1
|
Ito T, Yamamoto M, Liu L, Saqib KA, Furuyama T, Ono M. Segregated input to thalamic areas that project differently to core and shell auditory cortical fields. iScience 2025; 28:111721. [PMID: 39898033 PMCID: PMC11787697 DOI: 10.1016/j.isci.2024.111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/15/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Perception of the environment is multimodal in nature, with sensory systems intricately interconnected. The ability to integrate multimodal sensations while preserving the distinct characteristics of each sensory modality is crucial, and the underlying mechanisms of the organization that facilitate this process require further elucidation. In the auditory system, although the concept of core and shell pathways is well established, the brain-wide input/output relationships of thalamic regions projecting to auditory-responsive cortical areas remain insufficiently studied, particularly in relation to non-auditory structures. In this study, we utilized functional imaging and viral tracing techniques to map the brain-wide connections of core and shell pathways. We identified three distinct shell pathways, in addition to a core pathway, each exhibiting unique associations with non-auditory structures involved in behavior, emotion, and other functions. This architecture suggests that these pathways contribute differentially to various aspects of multimodal sensory integration.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Systems Function and Morphology Laboratory, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194 Japan
| | - Mamiko Yamamoto
- Systems Function and Morphology Laboratory, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194 Japan
| | - Li Liu
- Anatomy 2, School of Medicine, Kanazawa Medical University, Uchinada 920-0265 Japan
| | - Khaleeq Ahmad Saqib
- Systems Function and Morphology Laboratory, Graduate School of Innovative Life Science, University of Toyama, Toyama 930-0194 Japan
| | - Takafumi Furuyama
- Physiology 1, School of Medicine, Kanazawa Medical University, Uchinada 920-0265, Japan
| | - Munenori Ono
- Physiology 1, School of Medicine, Kanazawa Medical University, Uchinada 920-0265, Japan
| |
Collapse
|
2
|
Ono M, Ito T. Hearing loss-related altered neuronal activity in the inferior colliculus. Hear Res 2024; 449:109033. [PMID: 38797036 DOI: 10.1016/j.heares.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Hearing loss is well known to cause plastic changes in the central auditory system and pathological changes such as tinnitus and hyperacusis. Impairment of inner ear functions is the main cause of hearing loss. In aged individuals, not only inner ear dysfunction but also senescence of the central nervous system is the cause of malfunction of the auditory system. In most cases of hearing loss, the activity of the auditory nerve is reduced, but that of the successive auditory centers is increased in a compensatory way. It has been reported that activity changes occur in the inferior colliculus (IC), a critical nexus of the auditory pathway. The IC integrates the inputs from the brainstem and drives the higher auditory centers. Since abnormal activity in the IC is likely to affect auditory perception, it is crucial to elucidate the neuronal mechanism to induce the activity changes of IC neurons with hearing loss. This review outlines recent findings on hearing-loss-induced plastic changes in the IC and brainstem auditory neuronal circuits and discusses what neuronal mechanisms underlie hearing-loss-induced changes in the activity of IC neurons. Considering the different causes of hearing loss, we discuss age-related hearing loss separately from other forms of hearing loss (non-age-related hearing loss). In general, the main plastic change of IC neurons caused by both age-related and non-age-related hearing loss is increased central gain. However, plastic changes in the IC caused by age-related hearing loss seem to be more complex than those caused by non-age-related hearing loss.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan.
| | - Tetsufumi Ito
- Systems Function and Morphology, University of Toyama, Toyama 930-0194, Japan.
| |
Collapse
|
3
|
Drotos AC, Roberts MT. Identifying neuron types and circuit mechanisms in the auditory midbrain. Hear Res 2024; 442:108938. [PMID: 38141518 PMCID: PMC11000261 DOI: 10.1016/j.heares.2023.108938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The inferior colliculus (IC) is a critical computational hub in the central auditory pathway. From its position in the midbrain, the IC receives nearly all the ascending output from the lower auditory brainstem and provides the main source of auditory information to the thalamocortical system. In addition to being a crossroads for auditory circuits, the IC is rich with local circuits and contains more than five times as many neurons as the nuclei of the lower auditory brainstem combined. These results hint at the enormous computational power of the IC, and indeed, systems-level studies have identified numerous important transformations in sound coding that occur in the IC. However, despite decades of effort, the cellular mechanisms underlying IC computations and how these computations change following hearing loss have remained largely impenetrable. In this review, we argue that this challenge persists due to the surprisingly difficult problem of identifying the neuron types and circuit motifs that comprise the IC. After summarizing the extensive evidence pointing to a diversity of neuron types in the IC, we highlight the successes of recent efforts to parse this complexity using molecular markers to define neuron types. We conclude by arguing that the discovery of molecularly identifiable neuron types ushers in a new era for IC research marked by molecularly targeted recordings and manipulations. We propose that the ability to reproducibly investigate IC circuits at the neuronal level will lead to rapid advances in understanding the fundamental mechanisms driving IC computations and how these mechanisms shift following hearing loss.
Collapse
Affiliation(s)
- Audrey C Drotos
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, United States
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, United States.
| |
Collapse
|
4
|
Tureček R, Melichar A, Králíková M, Hrušková B. The role of GABA B receptors in the subcortical pathways of the mammalian auditory system. Front Endocrinol (Lausanne) 2023; 14:1195038. [PMID: 37635966 PMCID: PMC10456889 DOI: 10.3389/fendo.2023.1195038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
GABAB receptors are G-protein coupled receptors for the inhibitory neurotransmitter GABA. Functional GABAB receptors are formed as heteromers of GABAB1 and GABAB2 subunits, which further associate with various regulatory and signaling proteins to provide receptor complexes with distinct pharmacological and physiological properties. GABAB receptors are widely distributed in nervous tissue, where they are involved in a number of processes and in turn are subject to a number of regulatory mechanisms. In this review, we summarize current knowledge of the cellular distribution and function of the receptors in the inner ear and auditory pathway of the mammalian brainstem and midbrain. The findings suggest that in these regions, GABAB receptors are involved in processes essential for proper auditory function, such as cochlear amplifier modulation, regulation of spontaneous activity, binaural and temporal information processing, and predictive coding. Since impaired GABAergic inhibition has been found to be associated with various forms of hearing loss, GABAB dysfunction could also play a role in some pathologies of the auditory system.
