1
|
Bianchi E, Bhattacharya B, Bowling AJ, Pence HE, Mundy PC, Jones G, Muriana A, Grever WE, Pappas-Garton A, Sriram S, LaRocca J, Bondesson M. Applications of Zebrafish Embryo Models to Predict Developmental Toxicity for Agrochemical Product Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18132-18145. [PMID: 39087946 DOI: 10.1021/acs.jafc.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The development of safe crop protection products is a complex process that traditionally relies on intensive animal use for hazard identification. Methods that capture toxicity in early stages of agrochemical discovery programs enable a more efficient and sustainable product development pipeline. Here, we explored whether the zebrafish model can be leveraged to identify mammalian-relevant toxicity. We used transgenic zebrafish to assess developmental toxicity following exposures to known mammalian teratogens and captured larval morphological malformations, including bone and vascular perturbations. We further applied toxicogenomics to identify common biomarker signatures of teratogen exposure. The results show that the larval malformation assay predicted teratogenicity with 82.35% accuracy, 87.50% specificity, and 77.78% sensitivity. Similar and slightly lower accuracies were obtained with the vascular and bone assays, respectively. A set of 20 biomarkers were identified that efficiently segregated teratogenic chemicals from nonteratogens. In conclusion, zebrafish are valuable, robust, and cost-effective models for toxicity testing in the early stages of product development.
Collapse
Affiliation(s)
- Enrica Bianchi
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | | | - Heather E Pence
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Paige C Mundy
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Gabe Jones
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | | | | | | | - Jessica LaRocca
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47408, United States
| |
Collapse
|
2
|
Itoh T, Uehara M, Yura S, Wang JC, Fujii Y, Nakanishi A, Shimizu T, Hibi M. Foxp and Skor family proteins control differentiation of Purkinje cells from Ptf1a- and Neurog1-expressing progenitors in zebrafish. Development 2024; 151:dev202546. [PMID: 38456494 PMCID: PMC11057878 DOI: 10.1242/dev.202546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Cerebellar neurons, such as GABAergic Purkinje cells (PCs), interneurons (INs) and glutamatergic granule cells (GCs) are differentiated from neural progenitors expressing proneural genes, including ptf1a, neurog1 and atoh1a/b/c. Studies in mammals previously suggested that these genes determine cerebellar neuron cell fate. However, our studies on ptf1a;neurog1 zebrafish mutants and lineage tracing of ptf1a-expressing progenitors have revealed that the ptf1a/neurog1-expressing progenitors can generate diverse cerebellar neurons, including PCs, INs and a subset of GCs in zebrafish. The precise mechanisms of how each cerebellar neuron type is specified remains elusive. We found that genes encoding the transcriptional regulators Foxp1b, Foxp4, Skor1b and Skor2, which are reportedly expressed in PCs, were absent in ptf1a;neurog1 mutants. foxp1b;foxp4 mutants showed a strong reduction in PCs, whereas skor1b;skor2 mutants completely lacked PCs, and displayed an increase in immature GCs. Misexpression of skor2 in GC progenitors expressing atoh1c suppressed GC fate. These data indicate that Foxp1b/4 and Skor1b/2 function as key transcriptional regulators in the initial step of PC differentiation from ptf1a/neurog1-expressing neural progenitors, and that Skor1b and Skor2 control PC differentiation by suppressing their differentiation into GCs.
Collapse
Affiliation(s)
- Tsubasa Itoh
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Mari Uehara
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Shinnosuke Yura
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Jui Chun Wang
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Yukimi Fujii
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Akiko Nakanishi
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Takashi Shimizu
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Masahiko Hibi
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
3
|
Pose-Méndez S, Schramm P, Valishetti K, Köster RW. Development, circuitry, and function of the zebrafish cerebellum. Cell Mol Life Sci 2023; 80:227. [PMID: 37490159 PMCID: PMC10368569 DOI: 10.1007/s00018-023-04879-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
The cerebellum represents a brain compartment that first appeared in gnathostomes (jawed vertebrates). Besides the addition of cell numbers, its development, cytoarchitecture, circuitry, physiology, and function have been highly conserved throughout avian and mammalian species. While cerebellar research in avian and mammals is extensive, systematic investigations on this brain compartment in zebrafish as a teleostian model organism started only about two decades ago, but has provided considerable insight into cerebellar development, physiology, and function since then. Zebrafish are genetically tractable with nearly transparent small-sized embryos, in which cerebellar development occurs within a few days. Therefore, genetic investigations accompanied with non-invasive high-resolution in vivo time-lapse imaging represents a powerful combination for interrogating the behavior and function of cerebellar cells in their complex native environment.
