1
|
Chaverra M, Cheney AM, Scheel A, Miller A, George L, Schultz A, Henningsen K, Kominsky D, Walk H, Kennedy WR, Kaufmann H, Walk S, Copié V, Lefcort F. ELP1, the Gene Mutated in Familial Dysautonomia, Is Required for Normal Enteric Nervous System Development and Maintenance and for Gut Epithelium Homeostasis. J Neurosci 2024; 44:e2253232024. [PMID: 39138000 PMCID: PMC11391678 DOI: 10.1523/jneurosci.2253-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
Familial dysautonomia (FD) is a rare sensory and autonomic neuropathy that results from a mutation in the ELP1 gene. Virtually all patients report gastrointestinal (GI) dysfunction and we have recently shown that FD patients have a dysbiotic gut microbiome and altered metabolome. These findings were recapitulated in an FD mouse model and moreover, the FD mice had reduced intestinal motility, as did patients. To understand the cellular basis for impaired GI function in FD, the enteric nervous system (ENS; both female and male mice) from FD mouse models was analyzed during embryonic development and adulthood. We show here that not only is Elp1 required for the normal formation of the ENS, but it is also required in adulthood for the regulation of both neuronal and non-neuronal cells and for target innervation in both the mucosa and in intestinal smooth muscle. In particular, CGRP innervation was significantly reduced as was the number of dopaminergic neurons. Examination of an FD patient's gastric biopsy also revealed reduced and disoriented axons in the mucosa. Finally, using an FD mouse model in which Elp1 was deleted exclusively from neurons, we found significant changes to the colon epithelium including reduced E-cadherin expression, perturbed mucus layer organization, and infiltration of bacteria into the mucosa. The fact that deletion of Elp1 exclusively in neurons is sufficient to alter the intestinal epithelium and perturb the intestinal epithelial barrier highlights a critical role for neurons in regulating GI epithelium homeostasis.
Collapse
Affiliation(s)
- Marta Chaverra
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Alexandra M Cheney
- Biochemistry and Chemistry, Montana State University, Bozeman, Montana 59717
| | - Alpha Scheel
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Alessa Miller
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Lynn George
- Department of Biological and Physical Sciences, Montana State University, Billings, Montana 59101
| | - Anastasia Schultz
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Katelyn Henningsen
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Douglas Kominsky
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Heather Walk
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - William R Kennedy
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Horacio Kaufmann
- Department of Neurology, New York University School of Medicine, New York, New York 10016
| | - Seth Walk
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| | - Valérie Copié
- Biochemistry and Chemistry, Montana State University, Bozeman, Montana 59717
| | - Frances Lefcort
- Departments of Microbiology and Cell Biology, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
2
|
Piper NBC, Whitfield EA, Stewart GD, Xu X, Furness SGB. Targeting appetite and satiety in diabetes and obesity, via G protein-coupled receptors. Biochem Pharmacol 2022; 202:115115. [PMID: 35671790 DOI: 10.1016/j.bcp.2022.115115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes and obesity have reached pandemic proportions throughout the world, so much so that the World Health Organisation coined the term "Globesity" to help encapsulate the magnitude of the problem. G protein-coupled receptors (GPCRs) are highly tractable drug targets due to their wide involvement in all aspects of physiology and pathophysiology, indeed, GPCRs are the targets of approximately 30% of the currently approved drugs. GPCRs are also broadly involved in key physiologies that underlie type 2 diabetes and obesity including feeding reward, appetite and satiety, regulation of blood glucose levels, energy homeostasis and adipose function. Despite this, only two GPCRs are the target of approved pharmaceuticals for treatment of type 2 diabetes and obesity. In this review we discuss the role of these, and select other candidate GPCRs, involved in various facets of type 2 diabetic or obese pathophysiology, how they might be targeted and the potential reasons why pharmaceuticals against these targets have not progressed to clinical use. Finally, we provide a perspective on the current development pipeline of anti-obesity drugs that target GPCRs.