Collapse
Affiliation(s)
- Rostislav Tureček
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Adolf Melichar
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
- Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Michaela Králíková
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Bohdana Hrušková
- Department of Auditory Neuroscience, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czechia
| |
Collapse
|
5
|
Oberle HM, Ford AN, Czarny JE, Rogalla MM, Apostolides PF. Recurrent Circuits Amplify Corticofugal Signals and Drive Feedforward Inhibition in the Inferior Colliculus. J Neurosci 2023; 43:5642-5655. [PMID: 37308295 PMCID: PMC10401644 DOI: 10.1523/jneurosci.0626-23.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023] Open
Abstract
The inferior colliculus (IC) is a midbrain hub critical for perceiving complex sounds, such as speech. In addition to processing ascending inputs from most auditory brainstem nuclei, the IC receives descending inputs from auditory cortex that control IC neuron feature selectivity, plasticity, and certain forms of perceptual learning. Although corticofugal synapses primarily release the excitatory transmitter glutamate, many physiology studies show that auditory cortical activity has a net inhibitory effect on IC neuron spiking. Perplexingly, anatomy studies imply that corticofugal axons primarily target glutamatergic IC neurons while only sparsely innervating IC GABA neurons. Corticofugal inhibition of the IC may thus occur largely independently of feedforward activation of local GABA neurons. We shed light on this paradox using in vitro electrophysiology in acute IC slices from fluorescent reporter mice of either sex. Using optogenetic stimulation of corticofugal axons, we find that excitation evoked with single light flashes is indeed stronger in presumptive glutamatergic neurons compared with GABAergic neurons. However, many IC GABA neurons fire tonically at rest, such that sparse and weak excitation suffices to significantly increase their spike rates. Furthermore, a subset of glutamatergic IC neurons fire spikes during repetitive corticofugal activity, leading to polysynaptic excitation in IC GABA neurons owing to a dense intracollicular connectivity. Consequently, recurrent excitation amplifies corticofugal activity, drives spikes in IC GABA neurons, and generates substantial local inhibition in the IC. Thus, descending signals engage intracollicular inhibitory circuits despite apparent constraints of monosynaptic connectivity between auditory cortex and IC GABA neurons.SIGNIFICANCE STATEMENT Descending "corticofugal" projections are ubiquitous across mammalian sensory systems, and enable the neocortex to control subcortical activity in a predictive or feedback manner. Although corticofugal neurons are glutamatergic, neocortical activity often inhibits subcortical neuron spiking. How does an excitatory pathway generate inhibition? Here we study the corticofugal pathway from auditory cortex to inferior colliculus (IC), a midbrain hub important for complex sound perception. Surprisingly, cortico-collicular transmission was stronger onto IC glutamatergic compared with GABAergic neurons. However, corticofugal activity triggered spikes in IC glutamate neurons with local axons, thereby generating strong polysynaptic excitation and feedforward spiking of GABAergic neurons. Our results thus reveal a novel mechanism that recruits local inhibition despite limited monosynaptic convergence onto inhibitory networks.
Collapse
Affiliation(s)
- Hannah M Oberle
- Neuroscience Graduate Program
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Alexander N Ford
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Jordyn E Czarny
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Meike M Rogalla
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
| | - Pierre F Apostolides
- Department of Otolaryngology, Head & Neck Surgery, Kresge Hearing Research Institute
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
6
|
Burghard AL, Lee CM, Fabrizio-Stover EM, Oliver DL. Long-Duration Sound-Induced Facilitation Changes Population Activity in the Inferior Colliculus. Front Syst Neurosci 2022; 16:920642. [PMID: 35873097 PMCID: PMC9301083 DOI: 10.3389/fnsys.2022.920642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The inferior colliculus (IC) is at the midpoint of the auditory system and integrates virtually all information ascending from the auditory brainstem, organizes it, and transmits the results to the auditory forebrain. Its abundant, excitatory local connections are crucial for this task. This study describes a long duration sound (LDS)-induced potentiation in the IC that changes both subsequent tone-evoked responses and spontaneous activity. Afterdischarges, changes of spontaneous spiking following an LDS, were seen previously in single neurons. Here, we used multi-channel probes to record activity before and after a single, tetanic sound and describe the changes in a population of IC neurons. Following a 60 s narrowband-noise stimulation, a subset of recording channels (∼16%) showed afterdischarges. A facilitated response spike rate to tone pips following an LDS was also observed in ∼16% of channels. Both channels with an afterdischarge and channels with facilitated tone responses had higher firing rates in response to LDS, and the magnitude of the afterdischarges increased with increased responses to the LDS. This is the first study examining the effect of LDS stimulation on tone-evoked responses. This observed facilitation in vivo has similarities to post-tetanic potentiation in vitro as both manner of induction (strong stimulation for several seconds) as well as time-course of the facilitation (second to minute range) are comparable. Channels with and without facilitation appear to be intermixed and distributed widely in the central nucleus of IC, and this suggests a heretofore unknown property of some IC neurons or their circuits. Consequently, this sound-evoked facilitation may enhance the sound-evoked output of these neurons, while, simultaneously, most other IC neurons have reduced or unchanged output in response to the same stimulus.