Collapse
Affiliation(s)
- Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| | - Paul Schramm
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Komali Valishetti
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
4
|
Tornini VA, Miao L, Lee HJ, Gerson T, Dube SE, Schmidt V, Kroll F, Tang Y, Du K, Kuchroo M, Vejnar CE, Bazzini AA, Krishnaswamy S, Rihel J, Giraldez AJ. linc-mipep and linc-wrb encode micropeptides that regulate chromatin accessibility in vertebrate-specific neural cells. eLife 2023; 12:e82249. [PMID: 37191016 PMCID: PMC10188112 DOI: 10.7554/elife.82249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Thousands of long intergenic non-coding RNAs (lincRNAs) are transcribed throughout the vertebrate genome. A subset of lincRNAs enriched in developing brains have recently been found to contain cryptic open-reading frames and are speculated to encode micropeptides. However, systematic identification and functional assessment of these transcripts have been hindered by technical challenges caused by their small size. Here, we show that two putative lincRNAs (linc-mipep, also called lnc-rps25, and linc-wrb) encode micropeptides with homology to the vertebrate-specific chromatin architectural protein, Hmgn1, and demonstrate that they are required for development of vertebrate-specific brain cell types. Specifically, we show that NMDA receptor-mediated pathways are dysregulated in zebrafish lacking these micropeptides and that their loss preferentially alters the gene regulatory networks that establish cerebellar cells and oligodendrocytes - evolutionarily newer cell types that develop postnatally in humans. These findings reveal a key missing link in the evolution of vertebrate brain cell development and illustrate a genetic basis for how some neural cell types are more susceptible to chromatin disruptions, with implications for neurodevelopmental disorders and disease.
Collapse
Affiliation(s)
| | - Liyun Miao
- Department of Genetics, Yale UniversityNew HavenUnited States
| | - Ho-Joon Lee
- Department of Genetics, Yale UniversityNew HavenUnited States
- Yale Center for Genome Analysis, Yale UniversityNew HavenUnited States
| | - Timothy Gerson
- Department of Genetics, Yale UniversityNew HavenUnited States
| | - Sarah E Dube
- Department of Genetics, Yale UniversityNew HavenUnited States
| | - Valeria Schmidt
- Department of Genetics, Yale UniversityNew HavenUnited States
| | - François Kroll
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Yin Tang
- Department of Genetics, Yale UniversityNew HavenUnited States
| | - Katherine Du
- Department of Genetics, Yale UniversityNew HavenUnited States
- Department of Computer Science, Yale UniversityNew HavenUnited States
| | - Manik Kuchroo
- Department of Genetics, Yale UniversityNew HavenUnited States
- Department of Computer Science, Yale UniversityNew HavenUnited States
| | | | - Ariel Alejandro Bazzini
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Molecular & Integrative Physiology, University of Kansas School of MedicineKansas CityUnited States
| | - Smita Krishnaswamy
- Department of Genetics, Yale UniversityNew HavenUnited States
- Department of Computer Science, Yale UniversityNew HavenUnited States
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College LondonLondonUnited Kingdom
| | - Antonio J Giraldez
- Department of Genetics, Yale UniversityNew HavenUnited States
- Yale Stem Cell Center, Yale University School of MedicineNew HavenUnited States
- Yale Cancer Center, Yale University School of MedicineNew HavenUnited States
| |
Collapse
|
5
|
Gong S, McLamb F, Shea D, Vu JP, Vasquez MF, Feng Z, Bozinovic K, Hirata KK, Gersberg RM, Bozinovic G. Toxicity assessment of hexafluoropropylene oxide-dimer acid on morphology, heart physiology, and gene expression during zebrafish (Danio rerio) development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32320-32336. [PMID: 36462083 PMCID: PMC10017623 DOI: 10.1007/s11356-022-24542-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/25/2022] [Indexed: 05/25/2023]
Abstract
Hexafluoropropylene oxide-dimer acid (HFPO-DA) is one of the emerging replacements for the "forever" carcinogenic and toxic long-chain PFAS. HFPO-DA is a polymerization aid used for manufacturing fluoropolymers, whose global distribution and undetermined toxic properties are a concern regarding human and ecological health. To assess embryotoxic potential, zebrafish embryos were exposed to HFPO-DA at concentrations of 0.5-20,000 mg/L at 24-, 48-, and 72-h post-fertilization (hpf). Heart rate increased significantly in embryos exposed to 2 mg/L and 10 mg/L HFPO-DA across all time points. Spinal deformities and edema phenotypes were evident among embryos exposed to 1000-16,000 mg/L HFPO-DA at 72 hpf. A median lethal concentration (LC50) was derived as 7651 mg/L at 72 hpf. Shallow RNA sequencing analysis of 9465 transcripts identified 38 consistently differentially expressed genes at 0.5 mg/L, 1 mg/L, 2 mg/L, and 10 mg/L HFPO-DA exposures. Notably, seven downregulated genes were associated with visual response, and seven upregulated genes were expressed in or regulated the cardiovascular system. This study identifies biological targets and molecular pathways affected during animal development by an emerging, potentially problematic, and ubiquitous industrial chemical.