Collapse
Affiliation(s)
- Noah B C Piper
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Emily A Whitfield
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Gregory D Stewart
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia
| | - Sebastian G B Furness
- Receptor Transducer Coupling Laboratory, School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, QLD 4072, Australia; Drug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
3
|
Endogenous cannabinoids are required for MC4R-mediated control of energy homeostasis. Proc Natl Acad Sci U S A 2021; 118:2015990118. [PMID: 34654741 DOI: 10.1073/pnas.2015990118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 01/13/2023] Open
Abstract
Hypothalamic regulation of feeding and energy expenditure is a fundamental and evolutionarily conserved neurophysiological process critical for survival. Dysregulation of these processes, due to environmental or genetic causes, can lead to a variety of pathological conditions ranging from obesity to anorexia. Melanocortins and endogenous cannabinoids (eCBs) have been implicated in the regulation of feeding and energy homeostasis; however, the interaction between these signaling systems is poorly understood. Here, we show that the eCB 2-arachidonoylglycerol (2-AG) regulates the activity of melanocortin 4 receptor (MC4R) cells in the paraventricular nucleus of the hypothalamus (PVNMC4R) via inhibition of afferent GABAergic drive. Furthermore, the tonicity of eCBs signaling is inversely proportional to energy state, and mice with impaired 2-AG synthesis within MC4R neurons weigh less, are hypophagic, exhibit increased energy expenditure, and are resistant to diet-induced obesity. These mice also exhibit MC4R agonist insensitivity, suggesting that the energy state-dependent, 2-AG-mediated suppression of GABA input modulates PVNMC4R neuron activity to effectively respond to the MC4R natural ligands to regulate energy homeostasis. Furthermore, post-developmental disruption of PVN 2-AG synthesis results in hypophagia and death. These findings illustrate a functional interaction at the cellular level between two fundamental regulators of energy homeostasis, the melanocortin and eCB signaling pathways in the hypothalamic feeding circuitry.
Collapse
|
4
|
Neuro-immune-metabolism: The tripod system of homeostasis. Immunol Lett 2021; 240:77-97. [PMID: 34655659 DOI: 10.1016/j.imlet.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022]
Abstract
Homeostatic regulation of cellular and molecular processes is essential for the efficient physiological functioning of body organs. It requires an intricate balance of several networks throughout the body, most notable being the nervous, immune and metabolic systems. Several studies have reported the interactions between neuro-immune, immune-metabolic and neuro-metabolic pathways. Current review aims to integrate the information and show that neuro, immune and metabolic systems form the triumvirate of homeostasis. It focuses on the cellular and molecular interactions occurring in the extremities and intestine, which are innervated by the peripheral nervous system and for the intestine in particular the enteric nervous system. While the interdependence of neuro-immune-metabolic pathways provides a fallback mechanism in case of disruption of homeostasis, in chronic pathologies of continued disequilibrium, the collapse of one system spreads to the other interacting networks as well. Current review illustrates this domino-effect using diabetes as the main example. Together, this review attempts to provide a holistic picture of the integrated network of neuro-immune-metabolism and attempts to broaden the outlook when devising a scientific study or a treatment strategy.
Collapse
|
5
|
Bob-Manuel J, Gautron L. Detection of G Protein-coupled Receptor Expression in Mouse Vagal Afferent Neurons using Multiplex In Situ Hybridization. J Vis Exp 2021:10.3791/62945. [PMID: 34605820 PMCID: PMC9235148 DOI: 10.3791/62945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This study describes a protocol for the multiplex in situ hybridization (ISH) of the mouse jugular-nodose ganglia, with a particular emphasis on detecting the expression of G protein-coupled receptors (GPCRs). Formalin-fixed jugular-nodose ganglia were processed with the RNAscope technology to simultaneously detect the expression of two representative GPCRs (cholecystokinin and ghrelin receptors) in combination with one marker gene of either nodose (paired-like homeobox 2b, Phox2b) or jugular afferent neurons (PR domain zinc finger protein 12, Prdm12). Labeled ganglia were imaged using confocal microscopy to determine the distribution and expression patterns of the aforementioned transcripts. Briefly, Phox2b afferent neurons were found to abundantly express the cholecystokinin receptor (Cck1r) but not the ghrelin receptor (Ghsr). A small subset of Prdm12 afferent neurons was also found to express Ghsr and/or Cck1r. Potential technical caveats in the design, processing, and interpretation of multiplex ISH are discussed. The approach described in this article may help scientists in generating accurate maps of the transcriptional profiles of vagal afferent neurons.
