1
|
Zheng F, Li W, Cheng C, Xiong D, Wei M, Wang T, Niu D, Hui Q. Formyl Peptide Receptor 1 Inhibits Reparative Angiogenesis and Aggravates Neuroretinal Dysfunction in Ischemic Retinopathy. Curr Eye Res 2024; 49:1193-1200. [PMID: 38856166 DOI: 10.1080/02713683.2024.2363473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Ischemic retinopathy is the major cause of vision-threatening conditions. Inflammation plays an important role in the pathogenesis of ischemic retinopathy. Formyl peptide receptor 1 (FPR1) has been reported to be implicated in the regulation of inflammatory disorders. However, the role of FPR1 in the progression of ischemic retinal injury has not been fully explained. METHODS The activation of FPR1 was measured by real-time PCR and western blotting in the retina of OIR. The effect of FPR1 on the expression of inflammatory cytokines and relevant pro-angiogenic factors was assessed between wild-type and FPR1-deficiency OIR mice. The impact of FPR1 on retinal angiogenesis was evaluated through quantifying retinal vaso-obliteration and neovascularization between FPR1+/+ and FPR1-/- OIR mice. At last, the neuronal effect of FPR1 on the ischemic retina was investigated by ERG between wild-type and FPR1-deficient OIR mice. RESULTS The expression of FPR1 significantly increased in the retina of OIR. Furthermore, FPR1 deficiency downregulated pro-inflammatory and pro-angiogenic factors. Ablation of FPR1 suppressed the retinal pathological neovascularization and promoted reparative revascularization, ultimately improving retinal neural function after ischemic injury. CONCLUSION In ischemic retinopathy, FPR1 aggravates inflammation and inhibits reparative angiogenesis to exacerbate neuronal dysfunction.
Collapse
Affiliation(s)
- Fengwei Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Weixin Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Chao Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dong Xiong
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Minghao Wei
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tianze Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Dongling Niu
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Qiaoyan Hui
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Ingolfsland EC, Molomjamts M, Foster A, Lee H, Roehrich H, Morikuni A, Qureishy H, Tran PV, McLoon LK, Georgieff MK. Phlebotomy-induced anemia reduces oxygen-induced retinopathy severity and dampens retinal developmental transcriptomic pathways in rats. Pediatr Res 2024:10.1038/s41390-024-03477-w. [PMID: 39379628 DOI: 10.1038/s41390-024-03477-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/16/2024] [Accepted: 08/07/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Phlebotomy-induced-anemia (PIA), which induces tissue hypoxia and angiogenesis, occurs universally among infants at risk for severe retinopathy of prematurity (ROP). We hypothesized that PIA exacerbates pathologic retinal neovascularization in ROP. METHODS We induced PIA to a hematocrit of 18% among rats undergoing the established 50/10 oxygen-induced retinopathy (OIR) model. Rats were euthanized at P15 and P20, during the avascular and neovascular phases of OIR, respectively. Retinal vascular morphometry, cytokine/chemokine concentrations, transcriptomes, and mRNA expression of angiogenic and iron-deficiency markers were compared to non-PIA controls. RESULTS In OIR, PIA decreased percent avascular area at P15 by 35%, percent neovascular area at P20 by 42%, and select pro-inflammatory cytokine/chemokine concentrations at both time points. At P20, PIA increased mRNA expression of angiopoietin 2/ vascular endothelial growth factor-A 2-fold and transferrin and transferrin receptor 5-fold. RNA sequencing showed dampened pathways of angiogenesis, inflammation, and neural development in anemic OIR females. CONCLUSION Contrary to our hypothesis, PIA decreased OIR severity and retinal cytokine and chemokine levels and dampened transcriptomic pathways central to retinal vascular and neural development in neonatal rats. These data suggest PIA provides a protective effect from OIR. Further investigation into the functional effect of these molecular changes is warranted. IMPACT This is the first preclinical study to investigate the impact of neonatal anemia on oxygen-induced retinopathy (OIR) outcomes. This study adds to the literature that anemia decreases neovascularization, decreases cytokine and chemokine levels, and dampens angiogenic and neural transcriptomic pathways in the rat 50/10 OIR model. The study identifies a sex-specific transcriptomic response to anemia in the 50/10 OIR model, with females primarily impacted.
Collapse
Affiliation(s)
- Ellen C Ingolfsland
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA.
| | - Mandkhai Molomjamts
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ann Foster
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Haeyeon Lee
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Amelia Morikuni
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Husaam Qureishy
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Phu V Tran
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Linda K McLoon
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Michael K Georgieff
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
3
|
Fradot V, Augustin S, Fontaine V, Marazova K, Guillonneau X, Sahel JA, Picaud S. Rodent Models of Retinal Degeneration: From Purified Cells in Culture to Living Animals. Cold Spring Harb Perspect Med 2024; 14:a041311. [PMID: 37848250 PMCID: PMC11444255 DOI: 10.1101/cshperspect.a041311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Rodent models of retinal degeneration are essential for the development of therapeutic strategies. In addition to living animal models, we here also discuss models based on rodent cell cultures, such as purified retinal ganglion cells and retinal explants. These ex vivo models extend the possibilities for investigating pathological mechanisms and assessing the neuroprotective effect of pharmacological agents by eliminating questions on drug pharmacokinetics and bioavailability. The number of living rodent models has greatly increased with the possibilities to achieve transgenic modifications in animals for knocking in and out genes and mutations. The Cre-lox system has further enabled investigators to target specific genes or mutations in specific cells at specific stages. However, chemically or physically induced models can provide alternatives to such targeted gene modifications. The increased diversity of rodent models has widened our possibility to address most ocular pathologies for providing initial proof of concept of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Valérie Fradot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Sébastien Augustin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Valérie Fontaine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Katia Marazova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Xavier Guillonneau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - José A Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| |
Collapse
|
4
|
Jin Y, Zhou X, Chen L, Xu X, Yan W, Wang Q, Lin Y, Ding X. Framework Nucleic Acids Loaded with Quercetin: Protecting Retinal Neurovascular Unit via the Protein Kinase B/Heme Oxygenase-1 Pathway. ACS NANO 2024. [PMID: 39268926 DOI: 10.1021/acsnano.4c05845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Retinal neovascular disease is a leading cause of vision loss and blindness globally. It occurs when abnormal new blood vessels form in the retina. In this study, we utilized tetrahedral framework nucleic acids (tFNAs) as vehicles to load quercetin (QUE), a small-molecule flavonoid, forming a deoxyribonucleic acid (DNA) nanocomplex, tFNAs-QUE. Our data show this nanocomplex inhibits pathological neovascularization, reduces the area of retinal nonperfusion area, protects retinal neurons, and preserves the visual function. Further, we discovered that tFNAs-QUE selectively upregulates the AKT/Nrf2/HO-1 signaling pathway, which can suppress pathological vascular growth and exert antioxidative effects. Therefore, this study presents a promising small-molecule-loading mechanism for the treatment of ischemic retinal diseases.
Collapse
Affiliation(s)
- Yili Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaodi Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Limei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xiaoxiao Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Wenjia Yan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Qiong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyan Ding
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
5
|
Yuan H, Chen S, Duncan MR, de Rivero Vaccari JP, Keane RW, Dalton Dietrich W, Chou TH, Benny M, Schmidt AF, Young K, Park KK, Porciatti V, Elizabeth Hartnett M, Wu S. IC100, a humanized therapeutic monoclonal anti-ASC antibody alleviates oxygen-induced retinopathy in mice. Angiogenesis 2024; 27:423-440. [PMID: 38709389 PMCID: PMC11303442 DOI: 10.1007/s10456-024-09917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/28/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Retinopathy of prematurity (ROP), which often presents with bronchopulmonary dysplasia (BPD), is among the most common morbidities affecting extremely premature infants and is a leading cause of severe vision impairment in children worldwide. Activations of the inflammasome cascade and microglia have been implicated in playing a role in the development of both ROP and BPD. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is pivotal in inflammasome assembly. Utilizing mouse models of both oxygen-induced retinopathy (OIR) and BPD, this study was designed to test the hypothesis that hyperoxia induces ASC speck formation, which leads to microglial activation and retinopathy, and that inhibition of ASC speck formation by a humanized monoclonal antibody, IC100, directed against ASC, will ameliorate microglial activation and abnormal retinal vascular formation. METHODS We first tested ASC speck formation in the retina of ASC-citrine reporter mice expressing ASC fusion protein with a C-terminal citrine (fluorescent GFP isoform) using a BPD model that causes both lung and eye injury by exposing newborn mice to room air (RA) or 85% O2 from postnatal day (P) 1 to P14. The retinas were dissected on P14 and retinal flat mounts were used to detect vascular endothelium with AF-594-conjugated isolectin B4 (IB4) and citrine-tagged ASC specks. To assess the effects of IC100 on an OIR model, newborn ASC citrine reporter mice and wildtype mice (C57BL/6 J) were exposed to RA from P1 to P6, then 75% O2 from P7 to P11, and then to RA from P12 to P18. At P12 mice were randomized to the following groups: RA with placebo PBS (RA-PBS), O2 with PBS (O2-PBS), O2 + IC100 intravitreal injection (O2-IC100-IVT), and O2 + IC100 intraperitoneal injection (O2-IC100-IP). Retinal vascularization was evaluated by flat mount staining with IB4. Microglial activation was detected by immunofluorescence staining for allograft inflammatory factor 1 (AIF-1) and CD206. Retinal structure was analyzed on H&E-stained sections, and function was analyzed by pattern electroretinography (PERG). RNA-sequencing (RNA-seq) of the retinas was performed to determine the transcriptional effects of IC100 treatment in OIR. RESULTS ASC specks were significantly increased in the retinas by hyperoxia exposure and colocalized with the abnormal vasculature in both BPD and OIR models, and this was associated with increased microglial activation. Treatment with IC100-IVT or IC100-IP significantly reduced vaso-obliteration and intravitreal neovascularization. IC100-IVT treatment also reduced retinal microglial activation, restored retinal structure, and improved retinal function. RNA-seq showed that IC100 treatment corrected the induction of genes associated with angiogenesis, leukocyte migration, and VEGF signaling caused by O2. IC100 also corrected the suppression of genes associated with cell junction assembly, neuron projection, and neuron recognition caused by O2. CONCLUSION These data demonstrate the crucial role of ASC in the pathogenesis of OIR and the efficacy of a humanized therapeutic anti-ASC antibody in treating OIR mice. Thus, this anti-ASC antibody may potentially be considered in diseases associated with oxygen stresses and retinopathy, such as ROP.
Collapse
Affiliation(s)
- Huijun Yuan
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Shaoyi Chen
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Matthew R Duncan
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert W Keane
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Merline Benny
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Augusto F Schmidt
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Karen Young
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Kevin K Park
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Shu Wu
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA.
| |
Collapse
|
6
|
Xu Z, Wu Y, Mao J, Chen Y, Chen H, Zhang S, Yu J, Deng X, Shen L. 4D label-free proteomics analysis of oxygen-induced retinopathy with or without anti-VEGF treatment. BMC Genomics 2024; 25:415. [PMID: 38671350 PMCID: PMC11046906 DOI: 10.1186/s12864-024-10340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/23/2024] [Indexed: 04/28/2024] Open
Abstract
Oxygen-induced retinopathy (OIR) animal model is widely used for retinopathy of prematurity (ROP) researches. The purpose of this study was to identify proteins and related pathways of OIR with or without anti-vascular endothelial growth factor (VEGF) treatment, for use as biomarkers in diagnosing and treating ROP. Nine samples were subjected to proteomic analysis. Retina specimens were collected from 3 OIR mice, 3 OIR mice with anti-VEGF treatment and 3 normal mice (control group). Liquid chromatography-tandem mass spectrometry analysis was performed using the 4D label-free technique. Statistically significant differentially expressed proteins, gene ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway representations, InterPro (IPR) and protein interactions were analyzed. In total, 4585 unique proteins were identified as differentially expressed proteins (DEPs). Enrichment analysis of the GO and KEGG indicated functional clusters related to peptide biosynthetic and metabolic process, cellular macromolecule biosynthetic process and nucleic acid binding in OIR group. For anti-VEGF treatment group, DEPs were clustered in DNA replication, PI3K/Akt signaling pathway and Jak/STAT signaling pathway. Proteomic profiling is useful for the exploration of molecular mechanisms of OIR and mechanisms of anti-VEGF treatment. These findings may be useful for identification of novel biomarkers for ROP pathogenesis and treatment.