Collapse
Affiliation(s)
- Sylvia Gong
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Flannery McLamb
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | | | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Miguel F Vasquez
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- School of Public Health, San Diego State University, San Diego, CA, USA
| | - Kesten Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
- Graduate School of Arts and Sciences, Georgetown University, Washington, DC, USA
| | - Ken K Hirata
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, 92093-0355, USA
| | | | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, San Diego, CA, USA.
- School of Public Health, San Diego State University, San Diego, CA, USA.
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0355, USA.
| |
Collapse
|
6
|
Dorigo A, Valishetti K, Hetsch F, Matsui H, Meier JC, Namikawa K, Köster RW. Functional regionalization of the differentiating cerebellar Purkinje cell population occurs in an activity-dependent manner. Front Mol Neurosci 2023; 16:1166900. [PMID: 37181649 PMCID: PMC10174242 DOI: 10.3389/fnmol.2023.1166900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction The cerebellum is organized into functional regions each dedicated to process different motor or sensory inputs for controlling different locomotor behaviors. This functional regionalization is prominent in the evolutionary conserved single-cell layered Purkinje cell (PC) population. Fragmented gene expression domains suggest a genetic organization of PC layer regionalization during cerebellum development. However, the establishment of such functionally specific domains during PC differentiation remained elusive. Methods and results We show the progressive emergence of functional regionalization of PCs from broad responses to spatially restricted regions in zebrafish by means of in vivo Ca2+-imaging during stereotypic locomotive behavior. Moreover, we reveal that formation of new dendritic spines during cerebellar development using in vivo imaging parallels the time course of functional domain development. Pharmacological as well as cell-type specific optogenetic inhibition of PC neuronal activity results in reduced PC dendritic spine density and an altered stagnant pattern of functional domain formation in the PC layer. Discussion Hence, our study suggests that functional regionalization of the PC layer is driven by physiological activity of maturing PCs themselves.
Collapse
Affiliation(s)
- Alessandro Dorigo
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Komali Valishetti
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Florian Hetsch
- Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Institute of Pathophysiology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Hideaki Matsui
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Jochen C. Meier
- Cell Physiology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kazuhiko Namikawa
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
- *Correspondence: Kazuhiko Namikawa,
| | - Reinhard W. Köster
- Cellular and Molecular Neurobiology, Technische Universität Braunschweig, Braunschweig, Germany
- Reinhard W. Köster,
| |
Collapse
|
7
|
Bhandiwad AA, Chu NC, Semenova SA, Holmes GA, Burgess HA. A cerebellar-prepontine circuit for tonic immobility triggered by an inescapable threat. SCIENCE ADVANCES 2022; 8:eabo0549. [PMID: 36170356 PMCID: PMC9519051 DOI: 10.1126/sciadv.abo0549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Sudden changes in the environment are frequently perceived as threats and provoke defensive behavioral states. One such state is tonic immobility, a conserved defensive strategy characterized by powerful suppression of movement and motor reflexes. Tonic immobility has been associated with multiple brainstem regions, but the underlying circuit is unknown. Here, we demonstrate that a strong vibratory stimulus evokes tonic immobility in larval zebrafish defined by suppressed locomotion and sensorimotor responses. Using a circuit-breaking screen and targeted neuron ablations, we show that cerebellar granule cells and a cluster of glutamatergic ventral prepontine neurons (vPPNs) that express key stress-associated neuropeptides are critical components of the circuit that suppresses movement. The complete sensorimotor circuit transmits information from sensory ganglia through the cerebellum to vPPNs to regulate reticulospinal premotor neurons. These results show that cerebellar regulation of a neuropeptide-rich prepontine structure governs a conserved and ancestral defensive behavior that is triggered by an inescapable threat.
Collapse
|
8
|
A nop56 Zebrafish Loss-of-Function Model Exhibits a Severe Neurodegenerative Phenotype. Biomedicines 2022; 10:biomedicines10081814. [PMID: 36009362 PMCID: PMC9404972 DOI: 10.3390/biomedicines10081814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
NOP56 belongs to a C/D box small nucleolar ribonucleoprotein complex that is in charge of cleavage and modification of precursor ribosomal RNAs and assembly of the 60S ribosomal subunit. An intronic expansion in NOP56 gene causes Spinocerebellar Ataxia type 36, a typical late-onset autosomal dominant ataxia. Although vertebrate animal models were created for the intronic expansion, none was studied for the loss of function of NOP56. We studied a zebrafish loss-of-function model of the nop56 gene which shows 70% homology with the human gene. We observed a severe neurodegenerative phenotype in nop56 mutants, characterized mainly by absence of cerebellum, reduced numbers of spinal cord neurons, high levels of apoptosis in the central nervous system (CNS) and impaired movement, resulting in death before 7 days post-fertilization. Gene expression of genes related to C/D box complex, balance and CNS development was impaired in nop56 mutants. In our study, we characterized the first NOP56 loss-of-function vertebrate model, which is important to further understand the role of NOP56 in CNS function and development.