Collapse
Affiliation(s)
- Johnson Bob-Manuel
- Center for Hypothalamic Research and Department of Internal Medicine, UTSouthwestern Medical Center at Dallas
| | - Laurent Gautron
- Center for Hypothalamic Research and Department of Internal Medicine, UTSouthwestern Medical Center at Dallas;
| |
Collapse
|
6
|
Hypothalamic Pomc Neurons Innervate the Spinal Cord and Modulate the Excitability of Premotor Circuits. Curr Biol 2020; 30:4579-4593.e7. [PMID: 32976803 DOI: 10.1016/j.cub.2020.08.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/30/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022]
Abstract
Locomotion requires energy, yet animals need to increase locomotion in order to find and consume food in energy-deprived states. While such energy homeostatic coordination suggests brain origin, whether the central melanocortin 4 receptor (Mc4r) system directly modulates locomotion through motor circuits is unknown. Here, we report that hypothalamic Pomc neurons in zebrafish and mice have long-range projections into spinal cord regions harboring Mc4r-expressing V2a interneurons, crucial components of the premotor networks. Furthermore, in zebrafish, Mc4r activation decreases the excitability of spinal V2a neurons as well as swimming and foraging, while systemic or V2a neuron-specific blockage of Mc4r promotes locomotion. In contrast, in mice, electrophysiological recordings revealed that two-thirds of V2a neurons in lamina X are excited by the Mc4r agonist α-MSH, and acute inhibition of Mc4r signaling reduces locomotor activity. In addition, we found other Mc4r neurons in spinal lamina X that are inhibited by α-MSH, which is in line with previous studies in rodents where Mc4r agonists reduced locomotor activity. Collectively, our studies identify spinal V2a interneurons as evolutionary conserved second-order neurons of the central Mc4r system, providing a direct anatomical and functional link between energy homeostasis and locomotor control systems. The net effects of this modulatory system on locomotor activity can vary between different vertebrate species and, possibly, even within one species. We discuss the biological sense of this phenomenon in light of the ambiguity of locomotion on energy balance and the different living conditions of the different species.
Collapse
|
7
|
Wang K, Mao W, Zhang X, Zhao Y, Fan K, Pan D, Liu H, Li P, Hai R, Du C. Neuroanatomy of melanocortin-4 receptor pathway in the mouse brain. Open Life Sci 2020; 15:580-587. [PMID: 33817246 PMCID: PMC7874588 DOI: 10.1515/biol-2020-0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/27/2020] [Accepted: 05/01/2020] [Indexed: 12/30/2022] Open
Abstract
Objective Melanocortin-4 receptors (MC4Rs) are key regulators of energy homeostasis and adipose deposition in the central nervous system. Considering that MC4R expression regions and function-related research mainly focus on the paraventricular nucleus (PVN), little is known about their distribution throughout the mouse brain, although its messenger RNA distribution has been analyzed in the rat. Therefore, MC4R protein localization in mouse neurons was the focus of this study. Methods MC4R protein distribution was assessed in mice through immunofluorescence and Western blotting. Results MC4R was differentially expressed throughout the arcuate nucleus (ARC), nucleus of the solitary tract (NTS), raphe pallidus (RPa), medial cerebellar nucleus, intermediolateral nucleus, and brainstem. The highest MC4R protein levels were found in the ARC and ventromedial hypothalamic nucleus, while they were significantly lower in the parabrachial nucleus and NTS. The lowest MC4R protein levels were found in the PVN; there was no difference in the protein levels between the area postrema and RPa. Conclusions These data provide a basic characterization of MC4R-expressing neurons and protein distribution in the mouse brain and may aid further research on its role in energy homeostasis.
