosodium glutamate impairs the contraction of uterine visceral smooth muscle ex vivo of rat through augmentation of acetylcholine and nitric oxide signaling pathways. Reprod Biol 2018; 18:83-93. [PMID: 29402603 DOI: 10.1016/j.repbio.2018.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/29/2017] [Accepted: 01/18/2018] [Indexed: 11/18/2022]
Abstract
The aim of the study was to examine the toxic effects of Monosodium glutamate (MSG), an extensively used food additive, on the contraction of uterine visceral smooth muscle (UVSM) in rat and to elucidate the probable neurocrine mechanism involved in it. MSG produced significant potentiation of the force and inhibition of frequency of uterus recorded ex vivo in chronic MSG exposure and in single dose acute experiments. MSG also produced significant potentiation of force of acetylcholine induced contraction and no alterations in atropine induced contraction of uterus. Further, MSG produced significant increase in force and frequency of contraction of neostigmine incubated uterus. We have found significant potentiation of the post pause force of contraction of uterus when MSG was applied in adrenaline incubated uterus. MSG also produced significant decrease in frequency of contraction of sodium nitroprusside incubated uterus; increase in frequency of N-ω-Nitro-l-Arginine Methyl Ester incubated uterus and no significant changes in frequency of contraction of methylene blue incubated uterus. These results indicate that MSG potentiates the force of contraction of UVSM predominantly by augmenting the activity of cholinergic intrinsic efferents and inhibits the frequency of contraction probably by augmenting the activity of nitrergic efferents. In conclusion, MSG potentiates the force and inhibits the frequency of contraction of UVSM, and the MSG induced effect is probably mediated through the augmentation of acetylcholine and nitric oxide signaling pathways.
Collapse
Affiliation(s)
- Mukti Mondal
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Kaushik Sarkar
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Partha Pratim Nath
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Ashma Khatun
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Sanghamitra Pal
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal 741235, India
| | - Goutam Paul
- Molecular Neurotoxicology Laboratory, Department of Physiology, University of Kalyani, Kalyani, West Bengal 741235, India.
| |
Collapse
|
18
|
Stapleton PA, McBride CR, Yi J, Nurkiewicz TR. Uterine microvascular sensitivity to nanomaterial inhalation: An in vivo assessment. Toxicol Appl Pharmacol 2015; 288:420-8. [PMID: 26375943 DOI: 10.1016/j.taap.2015.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/21/2022]
Abstract
With the tremendous number and diverse applications of engineered nanomaterials incorporated in daily human activity, exposure can no longer be solely confined to occupational exposures of healthy male models. Cardiovascular and endothelial cell dysfunction have been established using in vitro and in situ preparations, but the translation to intact in vivo models is limited. Intravital microscopy has been used extensively to understand microvascular physiology while maintaining in vivo neurogenic, humoral, and myogenic control. However, a tissue specific model to assess the influences of nanomaterial exposure on female reproductive health has not been fully elucidated. Female Sprague Dawley (SD) rats were exposed to nano-TiO2 aerosols (171 ± 6 nm, 10.1 ± 0.39 mg/m(3), 5h) 24-hours prior to experimentation, leading to a calculated deposition of 42.0 ± 1.65 μg. After verifying estrus status, vital signs were monitored and the right horn of the uterus was exteriorized, gently secured over an optical pedestal, and enclosed in a warmed tissue bath using intravital microscopy techniques. After equilibration, significantly higher leukocyte-endothelium interactions were recorded in the exposed group. Arteriolar responsiveness was assessed using ionophoretically applied agents: muscarinic agonist acetylcholine (0.025 M; ACh; 20, 40, 100, and 200 nA), and nitric oxide donor sodium nitroprusside (0.05 M; SNP; 20, 40, and 100 nA), or adrenergic agonist phenylephrine (0.05 M; PE; 20, 40, and 100 nA) using glass micropipettes. Passive diameter was established by tissue superfusion with 10(-4)M adenosine. Similar to male counterparts, female SD rats present systemic microvascular dysfunction; however the ramifications associated with female health and reproduction have yet to be elucidated.