Collapse
|
9
|
Song M, Yuan X, Racioppi C, Leslie M, Stutt N, Aleksandrova A, Christiaen L, Wilson MD, Scott IC. GATA4/5/6 family transcription factors are conserved determinants of cardiac versus pharyngeal mesoderm fate. SCIENCE ADVANCES 2022; 8:eabg0834. [PMID: 35275720 PMCID: PMC8916722 DOI: 10.1126/sciadv.abg0834] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
GATA4/5/6 transcription factors play essential, conserved roles in heart development. To understand how GATA4/5/6 modulates the mesoderm-to-cardiac fate transition, we labeled, isolated, and performed single-cell gene expression analysis on cells that express gata5 at precardiac time points spanning zebrafish gastrulation to somitogenesis. We found that most mesendoderm-derived lineages had dynamic gata5/6 expression. In the absence of Gata5/6, the population structure of mesendoderm-derived cells was substantially altered. In addition to the expected absence of cardiac mesoderm, we confirmed a concomitant expansion of cranial-pharyngeal mesoderm. Moreover, Gata5/6 loss led to extensive changes in chromatin accessibility near cardiac and pharyngeal genes. Functional analyses in zebrafish and the tunicate Ciona, which has a single GATA4/5/6 homolog, revealed that GATA4/5/6 acts upstream of tbx1 to exert essential and cell-autonomous roles in promoting cardiac and inhibiting pharyngeal mesoderm identity. Overall, cardiac and pharyngeal mesoderm fate choices are achieved through an evolutionarily conserved GATA4/5/6 regulatory network.
Collapse
Affiliation(s)
- Mengyi Song
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xuefei Yuan
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
| | - Meaghan Leslie
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nathan Stutt
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anastasiia Aleksandrova
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Michael D. Wilson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| | - Ian C. Scott
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Corresponding author. (M.D.W.); (I.C.S.)
| |
Collapse
|
10
|
Sitaraman S, Yadav G, Agarwal V, Jabeen S, Verma S, Jadhav M, Thirumalai V. Gjd2b-mediated gap junctions promote glutamatergic synapse formation and dendritic elaboration in Purkinje neurons. eLife 2021; 10:68124. [PMID: 34346310 PMCID: PMC8382294 DOI: 10.7554/elife.68124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
Gap junctions between neurons serve as electrical synapses, in addition to conducting metabolites and signaling molecules. During development, early-appearing gap junctions are thought to prefigure chemical synapses, which appear much later. We present evidence for this idea at a central, glutamatergic synapse and provide some mechanistic insights. Loss or reduction in the levels of the gap junction protein Gjd2b decreased the frequency of glutamatergic miniature excitatory postsynaptic currents (mEPSCs) in cerebellar Purkinje neurons (PNs) in larval zebrafish. Ultrastructural analysis in the molecular layer showed decreased synapse density. Further, mEPSCs had faster kinetics and larger amplitudes in mutant PNs, consistent with their stunted dendritic arbors. Time-lapse microscopy in wild-type and mutant PNs reveals that Gjd2b puncta promote the elongation of branches and that CaMKII may be a critical mediator of this process. These results demonstrate that Gjd2b-mediated gap junctions regulate glutamatergic synapse formation and dendritic elaboration in PNs.
Collapse
Affiliation(s)
- Sahana Sitaraman
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Gnaneshwar Yadav
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Vandana Agarwal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shaista Jabeen
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shivangi Verma
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Meha Jadhav
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Vatsala Thirumalai
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
11
|
Takashima S, Takemoto S, Toyoshi K, Ohba A, Shimozawa N. Zebrafish model of human Zellweger syndrome reveals organ-specific accumulation of distinct fatty acid species and widespread gene expression changes. Mol Genet Metab 2021; 133:307-323. [PMID: 34016526 DOI: 10.1016/j.ymgme.2021.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 11/24/2022]
Abstract
In Zellweger syndrome (ZS), lack of peroxisome function causes physiological and developmental abnormalities in many organs such as the brain, liver, muscles, and kidneys, but little is known about the exact pathogenic mechanism. By disrupting the zebrafish pex2 gene, we established a disease model for ZS and found that it exhibits pathological features and metabolic changes similar to those observed in human patients. By comprehensive analysis of the fatty acid profile, we found organ-specific accumulation and reduction of distinct fatty acid species, such as an accumulation of ultra-very-long-chain polyunsaturated fatty acids (ultra-VLC-PUFAs) in the brains of pex2 mutant fish. Transcriptome analysis using microarray also revealed mutant-specific gene expression changes that might lead to the symptoms, including reduction of crystallin, troponin, parvalbumin, and fatty acid metabolic genes. Our data indicated that the loss of peroxisomes results in widespread metabolic and gene expression changes beyond the causative peroxisomal function. These results suggest the genetic and metabolic basis of the pathology of this devastating human disease.