Collapse
Affiliation(s)
- Zhaokai Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yubo Wu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jianbo Mao
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yiqi Chen
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Huan Chen
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shian Zhang
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jiafeng Yu
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xinyi Deng
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lijun Shen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Department of Ophthalmology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| |
Collapse
|
7
|
Hong Y, Wang Y, Cui Y, Pan J, Mao S, Zhu Y, Wen T, Qi T, Wang A, Luo Y. MicroRNA-124-3p Attenuated Retinal Neovascularization in Oxygen-Induced Retinopathy Mice by Inhibiting the Dysfunction of Retinal Neuroglial Cells through STAT3 Pathway. Int J Mol Sci 2023; 24:11767. [PMID: 37511525 PMCID: PMC10380620 DOI: 10.3390/ijms241411767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
MicroRNA (miRNA) is a non-coding RNA that can regulate the expression of many target genes, and it is widely involved in various important physiological activities. MiR-124-3p was found to associate with the normal development of retinal vessels in our previous study, but the mechanism of its anti-angiogenic effect on pathological retinal neovascularization still needed to be explored. Therefore, this study aimed to investigate the effect and mechanism of miR-124-3p on retinal neovascularization in mice with oxygen-induced retinopathy (OIR). Here, we found that intravitreal injection of miR-124-3p agomir attenuated pathological retinal neovascularization in OIR mice. Moreover, miR-124-3p preserved the astrocytic template, inhibited reactive gliosis, and reduced the inflammatory response as well as necroptosis. Furthermore, miR-124-3p inhibited the signal transducer and activator of transcription 3 (STAT3) pathway and decreased the expression of hypoxia-inducible factor-1α and vascular endothelial growth factor. Taken together, our results revealed that miR-124-3p inhibited retinal neovascularization and neuroglial dysfunction by targeting STAT3 in OIR mice.
Collapse
Affiliation(s)
- Yiwen Hong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yishen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yamei Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Jianying Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Shudi Mao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yanjie Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Tao Wen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Tianyuan Qi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Aoxiang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Yan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| |
Collapse
|
8
|
Inague A, Alecrim LC, Monteiro JS, Yoshinaga MY, Setubal JC, Miyamoto S, Giordano RJ. Oxygen-induced pathological angiogenesis promotes intense lipid synthesis and remodeling in the retina. iScience 2023; 26:106777. [PMID: 37213234 PMCID: PMC10199268 DOI: 10.1016/j.isci.2023.106777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/26/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023] Open
Abstract
The retina is a notable tissue with high metabolic needs which relies on specialized vascular networks to protect the neural retina while maintaining constant supplies of oxygen, nutrients, and dietary essential fatty acids. Here we analyzed the lipidome of the mouse retina under healthy and pathological angiogenesis using the oxygen-induced retinopathy model. By matching lipid profiles to changes in mRNA transcriptome, we identified a lipid signature showing that pathological angiogenesis leads to intense lipid remodeling favoring pathways for neutral lipid synthesis, cholesterol import/export, and lipid droplet formation. Noteworthy, it also shows profound changes in pathways for long-chain fatty acid production, vital for retina homeostasis. The net result is accumulation of large quantities of mead acid, a marker of essential fatty acid deficiency, and a potential marker for retinopathy severity. Thus, our lipid signature might contribute to better understand diseases of the retina that lead to vision impairment or blindness.
Collapse
Affiliation(s)
- Alex Inague
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Lilian Costa Alecrim
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Jhonatas Sirino Monteiro
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Marcos Yukio Yoshinaga
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - João Carlos Setubal
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Sayuri Miyamoto
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
- Corresponding author
| | - Ricardo José Giordano
- Biochemistry Department, Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP 05508-000, Brazil
- Corresponding author
| |
Collapse
|
9
|
Martis RM, Knight LJ, Acosta ML, Black J, Ng R, Ji LCL, Donaldson PJ, Lim JCH. Early onset of age-related changes in the retina of cystine/glutamate antiporter knockout mice. Exp Eye Res 2023; 227:109364. [PMID: 36586548 DOI: 10.1016/j.exer.2022.109364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/13/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
To determine the role of the cystine/glutamate antiporter on retinal structure and function, retinas of C57Bl/6J wild-type and xCT knockout mice, lacking the xCT subunit of the cystine/glutamate antiporter were examined from 6 weeks to 12 months of age. Fundoscopy, optical coherence tomography (OCT), and whole mount retinal autofluorescence imaging were used to visualise age-related retinal spots. Glial fibrillary acidic protein (GFAP) immunolabelling was used to assess retinal stress. Retinal function was evaluated using full-field and focal electroretinograms. Examinations revealed retinal spots in both wild-type and xCT knockout mice with the number of spots greater at 9 months in the knockout compared to wild-type. OCT confirmed these discrete spots were located at the retinal pigment epithelium (RPE)-photoreceptor junction and did not label with drusen markers. Whole mount lambda scans of the 9 month xCT knockout retinas revealed that the photoreceptor autofluorescence matched the spots, suggesting these spots were retinal debris. GFAP labelling was increased in knockout retinas compared to wild-type indicative of retinal stress, and the discrete spots were associated with migration of microglia/macrophages to the RPE-retina intersection. OCT revealed that the superior retina was thinner at 9 months in knockout compared to wild-type mice due to changes to the outer nuclear and photoreceptor layers. While global retinal function was not affected by loss of xCT, focal changes in retinal function were detected in areas where spots were present. Tother these results suggest that the xCT KO mice exhibit features of accelerated ageing and suggests that this mouse model may be useful for studying the underlying cellular pathways in retinal ageing.
Collapse
Affiliation(s)
- Renita Maria Martis
- Dept. Physiology, School of Medical Sciences, University of Auckland, New Zealand; School of Optometry and Vision Science, University of Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Luis James Knight
- Dept. Physiology, School of Medical Sciences, University of Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Monica L Acosta
- School of Optometry and Vision Science, University of Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, New Zealand; Centre for Brain Research, University of Auckland, New Zealand
| | - Joanna Black
- School of Optometry and Vision Science, University of Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Robert Ng
- School of Optometry and Vision Science, University of Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, New Zealand
| | | | - Paul James Donaldson
- Dept. Physiology, School of Medical Sciences, University of Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Julie Ching-Hsia Lim
- Dept. Physiology, School of Medical Sciences, University of Auckland, New Zealand; New Zealand National Eye Centre, University of Auckland, New Zealand.
| |
Collapse
|
10
|
Becker K, Weigelt CM, Fuchs H, Viollet C, Rust W, Wyatt H, Huber J, Lamla T, Fernandez-Albert F, Simon E, Zippel N, Bakker RA, Klein H, Redemann NH. Transcriptome analysis of AAV-induced retinopathy models expressing human VEGF, TNF-α, and IL-6 in murine eyes. Sci Rep 2022; 12:19395. [PMID: 36371417 PMCID: PMC9653384 DOI: 10.1038/s41598-022-23065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/25/2022] [Indexed: 11/14/2022] Open
Abstract
Retinopathies are multifactorial diseases with complex pathologies that eventually lead to vision loss. Animal models facilitate the understanding of the pathophysiology and identification of novel treatment options. However, each animal model reflects only specific disease aspects and understanding of the specific molecular changes in most disease models is limited. Here, we conducted transcriptome analysis of murine ocular tissue transduced with recombinant Adeno-associated viruses (AAVs) expressing either human VEGF-A, TNF-α, or IL-6. VEGF expression led to a distinct regulation of extracellular matrix (ECM)-associated genes. In contrast, both TNF-α and IL-6 led to more comparable gene expression changes in interleukin signaling, and the complement cascade, with TNF-α-induced changes being more pronounced. Furthermore, integration of single cell RNA-Sequencing data suggested an increase of endothelial cell-specific marker genes by VEGF, while TNF-α expression increased the expression T-cell markers. Both TNF-α and IL-6 expression led to an increase in macrophage markers. Finally, transcriptomic changes in AAV-VEGF treated mice largely overlapped with gene expression changes observed in the oxygen-induced retinopathy model, especially regarding ECM components and endothelial cell-specific gene expression. Altogether, our study represents a valuable investigation of gene expression changes induced by VEGF, TNF-α, and IL-6 and will aid researchers in selecting appropriate animal models for retinopathies based on their agreement with the human pathophysiology.
Collapse
Affiliation(s)
- Kolja Becker
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Carina M. Weigelt
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Holger Fuchs
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Coralie Viollet
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Werner Rust
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Hannah Wyatt
- grid.420061.10000 0001 2171 7500Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Jochen Huber
- grid.420061.10000 0001 2171 7500Clinical Development & Operations Corporate, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Thorsten Lamla
- grid.420061.10000 0001 2171 7500Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Francesc Fernandez-Albert
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Eric Simon
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Nina Zippel
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Remko A. Bakker
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Holger Klein
- grid.420061.10000 0001 2171 7500Global Computational Biology & Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Norbert H. Redemann
- grid.420061.10000 0001 2171 7500Cardiometabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| |
Collapse
|
11
|
Zhou Z, Jing Y, Niu Y, Chang T, Sun J, Guo C, Wang Y, Dou G. Distinguished Functions of Microglia in the Two Stages of Oxygen-Induced Retinopathy: A Novel Target in the Treatment of Ischemic Retinopathy. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101676. [PMID: 36295111 PMCID: PMC9604577 DOI: 10.3390/life12101676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
Abstract
Microglia is the resident immune cell in the retina, playing the role of immune surveillance in a traditional concept. With the heated focus on the mechanisms of microglia in pathological conditions, more and more functions of microglia have been discovered. Although the regulating role of microglia has been explored in ischemic retinopathy, little is known about its mechanisms in the different stages of the pathological process. Here, we removed microglia in the oxygen-induced retinopathy model by PLX5622 and revealed that the removal of activated microglia reduced pathological angiogenesis in the early stage after ischemic insult and alleviated the over-apoptosis of photoreceptors in the vessel remodeling phase. Our results indicated that microglia might play distinguished functions in the angiogenic and remodeling stages, and that the inhibition of microglia might be a promising target in the future treatment of ischemic retinopathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yusheng Wang
- Correspondence: (Y.W.); (G.D.); Tel.: +86-029-84775371 (Y.W.); +86-029-84771273 (G.D.)
| | - Guorui Dou
- Correspondence: (Y.W.); (G.D.); Tel.: +86-029-84775371 (Y.W.); +86-029-84771273 (G.D.)
| |
Collapse
|
12
|
Usui‐Ouchi A, Eade K, Giles S, Ideguchi Y, Ouchi Y, Aguilar E, Wei G, Marra KV, Berlow RB, Friedlander M. Deletion of Tgfβ signal in activated microglia prolongs hypoxia-induced retinal neovascularization enhancing Igf1 expression and retinal leukostasis. Glia 2022; 70:1762-1776. [PMID: 35611927 PMCID: PMC9540888 DOI: 10.1002/glia.24218] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022]
Abstract
Retinal neovascularization (NV) is the major cause of severe visual impairment in patients with ischemic eye diseases. While it is known that retinal microglia contribute to both physiological and pathological angiogenesis, the molecular mechanisms by which these glia regulate pathological NV have not been fully elucidated. In this study, we utilized a retinal microglia-specific Transforming Growth Factor-β (Tgfβ) receptor knock out mouse model and human iPSC-derived microglia to examine the role of Tgfβ signaling in activated microglia during retinal NV. Using a tamoxifen-inducible, microglia-specific Tgfβ receptor type 2 (Tgfβr2) knockout mouse [Tgfβr2 KO (ΔMG)] we show that Tgfβ signaling in microglia actively represses leukostasis in retinal vessels. Furthermore, we show that Tgfβ signaling represses expression of the pro-angiogenic factor, Insulin-like growth factor 1 (Igf1), independent of Vegf regulation. Using the mouse model of oxygen-induced retinopathy (OIR) we show that Tgfβ signaling in activated microglia plays a role in hypoxia-induced NV where a loss in Tgfβ signaling microglia exacerbates and prolongs retinal NV in OIR. Using human iPSC-derived microglia cells in an in vitro assay, we validate the role of Transforming Growth Factor-β1 (Tgfβ1) in regulating Igf1 expression in hypoxic conditions. Finally, we show that Tgfβ signaling in microglia is essential for microglial homeostasis and that the disruption of Tgfβ signaling in microglia exacerbates retinal NV in OIR by promoting leukostasis and Igf1 expression.