Collapse
Affiliation(s)
- P A Stapleton
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - C R McBride
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - J Yi
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - T R Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States.
| |
Collapse
|
19
|
Lashley CJ, Supik DA, Atkinson JT, Murphy RJ, O'Hagan KP. Effect of pregnancy on the uterine vasoconstrictor response to exercise in rats. Physiol Rep 2015; 3:3/3/e12337. [PMID: 25804264 PMCID: PMC4393170 DOI: 10.14814/phy2.12337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A major maternal adaptation in pregnancy is the large increase in uteroplacental blood flow that supplies the growing fetus with oxygen and nutrients. The impact of gestation on the dynamic uterine vasoconstrictor response to exercise in the rat, a common model for pathophysiological disorders in pregnancy remains unknown. We hypothesized that rats exhibit a robust uterine vasoconstrictor response to acute exercise that is attenuated in late pregnancy. Pregnant (P, N = 12) and nonpregnant (NP, N = 8) rats were instrumented chronically with a ultrasonic transit-time flowprobe and carotid arterial catheter to directly measure uterine artery blood flow (UtBF) and blood pressure (BP), respectively, at day 20 of gestation for 5 min of treadmill exercise (7 m/min; 6% grade). Preexercise UtBF [P, 2.1 (SD1.6) vs. NP, 0.5 (SD0.3) mL/min P < 0.01) and uterine artery conductance (UtC) [P, 2.1(SD1.7) vs. NP, 0.4 (SD0.2) mL/min × mmHg−1 × 10−2, P < 0.01] were higher in pregnant rats, whereas preexercise BP was lower in the pregnant rats [P, 111 (SD13) vs. NP, 126 (SD13) mmHg, P = 0.02]. Preexercise heart rate was similar [P, 457 (SD30) vs. NP, 454 (SD42), P = 0.3]. Exercise initiated rapid and sustained decreases in UtBF [Δ−47% (SD12)] and UtC [Δ−49% (SD12)] that were attenuated in the pregnant rats [UtBF, Δ−25% (SD20) and UtC, Δ−30% (SD20), P = 0.02]. The BP and heart rate responses to exercise were unaffected in late pregnancy (interaction term, P = 0.3). In rats, dynamic exercise induces a uterine vasoconstrictor response that is blunted during late gestation, a response that we observed previously in pregnant rabbits.
Collapse
Affiliation(s)
- Christopher J Lashley
- Program in Biomedical Sciences, College of Health Sciences, Midwestern University, Downers Grove, Illinois, USA Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, USA
| | - David A Supik
- Program in Biomedical Sciences, College of Health Sciences, Midwestern University, Downers Grove, Illinois, USA
| | - James T Atkinson
- Program in Biomedical Sciences, College of Health Sciences, Midwestern University, Downers Grove, Illinois, USA
| | - Robert J Murphy
- Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, USA
| | - Kathleen P O'Hagan
- Department of Physiology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Illinois, USA
| |
Collapse
|
20
|
Mónica Brauer M, Smith PG. Estrogen and female reproductive tract innervation: cellular and molecular mechanisms of autonomic neuroplasticity. Auton Neurosci 2014; 187:1-17. [PMID: 25530517 DOI: 10.1016/j.autneu.2014.11.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 02/08/2023]
Abstract
The female reproductive tract undergoes remarkable functional and structural changes associated with cycling, conception and pregnancy, and it is likely advantageous to both individual and species to alter relationships between reproductive tissues and innervation. For several decades, it has been appreciated that the mammalian uterus undergoes massive sympathetic axon depletion in late pregnancy, possibly representing an adaptation to promote smooth muscle quiescence and sustained blood flow. Innervation to other structures such as cervix and vagina also undergo pregnancy-related changes in innervation that may facilitate parturition. These tissues provide highly tractable models for examining cellular and molecular mechanisms underlying peripheral nervous system plasticity. Studies show that estrogen elicits rapid degeneration of sympathetic terminal axons in myometrium, which regenerate under low-estrogen conditions. Degeneration is mediated by the target tissue: under estrogen's influence, the myometrium produces proteins repulsive to sympathetic axons including BDNF, neurotrimin, semaphorins, and pro-NGF, and extracellular matrix components are remodeled. Interestingly, nerve depletion does not involve diminished levels of classical sympathetic neurotrophins that promote axon growth. Estrogen also affects sympathetic neuron neurotrophin receptor expression in ways that appear to favor pro-degenerative effects of the target tissue. In contrast to the uterus, estrogen depletes vaginal autonomic and nociceptive axons, with the latter driven in part by estrogen-induced suppression of BMP4 synthesis. These findings illustrate that hormonally mediated physiological plasticity is a highly complex phenomenon involving multiple, predominantly repulsive target-derived factors acting in concert to achieve rapid and selective reductions in innervation.