Collapse
Affiliation(s)
- Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
| | - Shoko Takemoto
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Kayoko Toyoshi
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Akiko Ohba
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Nobuyuki Shimozawa
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
12
|
Furlan S, Campione M, Murgia M, Mosole S, Argenton F, Volpe P, Nori A. Calsequestrins New Calcium Store Markers of Adult Zebrafish Cerebellum and Optic Tectum. Front Neuroanat 2020; 14:15. [PMID: 32372920 PMCID: PMC7188384 DOI: 10.3389/fnana.2020.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Calcium stores in neurons are heterogeneous in compartmentalization and molecular composition. Danio rerio (zebrafish) is an animal model with a simply folded cerebellum similar in cellular organization to that of mammals. The aim of the study was to identify new endoplasmic reticulum (ER) calcium store markers in zebrafish adult brain with emphasis on cerebellum and optic tectum. By quantitative polymerase chain reaction, we found three RNA transcripts coding for the intra-ER calcium binding protein calsequestrin: casq1a, casq1b, and casq2. In brain homogenates, two isoforms were detected by mass spectrometry and western blotting. Fractionation experiments of whole brain revealed that Casq1a and Casq2 were enriched in a heavy fraction containing ER microsomes and synaptic membranes. By in situ hybridization, we found the heterogeneous expression of casq1a and casq2 mRNA to be compatible with the cellular localization of calsequestrins investigated by immunofluorescence. Casq1 was expressed in neurogenic differentiation 1 expressing the granule cells of the cerebellum and the periventricular zone of the optic tectum. Casq2 was concentrated in parvalbumin expressing Purkinje cells. At a subcellular level, Casq1 was restricted to granular cell bodies, and Casq2 was localized in cell bodies, dendrites, and axons. Data are discussed in relation to the differential cellular and subcellular distribution of other cerebellum calcium store markers and are evaluated with respect to the putative relevance of calsequestrins in the neuron-specific functional activity.
Collapse
Affiliation(s)
- Sandra Furlan
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Padova, Italy
| | - Marina Campione
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Padova, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Istituto Interuniversitario di Miologia, Padova, Italy.,Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Simone Mosole
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | | | - Pompeo Volpe
- Department of Biomedical Sciences, University of Padova, Istituto Interuniversitario di Miologia, Padova, Italy
| | - Alessandra Nori
- Department of Biomedical Sciences, University of Padova, Istituto Interuniversitario di Miologia, Padova, Italy
| |
Collapse
|
13
|
Integration of Swimming-Related Synaptic Excitation and Inhibition by olig2 + Eurydendroid Neurons in Larval Zebrafish Cerebellum. J Neurosci 2020; 40:3063-3074. [PMID: 32139583 DOI: 10.1523/jneurosci.2322-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
The cerebellum influences motor control through Purkinje target neurons, which transmit cerebellar output. Such output is required, for instance, for larval zebrafish to learn conditioned fictive swimming. The output cells, called eurydendroid neurons (ENs) in teleost fish, are inhibited by Purkinje cells and excited by parallel fibers. Here, we investigated the electrophysiological properties of glutamatergic ENs labeled by the transcription factor olig2. Action potential firing and synaptic responses were recorded in current clamp and voltage clamp from olig2+ neurons in immobilized larval zebrafish (before sexual differentiation) and were correlated with motor behavior by simultaneous recording of fictive swimming. In the absence of swimming, olig2+ ENs had basal firing rates near 8 spikes/s, and EPSCs and IPSCs were evident. Comparing Purkinje firing rates and eurydendroid IPSC rates indicated that 1-3 Purkinje cells converge onto each EN. Optogenetically suppressing Purkinje simple spikes, while preserving complex spikes, suggested that eurydendroid IPSC size depended on presynaptic spike duration rather than amplitude. During swimming, EPSC and IPSC rates increased. Total excitatory and inhibitory currents during sensory-evoked swimming were both more than double those during spontaneous swimming. During both spontaneous and sensory-evoked swimming, the total inhibitory current was more than threefold larger than the excitatory current. Firing rates of ENs nevertheless increased, suggesting that the relative timing of IPSCs and EPSCs may permit excitation to drive additional eurydendroid spikes. The data indicate that olig2+ cells are ENs whose activity is modulated with locomotion, suiting them to participate in sensorimotor integration associated with cerebellum-dependent learning.SIGNIFICANCE STATEMENT The cerebellum contributes to movements through signals generated by cerebellar output neurons, called eurydendroid neurons (ENs) in fish (cerebellar nuclei in mammals). ENs receive sensory and motor signals from excitatory parallel fibers and inhibitory Purkinje cells. Here, we report electrophysiological recordings from ENs of larval zebrafish that directly illustrate how synaptic inhibition and excitation are integrated by cerebellar output neurons in association with motor behavior. The results demonstrate that inhibitory and excitatory drive both increase during fictive swimming, but inhibition greatly exceeds excitation. Firing rates nevertheless increase, providing evidence that synaptic integration promotes cerebellar output during locomotion. The data offer a basis for comparing aspects of cerebellar coding that are conserved and that diverge across vertebrates.