Collapse
Affiliation(s)
- Kun Wang
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050000, China
| | - Wei Mao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoyu Zhang
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Yufei Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.,Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
| | - Kuikui Fan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.,Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
| | - Deng Pan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.,Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
| | - Haodong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.,Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
| | - Penghui Li
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.,Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
| | - Rihan Hai
- Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China
| | - Chenguang Du
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.,Vocational and Technical College, Inner Mongolia Agricultural University, Baotou 014109, China.,Inner Mongolia Key Laboratory of Basic Veterinary Science, Hohhot 010018, China
| |
Collapse
|
8
|
Berthoud HR, Neuhuber WL. Vagal mechanisms as neuromodulatory targets for the treatment of metabolic disease. Ann N Y Acad Sci 2019; 1454:42-55. [PMID: 31268181 PMCID: PMC6810744 DOI: 10.1111/nyas.14182] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/23/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022]
Abstract
With few effective treatments available, the global rise of metabolic diseases, including obesity, type 2 diabetes mellitus, and cardiovascular disease, seems unstoppable. Likely caused by an obesogenic environment interacting with genetic susceptibility, the pathophysiology of obesity and metabolic diseases is highly complex and involves crosstalk between many organs and systems, including the brain. The vagus nerve is in a key position to bidirectionally link several peripheral metabolic organs with the brain and is increasingly targeted for neuromodulation therapy to treat metabolic disease. Here, we review the basics of vagal functional anatomy and its implications for vagal neuromodulation therapies. We find that most existing vagal neuromodulation techniques either ignore or misinterpret the rich functional specificity of both vagal efferents and afferents as demonstrated by a large body of literature. This lack of specificity of manipulating vagal fibers is likely the reason for the relatively poor beneficial long‐term effects of such therapies. For these therapies to become more effective, rigorous validation of all physiological endpoints and optimization of stimulation parameters as well as electrode placements will be necessary. However, given the large number of function‐specific fibers in any vagal branch, genetically guided neuromodulation techniques are more likely to succeed.
Collapse
Affiliation(s)
- Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana
| | - Winfried L Neuhuber
- Institut fur Anatomie und Zellbiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Zhang M, Chen Y, Xu H, Yang L, Yuan F, Li L, Xu Y, Chen Y, Zhang C, Lin G. Melanocortin Receptor 4 Signaling Regulates Vertebrate Limb Regeneration. Dev Cell 2018; 46:397-409.e5. [PMID: 30130530 PMCID: PMC6107305 DOI: 10.1016/j.devcel.2018.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/28/2018] [Accepted: 07/21/2018] [Indexed: 11/16/2022]
Abstract
Melanocortin 4 receptor (Mc4r) plays a crucial role in the central control of energy homeostasis, but its role in peripheral organs has not been fully explored. We have investigated the roles of hypothalamus-mediated energy metabolism during Xenopus limb regeneration. We report that hypothalamus injury inhibits Xenopus tadpole limb regeneration. By loss-of-function and gain-of-function studies, we show that Mc4r signaling is required for limb regeneration in regeneration-competent tadpoles and stimulates limb regeneration in later-stage regeneration-defective tadpoles. It regulates limb regeneration through modulating energy homeostasis and ROS production. Even more interestingly, our results demonstrate that Mc4r signaling is regulated by innervation and α-MSH substitutes for the effect of nerves in limb regeneration. Mc4r signaling is also required for mouse digit regeneration. Thus, our findings link vertebrate limb regeneration with Mc4r-mediated energy homeostasis and provide a new avenue for understanding Mc4r signaling in the peripheral organs.
Collapse
Affiliation(s)
- Mengshi Zhang
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Youwei Chen
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Hanqian Xu
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Stem Cell Institute, Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Li Yang
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Feng Yuan
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Lei Li
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Ying Xu
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Ying Chen
- Stem Cell Institute, Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Chao Zhang
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| | - Gufa Lin
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Stem Cell Institute, Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Udit S, Burton M, Rutkowski JM, Lee S, Bookout AL, Scherer PE, Elmquist JK, Gautron L. Na v1.8 neurons are involved in limiting acute phase responses to dietary fat. Mol Metab 2017; 6:1081-1091. [PMID: 29031710 PMCID: PMC5641637 DOI: 10.1016/j.molmet.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE AND METHODS Metabolic viscera and their vasculature are richly innervated by peripheral sensory neurons. Here, we examined the metabolic and inflammatory profiles of mice with selective ablation of all Nav1.8-expressing primary afferent neurons. RESULTS While mice lacking sensory neurons displayed no differences in body weight, food intake, energy expenditure, or body composition compared to controls on chow diet, ablated mice developed an exaggerated inflammatory response to high-fat feeding characterized by bouts of weight loss, splenomegaly, elevated circulating interleukin-6 and hepatic serum amyloid A expression. This phenotype appeared to be directly mediated by the ingestion of saturated lipids. CONCLUSIONS These data demonstrate that the Nav1.8-expressing afferent neurons are not essential for energy balance but are required for limiting the acute phase response caused by an obesogenic diet.