Collapse
Affiliation(s)
- Ayumi Usui‐Ouchi
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
- Department of OphthalmologyJuntendo University Urayasu HospitalChibaJapan
| | - Kevin Eade
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Lowy Medical Research InstituteLa JollaCaliforniaUSA
| | - Sarah Giles
- The Lowy Medical Research InstituteLa JollaCaliforniaUSA
| | - Yoichiro Ideguchi
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Yasuo Ouchi
- Gene Expression LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
- Department of Regenerative MedicineChiba University Graduate School of MedicineChibaJapan
| | - Edith Aguilar
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Guoqin Wei
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Kyle V. Marra
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Rebecca B. Berlow
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Martin Friedlander
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Lowy Medical Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
13
|
Liu J, Tsang JKW, Fung FKC, Chung SK, Fu Z, Lo ACY. Retinal microglia protect against vascular damage in a mouse model of retinopathy of prematurity. Front Pharmacol 2022; 13:945130. [PMID: 36059936 PMCID: PMC9431881 DOI: 10.3389/fphar.2022.945130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a common cause of blindness in preterm babies. As a hypoxia-induced eye disease characterized by neovascularization, its association with retinal microglia has been noted but not well documented. We performed a comprehensive analysis of retinal microglia and retinal vessels in mouse oxygen-induced retinopathy (OIR), an animal model of ROP. In combination with a pharmacological inhibitory strategy, the role of retinal microglia in vascular network maintenance was investigated. Postnatal day (P) 7 C57BL/6J mouse pups with their nursing mother were exposed to 75% oxygen for 5 days to induce OIR. Age-matched room air-treated pups served as controls. On P12, P17, P21, P25, and P30, retinal microglia and vessels were visualized and quantified based on their location and activation status. Their relationship with retinal vessels was also analyzed. On P5 or P12, retinal microglia inhibition was achieved by intravitreal injection of liposomes containing clodronate (CLD); retinal vasculature and microglia were examined in P12 and P17 OIR retinae. The number of retinal microglia was increased in the superficial areas of OIR retinae on P12, P17, P21, P25, and P30, and most of them displayed an amoeboid (activated) morphology. The increased retinal microglia were associated with increased superficial retinal vessels in OIR retinae. The number of retinal microglia in deep retinal areas of OIR retinae also increased from P17 to P30 with a ramified morphology, which was not associated with reduced retinal vessels. Intravitreal injection of liposomes-CLD caused a significant reduction in retinal microglia. Loss of retinal microglia before hyperoxia treatment resulted in increased vessel obliteration on P12 and subsequent neovascularization on P17 in OIR retinae. Meanwhile, loss of retinal microglia immediately after hyperoxia treatment on P12 also led to more neovascularization in P17 OIR retinae. Our data showed that activated microglia were strongly associated with vascular abnormalities upon OIR. Retinal microglial activation continued throughout OIR and lasted until after retinal vessel recovery. Pharmacological inhibition of retinal microglia in either hyperoxic or hypoxic stage of OIR exacerbated retinal vascular consequences. These results suggested that retinal microglia may play a protective role in retinal vasculature maintenance in the OIR process.
Collapse
Affiliation(s)
- Jin Liu
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jessica Kwan Wun Tsang
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Frederic Khe Cheong Fung
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sookja Kim Chung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, United States
- *Correspondence: Zhongjie Fu, ; Amy Cheuk Yin Lo,
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Zhongjie Fu, ; Amy Cheuk Yin Lo,
| |
Collapse
|
14
|
Tan W, Xu H, Chen B, Duan T, Liu K, Zou J. Wnt inhibitory 1 ameliorates neovascularization and attenuates photoreceptor injury in an oxygen-induced retinopathy mouse model. Biofactors 2022; 48:683-698. [PMID: 35080047 DOI: 10.1002/biof.1824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/23/2021] [Indexed: 01/04/2023]
Abstract
Retinal neovascularization (RNV) associated diseases typically exhibit pathological neovascularization and neurodegeneration. Wnt inhibitor factor 1 (WIF1) is a secreted Wnt antagonist that regulates angiogenesis. However, the significance of WIF1 in RNV associated disease has not been explicitly tested. In our study, we found that the WIF1 expressions were strongly downregulated in the vitreous of proliferative diabetic retinopathy (PDR) and retinopathy of prematurity (ROP). Similarly, retinal WIF1 expression was significantly downregulated in OIR mice, relative to normal mice at P17. After injection of WIF1 overexpression lentivirus into the vitreous of OIR mice, overexpressing WIF1 in OIR mice vitreous strongly reduced avascular areas and neovascular tufts, increased vessel branches, raised a-, b-waves and oscillatory potentials amplitudes on ERG, increased retinal thickness and the number of synapses in retina, normalized the Golgi, mitochondria, and outer segments of photoreceptors. Furthermore, overexpression WIF1 suppressed expressions of β-catenin, vascular endothelial growth factor (VEGF), p-AKT and p-ERK, reduced retinal reactive oxygen species (ROS) and 4-HNE levels, improved autophagic flux, and mitigated apoptosis. In summary, WIF1 plays a key role in alleviating angiogenesis and in improving visual function in OIR mice by suppressing the Wnt/β-catenin-VEGF signaling pathway and ROS levels. WIF1 is an excellent candidate for targeted therapy against RNV associated diseases.
Collapse
Affiliation(s)
- Wei Tan
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- Department of Ophthalmology, Central Hospital of Xiangtan, Xiangtan, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Huizhuo Xu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bolin Chen
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| | - Tianqi Duan
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| | - Kangcheng Liu
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
| | - Jing Zou
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
15
|
Engelbrecht E, Metzler MA, Sandell LL. Retinoid signaling regulates angiogenesis and blood-retinal barrier integrity in neonatal mouse retina. Microcirculation 2022; 29:e12752. [PMID: 35203102 DOI: 10.1111/micc.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The neonatal mouse retina is a well-characterized experimental model for investigating factors impacting retinal angiogenesis and inner blood-retinal barrier (BRB) integrity. Retinoic acid (RA) is an essential signaling molecule. RA is needed for vasculogenic development in embryos and endothelial barrier integrity in zebrafish retina and adult mouse brain, however the function of this signaling molecule in developing mammalian retinal vasculature remains unknown. This study aims to investigate the role of RA signaling in angiogenesis and inner BRB integrity in mouse neonatal retina. METHODS RA distribution in the developing neurovascular retina was assessed in mice carrying an RA-responsive transgene. RA function in retinal angiogenesis was determined by treating C57BL/6 neonatal pups with a pharmacological inhibitor of RA signaling BMS493 or control vehicle. BRB integrity assessed by monitoring leakage of injected tracer into extravascular retinal tissue. RESULTS RA signaling activity is present in peripheral astrocytes in domains corresponding to RA activity of the underlying neural retina. RA inhibition impaired retinal angiogenesis and reduced endothelial cell proliferation. RA inhibition also compromised BRB integrity. Vascular leakage was not associated with altered expression of CLDN5, PLVAP, LEF1 or VEcad. CONCLUSIONS RA signaling is needed for angiogenesis and integrity of the BRB in the neonatal mouse retina.
Collapse
Affiliation(s)
- Eric Engelbrecht
- University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, 40202, USA
| |
Collapse
|
16
|
Hui Q, Zheng F, Qin L, Pei C. Annexin A1 promotes reparative angiogenesis and ameliorates neuronal injury in ischemic retinopathy. Curr Eye Res 2022; 47:791-801. [PMID: 35179426 DOI: 10.1080/02713683.2022.2029904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
PURPOSE Retinal ischemia is the main reason for vision threatening. Inflammation and aberrant angiogenesis play an important role in the pathogenesis of ischemia. Annexin A1 is an endogenous protein modulating anti-inflammatory processes, and its therapeutic potential has been reported in a range of inflammatory diseases. However, the effect of annexin A1 on ischemic retinal injury has not been examined. METHODS Expression of annexin A1 was assessed by real time PCR and western blotting, and location of annexin A1 was evaluated by immunofluorescence staining in retina of OIR. The activation of annexin A1 were assayed in HRECs after hypoxia stimuli. The effect of annexin A1 on vascularization of OIR mouse through quantification vaso-obliteration and neovascularization, as well as expression of relevant angiogenic factors and inflammatory cytokines was compared between wild type and annexin A1 deficiency mice. We also investigated the effect of annexin A1 on retinal neuronal degeneration as measured by ERG and OCT. RESULTS In retinas of OIR, the expression of annexin A1 significantly increased and located in inner retinal layers. Annexin A1 was induced in HRECs after hypoxic stimuli. Furthermore, annexin A1 deficiency increased pro-angiogenic and pro-inflammatory cytokines. Ablation of annexin A1 suppressed aortic outgrowth and retinal reparative revascularization and promoted pathological neovascularization to exacerbate retinal dysfunction after ischemia injury. CONCLUSION Annexin A1 inhibits angiogenic and inhibits pro-inflammatory cytokines and promotes reparative angiogenesis, thus exhibits neuronal protective function in ischemic retinopathy.
Collapse
Affiliation(s)
- Qiaoyan Hui
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Department of Ophthalmology, Xi'an Fourth Hospital, Affiliated Xi'an Fourth Hospital, Northwestern Polytechnical University, Affiliated Guangren Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Fengwei Zheng
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Li Qin
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cheng Pei
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
17
|
Sundberg CA, Lakk M, Paul S, Figueroa KP, Scoles DR, Pulst SM, Križaj D. The RNA-binding protein and stress granule component ATAXIN-2 is expressed in mouse and human tissues associated with glaucoma pathogenesis. J Comp Neurol 2022; 530:537-552. [PMID: 34350994 PMCID: PMC8716417 DOI: 10.1002/cne.25228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/06/2021] [Indexed: 02/03/2023]
Abstract
Polyglutamine repeat expansions in the Ataxin-2 (ATXN2) gene were first implicated in Spinocerebellar Ataxia Type 2, a disease associated with degeneration of motor neurons and Purkinje cells. Recent studies linked single nucleotide polymorphisms in the gene to elevated intraocular pressure in primary open angle glaucoma (POAG); yet, the localization of ATXN2 across glaucoma-relevant tissues of the vertebrate eye has not been thoroughly examined. This study characterizes ATXN2 expression in the mouse and human retina, and anterior eye, using an antibody validated in ATXN2-/- retinas. ATXN2-ir was localized to cytosolic sub compartments in retinal ganglion cell (RGC) somata and proximal dendrites in addition to GABAergic, glycinergic, and cholinergic amacrine cells in the inner plexiform layer (IPL) and displaced amacrine cells. Human, but not mouse retinas showed modest immunolabeling of bipolar cells. ATXN2 immunofluorescence was prominent in the trabecular meshwork and pigmented and nonpigmented cells of the ciliary body, with analyses of primary human trabecular meshwork cells confirming the finding. The expression of ATXN2 in key POAG-relevant ocular tissues supports the potential role in autophagy and stress granule formation in response to ocular hypertension.
Collapse
Affiliation(s)
- Chad A. Sundberg
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Sharan Paul
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Karla P. Figueroa
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Daniel R. Scoles
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Stefan M. Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah, Salt Lake City, Utah, USA
- Department of Bioengineering, University of Utah, Salt Lake City, Utah, USA
- Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
18
|
Pitale PM, Gorbatyuk MS. Diabetic Retinopathy: From Animal Models to Cellular Signaling. Int J Mol Sci 2022; 23:ijms23031487. [PMID: 35163410 PMCID: PMC8835767 DOI: 10.3390/ijms23031487] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/24/2022] Open
Abstract
Diabetic retinopathy (DR) is an ocular complication of diabetes mellitus (DM), a metabolic disorder characterized by elevation in blood glucose level. The pathogenesis of DR includes vascular, neuronal, and inflammatory components leading to activation of complex cellular molecular signaling. If untreated, the disease can culminate in vision loss that eventually leads to blindness. Animal models mimicking different aspects of DM complications have been developed to study the development and progression of DR. Despite the significant contribution of the developed DR models to discovering the mechanisms of DR and the recent achievements in the research field, the sequence of cellular events in diabetic retinas is still under investigation. Partially, this is due to the complexity of molecular mechanisms, although the lack of availability of models that adequately mimic all the neurovascular pathobiological features observed in patients has also contributed to the delay in determining a precise molecular trigger. In this review, we provide an update on the status of animal models of DR to help investigators choose an appropriate system to validate their hypothesis. We also discuss the key cellular and physiological events of DR in these models.