Collapse
|
14
|
Nimura T, Itoh T, Hagio H, Hayashi T, Di Donato V, Takeuchi M, Itoh T, Inoguchi F, Sato Y, Yamamoto N, Katsuyama Y, Del Bene F, Shimizu T, Hibi M. Role of Reelin in cell positioning in the cerebellum and the cerebellum-like structure in zebrafish. Dev Biol 2019; 455:393-408. [PMID: 31323192 DOI: 10.1016/j.ydbio.2019.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/05/2019] [Accepted: 07/14/2019] [Indexed: 02/07/2023]
Abstract
The cerebellum and the cerebellum-like structure in the mesencephalic tectum in zebrafish contain multiple cell types, including principal cells (i.e., Purkinje cells and type I neurons) and granule cells, that form neural circuits in which the principal cells receive and integrate inputs from granule cells and other neurons. It is largely unknown how these cells are positioned and how neural circuits form. While Reelin signaling is known to play an important role in cell positioning in the mammalian brain, its role in the formation of other vertebrate brains remains elusive. Here we found that zebrafish with mutations in Reelin or in the Reelin-signaling molecules Vldlr or Dab1a exhibited ectopic Purkinje cells, eurydendroid cells (projection neurons), and Bergmann glial cells in the cerebellum, and ectopic type I neurons in the tectum. The ectopic Purkinje cells and type I neurons received aberrant afferent fibers in these mutants. In wild-type zebrafish, reelin transcripts were detected in the internal granule cell layer, while Reelin protein was localized to the superficial layer of the cerebellum and the tectum. Laser ablation of the granule cell axons perturbed the localization of Reelin, and the mutation of both kif5aa and kif5ba, which encode major kinesin I components in the granule cells, disrupted the elongation of granule cell axons and the Reelin distribution. Our findings suggest that in zebrafish, (1) Reelin is transported from the granule cell soma to the superficial layer by axonal transport; (2) Reelin controls the migration of neurons and glial cells from the ventricular zone; and (3) Purkinje cells and type I neurons attract afferent axons during the formation of the cerebellum and the cerebellum-like structure.
Collapse
Affiliation(s)
- Takayuki Nimura
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8602, Japan
| | - Tsubasa Itoh
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8602, Japan
| | - Hanako Hagio
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8602, Japan; Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Takuto Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8602, Japan
| | - Vincenzo Di Donato
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris, 75005, France
| | - Miki Takeuchi
- Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Takeaki Itoh
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Fuduki Inoguchi
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Naoyuki Yamamoto
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yu Katsuyama
- Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, 520-2192, Japan
| | - Filippo Del Bene
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, UPMC Paris-Sorbonne, Paris, 75005, France
| | - Takashi Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8602, Japan; Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8602, Japan; Bioscience and Biotechnology Center, Nagoya University, Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
15
|
Namikawa K, Dorigo A, Zagrebelsky M, Russo G, Kirmann T, Fahr W, Dübel S, Korte M, Köster RW. Modeling Neurodegenerative Spinocerebellar Ataxia Type 13 in Zebrafish Using a Purkinje Neuron Specific Tunable Coexpression System. J Neurosci 2019; 39:3948-3969. [PMID: 30862666 PMCID: PMC6520513 DOI: 10.1523/jneurosci.1862-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
Purkinje cells (PCs) are primarily affected in neurodegenerative spinocerebellar ataxias (SCAs). For generating animal models for SCAs, genetic regulatory elements specifically targeting PCs are required, thereby linking pathological molecular effects with impaired function and organismic behavior. Because cerebellar anatomy and function are evolutionary conserved, zebrafish represent an excellent model to study SCAs in vivo We have isolated a 258 bp cross-species PC-specific enhancer element that can be used in a bidirectional manner for bioimaging of transgene-expressing PCs in zebrafish (both sexes) with variable copy numbers for tuning expression strength. Emerging ectopic expression at high copy numbers can be further eliminated by repurposing microRNA-mediated posttranslational mRNA regulation.Subsequently, we generated a transgenic SCA type 13 (SCA13) model, using a zebrafish-variant mimicking a human pathological SCA13R420H mutation, resulting in cell-autonomous progressive PC degeneration linked to cerebellum-driven eye-movement deficits as observed in SCA patients. This underscores that investigating PC-specific cerebellar neuropathologies in zebrafish allows for interconnecting bioimaging of disease mechanisms with behavioral analysis suitable for therapeutic compound testing.SIGNIFICANCE STATEMENT SCA13 patients carrying a KCNC3R420H allele have been shown to display mid-onset progressive cerebellar atrophy, but genetic modeling of SCA13 by expressing this pathogenic mutant in different animal models has not resulted in neuronal degeneration so far; likely because the transgene was expressed in heterologous cell types. We developed a genetic system for tunable PC-specific coexpression of several transgenes to manipulate and simultaneously monitor cerebellar PCs. We modeled a SCA13 zebrafish accessible for bioimaging to investigate disease progression, revealing robust PC degeneration, resulting in impaired eye movement. Our transgenic zebrafish mimicking both neuropathological and behavioral changes manifested in SCA-affected patients will be suitable for investigating causes of cerebellar diseases in vivo from the molecular to the behavioral level.