Collapse
Affiliation(s)
- Swalpa Udit
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Michael Burton
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Joseph M Rutkowski
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Syann Lee
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Angie L Bookout
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA; Department of Pharmacology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA
| | - Joel K Elmquist
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA.
| | - Laurent Gautron
- Division of Hypothalamic Research, Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas 75390, TX, USA.
| |
Collapse
|
11
|
Levels of Cocaine- and Amphetamine-Regulated Transcript in Vagal Afferents in the Mouse Are Unaltered in Response to Metabolic Challenges. eNeuro 2016; 3:eN-FTR-0174-16. [PMID: 27822503 PMCID: PMC5088776 DOI: 10.1523/eneuro.0174-16.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 12/21/2022] Open
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is one of the most abundant neuropeptides in vagal afferents, including those involved in regulating feeding. Recent observations indicate that metabolic challenges dramatically alter the neuropeptidergic profile of CART-producing vagal afferents. Here, using confocal microscopy, we reassessed the distribution and regulation of CART(55–102) immunoreactivity in vagal afferents of the male mouse in response to metabolic challenges, including fasting and high-fat-diet feeding. Importantly, the perikarya and axons of vagal C-fibers were labeled using mice expressing channelrodhopsin-2 (ChR2-YFP) in Nav1.8-Cre–expressing neurons. In these mice, approximately 82% of the nodose ganglion neurons were labeled with ChR2-YFP. Furthermore, ChR2-YFP–labeled axons could easily be identified in the dorsovagal complex. CART(55–102) immunoreactivity was observed in 55% of the ChR2-YFP–labeled neurons in the nodose ganglion and 22% of the ChR2-YFP–labeled varicosities within the area postrema of fed, fasted, and obese mice. The distribution of positive profiles was also identical across the full range of CART staining in fed, fasted, and obese mice. In contrast to previous studies, fasting did not induce melanin-concentrating hormone (MCH) immunoreactivity in vagal afferents. Moreover, prepro-MCH mRNA was undetectable in the nodose ganglion of fasted mice. In summary, this study showed that the perikarya and central terminals of vagal afferents are invariably enriched in CART and devoid of MCH.
Collapse
|
12
|
Li SY, Chen YL, Zeng JY, Xie WQ, Kang ZM. Melanocortin-4 receptor expression in autonomic circuitry involved in gastric function. Int J Clin Exp Med 2015; 8:4152-4157. [PMID: 26064324 PMCID: PMC4443158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
Several studies have shown that CNS provides the regulation of gastric functions. Recent evidence indicated that the activation of melanocortin 4 receptors (MC4R) in brain nuclei played an important role in modulating gastric activity. This study was designed to assess whether MC4R signaling existed in autonomic circuitry modulated the activity of stomach by a virally mediated transsynaptic tracing study. Pseudorabies virus (PRV)-614 was injected into the ventral stomach wall in adult male MC4R-green fluorescent protein (GFP) transgenic mice (n = 5). After a survival time of 5 days, the mice were assigned to humanely sacrifice, and spinal cords and caudal brainstem were removed and sectioned, and processed for PRV-614 visualization. Neurons involved in the efferent control of the stomach were identified following visualization of PRV-614 retrograde tracing. The neurochemical phenotype of MC4R-GFP-positive neurons was identified using fluorescence immunocytochemical labeling. PRV-614/MC4R-GFP dual labeled neurons were detected in spinal IML and the dorsal motor nucleus of the vagus nerve (DMV). Our findings support the hypothesis that MC4R signaling in autonomic circuitry may participate in the modulation of gastric activity by the melanocortinergic-sympathetic pathway or melanocortinergic-parasympathetic pathway.