Collapse
Affiliation(s)
- Priyamvada M. Pitale
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Marina S. Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-934-6762; Fax: +1-205-934-3425
| |
Collapse
|
19
|
VEGF-Trap Modulates Retinal Inflammation in the Murine Oxygen-Induced Retinopathy (OIR) Model. Biomedicines 2022; 10:biomedicines10020201. [PMID: 35203414 PMCID: PMC8869660 DOI: 10.3390/biomedicines10020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Anti-Vascular Endothelial Growth Factor (VEGF) agents are the first-line treatment for retinal neovascular diseases, which represent the most prevalent causes of acquired vision loss world-wide. VEGF-Trap (Aflibercept, AFL), a recombinant decoy receptor recognizing ligands of both VEGFR-1 and -2, was recently reported to be highly efficient in improving visual acuity and preserving retinal anatomy in individuals affected by diabetic macular edema. However, the precise molecular and cell biological mechanisms underlying the beneficial effects of this novel tool have yet to be elucidated. Using the mouse oxygen-induced retinopathy (OIR) model as a surrogate of retinopathies with sterile post-ischemic inflammation, such as late proliferative diabetic retinopathy (PDR), retinopathy of prematurity (ROP), and diabetic macular edema (DME), we provide evidence that AFL modulates inflammation in response to hypoxia by regulating the morphology of microglial cells, a parameter commonly used as a proxy for changes in their activation state. We show that AFL administration during the hypoxic period of OIR leads to an increased number of ramified Iba1+ microglial cells/macrophages while subsequently limiting the accumulation of these cells in particular retinal layers. Our results suggest that, beyond its well-documented beneficial effects on microvascular regeneration, AFL might exert important modulatory effects on post-ischemic retinal inflammation.
Collapse
|
20
|
Yang Y, Yang Q, Luo S, Zhang Y, Lian C, He H, Zeng J, Zhang G. Comparative Analysis Reveals Novel Changes in Plasma Metabolites and Metabolomic Networks of Infants With Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 2022; 63:28. [PMID: 35060995 PMCID: PMC8787637 DOI: 10.1167/iovs.63.1.28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Advances in mass spectrometry have provided new insights into the role of metabolomics in the etiology of several diseases. Studies on retinopathy of prematurity (ROP), for example, overlooked the role of metabolic alterations in disease development. We employed comprehensive metabolic profiling and gold-standard metabolic analysis to explore major metabolites and metabolic pathways, which were significantly affected in early stages of pathogenesis toward ROP. Methods This was a multicenter, retrospective, matched-pair, case-control study. We collected plasma from 57 ROP cases and 57 strictly matched non-ROP controls. Non-targeted ultra-high-performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) was used to detect the metabolites. Machine learning was employed to reveal the most affected metabolites and pathways in ROP development. Results Compared with non-ROP controls, we found a significant metabolic perturbation in the plasma of ROP cases, which featured an increase in the levels of lipids, nucleotides, and carbohydrate metabolites and lower levels of peptides. Machine leaning enabled us to distinguish a cluster of metabolic pathways (glycometabolism, redox homeostasis, lipid metabolism, and arginine pathway) were strongly correlated with the development of ROP. Moreover, the severity of ROP was associated with the levels of creatinine and ribitol; also, overactivity of aerobic glycolysis and lipid metabolism was noted in the metabolic profile of ROP. Conclusions The results suggest a strong correlation between metabolic profiling and retinal neovascularization in ROP pathogenesis. These findings provide an insight into the identification of novel metabolic biomarkers for the diagnosis and prevention of ROP, but the clinical significance requires further validation.
Collapse
Affiliation(s)
- Yuhang Yang
- Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, The Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Qian Yang
- UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Sisi Luo
- Shenzhen Key Prevention and Control Laboratory of Birth Defects Prevention and Control, Shenzhen Maternal and Child Health Hospital, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Yinsheng Zhang
- School of Management and E-Business, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Chaohui Lian
- Shenzhen Key Prevention and Control Laboratory of Birth Defects Prevention and Control, Shenzhen Maternal and Child Health Hospital, The Affiliated Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Honghui He
- Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, The Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Jian Zeng
- Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, The Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| | - Guoming Zhang
- Shenzhen Eye Hospital, Shenzhen Key Ophthalmic Laboratory, The Second Affiliated Hospital of Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
21
|
Mezu-Ndubuisi OJ, Song YS, Macke E, Johnson H, Nwaba G, Ikeda A, Sheibani N. Retinopathy of prematurity shows alterations in Vegfa 164 isoform expression. Pediatr Res 2022; 91:1677-1685. [PMID: 34285351 PMCID: PMC8770670 DOI: 10.1038/s41390-021-01646-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 06/13/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Pathologic ocular neovascularization in retinopathy of prematurity (ROP) and other proliferative retinopathies are characterized by dysregulation of vascular endothelial growth factor-A (VEGF-A). A study of Vegfa isoform expression during oxygen-induced ischemic retinopathy (OIR) may enhance our understanding of Vegf dysregulation. METHODS Following induction of OIR, immunohistochemistry and polymerase chain reaction (PCR) was performed on room air (RA) and OIR mice. RESULTS Total Vegfa messenger RNA (mRNA) expression was stable in RA mice, but increased in OIR mice with a peak at postnatal day 17 (P17), before returning to RA levels. Vegfa164a expression was similar in both OIR and RA mice at P10 (Phase 1 OIR), but 2.4-fold higher in OIR mice compared to RA mice at P16 (Phase 2 OIR). At P10, Vegfa164b mRNA was similar in OIR vs RA mice, but was expressed 2.5-fold higher in OIR mice compared to RA mice at P16. At P10 and P16, Vegfr2/Vegfr1 expression was increased in OIR mice compared to RA mice. Increased activation of microglia was seen in OIR mice. CONCLUSIONS Vegfa164a, Vegfa164b, and Vegfr1 were overexpressed in OIR mice, leading to abnormal signaling and angiogenesis. Further studies of mechanisms of Vegf dysregulation may lead to novel therapies for ROP and other proliferative retinopathies. IMPACT Vegfa164 has two major isoforms, a proangiogenic, Vegfa164a, and an antiangiogenic, Vegfa164b, with opposing receptors, inhibitory Vegfr1, and stimulatory Vegfr2, but their role in OIR is unclear. In Phase 1 OIR, both isoforms and receptors are expressed similarly. In Phase 2 OIR, both isoforms are overexpressed, with an increased ratio of inhibitory Vegfr1. Modulation of angiogenesis by Vegf regulation enables pruning of excess angiogenesis during physiology, but results in ineffective angiogenesis during OIR. Knowledge of VEGF dysregulation may have novel therapeutic implications in the management of ROP and retinal proliferative diseases.
Collapse
Affiliation(s)
- Olachi J. Mezu-Ndubuisi
- grid.14003.360000 0001 2167 3675Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI USA ,grid.14003.360000 0001 2167 3675Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Yong-Seok Song
- grid.14003.360000 0001 2167 3675Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Erica Macke
- grid.14003.360000 0001 2167 3675Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI USA
| | - Hailey Johnson
- grid.14003.360000 0001 2167 3675Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Ginika Nwaba
- grid.152326.10000 0001 2264 7217Vanderbilt University, Nashville, TN USA
| | - Akihiro Ikeda
- grid.14003.360000 0001 2167 3675Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI USA
| | - Nader Sheibani
- grid.14003.360000 0001 2167 3675Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI USA ,grid.14003.360000 0001 2167 3675Departments of Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| |
Collapse
|
22
|
Huang R, Xu Y, Lu X, Tang X, Lin J, Cui K, Yu S, Shi Y, Ye D, Liu Y, Liang X. Melatonin protects inner retinal neurons of newborn mice after hypoxia-ischemia. J Pineal Res 2021; 71:e12716. [PMID: 33426650 DOI: 10.1111/jpi.12716] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/02/2021] [Accepted: 01/02/2021] [Indexed: 12/21/2022]
Abstract
Retinopathy of prematurity is a vision-threatening disease associated with retinal hypoxia-ischemia, leading to the death of retinal neurons and chronic neuronal degeneration. During this study, we used the oxygen-induced retinopathy mice model to mimic retinal hypoxia-ischemia phenotypes to investigate further the neuroprotective effect of melatonin on neonatal retinal neurons. Melatonin helped maintain relatively normal inner retinal architecture and thickness and preserve inner retinal neuron populations in avascular areas by rescuing retinal ganglion and bipolar cells, and horizontal and amacrine neurons, from apoptosis. Meanwhile, melatonin recovered visual dysfunction, as reflected by the improved amplitudes and implicit times of a-wave, b-wave, and oscillatory potentials. Additionally, elevated cleaved caspase-3 and Bax protein levels and reduced Bcl-2 protein levels in response to hypoxia-ischemia were diminished after melatonin treatment. Moreover, melatonin increased BDNF and downstream phospho-TrkB/Akt/ERK/CREB levels. ANA-12, a TrkB receptor antagonist, antagonized these melatonin actions and reduced melatonin-induced neuroprotection. Furthermore, melatonin rescued the reduction in melatonin receptor expression. This study suggests that melatonin exerted anti-apoptotic and neuroprotective effects in inner retinal neurons after hypoxia-ischemia, at least partly due to modulation of the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Rong Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoyu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jianqiang Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Wightman AJ, Guymer RH. Reticular pseudodrusen: current understanding. Clin Exp Optom 2021; 102:455-462. [DOI: 10.1111/cxo.12842] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 11/27/2022] Open
Affiliation(s)
- Antony J Wightman
- Centre for Eye Research Australia, Melbourne, Victoria, Australia,
- Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia,
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Victoria, Australia,
| | - Robyn H Guymer
- Centre for Eye Research Australia, Melbourne, Victoria, Australia,
- Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia,
- Department of Surgery (Ophthalmology), The University of Melbourne, Melbourne, Victoria, Australia,
| |
Collapse
|
24
|
Abstract
The uncontrolled growth of blood vessels is a major pathological factor in human eye diseases that can result in blindness. This effect is termed ocular neovascularization and is seen in diabetic retinopathy, age-related macular degeneration, glaucoma and retinopathy of prematurity. Current treatments for these diseases include laser photocoagulation, topical injection of corticosteroids, intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) agents and vitreoretinal surgery. Although strategies to inhibit VEGF have proved to be dramatically successful in some clinical studies, there remains the possibility of significant adverse effects regarding the blockade of crucial physiological roles of VEGF and the invasive nature of the treatments. Moreover, it is evident that other pro-angiogenic factors also play important roles in the development of these diseases, as seen in cases in which anti-VEGF therapies have failed. Therefore, new types of effective treatments are required. In this review, we discuss a promising strategy for the treatment of ocular neovascular diseases, i.e., the inhibition of hypoxia-inducible factor (HIF), a master regulator of angiogenesis. We also summarize promising recently investigated HIF inhibitors as treatments for ocular diseases. This review will facilitate more comprehensive approaches to understanding the protective aspects of HIF inhibition in the prevention of ocular diseases.
Collapse
|
25
|
Fernandez-Gonzalez A, Willis GR, Yeung V, Reis M, Liu X, Mitsialis SA, Kourembanas S. Therapeutic Effects of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles in Oxygen-Induced Multi-Organ Disease: A Developmental Perspective. Front Cell Dev Biol 2021; 9:647025. [PMID: 33796534 PMCID: PMC8007882 DOI: 10.3389/fcell.2021.647025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Despite major advances in neonatal intensive care, infants born at extremely low birth weight still face an increased risk for chronic illness that may persist into adulthood. Pulmonary, retinal, and neurocognitive morbidities associated with preterm birth remain widespread despite interventions designed to minimize organ dysfunction. The design of therapeutic applications for preterm pathologies sharing common underlying triggers, such as fluctuations in oxygen supply or in the inflammatory state, requires alternative strategies that promote anti-inflammatory, pro-angiogenic, and trophic activities—ideally as a unitary treatment. Mesenchymal stem/stromal cell-derived extracellular vesicles (MEx) possess such inherent advantages, and they represent a most promising treatment candidate, as they have been shown to contribute to immunomodulation, homeostasis, and tissue regeneration. Current pre-clinical studies into the MEx mechanism of action are focusing on their restorative capability in the context of preterm birth-related pathologies, albeit not always with a multisystemic focus. This perspective will discuss the pathogenic mechanisms underlying the multisystemic lesions resulting from early-life disruption of normal physiology triggered by high oxygen exposures and pro-inflammatory conditions and introduce the application of MEx as immunomodulators and growth-promoting mediators for multisystem therapy.