Collapse
Affiliation(s)
- M Mónica Brauer
- Laboratory of Cell Biology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.
| | - Peter G Smith
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, United States; Institute for Neurological Discoveries, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
21
|
Lychkova AE, De Pasquale V, Avallone L, Puzikov AM, Pavone LM. Serotonin regulates contractile activity of the uterus in non-pregnant rabbits. Comp Biochem Physiol C Toxicol Pharmacol 2014; 165:53-9. [PMID: 24892885 DOI: 10.1016/j.cbpc.2014.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/15/2014] [Accepted: 05/22/2014] [Indexed: 11/28/2022]
Abstract
Serotonin (5-HT) can stimulate the cholinergic system of the uterus by indirect actions on the modulation of reflexes and a direct action on smooth muscles. We investigated the role of 5-HT in the regulation of the cholinergic activity in the uterine parts of non-pregnant rabbits. The right vagus or pelvic nerve and the left sympathetic trunk were stimulated by an electrical field, and the uterine contractile activity was evaluated by measuring the amplitude and frequency of slow wave electromyogram (EMG), with the surface of microelectrodes applied to the uterus bottom, body, and cervix, respectively. Double stimulation of the vagus or pelvic nerve and the sympathetic trunk increased the frequency and the amplitude of the slow wave EMG in all the uterine parts. Furthermore, the administration of exogenous 5-HT increased the vagus or pelvic induced EMG activity in all parts of the uterus. Overall our results demonstrate that 5-HT enhances the vagus contractile activity with a magnitude of the effect decreasing from the bottom to the cervix, whereas 5-HT enhances the pelvic nerve contractile functions with a magnitude of the response increasing from the bottom to the cervix. The administration of droperidol, a 5-HT3 and 4 receptor inhibitor, and spiperone, a 5-HT2 receptor antagonist, inhibited the effect of the serotoninergic fibers of the sympathetic trunk to increase the vagus and pelvic nerve EMG activity. These data suggest that 5-HT stimulation of the parasympathetic nerves results in the induction of uterine contraction via the activation of 5-HT2, 3, and 4 receptor subfamilies.
Collapse
Affiliation(s)
- Alla Edward Lychkova
- Central Research Institute of Gastroenterology, Shosse Enthusiasts 86, 111123 Moscow, Russian Federation
| | - Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | - Alexander Michael Puzikov
- Central Research Institute of Gastroenterology, Shosse Enthusiasts 86, 111123 Moscow, Russian Federation
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
22
|
Bergner AJ, Stamp LA, Gonsalvez DG, Allison MB, Olson DP, Myers MG, Anderson CR, Young HM. Birthdating of myenteric neuron subtypes in the small intestine of the mouse. J Comp Neurol 2014; 522:514-27. [PMID: 23861145 DOI: 10.1002/cne.23423] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/26/2013] [Accepted: 07/03/2013] [Indexed: 12/31/2022]
Abstract
There are many different types of enteric neurons. Previous studies have identified the time at which some enteric neuron subtypes are born (exit the cell cycle) in the mouse, but the birthdates of some major enteric neuron subtypes are still incompletely characterized or unknown. We combined 5-ethynynl-2'-deoxyuridine (EdU) labeling with antibody markers that identify myenteric neuron subtypes to determine when neuron subtypes are born in the mouse small intestine. We found that different neurochemical classes of enteric neuron differed in their birthdates; serotonin neurons were born first with peak cell cycle exit at E11.5, followed by neurofilament-M neurons, calcitonin gene-related peptide neurons (peak cell cycle exit for both at embryonic day [E]12.5-E13.5), tyrosine hydroxylase neurons (E15.5), nitric oxide synthase 1 (NOS1) neurons (E15.5), and calretinin neurons (postnatal day [P]0). The vast majority of myenteric neurons had exited the cell cycle by P10. We did not observe any EdU+/NOS1+ myenteric neurons in the small intestine of adult mice following EdU injection at E10.5 or E11.5, which was unexpected, as previous studies have shown that NOS1 neurons are present in E11.5 mice. Studies using the proliferation marker Ki67 revealed that very few NOS1 neurons in the E11.5 and E12.5 gut were proliferating. However, Cre-lox-based genetic fate-mapping revealed a small subpopulation of myenteric neurons that appears to express NOS1 only transiently. Together, our results confirm a relationship between enteric neuron subtype and birthdate, and suggest that some enteric neurons exhibit neurochemical phenotypes during development that are different from their mature phenotype.