Collapse
|
7
|
Owoc MS, Rubio ME, Brockway B, Sadagopan S, Kandler K. Embryonic medial ganglionic eminence cells survive and integrate into the inferior colliculus of adult mice. Hear Res 2022; 420:108520. [PMID: 35617926 PMCID: PMC11697826 DOI: 10.1016/j.heares.2022.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/14/2022] [Indexed: 11/20/2022]
Abstract
Acoustic overexposure can lead to decreased inhibition in auditory centers, including the inferior colliculus (IC), and has been implicated in the development of central auditory pathologies. While systemic drugs that increase GABAergic transmission have been shown to provide symptomatic relief, their side effect profiles impose an upper-limit on the dose and duration of use. A treatment that locally increases inhibition in auditory nuclei could mitigate these side effects. One such approach could be transplantation of inhibitory precursor neurons derived from the medial ganglionic eminence (MGE). The present study investigated whether transplanted MGE cells can survive and integrate into the IC of non-noise exposed and noise exposed mice. MGE cells were harvested on embryonic days 12-14 and injected bilaterally into the IC of adult mice, with or without previous noise exposure. At one-week post transplantation, MGE cells possessed small, elongated soma and bipolar processes, characteristic of migrating cells. By 5 weeks, MGE cells exhibited a more mature morphology, with multiple branching processes and axons with boutons that stain positive for the vesicular GABA transporter (VGAT). The MGE survival rate after 14 weeks post transplantation was 1.7% in non-noise exposed subjects. MGE survival rate was not significantly affected by noise exposure (1.2%). In both groups the vast majority of transplanted MGE cells (>97%) expressed the vesicular GABA transporter. Furthermore, electronmicroscopic analysis indicated that transplanted MGE cells formed synapses with and received synaptic endings from host IC neurons. Acoustic stimulation lead to a significant increase in the percentage of endogenous inhibitory cells that express c-fos but had no effect on the percentage of c-fos expressing transplanted MGE cells. MGE cells were observed in the IC up to 22 weeks post transplantation, the longest time point investigated, suggesting long term survival and integration. These data provide the first evidence that transplantation of MGE cells is viable in the IC and provides a new strategy to explore treatment options for central hearing dysfunction following noise exposure.
Collapse
Affiliation(s)
- Maryanna S Owoc
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Medical Scientist Training Program, University of Pittsburgh - Carnegie Mellon University, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States.
| | - María E Rubio
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian Brockway
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Srivatsun Sadagopan
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Medical Scientist Training Program, University of Pittsburgh - Carnegie Mellon University, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karl Kandler
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Medical Scientist Training Program, University of Pittsburgh - Carnegie Mellon University, Pittsburgh, PA, United States; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
8
|
Wallace MN, Shackleton TM, Thompson Z, Palmer AR. Juxtacellular Labeling of Stellate, Disk and Basket Neurons in the Central Nucleus of the Guinea Pig Inferior Colliculus. Front Neural Circuits 2021; 15:721015. [PMID: 34790099 PMCID: PMC8592287 DOI: 10.3389/fncir.2021.721015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
We reconstructed the intrinsic axons of 32 neurons in the guinea pig inferior colliculus (IC) following juxtacellular labeling. Biocytin was injected into cells in vivo, after first analyzing physiological response properties. Based on axonal morphology there were two classes of neuron: (1) laminar cells (14/32, 44%) with an intrinsic axon and flattened dendrites confined to a single fibrodendritic lamina and (2) translaminar cells (18/32, 56%) with axons that terminated in two or more laminae in the central nucleus (ICc) or the surrounding cortex. There was also one small, low-frequency cell with bushy-like dendrites that was very sensitive to interaural timing differences. The translaminar cells were subdivided into three groups of cells with: (a) stellate dendrites that crossed at least two laminae (8/32, 25%); (b) flattened dendrites confined to one lamina and that had mainly en passant axonal swellings (7/32, 22%) and (c) short, flattened dendrites and axons with distinctive clusters of large terminal boutons in the ICc (3/32, 9%). These terminal clusters were similar to those of cortical basket cells. The 14 laminar cells all had sustained responses apart from one offset response. Almost half the non-basket type translaminar cells (7/15) had onset responses while the others had sustained responses. The basket cells were the only ones to have short-latency (7–9 ms), chopper responses and this distinctive temporal response should allow them to be studied in more detail in future. This is the first description of basket cells in the auditory brainstem, but more work is required to confirm their neurotransmitter and precise post-synaptic targets.
Collapse
Affiliation(s)
- Mark N Wallace
- Hearing Sciences, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Trevor M Shackleton
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Zoe Thompson
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
9
|
Ito T. Different coding strategy of sound information between GABAergic and glutamatergic neurons in the auditory midbrain. J Physiol 2020; 598:1039-1072. [DOI: 10.1113/jp279296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Tetsufumi Ito
- Department of AnatomyKanazawa Medical University Uchinada Ishikawa 920‐0293 Japan
- Research and Education Program for Life ScienceUniversity of Fukui Fukui Fukui 910‐8507 Japan
| |
Collapse
|
10
|
Kuramoto E. Method for labeling and reconstruction of single neurons using Sindbis virus vectors. J Chem Neuroanat 2019; 100:101648. [PMID: 31181303 DOI: 10.1016/j.jchemneu.2019.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/11/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
Abstract
Neuronal dendrites and axons are key substrates for the input and output of information, respectively, so establishing the precise and complete morphological description of dendritic and axonal processes of a single neuron is essential for understanding the neuron's functional role in the neuronal circuits. The whole structure of single neurons was originally revealed using Golgi staining, and later the intracellular labeling method was developed, although this is technically too difficult to stain entire neurons in vivo. Since the late 1980s, molecular biology techniques have been applied to neuroscience research, leading to the development of various virus vectors, such as the Sindbis and adeno-associated virus vectors, which have facilitated the reconstruction of neurons at a single cell level. In the present review, we focus on a method for labeling and reconstruction of single neurons using Sindbis virus vectors that express membrane-targeted fluorescent proteins. We describe in detail a protocol for single-neuron labeling using Sindbis virus vectors, and we provide an example of a recent project at our laboratory in which we successfully applied these methods to study thalamocortical projection neurons. Further, we discuss the strengths and limitations of Sindbis virus vectors for single neuron reconstruction, comparing them with adeno-associated virus vectors.