Collapse
Affiliation(s)
- Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Gareth R Willis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Vincent Yeung
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Monica Reis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Xianlan Liu
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Differential Action of Connexin Hemichannel and Pannexin Channel Therapeutics for Potential Treatment of Retinal Diseases. Int J Mol Sci 2021; 22:ijms22041755. [PMID: 33578721 PMCID: PMC7916454 DOI: 10.3390/ijms22041755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of retinal function in the early stages of light-induced retinal degeneration involves pannexins and connexins. These two types of proteins may contribute to channels that release ATP, leading to activation of the inflammasome pathway, spread of inflammation and retinal dysfunction. However, the effect of pannexin channel block alone or block of both pannexin channels and connexin hemichannels in parallel on retinal activity in vivo is unknown. In this study, the pannexin channel blocker probenecid and the connexin hemichannel blocker tonabersat were used in the light-damaged rat retina. Retinal function was evaluated using electroretinography (ERG), retinal structure was analyzed using optical coherence tomography (OCT) imaging and the tissue response to light-induced injury was assessed immunohistochemically with antibodies against glial fibrillary acidic protein (GFAP), Ionized calcium binding adaptor molecule 1 (Iba-1) and Connexin43 (Cx43). Probenecid did not further enhance the therapeutic effect of connexin hemichannel block in this model, but on its own improved activity of certain inner retina neurons. The therapeutic benefit of blocking connexin hemichannels was further evaluated by comparing these data against results from our previously published studies that also used the light-damaged rat retina model. The analysis showed that treatment with tonabersat alone was better than probenecid alone at restoring retinal function in the light-damaged retina model. The results assist in the interpretation of the differential action of connexin hemichannel and pannexin channel therapeutics for potential treatment of retinal diseases.
Collapse
|
27
|
Cho H, Kambhampati SP, Lai MJ, Zhou L, Lee G, Xie Y, Hui Q, Kannan RM, Duh EJ. Dendrimer-Triamcinolone Acetonide Reduces Neuroinflammation, Pathological Angiogenesis, and Neuroretinal Dysfunction in Ischemic Retinopathy. ADVANCED THERAPEUTICS 2021; 4:2000181. [PMID: 34527806 PMCID: PMC8436818 DOI: 10.1002/adtp.202000181] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults. Severe visual loss in DR is primarily due to proliferative diabetic retinopathy, characterized by pathologic preretinal angiogenesis driven by retinal ischemia. Microglia, the resident immune cells of the retina, have emerged as a potentially important regulator of pathologic retinal angiogenesis. Corticosteroids including triamcinolone acetonide (TA), known for their antiangiogenic effects, are used in treating retinal diseases, but their use is significantly limited by side effects including cataracts and glaucoma. Generation-4 hydroxyl polyamidoamine dendrimer nanoparticles are utilized to deliver TA to activated microglia in the ischemic retina in a mouse model of oxygen-induced retinopathy (OIR). Following intravitreal injection, dendrimer-conjugated TA (D-TA) exhibits selective localization and sustained retention in activated microglia in disease-associated areas of the retina. D-TA, but not free TA, suppresses inflammatory cytokine production, microglial activation, and preretinal neovascularization in OIR. In addition, D-TA, but not free TA, ameliorates OIR-induced neuroretinal and visual dysfunction. These results indicate that activated microglia are a promising therapeutic target for retinal angiogenesis and neuroprotection in ischemic retinal diseases. Furthermore, dendrimer-based targeted therapy and specifically D-TA constitute a promising treatment approach for DR, offering increased and sustained drug efficacy with reduced side effects.
Collapse
Affiliation(s)
- Hongkwan Cho
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA
| | - Siva P Kambhampati
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael J Lai
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA
| | - Lingli Zhou
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA
| | - Grace Lee
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA
| | - Yangyiran Xie
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA
| | - Qiaoyan Hui
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA
| | - Rangaramanujam M Kannan
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA; Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Baltimore, MD 21218, USA
| | - Elia J Duh
- Department of Ophthalmology, School of Medicine Johns Hopkins University, Baltimore, MD 21231, USA; Center for Nanomedicine at the Wilmer Eye Institute Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
28
|
Label-free adaptive optics imaging of human retinal macrophage distribution and dynamics. Proc Natl Acad Sci U S A 2020; 117:30661-30669. [PMID: 33168747 PMCID: PMC7720180 DOI: 10.1073/pnas.2010943117] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microglia, a type of macrophage, were discovered a little more than a century ago by Pío del Río-Hortega. Since that time, we have gained an immense amount of knowledge on their origin and multifaceted function with the aid of labeling techniques and animal models, among other tools. Only recently have macrophage cells been imaged in living humans. Here we characterize macrophage spatial distribution and temporal dynamics in live human eyes using a label-free adaptive optics imaging approach. This investigation lays a foundation to better understand the body’s immune response not only to ocular diseases like glaucoma, but also to a vast array of neurological diseases with ocular manifestations, including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. Microglia are resident central nervous system macrophages and the first responders to neural injury. Until recently, microglia have been studied only in animal models with exogenous or transgenic labeling. While these studies provided a wealth of information on the delicate balance between neuroprotection and neurotoxicity within which these cells operate, extrapolation to human immune function has remained an open question. Here we examine key characteristics of retinal macrophage cells in live human eyes, both healthy and diseased, with the unique capabilities of our adaptive optics–optical coherence tomography approach and owing to their propitious location above the inner limiting membrane (ILM), allowing direct visualization of cells. Our findings indicate that human ILM macrophage cells may be distributed distinctly, age differently, and have different dynamic characteristics than microglia in other animals. For example, we observed a macular pattern that was sparse centrally and peaked peripherally in healthy human eyes. Moreover, human ILM macrophage density decreased with age (∼2% of cells per year). Our results in glaucomatous eyes also indicate that ILM macrophage cells appear to play an early and regionally specific role of nerve fiber layer phagocytosis in areas of active disease. While we investigate ILM macrophage cells distinct from the larger sample of overall retinal microglia, the ability to visualize macrophage cells without fluorescent labeling in the live human eye represents an important advance for both ophthalmology and neuroscience, which may lead to novel disease biomarkers and new avenues of exploration in disease progression.
Collapse
|
29
|
Sawant OB, Jidigam VK, Wilcots K, Fuller RD, Samuels I, Rao S. Thyroid Activating Enzyme, Deiodinase II Is Required for Photoreceptor Function in the Mouse Model of Retinopathy of Prematurity. Invest Ophthalmol Vis Sci 2020; 61:36. [PMID: 33237298 PMCID: PMC7691789 DOI: 10.1167/iovs.61.13.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 10/30/2020] [Indexed: 11/24/2022] Open
Abstract
Purpose Retinopathy of prematurity (ROP) is a severe complication of premature infants, leading to vision loss when untreated. Presently, the molecular mechanisms underlying ROP are still far from being clearly understood. This study sought to investigate whether thyroid hormone (TH) signaling contributes to the neuropathology of ROP using the mouse model of ROP to evaluate longitudinal photoreceptor function. Methods Animals were exposed to hyperoxia from P7 to P12 to induce retinopathy, thereafter the animals were returned to room air (normoxia). The thyroid-activating enzyme type 2 deiodinases (Dio2) knockout (KO) mice and the littermate controls that were exposed to hyperoxia or maintained in room air and were then analyzed. The retinal function was evaluated using electroretinograms (ERGs) at three and seven weeks followed by histologic assessments with neuronal markers to detect cellular changes in the retina. Rhodopsin protein levels were measured to validate the results obtained from the immunofluorescence analyses. Results In the ROP group, the photoreceptor ERG responses are considerably lower both in the control and the Dio2 KO animals at P23 compared to the non-ROP group. In agreement with the ERG responses, loss of Dio2 results in mislocalized cone nuclei, and abnormal rod bipolar cell dendrites extending into the outer nuclear layer. The retinal function is compromised in the adult Dio2 KO animals, although the cellular changes are less severe. Despite the reduction in scotopic a-wave amplitudes, rhodopsin levels are similar in the adult mice, across all genotypes irrespective of exposure to hyperoxia. Conclusions Using the mouse model of ROP, we show that loss of Dio2 exacerbates the effects of hyperoxia-induced retinal deficits that persist in the adults. Our data suggest that aberrant Dio2/TH signaling is an important factor in the pathophysiology of the visual dysfunction observed in the oxygen-induced retinopathy model of ROP.
Collapse
Affiliation(s)
- Onkar B. Sawant
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Eversight, Cleveland, Ohio, United States
| | - Vijay K. Jidigam
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Kenya Wilcots
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States
| | - Rebecca D. Fuller
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
| | - Ivy Samuels
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, United States
| | - Sujata Rao
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, United States
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
30
|
Yu Y, Xue S, Chen K, Le Y, Zhu R, Wang S, Liu S, Cheng X, Guan H, Wang JM, Chen H. The G-protein-coupled chemoattractant receptor Fpr2 exacerbates neuroglial dysfunction and angiogenesis in diabetic retinopathy. FASEB Bioadv 2020; 2:613-623. [PMID: 33089077 PMCID: PMC7566047 DOI: 10.1096/fba.2020-00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/22/2023] Open
Abstract
Diabetic retinopathy (DR) as a retinal neovascularization‐related disease is one of the leading causes of irreversible blindness in patients. The goal of this study is to determine the role of a G‐protein‐coupled chemoattractant receptor (GPCR) FPR2 (mouse Fpr2) in the progression of DR, in order to identify novel therapeutic targets. We report that Fpr2 was markedly upregulated in mouse diabetic retinas, especially in retinal vascular endothelial cells, in associated with increased number of activated microglia and Müller glial cells. In contrast, in the retina of diabetic Fpr2−/− mice, the activation of vascular endothelial cells and glia was attenuated with reduced production of proinflammatory cytokines. Fpr2 deficiency also prevented the formation of acellular capillary during diabetic progression. Furthermore, in oxygen‐induced retinopathy (OIR) mice, the absence of Fpr2 was associated with diminished neovasculature formation and pathological vaso‐obliteration region in the retina. These results highlight the importance of Fpr2 in exacerbating the progression of neuroglial degeneration and angiogenesis in DR and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ying Yu
- Eye Institute Affiliated Hospital of Nantong University Nantong China.,Cancer and Inflammation Program Center for Cancer Research National Cancer Institute at Frederick Frederick MD USA
| | - Shengding Xue
- Eye Institute Affiliated Hospital of Nantong University Nantong China
| | - Keqiang Chen
- Cancer and Inflammation Program Center for Cancer Research National Cancer Institute at Frederick Frederick MD USA
| | - Yingying Le
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety Shanghai Institute of Nutrition and Health Chinese Academy of Sciences Shanghai China
| | - Rongrong Zhu
- Eye Institute Affiliated Hospital of Nantong University Nantong China
| | - Shiyi Wang
- Eye Institute Affiliated Hospital of Nantong University Nantong China
| | - Shuang Liu
- Eye Institute Affiliated Hospital of Nantong University Nantong China
| | - Xinliang Cheng
- Eye Institute Affiliated Hospital of Nantong University Nantong China
| | - Huaijin Guan
- Eye Institute Affiliated Hospital of Nantong University Nantong China
| | - Ji Ming Wang
- Cancer and Inflammation Program Center for Cancer Research National Cancer Institute at Frederick Frederick MD USA
| | - Hui Chen
- Eye Institute Affiliated Hospital of Nantong University Nantong China
| |
Collapse
|
31
|
Multiple Retinal Anomalies in Wfs1-Deficient Mice. Diagnostics (Basel) 2020; 10:diagnostics10090607. [PMID: 32824898 PMCID: PMC7555979 DOI: 10.3390/diagnostics10090607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Wolfram syndrome (WFS, OMIM: #222300) is an ultrarare autosomal recessive disorder characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy and deafness. It has been reported that the average retinal thickness in WFS patients decreases with the progression of the disease. Aim: To investigate retinal thickness and wolframin expression disorders in Wolfram syndrome 1 gene knockout (Wfs1KO) mice compared to their wild-type (WT) littermates. Materials and methods: Both bulbs with optic nerves of three mice Wfs1WT and three Wfs1KO were taken for the histopathological examination. A strain of knockout mice with mutation in exon 8 was used. Results: No expression of wolframin protein in the retina and neurodegeneration of the optic nerve of Wfs1KO mice as compared among Wfs1WT mice was observed. The mean central retinal thickness was thinner and the retinal thickness/longitudinal diameter ratio was significantly lower in hte Wfs1KO as compared to the Wfs1WT mice. In four (67%) eyeballs of Wfs1KO mice, intra-retinal neovessels were observed. Conclusions: Wfs1KO mice retina with mutation in exon 8 present similar clinical features as patients with WFS in the form of reduced retinal thickness and neurodegeneration of the optic nerve. The presence of proliferative retinopathy observed in Wfs1KO mice requires further investigation.