Collapse
Affiliation(s)
| | | | - Marta Zagrebelsky
- Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig 38106, Germany
| | - Giulio Russo
- Cellular and Molecular Neurobiology
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | | | - Wieland Fahr
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | - Stefan Dübel
- Biotechnology and Bioinformatics, Institute for Biochemistry, Technical University Braunschweig 38106, Germany, and
| | - Martin Korte
- Cellular Neurobiology, Zoological Institute, Technical University Braunschweig, Braunschweig 38106, Germany
- Research Group Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, Braunschweig 38106, Germany
| | | |
Collapse
|
16
|
Dohaku R, Yamaguchi M, Yamamoto N, Shimizu T, Osakada F, Hibi M. Tracing of Afferent Connections in the Zebrafish Cerebellum Using Recombinant Rabies Virus. Front Neural Circuits 2019; 13:30. [PMID: 31068795 PMCID: PMC6491863 DOI: 10.3389/fncir.2019.00030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/10/2019] [Indexed: 12/31/2022] Open
Abstract
The cerebellum is involved in some forms of motor coordination and learning, and in cognitive and emotional functions. To elucidate the functions of the cerebellum, it is important to unravel the detailed connections of the cerebellar neurons. Although the cerebellar neural circuit structure is generally conserved among vertebrates, it is not clear whether the cerebellum receives and processes the same or similar information in different vertebrate species. Here, we performed monosynaptic retrograde tracing with recombinant rabies viruses (RV) to identify the afferent connections of the zebrafish cerebellar neurons. We used a G-deleted RV that expressed GFP. The virus was also pseudotyped with EnvA, an envelope protein of avian sarcoma and leucosis virus (ALSV-A). For the specific infection of cerebellar neurons, we expressed the RV glycoprotein (G) gene and the envelope protein TVA, which is the receptor for EnvA, in Purkinje cells (PCs) or granule cells (GCs), using the promoter for aldolase Ca (aldoca) or cerebellin 12 (cbln12), respectively. When the virus infected PCs in the aldoca line, GFP was detected in the PCs’ presynaptic neurons, including GCs and neurons in the inferior olivary nuclei (IOs), which send climbing fibers (CFs). These observations validated the RV tracing method in zebrafish. When the virus infected GCs in the cbln12 line, GFP was again detected in their presynaptic neurons, including neurons in the pretectal nuclei, the nucleus lateralis valvulae (NLV), the central gray (CG), the medial octavolateralis nucleus (MON), and the descending octaval nucleus (DON). GFP was not observed in these neurons when the virus infected PCs in the aldoca line. These precerebellar neurons generally agree with those reported for other teleost species and are at least partly conserved with those in mammals. Our results demonstrate that the RV system can be used for connectome analyses in zebrafish, and provide fundamental information about the cerebellar neural circuits, which will be valuable for elucidating the functions of cerebellar neural circuits in zebrafish.
Collapse
Affiliation(s)
- Ryuji Dohaku
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Masahiro Yamaguchi
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Naoyuki Yamamoto
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takashi Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.,Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology, Nagoya University, Nagoya, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.,Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology, Nagoya University, Nagoya, Japan
| |
Collapse
|
17
|
Knogler LD, Kist AM, Portugues R. Motor context dominates output from purkinje cell functional regions during reflexive visuomotor behaviours. eLife 2019; 8:e42138. [PMID: 30681408 PMCID: PMC6374073 DOI: 10.7554/elife.42138] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/26/2018] [Indexed: 12/22/2022] Open
Abstract
The cerebellum integrates sensory stimuli and motor actions to enable smooth coordination and motor learning. Here we harness the innate behavioral repertoire of the larval zebrafish to characterize the spatiotemporal dynamics of feature coding across the entire Purkinje cell population during visual stimuli and the reflexive behaviors that they elicit. Population imaging reveals three spatially-clustered regions of Purkinje cell activity along the rostrocaudal axis. Complementary single-cell electrophysiological recordings assign these Purkinje cells to one of three functional phenotypes that encode a specific visual, and not motor, signal via complex spikes. In contrast, simple spike output of most Purkinje cells is strongly driven by motor-related tail and eye signals. Interactions between complex and simple spikes show heterogeneous modulation patterns across different Purkinje cells, which become temporally restricted during swimming episodes. Our findings reveal how sensorimotor information is encoded by individual Purkinje cells and organized into behavioral modules across the entire cerebellum.