Collapse
Affiliation(s)
- Eriko Kuramoto
- Department of Oral Anatomy and Cell Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
| |
Collapse
|
11
|
Goyer D, Silveira MA, George AP, Beebe NL, Edelbrock RM, Malinski PT, Schofield BR, Roberts MT. A novel class of inferior colliculus principal neurons labeled in vasoactive intestinal peptide-Cre mice. eLife 2019; 8:43770. [PMID: 30998185 PMCID: PMC6516826 DOI: 10.7554/elife.43770] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
Located in the midbrain, the inferior colliculus (IC) is the hub of the central auditory system. Although the IC plays important roles in speech processing, sound localization, and other auditory computations, the organization of the IC microcircuitry remains largely unknown. Using a multifaceted approach in mice, we have identified vasoactive intestinal peptide (VIP) neurons as a novel class of IC principal neurons. VIP neurons are glutamatergic stellate cells with sustained firing patterns. Their extensive axons project to long-range targets including the auditory thalamus, auditory brainstem, superior colliculus, and periaqueductal gray. Using optogenetic circuit mapping, we found that VIP neurons integrate input from the contralateral IC and the dorsal cochlear nucleus. The dorsal cochlear nucleus also drove feedforward inhibition to VIP neurons, indicating that inhibitory circuits within the IC shape the temporal integration of ascending inputs. Thus, VIP neurons are well-positioned to influence auditory computations in a number of brain regions.
Collapse
Affiliation(s)
- David Goyer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| | - Marina A Silveira
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| | - Alexander P George
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| | - Nichole L Beebe
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, United States
| | - Ryan M Edelbrock
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, United States
| | - Peter T Malinski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| | - Brett R Schofield
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, United States
| | - Michael T Roberts
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, Ann Arbor, United States
| |
Collapse
|
12
|
Ono M, Ito T. Inhibitory Neural Circuits in the Mammalian Auditory Midbrain. J Exp Neurosci 2018; 12:1179069518818230. [PMID: 30559596 PMCID: PMC6291857 DOI: 10.1177/1179069518818230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/15/2018] [Indexed: 01/12/2023] Open
Abstract
The auditory midbrain is the critical integration center in the auditory pathway of vertebrates. Synaptic inhibition plays a key role during information processing in the auditory midbrain, and these inhibitory neural circuits are seen in all vertebrates and are likely essential for hearing. Here, we review the structure and function of the inhibitory neural circuits of the auditory midbrain. First, we provide an overview on how these inhibitory circuits are organized within different clades of vertebrates. Next, we focus on recent findings in the mammalian auditory midbrain, the most studied of the vertebrates, and discuss how the mammalian auditory midbrain is functionally coordinated.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | - Tetsufumi Ito
- Department of Anatomy, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
13
|
Ito T, Furuyama T, Hase K, Kobayasi KI, Hiryu S, Riquimaroux H. Organization of subcortical auditory nuclei of Japanese house bat (Pipistrellus abramus) identified with cytoarchitecture and molecular expression. J Comp Neurol 2018; 526:2824-2844. [PMID: 30168138 DOI: 10.1002/cne.24529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 11/09/2022]
Abstract
The auditory system of echolocating bats shows remarkable specialization likely related to analyzing echoes of sonar pulses. However, significant interspecies differences have been observed in the organization of auditory pathways among echolocating bats, and the homology of auditory nuclei with those of non-echolocating species has not been established. Here, in order to establish the homology and specialization of auditory pathways in echolocating bats, the expression of markers for glutamatergic, GABAergic, and glycinergic phenotypes in the subcortical auditory nuclei of Japanese house bat (Pipistrellus abramus) was evaluated. In the superior olivary complex, we identified the medial superior olive and superior paraolivary nuclei as expressing glutamatergic and GABAergic phenotypes, respectively, suggesting these nuclei are homologous with those of rodents. In the nuclei of the lateral lemniscus (NLL), the dorsal nucleus was found to be purely GABAergic, the intermediate nucleus was a mixture of glutamatergic and inhibitory neurons, the compact part of the ventral nucleus was purely glycinergic, and the multipolar part of the ventral nucleus expressed both GABA and glycine. In the inferior colliculus (IC), the central nucleus was found to be further subdivided into dorsal and ventral parts according to differences in the density of terminals and the morphology of large GABAergic neurons, suggesting specialization to sonar pulse structure. Medial geniculate virtually lacked GABAergic neurons, suggesting that the organization of the tectothalamic pathway is similar with that of rodents. Taken together, our findings revealed that specialization primarily occurs with regard to nuclei size and organization of the NLL and IC.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Kanazawa Medical University, Uchinada, Ishikawa, Japan.,Research and Education Program for Life Science, University of Fukui, Fukui, Fukui, Japan
| | - Takafumi Furuyama
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Kazuma Hase
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Kohta I Kobayasi
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Shizuko Hiryu
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | | |
Collapse
|
14
|
Subtypes of GABAergic cells in the inferior colliculus. Hear Res 2018; 376:1-10. [PMID: 30314930 DOI: 10.1016/j.heares.2018.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022]
Abstract
The inferior colliculus occupies a central position in ascending and descending auditory pathways. A substantial proportion of its neurons are GABAergic, and these neurons contribute to intracollicular circuits as well as to extrinsic projections to numerous targets. A variety of types of evidence - morphology, physiology, molecular markers - indicate that the GABAergic cells can be divided into at least four subtypes that serve different functions. However, there has yet to emerge a unified scheme for distinguishing these subtypes. The present review discusses these criteria and, where possible, relates the different properties. In contrast to GABAergic cells in cerebral cortex, where subtypes are much more thoroughly characterized, those in the inferior colliculus contribute substantially to numerous long range extrinsic projections. At present, the best characterized subtype is a GABAergic cell with a large soma, dense perisomatic synaptic inputs and a large axon that provides rapid auditory input to the thalamus. This large GABAergic subtype projects to additional targets, and other subtypes also project to the thalamus. The eventual characterization of these subtypes can be expected to reveal multiple functions of these inhibitory cells and the many circuits to which they contribute.