Collapse
|
32
|
Vähätupa M, Järvinen TAH, Uusitalo-Järvinen H. Exploration of Oxygen-Induced Retinopathy Model to Discover New Therapeutic Drug Targets in Retinopathies. Front Pharmacol 2020; 11:873. [PMID: 32595503 PMCID: PMC7300227 DOI: 10.3389/fphar.2020.00873] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/27/2020] [Indexed: 12/11/2022] Open
Abstract
Oxygen-induced retinopathy (OIR) is a pure hypoxia-driven angiogenesis model and the most widely used model for ischemic retinopathies, such as retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and retinal vein occlusion (RVO). OIR model has been used to test new potential anti-angiogenic factors for human diseases. We have recently performed the most comprehensive characterization of OIR by a relatively novel mass spectrometry (MS) technique, sequential window acquisition of all theoretical fragment ion mass spectra (SWATH-MS) proteomics and used genetically modified mice strains to identify novel molecular drug targets in angiogenic retinal diseases. We have confirmed the relevance of the identified molecular targets to human diseases by determining their expression pattern in neovascular membranes obtained from PDR and RVO patients. Based on our results, crystallins were the most prominent proteins induced by early hypoxic environment during the OIR, while actomyosin complex and Filamin A-R-Ras axis, that regulates vascular permeability of the angiogenic blood vessels, stood out at the peak of angiogenesis. Our results have revealed potential new therapeutic targets to address hypoxia-induced pathological angiogenesis and the associated vascular permeability in number of retinal diseases.
Collapse
Affiliation(s)
- Maria Vähätupa
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Tero A. H. Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Orthopedics and Traumatology, Tampere University Hospital, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Eye Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
33
|
Sun M, Wadehra M, Casero D, Lin MC, Aguirre B, Parikh S, Matynia A, Gordon L, Chu A. Epithelial Membrane Protein 2 (EMP2) Promotes VEGF-Induced Pathological Neovascularization in Murine Oxygen-Induced Retinopathy. Invest Ophthalmol Vis Sci 2020; 61:3. [PMID: 32031575 PMCID: PMC7325623 DOI: 10.1167/iovs.61.2.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
Purpose Retinopathy of prematurity (ROP) is a leading cause of childhood blindness. ROP occurs as a consequence of postnatal hyperoxia exposure in premature infants, resulting in vasoproliferation in the retina. The tetraspan protein epithelial membrane protein-2 (EMP2) is highly expressed in the retinal pigment epithelium (RPE) in adults, and it controls vascular endothelial growth factor (VEGF) production in the ARPE-19 cell line. We, therefore, hypothesized that Emp2 knockout (Emp2 KO) protects against neovascularization in murine oxygen-induced retinopathy (OIR). Methods Eyes were obtained from wildtype (WT) and Emp2 KO mouse pups at P7, P12, P17, and P21 after normoxia or hyperoxia (P7-P12) exposure. Following hyperoxia exposure, RNA sequencing was performed using the retina/choroid layers obtained from WT and Emp2 KO at P17. Retinal sections from P7, P12, P17, and P21 were evaluated for Emp2, hypoxia-inducible factor 1α (Hif1α), and VEGF expression. Whole mount images were generated to assess vaso-obliteration at P12 and neovascularization at P17. Results Emp2 KO OIR mice demonstrated a decrease in pathologic neovascularization at P17 compared with WT OIR mice through evaluation of retinal vascular whole mount images. This protection was accompanied by a decrease in Hif1α at P12 and VEGFA expression at P17 in Emp2 KO animals compared with the WT animals in OIR conditions. Collectively, our results suggest that EMP2 enhances the effects of neovascularization through modulation of angiogenic signaling. Conclusions The protection of Emp2 KO mice against pathologic neovascularization through attenuation of HIF and VEGF upregulation in OIR suggests that hypoxia-induced upregulation of EMP2 expression in the neuroretina modulates HIF-mediated neuroretinal VEGF expression.
Collapse
Affiliation(s)
- Michel Sun
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Madhuri Wadehra
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
- Jonsson Comprehensive Cancer, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - David Casero
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Meng-Chin Lin
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Brian Aguirre
- Department of Pathology Lab Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Sachin Parikh
- Laboratory of Ocular and Molecular Biology and Genetics, Jules Stein Institute, University of California-Los Angeles, Los Angeles, California, United States
| | - Anna Matynia
- Laboratory of Ocular and Molecular Biology and Genetics, Jules Stein Institute, University of California-Los Angeles, Los Angeles, California, United States
| | - Lynn Gordon
- Department of Ophthalmology, Stein Eye Institute, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| | - Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California, United States
| |
Collapse
|
34
|
Fletcher EL. Contribution of microglia and monocytes to the development and progression of age related macular degeneration. Ophthalmic Physiol Opt 2020; 40:128-139. [PMID: 32017190 DOI: 10.1111/opo.12671] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/10/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Age related macular degeneration (AMD) is the leading cause of irreversible vision loss in industrialised nations. Based on genetics, as well as proteome analysis of drusen, the role the innate immune system in the development and/or progression of the disease is well established. Mononuclear phagocytes, such as microglia and monocytes, play critical roles in innate immunity. Here, the role of retinal microglia in mediating normal retinal function, and how these cells change with age is discussed, so as to understand their role in the development and progression of AMD. RECENT FINDINGS It is now known that microglia dynamically survey the neural environment, responding rapidly to even the most subtle neural injury. The dynamic and phagocytic roles of microglia can change with age contributing to alteration in the response of these cells to damage with age. Accumulation of innate immune cells in the subretinal space is a hallmark feature of the development of AMD, reflecting either an increase in migration of monocytes into the retina, or a failure of immune cell elimination from the retina. Furthermore, changes in phagocytic ability of immune cells could contribute to the accumulation of drusen deposits in the posterior eye. SUMMARY An overview of how retinal microglia maintain retinal homeostasis under normal conditions is provided, and then how they contribute to each stage of AMD. In addition, circulating monocytes are altered in those with AMD, contributing to the overall inflammatory state. Understanding the role of cells of the innate immune system in AMD may uncover novel therapeutic targets with which to reduce either the development or progression of disease.
Collapse
Affiliation(s)
- Erica L Fletcher
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
35
|
Mat Nor MN, Rupenthal ID, Green CR, Acosta ML. Connexin Hemichannel Block Using Orally Delivered Tonabersat Improves Outcomes in Animal Models of Retinal Disease. Neurotherapeutics 2020; 17:371-387. [PMID: 31637594 PMCID: PMC7007471 DOI: 10.1007/s13311-019-00786-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Increased Connexin43 hemichannel opening is associated with inflammasome pathway activation and inflammation in a range of pathologies including ocular disorders, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). In this study, the effect on retinal function and morphology of clinically safe doses of orally delivered tonabersat, a small molecule connexin hemichannel blocker, was investigated in the light-damaged retina animal model of dry AMD and in a spontaneous rat model of DR. Clinical parameters (fundus imaging, optical coherence tomography (OCT), and electroretinography) and inflammatory markers (immunohistochemistry for Iba-1 microglial marker, astrocyte marker glial fibrillary acidic protein, and Connexin43 protein expression) were assessed. Tonabersat treatment reduced inflammation in the retina in parallel with preservation of retinal photoreceptor function when assessed up to 3 months post light damage in the dry AMD model. In the DR model, clinical signs, including the presence of aneurysms confirmed using Evans blue dye perfusion, were reduced after daily tonabersat treatment for 2 weeks. Inflammation was also reduced and retinal electrical function restored. Tonabersat regulates assembly of the inflammasome (NLRP3) through Connexin43 hemichannel block, with the potential to reduce inflammation, restore vascular integrity and improve anatomical along with some functional outcomes in retinal disease.
Collapse
Affiliation(s)
- Mohd Nasir Mat Nor
- School of Optometry and Vision Science and New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- Faculty of Medicine, University of Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, and New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
- Department of Ophthalmology and New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology and New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Monica L Acosta
- School of Optometry and Vision Science and New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
36
|
Rojo Arias JE, Economopoulou M, Juárez López DA, Kurzbach A, Au Yeung KH, Englmaier V, Merdausl M, Schaarschmidt M, Ader M, Morawietz H, Funk RHW, Jászai J. VEGF-Trap is a potent modulator of vasoregenerative responses and protects dopaminergic amacrine network integrity in degenerative ischemic neovascular retinopathy. J Neurochem 2019; 153:390-412. [PMID: 31550048 DOI: 10.1111/jnc.14875] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/17/2022]
Abstract
Retinal hypoxia triggers abnormal vessel growth and microvascular hyper-permeability in ischemic retinopathies. Whereas vascular endothelial growth factor A (VEGF-A) inhibitors significantly hinder disease progression, their benefits to retinal neurons remain poorly understood. Similar to humans, oxygen-induced retinopathy (OIR) mice exhibit severe retinal microvascular malformations and profound neuronal dysfunction. OIR mice are thus a phenocopy of human retinopathy of prematurity, and a proxy for investigating advanced stages of proliferative diabetic retinopathy. Hence, the OIR model offers an excellent platform for assessing morpho-functional responses of the ischemic retina to anti-angiogenic therapies. Using this model, we investigated the retinal responses to VEGF-Trap (Aflibercept), an anti-angiogenic agent recognizing ligands of VEGF receptors 1 and 2 that possesses regulatory approval for the treatment of neovascular age-related macular degeneration, macular edema secondary to retinal vein occlusion and diabetic macular edema. Our results indicate that Aflibercept not only reduces the severity of retinal microvascular aberrations but also significantly improves neuroretinal function. Aflibercept administration significantly enhanced light-responsiveness, as revealed by electroretinographic examinations, and led to increased numbers of dopaminergic amacrine cells. Additionally, retinal transcriptional profiling revealed the concerted regulation of both angiogenic and neuronal targets, including transcripts encoding subunits of transmitter receptors relevant to amacrine cell function. Thus, Aflibercept represents a promising therapeutic alternative for the treatment of further progressive ischemic retinal neurovasculopathies beyond the set of disease conditions for which it has regulatory approval. Cover Image for this issue: doi: 10.1111/jnc.14743.
Collapse
Affiliation(s)
- Jesús E Rojo Arias
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Matina Economopoulou
- Department of Ophthalmology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - David A Juárez López
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Anica Kurzbach
- Medizinische Klinik III, Universitätsklinikum Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany.,German Center for Diabetes Research (DZD e.V.), München-Neuherberg, Germany
| | - Kwan H Au Yeung
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Vanessa Englmaier
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Marie Merdausl
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Martin Schaarschmidt
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - Marius Ader
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Saxony, Germany
| | - Henning Morawietz
- Department of Medicine III, University Hospital Carl Gustav Carus, Division of Vascular Endothelium and Microcirculation, Technische Universität Dresden, Saxony, Germany
| | - Richard H W Funk
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| | - József Jászai
- Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| |
Collapse
|
37
|
Tsang JKW, Liu J, Lo ACY. Vascular and Neuronal Protection in the Developing Retina: Potential Therapeutic Targets for Retinopathy of Prematurity. Int J Mol Sci 2019; 20:E4321. [PMID: 31484463 PMCID: PMC6747312 DOI: 10.3390/ijms20174321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a common retinal disease in preterm babies. To prolong the lives of preterm babies, high oxygen is provided to mimic the oxygen level in the intrauterine environment for postnatal organ development. However, hyperoxia-hypoxia induced pathological events occur when babies return to room air, leading to ROP with neuronal degeneration and vascular abnormality that affects retinal functions. With advances in neonatal intensive care, it is no longer uncommon for increased survival of very-low-birth-weight preterm infants, which, therefore, increased the incidence of ROP. ROP is now a major cause of preventable childhood blindness worldwide. Current proven treatment for ROP is limited to invasive retinal ablation, inherently destructive to the retina. The lack of pharmacological treatment for ROP creates a great need for effective and safe therapies in these developing infants. Therefore, it is essential to identify potential therapeutic agents that may have positive ROP outcomes, especially in preserving retinal functions. This review gives an overview of various agents in their efficacy in reducing retinal damages in cell culture tests, animal experiments and clinical studies. New perspectives along the neuroprotective pathways in the developing retina are also reviewed.