Collapse
Affiliation(s)
- Annette J Bergner
- Department of Anatomy & Neuroscience, University of Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Herweijer G, Kyloh M, Beckett EAH, Dodds KN, Spencer NJ. Characterization of primary afferent spinal innervation of mouse uterus. Front Neurosci 2014; 8:202. [PMID: 25120416 PMCID: PMC4112786 DOI: 10.3389/fnins.2014.00202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/26/2014] [Indexed: 12/30/2022] Open
Abstract
The primary afferent innervation of the uterus is incompletely understood. The aim of this study was to identify the location and characteristics of primary afferent neurons that innervate the uterine horn of mice and correlate the different morphological types of putative primary afferent nerve endings, immunoreactive to the sensory marker, calcitonin gene related peptide (CGRP). Using retrograde tracing, injection of 5–10 μL of 1,1′-didodecyl-3,3,3,3′-tetramethylindocarbocyanine perchlorate (DiI) into discrete single sites in each uterine horn revealed a biomodal distribution of sensory neurons in dorsal root ganglia (DRG) with peak labeling occurring between T13-L3 and a second smaller peak between L6-S1. The mean cross sectional area of labeled cells was 463 μm2 ± s.e.m. A significantly greater proportion of labeled neurons consisted of small cell bodies (<300 μm2) in the sacral spinal cord (S2) compared with peak labeling at the lumbar (L2) region. In both sections and whole mount preparations, immunohistochemical staining for CGRP revealed substantial innervation of the uterus by CGRP-positive nerve fibers located primarily at the border between the circular and longitudinal muscle layers (N = 4). The nerve endings were classified into three distinct types: “single,” “branching,” or “complex,” that often aligned preferentially in either the circular or longitudinal axis of the smooth muscles. Complex endings were often associated with mesenteric vessels. We have identified that the cell bodies of primary afferent neurons innervating the mouse uterus lie primarily in DRG at L2 and S1 spinal levels. Also, the greatest density of CGRP immunoreactivity lies within the myometrium, with at least three different morphological types of nerve endings identified. These findings will facilitate further investigations into the mechanisms underlying sensory transduction in mouse uterus.
Collapse
Affiliation(s)
- Geraldine Herweijer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Melinda Kyloh
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Elizabeth A H Beckett
- Discipline of Physiology, School of Medical Sciences, University of Adelaide Adelaide, SA, Australia
| | - Kelsi N Dodds
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University Adelaide, SA, Australia
| |
Collapse
|
24
|
Senadheera S, Bertrand PP, Grayson TH, Leader L, Murphy TV, Sandow SL. Pregnancy-induced remodelling and enhanced endothelium-derived hyperpolarization-type vasodilator activity in rat uterine radial artery: transient receptor potential vanilloid type 4 channels, caveolae and myoendothelial gap junctions. J Anat 2013; 223:677-86. [PMID: 24128141 DOI: 10.1111/joa.12127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2013] [Indexed: 01/28/2023] Open
Abstract
In pregnancy, the vasculature of the uterus undergoes rapid remodelling to increase blood flow and maintain perfusion to the fetus. The present study determines the distribution and density of caveolae, transient receptor potential vanilloid type 4 channels (TRPV4) and myoendothelial gap junctions, and the relative contribution of related endothelium-dependent vasodilator components in uterine radial arteries of control virgin non-pregnant and 20-day late-pregnant rats. The hypothesis examined is that specific components of endothelium-dependent vasodilator mechanisms are altered in pregnancy-related uterine radial artery remodelling. Conventional and serial section electron microscopy were used to determine the morphological characteristics of uterine radial arteries from control and pregnant rats. TRPV4 distribution and expression was examined using conventional confocal immunohistochemistry, and the contribution of endothelial TRPV4, nitric oxide (NO) and endothelium-derived