Collapse
|
15
|
Ito T, Furuyama T, Hase K, Kobayasi KI, Hiryu S. Organization of projection from brainstem auditory nuclei to the inferior colliculus of Japanese house bat (Pipistrellus abramus). Brain Behav 2018; 8:e01059. [PMID: 29999234 PMCID: PMC6085899 DOI: 10.1002/brb3.1059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Echolocating bats show remarkable specialization which is related to analysis of echoes of biosonars in subcortical auditory brainstem pathways. The inferior colliculus (IC) receives inputs from all lower brainstem auditory nuclei, i.e., cochlear nuclei, nuclei of the lateral lemniscus, and superior olivary complex, and create de novo responses to sound, which is considered crucial for echolocation. Inside the central nucleus of the IC (ICC), small domains which receive specific combination of extrinsic inputs are the basis of integration of sound information. In addition to extrinsic inputs, each domain is interconnected by local IC neurons but the cell types related to the interconnection are not well-understood. The primary objective of the current study is to examine whether the ascending inputs are reorganized and terminate in microdomains inside the ICC. METHODS We made injection of a retrograde tracer into different parts of the ICC, and analyzed distribution of retrogradely labeled cells in the auditory brainstem of Japanese house bat (Pipistrellus abramus). RESULTS Pattern of ascending projections from brainstem nuclei was similar to other bat species. Percentages of labeled cells in several nuclei were correlated each other. Furthermore, within the IC, we identified that large GABAergic (LG) and glutamatergic neurons made long-range connection. CONCLUSIONS Synaptic organization of IC of Japanese house bat shows specialization which is likely to relate for echolocation. Input nuclei to the IC make clusters which terminate in specific part of the ICC, implying the presence of microdomains. LG neurons have roles for binding IC microdomains.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Kanazawa Medical University, Uchinada, Japan.,Research and Education Program for Life Science, University of Fukui, Fukui, Japan
| | - Takafumi Furuyama
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kazuma Hase
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kohta I Kobayasi
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Shizuko Hiryu
- Neuroethology and Bioengineering Laboratory, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| |
Collapse
|
16
|
Chen C, Cheng M, Ito T, Song S. Neuronal Organization in the Inferior Colliculus Revisited with Cell-Type-Dependent Monosynaptic Tracing. J Neurosci 2018; 38:3318-3332. [PMID: 29483283 PMCID: PMC6596054 DOI: 10.1523/jneurosci.2173-17.2018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 02/02/2018] [Accepted: 02/07/2018] [Indexed: 01/19/2023] Open
Abstract
The inferior colliculus (IC) is a critical integration center in the auditory pathway. However, because the inputs to the IC have typically been studied by the use of conventional anterograde and retrograde tracers, the neuronal organization and cell-type-specific connections in the IC are poorly understood. Here, we used monosynaptic rabies tracing and in situ hybridization combined with excitatory and inhibitory Cre transgenic mouse lines of both sexes to characterize the brainwide and cell-type-specific inputs to specific neuron types within the lemniscal IC core and nonlemniscal IC shell. We observed that both excitatory and inhibitory neurons of the IC shell predominantly received ascending inputs rather than descending or core inputs. Correlation and clustering analyses revealed two groups of excitatory neurons in the shell: one received inputs from a combination of ascending nuclei, and the other received inputs from a combination of descending nuclei, neuromodulatory nuclei, and the contralateral IC. In contrast, inhibitory neurons in the core received inputs from the same combination of all nuclei. After normalizing the extrinsic inputs, we found that core inhibitory neurons received a higher proportion of inhibitory inputs from the ventral nucleus of the lateral lemniscus than excitatory neurons. Furthermore, the inhibitory neurons preferentially received inhibitory inputs from the contralateral IC shell. Because IC inhibitory neurons innervate the thalamus and contralateral IC, the inhibitory inputs we uncovered here suggest two long-range disinhibitory circuits. In summary, we found: (1) dominant ascending inputs to the shell, (2) two subpopulations of shell excitatory neurons, and (3) two disinhibitory circuits.SIGNIFICANCE STATEMENT Sound undergoes extensive processing in the brainstem. The inferior colliculus (IC) core is classically viewed as the integration center for ascending auditory information, whereas the IC shell integrates descending feedback information. Here, we demonstrate that ascending inputs predominated in the IC shell but appeared to be separated from the descending inputs. The presence of inhibitory projection neurons is a unique feature of the auditory ascending pathways, but the connections of these neurons are poorly understood. Interestingly, we also found that inhibitory neurons in the IC core and shell preferentially received inhibitory inputs from ascending nuclei and contralateral IC, respectively. Therefore, our results suggest a bipartite domain in the IC shell and disinhibitory circuits in the IC.