Collapse
Affiliation(s)
- Jessica K W Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jin Liu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
38
|
Li N, Gao S, Wang J, Zhu Y, Shen X. Anti-apoptotic effect of interleukin-17 in a mouse model of oxygen-induced retinopathy. Exp Eye Res 2019; 187:107743. [PMID: 31348907 DOI: 10.1016/j.exer.2019.107743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/21/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Retinopathy of prematurity (ROP) is an important cause of visual loss in children born prematurely. Although the involvement of inflammation in the development of ROP is gaining increasing attention, the role of IL-17A in ROP progress remains unclear. The aim of this study was to assess the levels of IL-17A production in the mice model of oxygen-induced retinopathy (OIR) and elucidate its potential roles. Wild-type (WT) and IL-17A knockout (IL-17A-/-) mice were exposed to 75% O2 from postnatal day 7 (P7) to P12. Age-matched controls were maintained in room air. Primary Müller cells isolated from WT or IL-17A-/- mice retina were co-cultured with 661W cells and exposed to hypoxic conditions. Western blotting and immunofluorescent staining were used to assess the expression of target protein. Apoptosis in OIR retinal sections and 661W cells was detected by TUNEL staining. Results turned out that IL-17A expression was increased and reached a peak at P22 in OIR retina and at 8 h in hypoxic-cultured Müller cells. IL-17A knockout decreased the expression of glial fibrillary acidic protein (GFAP) and mature neurotrophin-3 (NT-3) in retina of OIR mice as well as hypoxic-cultured Müller cells. The NT-3 release induced by IL-17 was prevented by an ERK-specific inhibitor. In addition, more apoptosis cells and higher levels of Bax and cleaved caspase-3 was detected in the retina tissues of IL-17A-/- OIR and the 661W cells co-cultured with IL-17A-/- Müller cells. Taken together, our findings suggest that Müller cell was the potential source of IL-17A under the hypoxic conditions. Modulation of the IL-17A/ERK/NT-3 pathway exerts anti-apoptotic effect on photoreceptor cell and may be a novel therapeutic strategy for ROP.
Collapse
Affiliation(s)
- Na Li
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Sha Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jing Wang
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yanji Zhu
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
39
|
Vähätupa M, Nättinen J, Jylhä A, Aapola U, Kataja M, Kööbi P, Järvinen TAH, Uusitalo H, Uusitalo-Järvinen H. SWATH-MS Proteomic Analysis of Oxygen-Induced Retinopathy Reveals Novel Potential Therapeutic Targets. Invest Ophthalmol Vis Sci 2019; 59:3294-3306. [PMID: 30025079 DOI: 10.1167/iovs.18-23831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Oxygen-induced retinopathy (OIR) is the most widely used model for ischemic retinopathies such as retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and retinal vein occlusion (RVO). The purpose of this study was to perform the most comprehensive characterization of OIR by a recently developed technique, sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics. Methods Control and OIR retina samples collected from various time points were subjected to SWATH-MS and detailed data analysis. Immunohistochemistry from mouse retinas as well as neovascular membranes from human PDR and RVO patients were used for the detection of the localization of the proteins showing altered expression in the retina and to address their relevance to human ischemic retinopathies. Results We report the most extensive proteomic profiling of OIR to date by quantifying almost 3000 unique proteins and their expression differences between control and OIR retinas. Crystallins were the most prominent proteins induced by hypoxia in the retina, while angiogenesis related proteins such as Filamin A and nonmuscle myosin IIA stand out at the peak of angiogenesis. Majority of the changes in protein expression return to normal at P42, but there is evidence to suggest that proteins involved in neurotransmission remain at reduced level. Conclusions The results reveal new potential therapeutic targets to address hypoxia-induced pathological angiogenesis taking place in number of retinal diseases. The extensive proteomic profiling combined with pathway analysis also identifies novel molecular networks that could contribute to the pathogenesis of retinal diseases.
Collapse
Affiliation(s)
- Maria Vähätupa
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland
| | - Janika Nättinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Antti Jylhä
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Ulla Aapola
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Marko Kataja
- Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Peeter Kööbi
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Tero A H Järvinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Department of Musculoskeletal Disorders, Tampere University Hospital, Tampere, Finland
| | - Hannu Uusitalo
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
40
|
von Eisenhart-Rothe P, Grubman A, Greferath U, Fothergill LJ, Jobling AI, Phipps JA, White AR, Fletcher EL, Vessey KA. Failure of Autophagy–Lysosomal Pathways in Rod Photoreceptors Causes the Early Retinal Degeneration Phenotype Observed inCln6nclfMice. ACTA ACUST UNITED AC 2018; 59:5082-5097. [DOI: 10.1167/iovs.18-24757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
| | - Alexandra Grubman
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ursula Greferath
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Linda J. Fothergill
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew I. Jobling
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Joanna A. Phipps
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony R. White
- Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Erica L. Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kirstan A. Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Mat Nor N, Guo CX, Rupenthal ID, Chen YS, Green CR, Acosta ML. Sustained Connexin43 Mimetic Peptide Release From Loaded Nanoparticles Reduces Retinal and Choroidal Photodamage. Invest Ophthalmol Vis Sci 2018; 59:3682-3693. [PMID: 30029255 DOI: 10.1167/iovs.17-22829] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Purpose To evaluate the long-term effect on inflammation and inflammasome activation of intravitreally delivered connexin43 mimetic peptide (Cx43MP) in saline or incorporated within nanoparticles (NPs) for the treatment of the light-damaged rat eye. Methods Light-induced damage to the retina was created by exposure of adult albino Sprague-Dawley rats to intense light for 24 hours. A single dose of Cx43MP, Cx43MP-NPs, or saline was injected intravitreally at 2 hours after onset of light damage. Fluorescein isothiocyanate (FITC)-labelled Cx43MP-NPs were intravitreally injected to confirm delivery into the retina. Electroretinogram (ERG) recordings were performed at 24 hours, 1 week, and 2 weeks post cessation of light damage. The retinal and choroidal layers were analyzed in vivo using optical coherence tomography (OCT) and immunohistochemistry was performed on harvested tissues using glial fibrillary acidic protein (GFAP), leukocyte common antigen (CD45), and Cx43 antibodies. Results FITC was visualized 30 minutes after injection in the ganglion cell layer and in the choroid. Cx43MP and Cx43MP-NP treatments improved a-wave and b-wave function of the ERG compared with saline-injected eyes at 1 week and 2 weeks post treatment, and prevented photoreceptor loss by 2 weeks post treatment. Inflammation was also reduced and this was in parallel with downregulation of Cx43 expression. Conclusions The slow release of Cx43MP incorporated into NPs is more effective at treating retinal injury than a single dose of native Cx43MP in solution by reducing inflammation and maintaining both retinal structure and function. This NP preparation has clinical relevance as it reduces possible ocular complications associated with repeated intravitreal injections.
Collapse
Affiliation(s)
- Nasir Mat Nor
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand.,Faculty of Medicine, University of Sultan Zainal Abidin, Kuala Terengganu, Malaysia.,New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Cindy X Guo
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand.,New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Buchanan Ocular Therapeutics Unit, University of Auckland, Auckland, New Zealand
| | - Ying-Shan Chen
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, University of Auckland, Auckland, New Zealand.,Buchanan Ocular Therapeutics Unit, University of Auckland, Auckland, New Zealand
| | - Colin R Green
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.,Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Monica L Acosta
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand.,New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
42
|
Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - A key player in healthy and diseased retina. Prog Neurobiol 2018; 173:18-40. [PMID: 29864456 DOI: 10.1016/j.pneurobio.2018.05.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Microglia, the resident immune cells of the brain and retina, are constantly engaged in the surveillance of their surrounding neural tissue. During embryonic development they infiltrate the retinal tissues and participate in the phagocytosis of redundant neurons. The contribution of microglia in maintaining the purposeful and functional histo-architecture of the adult retina is indispensable. Within the retinal microenvironment, robust microglial activation is elicited by subtle changes caused by extrinsic and intrinsic factors. When there is a disturbance in the cell-cell communication between microglia and other retinal cells, for example in retinal injury, the activated microglia can manifest actions that can be detrimental. This is evidenced by activated microglia secreting inflammatory mediators that can further aggravate the retinal injury. Microglial activation as a harbinger of a variety of retinal diseases is well documented by many studies. In addition, a change in the microglial phenotype which may be associated with aging, may predispose the retina to age-related diseases. In light of the above, the focus of this review is to highlight the role played by microglia in the healthy and diseased retina, based on findings of our own work and from that of others.
Collapse
Affiliation(s)
- Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore; Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, United States
| | - Wallace S Foulds
- Singapore Eye Research Institute Level 6, The Academia, Discovery Tower, 20 College Road, 169856, Singapore; University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore.
| |
Collapse
|
43
|
Galectin-1 expression imprints a neurovascular phenotype in proliferative retinopathies and delineates responses to anti-VEGF. Oncotarget 2018; 8:32505-32522. [PMID: 28455954 PMCID: PMC5464805 DOI: 10.18632/oncotarget.17129] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
Neovascular retinopathies are leading causes of irreversible blindness. Although vascular endothelial growth factor (VEGF) inhibitors have been established as the mainstay of current treatment, clinical management of these diseases is still limited. As retinal impairment involves abnormal neovascularization and neuronal degeneration, we evaluated here the involvement of galectin-1 in vascular and non-vascular alterations associated with retinopathies, using the oxygen-induced retinopathy (OIR) model. Postnatal day 17 OIR mouse retinas showed the highest neovascular profile and exhibited neuro-glial injury as well as retinal functional loss, which persisted until P26 OIR. Concomitant to VEGF up-regulation, galectin-1 was highly expressed in P17 OIR retinas and it was mainly localized in neovascular tufts. In addition, OIR induced remodelling of cell surface glycophenotype leading to exposure of galectin-1-specific glycan epitopes. Whereas VEGF returned to baseline levels at P26, increased galectin-1 expression persisted until this time period. Remarkably, although anti-VEGF treatment in P17 OIR improved retinal vascularization, neither galectin-1 expression nor non-vascular and functional alterations were attenuated. However, this functional defect was partially prevented in galectin-1-deficient (Lgals1-/-) OIR mice, suggesting the importance of targeting both VEGF and galectin-1 as non-redundant independent pathways. Supporting the clinical relevance of these findings, we found increased levels of galectin-1 in aqueous humor from patients with proliferative diabetic retinopathy and neovascular glaucoma. Thus, using an OIR model and human samples, we identified a role for galectin-1 accompanying vascular and non-vascular retinal alterations in neovascular retinopathies.
Collapse
|
44
|
Cammalleri M, Locri F, Catalani E, Filippi L, Cervia D, Dal Monte M, Bagnoli P. The Beta Adrenergic Receptor Blocker Propranolol Counteracts Retinal Dysfunction in a Mouse Model of Oxygen Induced Retinopathy: Restoring the Balance between Apoptosis and Autophagy. Front Cell Neurosci 2017; 11:395. [PMID: 29375312 PMCID: PMC5770647 DOI: 10.3389/fncel.2017.00395] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/28/2017] [Indexed: 12/29/2022] Open
Abstract
In a mouse model of oxygen induced retinopathy (OIR), beta adrenergic receptor (BAR) blockade has been shown to recover hypoxia-associated retinal damages. Although the adrenergic signaling is an important regulator of apoptotic and autophagic processes, the role of BARs in retinal cell death remains to be elucidated. The present study was aimed at investigating whether ameliorative effects of BAR blockers may occur through their coordinated action on apoptosis and autophagy. To this aim, retinas from control and OIR mice untreated or treated with propranolol, a non-selective BAR1/2 blocker, were characterized in terms of expression and localization of apoptosis and autophagy markers. The effects of propranolol on autophagy signaling were also evaluated and specific autophagy modulators were used to get functional information on the autophagic effects of BAR antagonism. Finally, propranolol effects on neurodegenerative processes were associated to an electrophysiological investigation of retinal function by recording electroretinogram (ERG). We found that retinas of OIR mice are characterized by increased apoptosis and decreased autophagy, while propranolol reduces apoptosis and stimulates autophagy. In particular, propranolol triggers autophagosome formation in bipolar, amacrine and ganglion cells that are committed to die by apoptosis in response to hypoxia. Also our data argue that propranolol, through the inhibition of the Akt-mammalian target of rapamycin pathway, activates autophagy which decreases retinal cell death. At the functional level, propranolol recovers dysfunctional ERG by recovering the amplitude of a- and b-waves, and oscillatory potentials, thus indicating an efficient restoring of retinal transduction. Overall, our results demonstrate that BAR1/2 are key regulators of retinal apoptosis/autophagy, and that BAR1/2 blockade leads to autophagy-mediated neuroprotection. Reinstating the balance between apoptotic and autophagic machines may therefore be viewed as a future goal in the treatment of retinopathies.