hyperpolarization (EDH)-type activity determined using pressure myography with pharmacological intervention. Data show outward hypertrophic remodelling occurs in uterine radial arteries in pregnancy. Further, caveolae density in radial artery endothelium and smooth muscle from pregnant rats was significantly increased by ~94% and ~31%, respectively, compared with control, whereas caveolae density did not differ in endothelium compared with smooth muscle from control. Caveolae density was significantly higher by ~59% on the abluminal compared with the luminal surface of the endothelium in uterine radial artery of pregnant rats but did not differ at those surfaces in control. TRPV4 was present in endothelium and smooth muscle, but not associated with internal elastic lamina hole sites in radial arteries. TRPV4 fluorescence intensity was significantly increased in the endothelium and smooth muscle of radial artery of pregnant compared with control rats by ~2.6- and 5.5-fold, respectively. The TRPV4 signal was significantly higher in the endothelium compared with the smooth muscle in radial artery of both control and pregnant rats, by ~5.7- and 2.7-fold, respectively. Myoendothelial gap junction density was significantly decreased by ~37% in radial artery from pregnant compared with control rats. Pressure myography with pharmacological intervention showed that NO contributes ~80% and ~30%, and the EDH-type component ~20% and ~70% of the total endothelium-dependent vasodilator response in radial arteries of control and pregnant rats, respectively. TRPV4 plays a functional role in radial arteries, with a greater contribution in those from pregnant rats. The correlative association of increased TRPV4 and caveolae density and role of EDH-type activity in uterine radial artery of pregnant rats is suggestive of their causal relationship. The decreased myoendothelial gap junction density and lack of TRPV4 density at such sites is consistent with their having an integral, albeit complex, interactive role in uterine vascular signalling and remodelling in pregnancy.
Collapse
Affiliation(s)
- Sevvandi Senadheera
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Boudes M, Uvin P, Pinto S, Freichel M, Birnbaumer L, Voets T, De Ridder D, Vennekens R. Crucial role of TRPC1 and TRPC4 in cystitis-induced neuronal sprouting and bladder overactivity. PLoS One 2013; 8:e69550. [PMID: 23922735 PMCID: PMC3726658 DOI: 10.1371/journal.pone.0069550] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/10/2013] [Indexed: 12/30/2022] Open
Abstract
PURPOSE During cystitis, increased innervation of the bladder by sensory nerves may contribute to bladder overactivity and pain. The mechanisms whereby cystitis leads to hyperinnervation of the bladder are, however, poorly understood. Since TRP channels have been implicated in the guidance of growth cones and survival of neurons, we investigated their involvement in the increases in bladder innervation and bladder activity in rodent models of cystitis. MATERIALS AND METHODS To induce bladder hyperactivity, we chronically injected cyclophosphamide in rats and mice. All experiments were performed a week later. We used quantitative transcriptional analysis and immunohistochemistry to determine TRP channel expression on retrolabelled bladder sensory neurons. To assess bladder function and referred hyperalgesia, urodynamic analysis, detrusor strip contractility and Von Frey filament experiments were done in wild type and knock-out mice. RESULTS Repeated cyclophosphamide injections induce a specific increase in the expression of TRPC1 and TRPC4 in bladder-innervating sensory neurons and the sprouting of sensory fibers in the bladder mucosa. Interestingly, cyclophosphamide-treated Trpc1/c4(-/-) mice no longer exhibited increased bladder innervations, and, concomitantly, the development of bladder overactivity was diminished in these mice. We did not observe a difference neither in bladder contraction features of double knock-out animals nor in cyclophosphamide-induced referred pain behavior. CONCLUSIONS Collectively, our data suggest that TRPC1 and TRPC4 are involved in the sprouting of sensory neurons following bladder cystitis, which leads to overactive bladder disease.