Collapse
Affiliation(s)
- Chenggang Chen
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Mingxiu Cheng
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
- National Institute of Biological Sciences, Beijing, 102206, China, and
| | - Tetsufumi Ito
- Anatomy II, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan
| | - Sen Song
- Tsinghua Laboratory of Brain and Intelligence and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China,
| |
Collapse
|
17
|
Neurons, Connections, and Microcircuits of the Inferior Colliculus. THE MAMMALIAN AUDITORY PATHWAYS 2018. [DOI: 10.1007/978-3-319-71798-2_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Identified GABAergic and Glutamatergic Neurons in the Mouse Inferior Colliculus Share Similar Response Properties. J Neurosci 2017; 37:8952-8964. [PMID: 28842411 DOI: 10.1523/jneurosci.0745-17.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/19/2017] [Accepted: 08/05/2017] [Indexed: 12/13/2022] Open
Abstract
GABAergic neurons in the inferior colliculus (IC) play a critical role in auditory information processing, yet their responses to sound are unknown. Here, we used optogenetic methods to characterize the response properties of GABAergic and presumed glutamatergic neurons to sound in the IC. We found that responses to pure tones of both inhibitory and excitatory classes of neurons were similar in their thresholds, response latencies, rate-level functions, and frequency tuning, but GABAergic neurons may have higher spontaneous firing rates. In contrast to their responses to pure tones, the inhibitory and excitatory neurons differed in their ability to follow amplitude modulations. The responses of both cell classes were affected by their location regardless of the cell type, especially in terms of their frequency tuning. These results show that the synaptic domain, a unique organization of local neural circuits in the IC, may interact with all types of neurons to produce their ultimate response to sound.SIGNIFICANCE STATEMENT Although the inferior colliculus (IC) in the auditory midbrain is composed of different types of neurons, little is known about how these specific types of neurons respond to sound. Here, for the first time, we characterized the response properties of GABAergic and glutamatergic neurons in the IC. Both classes of neurons had diverse response properties to tones but were overall similar, except for the spontaneous activity and their ability to follow amplitude-modulated sound. Both classes of neurons may compose a basic local circuit that is replicated throughout the IC. Within each local circuit, the inputs to the local circuit may have a greater influence in determining the response properties to sound than the specific neuron types.
Collapse
|
19
|
Noise Trauma-Induced Behavioral Gap Detection Deficits Correlate with Reorganization of Excitatory and Inhibitory Local Circuits in the Inferior Colliculus and Are Prevented by Acoustic Enrichment. J Neurosci 2017; 37:6314-6330. [PMID: 28583912 DOI: 10.1523/jneurosci.0602-17.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/04/2017] [Accepted: 05/14/2017] [Indexed: 01/12/2023] Open
Abstract
Hearing loss leads to a host of cellular and synaptic changes in auditory brain areas that are thought to give rise to auditory perception deficits such as temporal processing impairments, hyperacusis, and tinnitus. However, little is known about possible changes in synaptic circuit connectivity that may underlie these hearing deficits. Here, we show that mild hearing loss as a result of brief noise exposure leads to a pronounced reorganization of local excitatory and inhibitory circuits in the mouse inferior colliculus. The exact nature of these reorganizations correlated with the presence or absence of the animals' impairments in detecting brief sound gaps, a commonly used behavioral sign for tinnitus in animal models. Mice with gap detection deficits (GDDs) showed a shift in the balance of synaptic excitation and inhibition that was present in both glutamatergic and GABAergic neurons, whereas mice without GDDs showed stable excitation-inhibition balances. Acoustic enrichment (AE) with moderate intensity, pulsed white noise immediately after noise trauma prevented both circuit reorganization and GDDs, raising the possibility of using AE immediately after cochlear damage to prevent or alleviate the emergence of central auditory processing deficits.SIGNIFICANCE STATEMENT Noise overexposure is a major cause of central auditory processing disorders, including tinnitus, yet the changes in synaptic connectivity underlying these disorders remain poorly understood. Here, we find that brief noise overexposure leads to distinct reorganizations of excitatory and inhibitory synaptic inputs onto glutamatergic and GABAergic neurons and that the nature of these reorganizations correlates with animals' impairments in detecting brief sound gaps, which is often considered a sign of tinnitus. Acoustic enrichment immediately after noise trauma prevents circuit reorganizations and gap detection deficits, highlighting the potential for using sound therapy soon after cochlear damage to prevent the development of central processing deficits.
Collapse
|
20
|
Synchrony, connectivity, and functional similarity in auditory midbrain local circuits. Neuroscience 2016; 335:30-53. [PMID: 27544405 DOI: 10.1016/j.neuroscience.2016.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022]
Abstract
The central nucleus of the inferior colliculus (ICC) contains a laminar structure that functions as an organizing substrate of ascending inputs and local processing. While topographic distributions of ICC response parameters within and across laminae have been reported, the functional micro-organization of the ICC is less well understood. For pairs of neighboring ICC neurons, we examined the nature of functional connectivity and receptive field preferences to gain a better understanding of the structure and function of local circuits. By recording from pairs of adjacent neurons and presenting pure-tone and dynamic broad-band stimulation, we estimated functional connectivity and local differences in frequency response areas (FRAs), spectrotemporal receptive fields (STRFs), nonlinear input/output functions, and single-spike information. From the cross-covariance functions we identified putative unidirectional as well as bidirectional excitatory/inhibitory interactions. STRFs of neighboring neurons strongly conserve best frequency, and moderately agree in STRF similarity, bandwidth, temporal response type, best modulation frequency, nonlinearity structure, and degree of information processing. Excitatory connectivity was stronger and temporally more precise than for inhibitory connections. Neither connection strength nor degree of synchrony correlated with receptive field parameters. The functional similarity of local pairs of ICC neurons was substantially less than for local pairs in the granular layers of primary auditory cortex (AI). These results imply that while the ICC is an obligatory nexus of ascending information, local neurons are comparatively weakly connected and exhibit considerable receptive field variability, potentially reflecting the heterogeneity of converging inputs to ICC functional zones.