Collapse
Affiliation(s)
- Shun-Yuan Li
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University Quanzhou 362000, China
| | - Ying-Le Chen
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University Quanzhou 362000, China
| | - Jing-Yang Zeng
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University Quanzhou 362000, China
| | - Wen-Qin Xie
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University Quanzhou 362000, China
| | - Zhen-Ming Kang
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University Quanzhou 362000, China
| |
Collapse
|
13
|
Central vagal afferent endings mediate reduction of food intake by melanocortin-3/4 receptor agonist. J Neurosci 2014; 34:12636-45. [PMID: 25232103 DOI: 10.1523/jneurosci.1121-14.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Injection of the melanocortin-3/4 receptor agonist melanotan-II (MTII) into the nucleus of the solitary tract (NTS) produces rapid and sustained reduction of food intake. Melanocortin-4 receptors (MC4Rs) are expressed by vagal afferent endings in the NTS, but it is not known whether these endings participate in MTII-induced reduction of food intake. In experiments described here, we evaluated the contribution of central vagal afferent endings in MTII-induced reduction of food intake. Examination of rat hindbrain sections revealed that neuronal processes expressing immunoreactivity for the endogenous MC4R agonist α-melanoctyte-stimulating hormone course parallel and wrap around anterogradely labeled vagal afferent endings in the NTS and thus are aptly positioned to activate vagal afferent MC4Rs. Furthermore, MTII and endogenous MC4R agonists increased protein kinase A (PKA)-catalyzed phosphorylation of synapsin I in vagal afferent endings, an effect known to increase synaptic strength by enhancing neurotransmitter release in other neural systems. Hindbrain injection of a PKA inhibitor, KT5720, significantly attenuated MTII-induced reduction of food intake and the increase in synapsin I phosphorylation. Finally, unilateral nodose ganglion removal, resulting in degeneration of vagal afferent endings in the ipsilateral NTS, abolished MTII-induced synapsin I phosphorylation ipsilateral to nodose ganglion removal. Moreover, reduction of food intake following MTII injection into the NTS ipsilateral to nodose ganglion removal was significantly attenuated, whereas the response to MTII was not diminished when injected into the contralateral NTS. Altogether, our results suggest that reduction of food intake following hindbrain MC4R activation is mediated by central vagal afferent endings.
Collapse
|
14
|
Skowronski AA, Morabito MV, Mueller BR, Lee S, Hjorth S, Lehmann A, Watanabe K, Zeltser LM, Ravussin Y, Rosenbaum M, LeDuc CA, Leibel RL. Effects of a novel MC4R agonist on maintenance of reduced body weight in diet-induced obese mice. Obesity (Silver Spring) 2014; 22:1287-95. [PMID: 24318934 PMCID: PMC4008720 DOI: 10.1002/oby.20678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 01/23/2023]
Abstract
OBJECTIVE The physiology of the weight-reduced (WR) state suggests that pharmacologic agents affecting energy homeostasis may have greater efficacy in WR individuals. Our aim was to establish a protocol that allows for evaluation of efficacy of weight maintenance agents and to assess the effectiveness of AZD2820, a novel melanocortin 4 receptor (MC4R) agonist in such a paradigm. METHODS MC4R agonist was administered in stratified doses to mice who were either fed high-fat diet ad libitum (AL) throughout the study; or stabilized at a 20% reduced body weight (BW), administered the drug for 4 weeks, and thereafter released from caloric restriction while continuing to receive the drug (WR). RESULTS After release of WR mice to AL feeding, the high-dose group (53.4 nmol/day) regained 12.4% less BW than their vehicle-treated controls since the beginning of drug treatment. In WR mice, 10.8 nmol/day of the agonist was sufficient to maintain these animals at 95.1% of initial BW versus 53.4 nmol/day required to maintain the BW of AL animals (94.5%). CONCLUSIONS In the WR state, the MC4R agonist was comparably efficacious to a five-fold higher dose in the AL state. This protocol provides a model for evaluating the mechanisms and quantitative efficacy of weight-maintenance strategies and agents.
Collapse
Affiliation(s)
- Alicja A. Skowronski
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Michael V. Morabito
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Bridget R. Mueller
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Samuel Lee
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Stephan Hjorth
- AstraZeneca, R&D Disease Area Diabetes/Obesity, Mölndal, Sweden
| | - Anders Lehmann
- AstraZeneca, R&D Disease Area Diabetes/Obesity, Mölndal, Sweden
| | - Kazuhisa Watanabe
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Lori M. Zeltser
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Yann Ravussin
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Michael Rosenbaum
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Charles A. LeDuc
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Rudolph L. Leibel
- Department of Pediatrics, Division of Molecular Genetics, Columbia University, College of Physicians and Surgeons, New York, NY
- Corresponding author: Naomi Berrie Diabetes Center, Columbia University, 1150 St. Nicholas Ave, New York, NY 10032,
| |
Collapse
|
15
|
Caruso V, Lagerström MC, Olszewski PK, Fredriksson R, Schiöth HB. Synaptic changes induced by melanocortin signalling. Nat Rev Neurosci 2014; 15:98-110. [PMID: 24588018 DOI: 10.1038/nrn3657] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The melanocortin system has a well-established role in the regulation of energy homeostasis, but there is growing evidence of its involvement in memory, nociception, mood disorders and addiction. In this Review, we focus on the role of the melanocortin 4 receptor and provide an integrative view of the molecular mechanisms that lead to melanocortin-induced changes in synaptic plasticity within these diverse physiological systems. We also highlight the importance of melanocortin peptides and receptors in chronic pain syndromes, memory impairments, depression and drug abuse, and the possibility of targeting them for therapeutic purposes.