Collapse
Affiliation(s)
- Mathieu Boudes
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Llewellyn-Smith IJ, Gnanamanickam GJE, Reimann F, Gribble FM, Trapp S. Preproglucagon (PPG) neurons innervate neurochemically identified autonomic neurons in the mouse brainstem. Neuroscience 2012; 229:130-43. [PMID: 23069752 DOI: 10.1016/j.neuroscience.2012.09.071] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 08/21/2012] [Accepted: 09/29/2012] [Indexed: 02/07/2023]
Abstract
Preproglucagon (PPG) neurons produce glucagon-like peptide-1 (GLP-1) and occur primarily in the nucleus tractus solitarius (NTS). GLP-1 affects a variety of central autonomic circuits, including those controlling the cardiovascular system, thermogenesis, and most notably energy balance. Our immunohistochemical studies in transgenic mice expressing YFP under the control of the PPG promoter showed that PPG neurons project widely to central autonomic regions, including brainstem nuclei. Functional studies have highlighted the importance of hindbrain receptors for the anorexic effects of GLP-1. In this study, we assessed YFP innervation of neurochemically identified brainstem neurons in transgenic YFP-PPG mice. Immunoreactivity for YFP plus choline acetyltransferase (ChAT), tyrosine hydroxylase (TH) and/or serotonin (5-HT) was visualised with two- or three-colour immunoperoxidase labelling using black (YFP), brown and blue-grey reaction products. In the dorsal motor nucleus of the vagus (DMV), terminals from fine YFP-immunoreactive axons closely apposed a small proportion of ChAT-positive and rare TH-positive/ChAT-positive motor neurons, mostly ventral to AP. YFP-immunoreactive innervation was virtually absent from the compact and loose formations of the nucleus ambiguus. In the NTS, some TH-immunoreactive neurons were closely apposed by YFP-containing axons. In the A1/C1 column in the ventrolateral medulla, close appositions on TH-positive neurons were more common, particularly in the caudal portion of the column. A single YFP-immunoreactive axon usually provided 1-3 close appositions on individual ChAT- or TH-positive neurons. Serotonin-immunoreactive neurons were most heavily innervated, with the majority of raphé pallidus, raphé obscurus and parapyramidal neurons receiving several close appositions from large varicosities of YFP-immunoreactive axons. These results indicate that GLP-1 neurons innervate various populations of brainstem autonomic neurons. These include vagal efferent neurons and catecholamine neurons in areas linked with cardiovascular control. Our data also indicate a synaptic connection between GLP-1 neurons and 5-HT neurons, some of which might contribute to the regulation of appetite.
Collapse
Affiliation(s)
- I J Llewellyn-Smith
- Cardiovascular Medicine, Physiology and Centre for Neuroscience, Flinders University, Bedford Park, SA 5042, Australia
| | | | | | | | | |
Collapse
|
27
|
Darios ES, Seitz B, Watts SW. Smooth Muscle Pharmacology in the Isolated Virgin and Pregnant Rat Uterus and Cervix. J Pharmacol Exp Ther 2012; 341:587-96. [DOI: 10.1124/jpet.111.191031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Llewellyn-Smith IJ, Gnanamanickam GJE. Immunoperoxidase detection of neuronal antigens in full-thickness whole mount preparations of hollow organs and thick sections of central nervous tissue. J Neurosci Methods 2010; 196:1-11. [PMID: 21167203 DOI: 10.1016/j.jneumeth.2010.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
Immunofluorescently stained whole mounts have proved useful for defining the innervation of the gut and large blood vessels. Nerves supplying other hollow organs are usually studied in sections, which provide much less information. Aiming to describe the entire innervation of rat uterus, we developed a method for immunoperoxidase staining of full-thickness whole mounts that allowed us to visualize all immunoreactive axons. Uterine horns were dissected out, slit open, stretched, pinned flat and fixed. Entire horns were treated with methanol/peroxide, buffered Triton X-100 and normal serum and then incubated in primary antibodies, biotinylated secondary antibodies and avidin-horseradish peroxidase (HRP), each for at least 3 days. Peroxidase reactions revealed immunoreactivity. Immunostained horns were dehydrated, infiltrated with epoxy resin, mounted on slides under Aclar coverslips and polymerized. We treated bladders, gut, major pelvic ganglia and thick sections of perfused medulla oblongata similarly to assess the applicability of the method. Using this method, we could map the entire uterine innervation provided by axons immunoreactive for a variety of antigens. We could also assess the entire tyrosine hydroxylase-immunoreactive innervation in all layers of bladder, gut and ganglia whole mounts and throughout 300 μm sections of medulla. These observations show that this method for immunoperoxidase staining reliably reveals the complete innervation of full-thickness whole mounts of hollow organs and thick sections of central nervous tissue. The method has several advantages. The resin-embedded tissue does not degrade; the immunostaining is non-fading and permanent and neurochemically defined features can be mapped at large scale without confocal microscopy.
Collapse
Affiliation(s)
- Ida J Llewellyn-Smith
- Cardiovascular Medicine, Physiology and Centre for Neuroscience, Flinders University, Bedford Park, SA 5042, Australia.
| | | |
Collapse
|