Collapse
|
21
|
Extracellular Molecular Markers and Soma Size of Inhibitory Neurons: Evidence for Four Subtypes of GABAergic Cells in the Inferior Colliculus. J Neurosci 2016; 36:3988-99. [PMID: 27053206 DOI: 10.1523/jneurosci.0217-16.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/18/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Inhibition plays an important role in shaping responses to stimuli throughout the CNS, including in the inferior colliculus (IC), a major hub in both ascending and descending auditory pathways. Subdividing GABAergic cells has furthered the understanding of inhibition in many brain areas, most notably in the cerebral cortex. Here, we seek the same understanding of subcortical inhibitory cell types by combining staining for two types of extracellular markers--perineuronal nets (PNs) and perisomatic rings of terminals expressing vesicular glutamate transporter 2 (VGLUT2)--to subdivide IC GABAergic cells in adult guinea pigs. We found four distinct groups of GABAergic cells in the IC: (1) those with both a PN and a VGLUT2 ring; (2) those with only a PN; (3) those with only a VGLUT2 ring; and (4) those with neither marker. In addition, these four GABAergic subtypes differ in their soma size and distribution among IC subdivisions. Functionally, the presence or absence of VGLUT2 rings indicates differences in inputs, whereas the presence or absence of PNs indicates different potential for plasticity and temporal processing. We conclude that these markers distinguish four GABAergic subtypes that almost certainly serve different roles in the processing of auditory stimuli within the IC. SIGNIFICANCE STATEMENT GABAergic inhibition plays a critical role throughout the brain. Identification of subclasses of GABAergic cells (up to 15 in the cerebral cortex) has furthered the understanding of GABAergic roles in circuit modulation. Inhibition is also prominent in the inferior colliculus, a subcortical hub in auditory pathways. Here, we use two extracellular markers to identify four distinct groups of GABAergic cells. Perineuronal nets and perisomatic rings of glutamatergic boutons are present in many subcortical areas and often are associated with inhibitory cells, but they have rarely been used to identify inhibitory subtypes. Our results further the understanding of inhibition in the inferior colliculus and suggest that these extracellular molecular markers may provide a key to distinguishing inhibitory subtypes in many subcortical areas.
Collapse
|
22
|
Ito T, Atoji Y. Tectothalamic inhibitory projection neurons in the avian torus semicircularis. J Comp Neurol 2016; 524:2604-22. [DOI: 10.1002/cne.23979] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/26/2016] [Accepted: 01/27/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy; Faculty of Medical Sciences, University of Fukui; Eiheiji Fukui 910-1193 Japan
- Research and Education Program for Life Science, University of Fukui; Fukui Fukui 910-8507 Japan
| | - Yasuro Atoji
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University; Yanagido Gifu 501-1193 Japan
| |
Collapse
|
23
|
Long-Lasting Sound-Evoked Afterdischarge in the Auditory Midbrain. Sci Rep 2016; 6:20757. [PMID: 26867811 PMCID: PMC4751617 DOI: 10.1038/srep20757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/07/2016] [Indexed: 12/24/2022] Open
Abstract
Different forms of plasticity are known to play a critical role in the processing of information about sound. Here, we report a novel neural plastic response in the inferior colliculus, an auditory center in the midbrain of the auditory pathway. A vigorous, long-lasting sound-evoked afterdischarge (LSA) is seen in a subpopulation of both glutamatergic and GABAergic neurons in the central nucleus of the inferior colliculus of normal hearing mice. These neurons were identified with single unit recordings and optogenetics in vivo. The LSA can continue for up to several minutes after the offset of the sound. LSA is induced by long-lasting, or repetitive short-duration, innocuous sounds. Neurons with LSA showed less adaptation than the neurons without LSA. The mechanisms that cause this neural behavior are unknown but may be a function of intrinsic mechanisms or the microcircuitry of the inferior colliculus. Since LSA produces long-lasting firing in the absence of sound, it may be relevant to temporary or chronic tinnitus or to some other aftereffect of long-duration sound.
Collapse
|
24
|
Ono M, Ito T. Functional organization of the mammalian auditory midbrain. J Physiol Sci 2015; 65:499-506. [PMID: 26362672 PMCID: PMC10718034 DOI: 10.1007/s12576-015-0394-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 08/22/2015] [Indexed: 12/12/2022]
Abstract
The inferior colliculus (IC) is a critical nexus between the auditory brainstem and the forebrain. Parallel auditory pathways that emerge from the brainstem are integrated in the IC. In this integration, de-novo auditory information processed as local and ascending inputs converge via the complex neural circuit of the IC. However, it is still unclear how information is processed within the neural circuit. The purpose of this review is to give an anatomical and physiological overview of the IC neural circuit. We address the functional organization of the IC where the excitatory and inhibitory synaptic inputs interact to shape the responses of IC neurons to sound.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA.
- Department of Physiology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan.
| | - Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan
- Research and Education Program for Life Science, University of Fukui, Fukui, Fukui, 910-8507, Japan
| |
Collapse
|
25
|
Ito T, Bishop DC, Oliver DL. Functional organization of the local circuit in the inferior colliculus. Anat Sci Int 2015; 91:22-34. [PMID: 26497006 DOI: 10.1007/s12565-015-0308-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/05/2015] [Indexed: 01/12/2023]
Abstract
The inferior colliculus (IC) is the first integration center of the auditory system. After the transformation of sound to neural signals in the cochlea, the signals are analyzed by brainstem auditory nuclei that, in turn, transmit this information to the IC. However, the neural circuitry that underlies this integration is unclear. This review consists of two parts: one is about the cell type which is likely to integrate sound information, and the other is about a technique which is useful for studying local circuitry. Large GABAergic (LG) neurons receive dense excitatory axosomatic terminals that originate from the lower brainstem auditory nuclei as well as local IC neurons. Dozens of axons coming from both local and lower brainstem neurons converge on a single LG soma. Excitatory neurons in IC can innervate many nearby LG somata in the same fibrodendritic lamina. The combination of local and ascending inputs is well suited for auditory integration. LG neurons are one of the main sources of inhibition in the medial geniculate body (MGB). LG neurons and the tectothalamic inhibitory system are present in a wide variety of mammalian species. This suggests that the circuitry of excitatory and inhibitory tectothalamic projections may have evolved earlier than GABAergic interneurons in the MGB, which are found in fewer species. Cellular-level functional imaging provides both morphological and functional information about local circuitry. In the last part of this review, we describe an in vivo calcium imaging study that sheds light on the functional organization of the IC.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan. .,Research and Education Program for Life Science, University of Fukui, Fukui, Fukui, 910-8507, Japan.