Collapse
|
16
|
Zacharko-Siembida A, Kulik P, Szalak R, Lalak R, Arciszewski MB. Co-expression patterns of cocaine- and amphetamine-regulated transcript (CART) with neuropeptides in dorsal root ganglia of the pig. Acta Histochem 2014; 116:390-8. [PMID: 24161688 DOI: 10.1016/j.acthis.2013.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/08/2013] [Accepted: 09/09/2013] [Indexed: 02/08/2023]
Abstract
In the present study the neuronal distribution of CART was evaluated immunohistochemically in porcine dorsal root ganglia (DRGs). In co-localization studies the co-expression patterns of CART with SP, CGRP, galanin, CALB and LENK were investigated by means of triple immunohistochemical stainings. In porcine DRGs, the expression of CART was found in approximately 5% of primary sensory neurons. The vast majority (ca. 95%) of CART-immunoreactive (IR) neurons were small and middle sized, and only 5% were categorized as large. CART-IR neurons additionally exhibiting the presence of SP/CGRP (ca. 12%), SP/CALB (ca. 12%), SP/LENK (ca. 5%) were found. The vast majority of CART-IR/CGRP-IR neurons did not display immunoreaction to SP (ca. 60%). Subclasses of CART-IR/LENK-IR/SP-negative (ca. 5%), as well as CART-IR/CALB-IR/SP-negative neurons (ca. 10%), were also visualized. In addition, CART-IR neurons with no immunoreactivities to any of the neuropeptides studied were also shown. In porcine DRGs none of the CART-IR neurons exhibited the presence of galanin. The results obtained in the study suggest that CART may functionally modulate the activity of the porcine primary sensory neurons. It is concluded that co-expression of CART with CGRP, SP, LENK and CALB in subsets of the pig L1-L6 DRGs neurons provide anatomical evidence for a CART role in pain processing.
Collapse
|
17
|
Abstract
Obesity and its related metabolic consequences represent a major public health problem. Huge changes within the environment have undoubtedly contributed to the increased prevalence of obesity but genetic factors are also critical in determining an individual's predisposition to gain weight. The last two decades have seen a huge increase in the understanding of the mechanisms controlling appetitive behavior, body composition, and energy expenditure. Many regions throughout the central nervous system play critical roles in these processes but the hypothalamus, in particular, receives and orchestrates a variety of signals to bring about coordinated changes in energy balance. Reviewing data from human genetic and model organism studies, we consider how disruptions of hypothalamic pathways evolved to maintain energy homeostasis and go on to cause obesity. We highlight ongoing technological developments which continue to lead to novel insights and discuss how this increased knowledge may lead to effective therapeutic interventions in the future.
Collapse
Affiliation(s)
- Rachel Larder
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Chung Thong Lim
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK
| | - Anthony P Coll
- University of Cambridge Metabolic Research Laboratories, MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
18
|
Udit S, Gautron L. Molecular anatomy of the gut-brain axis revealed with transgenic technologies: implications in metabolic research. Front Neurosci 2013; 7:134. [PMID: 23914153 PMCID: PMC3728986 DOI: 10.3389/fnins.2013.00134] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 07/12/2013] [Indexed: 01/05/2023] Open
Abstract
Neurons residing in the gut-brain axis remain understudied despite their important role in coordinating metabolic functions. This lack of knowledge is observed, in part, because labeling gut-brain axis neurons and their connections using conventional neuroanatomical methods is inherently challenging. This article summarizes genetic approaches that enable the labeling of distinct populations of gut-brain axis neurons in living laboratory rodents. In particular, we review the respective strengths and limitations of currently available genetic and viral approaches that permit the marking of gut-brain axis neurons without the need for antibodies or conventional neurotropic tracers. Finally, we discuss how these methodological advances are progressively transforming the study of the healthy and diseased gut-brain axis in the context of its role in chronic metabolic diseases, including diabetes and obesity.
Collapse
Affiliation(s)
- Swalpa Udit
- Division of Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas Dallas, TX, USA
| | | |
Collapse
|