Collapse
Affiliation(s)
| | - Filippo Locri
- Department of Biology, University of Pisa, Pisa, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Fetal-Neonatal Department, Meyer University Children's Hospital, Florence, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy
| | | | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
45
|
Brockmann C, Dege S, Crespo-Garcia S, Kociok N, Brockmann T, Strauß O, Joussen AM. Spatial distribution of CD115 + and CD11b + cells and their temporal activation during oxygen-induced retinopathy in mice. Graefes Arch Clin Exp Ophthalmol 2017; 256:313-323. [PMID: 29185100 DOI: 10.1007/s00417-017-3845-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/11/2017] [Accepted: 11/04/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The model of oxygen-induced retinopathy (OIR) is widely used to analyze pathomechanisms in retinal neovascularization. Previous studies have shown that macrophages (MP) play a key role in vessel formation in OIR, the influence of microglia (MG) having been discussed. The aim of our study was to analyze the spatial and temporal distribution and activation of MP/MG expressing CD115 and CD11b during the process of neovascularization in OIR. METHODS We used MacGreen mice expressing the green fluorescence protein (GFP) under the promoter for CD115. CD115+ cells were investigated in vivo by scanning laser ophthalmoscopy at postnatal days (P) 17 and 21 in MacGreen mice with OIR (75% oxygen from P7 to P12), and were compared to MacGreen room-air controls. In addition MP/MG were examined ex vivo using immunohistochemistry for CD11b+ detection on retinal flatmounts at P14, P17, and P21 of wild type mice with OIR. RESULTS In-vivo imaging revealed the highest density of activated MP/MG in tuft areas at P17 of MacGreen mice with OIR. Tufts and regions with a high density of CD115+ cells were detected close to veins, rather to arteries. In peripheral, fully vascularized areas, the distribution of CD115+ cells in MacGreen mice with OIR was similar to MacGreen room-air controls. Correspondingly, immunohistochemical analyses of retinal flatmounts from wild type mice with OIR induction revealed that the number of CD11b+ cells significantly varies between vascular, avascular, and tuft areas as well as between the retinal layers. Activated CD11b+ cells were almost exclusively found in avascular areas and tufts of wild type mice with OIR induction; here, the proportion of activated cells related to the total number of CD11b+ cells remained stable over the course of time. CONCLUSIONS Using two different approaches to monitor MP/MG cells, our findings demonstrated that MP/MG concentrate within pathologically vascularized areas during OIR. We were able to clarify that reactive changes of CD11b+ cell distribution to OIR primarily occur in the deep retinal layers. Furthermore, we found the highest proportion of activated CD11b+ cells in regions with pathologic neovascularization processes. Our findings support previous reports about activated MP/MG guiding revascularization in avascular areas and playing a key role in the formation and regression of neovascular tufts.
Collapse
Affiliation(s)
- Claudia Brockmann
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
- Berlin Institute of Health (BIH), Berlin, Germany.
| | - Sabrina Dege
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sergio Crespo-Garcia
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Norbert Kociok
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Tobias Brockmann
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Olaf Strauß
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Antonia M Joussen
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
46
|
Pisani F, Cammalleri M, Dal Monte M, Locri F, Mola MG, Nicchia GP, Frigeri A, Bagnoli P, Svelto M. Potential role of the methylation of VEGF gene promoter in response to hypoxia in oxygen-induced retinopathy: beneficial effect of the absence of AQP4. J Cell Mol Med 2017; 22:613-627. [PMID: 28940930 PMCID: PMC5742711 DOI: 10.1111/jcmm.13348] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022] Open
Abstract
Hypoxia‐dependent accumulation of vascular endothelial growth factor (VEGF) plays a major role in retinal diseases characterized by neovessel formation. In this study, we investigated whether the glial water channel Aquaporin‐4 (AQP4) is involved in the hypoxia‐dependent VEGF upregulation in the retina of a mouse model of oxygen‐induced retinopathy (OIR). The expression levels of VEGF, the hypoxia‐inducible factor‐1α (HIF‐1α) and the inducible form of nitric oxide synthase (iNOS), the production of nitric oxide (NO), the methylation status of the HIF‐1 binding site (HBS) in the VEGF gene promoter, the binding of HIF‐1α to the HBS, the retinal vascularization and function have been determined in the retina of wild‐type (WT) and AQP4 knock out (KO) mice under hypoxic (OIR) or normoxic conditions. In response to 5 days of hypoxia, WT mice were characterized by (i) AQP4 upregulation, (ii) increased levels of VEGF, HIF‐1α, iNOS and NO, (iii) pathological angiogenesis as determined by engorged retinal tufts and (iv) dysfunctional electroretinogram (ERG). AQP4 deletion prevents VEGF, iNOS and NO upregulation in response to hypoxia thus leading to reduced retinal damage although in the presence of high levels of HIF‐1α. In AQP4 KO mice, HBS demethylation in response to the beginning of hypoxia is lower than in WT mice reducing the binding of HIF‐1α to the VEGF gene promoter. We conclude that in the absence of AQP4, an impaired HBS demethylation prevents HIF‐1 binding to the VEGF gene promoter and the relative VEGF transactivation, reducing the VEGF‐induced retinal damage in response to hypoxia.
Collapse
Affiliation(s)
- Francesco Pisani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | | | - Filippo Locri
- Department of Biology, University of Pisa, Pisa, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Grazia Paola Nicchia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Antonio Frigeri
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, Bari, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy.,Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| |
Collapse
|
47
|
Impact of minocycline on vascularization and visual function in an immature mouse model of ischemic retinopathy. Sci Rep 2017; 7:7535. [PMID: 28790417 PMCID: PMC5548869 DOI: 10.1038/s41598-017-07978-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022] Open
Abstract
The role of microglia in the pathophysiology of ischemic retinal diseases has been extensively studied. Retinal microglial activation may be correlated with retinal neovascularization in oxygen-induced retinopathy (OIR), an animal model that has been widely used in retinopathy of prematurity (ROP) research. Minocycline is an antibiotic that decreases microglial activation following hyperoxic and hypoxic-ischemic phases in neonatal rodents. Here, we investigated the effects of minocycline on vascularization and visual function. In our results, we found that after the administration of minocycline, microglial reactivity was reduced in the retina, which was accompanied by an increase in the avascular area at P12, P14 and P17. Although microglial reactivity was reduced at P17, minocycline treatment did not attenuate retinal neovascularization. A changing trend in microglial number was observed, and the apoptosis and proliferation states on different days partly contributed to this change. Further study also revealed that although minocycline downregulated the levels of proinflammatory factors, visual function appeared to be significantly worsened. Collectively, we demonstrated that minocycline disturbed the physiological vascularization of the avascular area and exacerbated visual dysfunction, indicating that minocycline may not be an effective drug and may even be detrimental for the treatment of ischemic retinopathy in immature mammals.
Collapse
|
48
|
Vessey KA, Gu BJ, Jobling AI, Phipps JA, Greferath U, Tran MX, Dixon MA, Baird PN, Guymer RH, Wiley JS, Fletcher EL. Loss of Function of P2X7 Receptor Scavenger Activity in Aging Mice: A Novel Model for Investigating the Early Pathogenesis of Age-Related Macular Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2017. [PMID: 28628761 DOI: 10.1016/j.ajpath.2017.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging. P2X7-null and wild-type C57bl6J mice were investigated at 4, 12, and 18 months of age for macrophage phagocytosis activity, ocular histological changes, and retinal function. Phagocytosis activity of blood-borne macrophages decreased with age at 18 months in the wild-type mouse. Lack of P2X7 receptor function reduced phagocytosis at all ages compared to wild-type mice. At 12 months of age, P2X7-null mice had thickening of Bruchs membrane and retinal pigment epithelium dysfunction. By 18 months of age, P2X7-null mice displayed phenotypic characteristics consistent with early AMD, including Bruchs membrane thickening, retinal pigment epithelium cell loss, retinal functional deficits, and signs of subretinal inflammation. Our present study shows that loss of function of the P2X7 receptor in mice induces retinal changes representing characteristics of early AMD, providing a valuable model for investigating the role of scavenger receptor function and the immune system in the development of this age-related disease.
Collapse
Affiliation(s)
- Kirstan A Vessey
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ben J Gu
- Florey Institute of Neuroscience, Melbourne, Victoria, Australia
| | - Andrew I Jobling
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Joanna A Phipps
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ursula Greferath
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mai X Tran
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael A Dixon
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Paul N Baird
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Division of Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Victoria, Australia; Division of Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Victoria, Australia
| | - James S Wiley
- Florey Institute of Neuroscience, Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
49
|
Simultaneous Fluorescein Angiography and Spectral Domain Optical Coherence Tomography Correlate Retinal Thickness Changes to Vascular Abnormalities in an In Vivo Mouse Model of Retinopathy of Prematurity. J Ophthalmol 2017; 2017:9620876. [PMID: 28573047 PMCID: PMC5442435 DOI: 10.1155/2017/9620876] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/24/2017] [Accepted: 03/28/2017] [Indexed: 12/28/2022] Open
Abstract
Background Retinopathy of prematurity (ROP) is a condition of abnormal retinal vascular development (RVD) in premature infants. Fluorescein angiography (FA) has depicted phases (early, mid, late, and mature) of RVD in oxygen-induced retinopathy (OIR) mice. We sought to establish the relationship between retinal structural and vascular changes using simultaneous FA and spectral domain optical coherence tomography (SD-OCT). Method 63 mice were exposed to 77% oxygen at postnatal day 7 (P7) for 5 days, while 63 mice remained in room air (RA). Total retinal thickness (TRT), inner retinal thickness (IRT), and outer retinal thickness (ORT) were calculated at early (P19), mid (P24), late (P32), and mature (P47) phases of RVD. Results TRT was reduced in OIR (162.66 ± 17.75 μm, n = 13) compared to RA mice at P19 (197.57 ± 3.49 μm, n = 14), P24, P32, and P49 (P < 0.0001). ORT was similar in RA and OIR mice at all ages (P > 0.05). IRT was reduced in OIR (71.60 ± 17.14 μm) compared to RA (103.07 ± 3.47 μm) mice at P19 and all ages (P < 0.0001). Conclusion We have shown the spatial and temporal relationship between retinal structure and vascular development in OIR. Significant inner retinal thinning in OIR mice persisted despite revascularization of the capillary network; further studies will elucidate its functional implications in ROP.
Collapse
|
50
|
Fu Z, Meng SS, Burnim SB, Smith LE, Lo AC. Lutein facilitates physiological revascularization in a mouse model of retinopathy of prematurity. Clin Exp Ophthalmol 2017; 45:529-538. [PMID: 28002872 DOI: 10.1111/ceo.12908] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 12/02/2016] [Accepted: 12/16/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Retinopathy of prematurity is one of the leading causes of childhood blindness worldwide, with vessel growth cessation and vessel loss in phase I followed by neovascularization in phase II. Ischaemia contributes to its pathogenesis, and lutein protects against ischaemia-induced retinal damages. We aimed to investigate the effects of lutein on a murine model of oxygen-induced retinopathy. METHODS Mouse pups were exposed to 75% oxygen for 5 days and returned to room air for another 5 days. Vascular obliteration, neovascularization and blood vessel leakage were examined. Immunohistochemistry for glial cells and microglia were performed. RESULTS Compared with vehicle controls, mouse pups receiving lutein treatment displayed smaller central vaso-obliterated area and reduced blood vessel leakage. No significant difference in neovascular area was found between lutein and vehicle controls. Lutein promoted endothelial tip cell formation and maintained the astrocytic template in the avascular area in oxygen-induced retinopathy. No significant changes in Müller cell gliosis and microglial activation in the central avascular area were found in lutein-treated pups. CONCLUSIONS Our observations indicated that lutein significantly promoted normal retinal vascular regrowth in the central avascular area, possibly through promoting endothelial tip cell formation and preserving astrocytic template. Our results indicated that lutein might be considered as a supplement for the treatment of proliferative retinopathy of prematurity because of its role in facilitating the revascularization of normal vasculature.
Collapse
Affiliation(s)
- Zhongjie Fu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven S Meng
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel B Burnim
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lois Eh Smith
- Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Cy Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.,Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| |
Collapse
|