| | - Deborah C Bishop
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA
| |
Collapse
|
26
|
Distribution of glutamatergic, GABAergic, and glycinergic neurons in the auditory pathways of macaque monkeys. Neuroscience 2015; 310:128-51. [PMID: 26391919 DOI: 10.1016/j.neuroscience.2015.09.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 11/23/2022]
Abstract
Macaque monkeys use complex communication calls and are regarded as a model for studying the coding and decoding of complex sound in the auditory system. However, little is known about the distribution of excitatory and inhibitory neurons in the auditory system of macaque monkeys. In this study, we examined the overall distribution of cell bodies that expressed mRNAs for VGLUT1, and VGLUT2 (markers for glutamatergic neurons), GAD67 (a marker for GABAergic neurons), and GLYT2 (a marker for glycinergic neurons) in the auditory system of the Japanese macaque. In addition, we performed immunohistochemistry for VGLUT1, VGLUT2, and GAD67 in order to compare the distribution of proteins and mRNAs. We found that most of the excitatory neurons in the auditory brainstem expressed VGLUT2. In contrast, the expression of VGLUT1 mRNA was restricted to the auditory cortex (AC), periolivary nuclei, and cochlear nuclei (CN). The co-expression of GAD67 and GLYT2 mRNAs was common in the ventral nucleus of the lateral lemniscus (VNLL), CN, and superior olivary complex except for the medial nucleus of the trapezoid body, which expressed GLYT2 alone. In contrast, the dorsal nucleus of the lateral lemniscus, inferior colliculus, thalamus, and AC expressed GAD67 alone. The absence of co-expression of VGLUT1 and VGLUT2 in the medial geniculate, medial superior olive, and VNLL suggests that synaptic responses in the target neurons of these nuclei may be different between rodents and macaque monkeys.
Collapse
|
27
|
Ito T, Hioki H, Sohn J, Okamoto S, Kaneko T, Iino S, Oliver DL. Convergence of Lemniscal and Local Excitatory Inputs on Large GABAergic Tectothalamic Neurons. J Comp Neurol 2015; 523:2277-96. [PMID: 25879870 DOI: 10.1002/cne.23789] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/11/2022]
Abstract
Large GABAergic (LG) neurons form a distinct cell type in the inferior colliculus (IC), identified by the presence of dense VGLUT2-containing axosomatic terminals. Although some of the axosomatic terminals originate from local and commissural IC neurons, it has been unclear whether LG neurons also receive axosomatic inputs from the lower auditory brainstem nuclei, i.e., cochlear nuclei (CN), superior olivary complex (SOC), and nuclei of the lateral lemniscus (NLL). In this study we injected recombinant viral tracers that force infected cells to express GFP in a Golgi-like manner into the lower auditory brainstem nuclei to determine whether these nuclei directly innervate LG cell somata. Labeled axons from CN, SOC, and NLL terminated as excitatory axosomatic endings, identified by colabeling of GFP and VGLUT2, on single LG neurons in the IC. Each excitatory axon made only a few axosomatic contacts on each LG neuron. Inputs to a single LG cell are unlikely to be from a single brainstem nucleus, since lesions of individual nuclei failed to eliminate most VGLUT2-positive terminals on the LG neurons. The estimated number of inputs on a single LG cell body was almost proportional to the surface area of the cell body. Double injections of different viruses into IC and a brainstem nucleus showed that LG neurons received inputs from both. These results demonstrated that both ascending and intrinsic sources converge on the LG somata to control inhibitory tectothalamic projections.
Collapse
Affiliation(s)
- Tetsufumi Ito
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.,Research and Education Program for Life Science, University of Fukui, Fukui, 910-8507, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Jaerin Sohn
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan.,Research Fellow of Japan Society for the Promotion of Science (JSPS), 5-3-1 Koujimachi, Tokyo, 102-8472, Japan
| | - Shinichiro Okamoto
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Satoshi Iino
- Department of Anatomy, Faculty of Medical Sciences, University of Fukui, Fukui, 910-1193, Japan.,Research and Education Program for Life Science, University of Fukui, Fukui, 910-8507, Japan
| | - Douglas L Oliver
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, 06030-3401, USA
| |
Collapse
|
28
|
The auditory corticocollicular system: molecular and circuit-level considerations. Hear Res 2014; 314:51-9. [PMID: 24911237 DOI: 10.1016/j.heares.2014.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/22/2014] [Accepted: 05/25/2014] [Indexed: 01/11/2023]
Abstract
We live in a world imbued with a rich mixture of complex sounds. Successful acoustic communication requires the ability to extract meaning from those sounds, even when degraded. One strategy used by the auditory system is to harness high-level contextual cues to modulate the perception of incoming sounds. An ideal substrate for this process is the massive set of top-down projections emanating from virtually every level of the auditory system. In this review, we provide a molecular and circuit-level description of one of the largest of these pathways: the auditory corticocollicular pathway. While its functional role remains to be fully elucidated, activation of this projection system can rapidly and profoundly change the tuning of neurons in the inferior colliculus. Several specific issues are reviewed. First, we describe the complex heterogeneous anatomical organization of the corticocollicular pathway, with particular emphasis on the topography of the pathway. We also review the laminar origin of the corticocollicular projection and discuss known physiological and morphological differences between subsets of corticocollicular cells. Finally, we discuss recent findings about the molecular micro-organization of the inferior colliculus and how it interfaces with corticocollicular termination patterns. Given the assortment of molecular tools now available to the investigator, it is hoped that his review will help guide future research on the role of this pathway in normal hearing.
Collapse
|