Collapse
Affiliation(s)
- Laura D Knogler
- Max Planck Institute of Neurobiology, Sensorimotor Control Research GroupMartinsriedGermany
| | - Andreas M Kist
- Max Planck Institute of Neurobiology, Sensorimotor Control Research GroupMartinsriedGermany
| | - Ruben Portugues
- Max Planck Institute of Neurobiology, Sensorimotor Control Research GroupMartinsriedGermany
| |
Collapse
|
18
|
Prenatal Neuropathologies in Autism Spectrum Disorder and Intellectual Disability: The Gestation of a Comprehensive Zebrafish Model. J Dev Biol 2018; 6:jdb6040029. [PMID: 30513623 PMCID: PMC6316217 DOI: 10.3390/jdb6040029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) are neurodevelopmental disorders with overlapping diagnostic behaviors and risk factors. These include embryonic exposure to teratogens and mutations in genes that have important functions prenatally. Animal models, including rodents and zebrafish, have been essential in delineating mechanisms of neuropathology and identifying developmental critical periods, when those mechanisms are most sensitive to disruption. This review focuses on how the developmentally accessible zebrafish is contributing to our understanding of prenatal pathologies that set the stage for later ASD-ID behavioral deficits. We discuss the known factors that contribute prenatally to ASD-ID and the recent use of zebrafish to model deficits in brain morphogenesis and circuit development. We conclude by suggesting that a future challenge in zebrafish ASD-ID modeling will be to bridge prenatal anatomical and physiological pathologies to behavioral deficits later in life.
Collapse
|
19
|
Multiple zebrafish atoh1 genes specify a diversity of neuronal types in the zebrafish cerebellum. Dev Biol 2018; 438:44-56. [PMID: 29548943 DOI: 10.1016/j.ydbio.2018.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/16/2018] [Accepted: 03/03/2018] [Indexed: 11/21/2022]
Abstract
A single Atoh1 basic-helix-loop-helix transcription factor specifies multiple neuron types in the mammalian cerebellum and anterior hindbrain. The zebrafish genome encodes three paralagous atoh1 genes whose functions in cerebellum and anterior hindbrain development we explore here. With use of a transgenic reporter, we report that zebrafish atoh1c-expressing cells are organized in two distinct domains that are separated both by space and developmental time. An early isthmic expression domain gives rise to an extracerebellar population in rhombomere 1 and an upper rhombic lip domain gives rise to granule cell progenitors that migrate to populate all four granule cell territories of the fish cerebellum. Using genetic mutants we find that of the three zebrafish atoh1 paralogs, atoh1c and atoh1a are required for the full complement of granule neurons. Surprisingly, the two genes are expressed in non-overlapping granule cell progenitor populations, indicating that fish use duplicate atoh1 genes to generate granule cell diversity that is not detected in mammals. Finally, live imaging of granule cell migration in wildtype and atoh1c mutant embryos reveals that while atoh1c is not required for granule cell specification per se, it is required for granule cells to delaminate and migrate away from the rhombic lip.
Collapse
|
20
|
Harmon TC, Magaram U, McLean DL, Raman IM. Distinct responses of Purkinje neurons and roles of simple spikes during associative motor learning in larval zebrafish. eLife 2017; 6:e22537. [PMID: 28541889 PMCID: PMC5444900 DOI: 10.7554/elife.22537] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/09/2017] [Indexed: 12/22/2022] Open
Abstract
To study cerebellar activity during learning, we made whole-cell recordings from larval zebrafish Purkinje cells while monitoring fictive swimming during associative conditioning. Fish learned to swim in response to visual stimulation preceding tactile stimulation of the tail. Learning was abolished by cerebellar ablation. All Purkinje cells showed task-related activity. Based on how many complex spikes emerged during learned swimming, they were classified as multiple, single, or zero complex spike (MCS, SCS, ZCS) cells. With learning, MCS and ZCS cells developed increased climbing fiber (MCS) or parallel fiber (ZCS) input during visual stimulation; SCS cells fired complex spikes associated with learned swimming episodes. The categories correlated with location. Optogenetically suppressing simple spikes only during visual stimulation demonstrated that simple spikes are required for acquisition and early stages of expression of learned responses, but not their maintenance, consistent with a transient, instructive role for simple spikes during cerebellar learning in larval zebrafish.
Collapse
Affiliation(s)
- Thomas C Harmon
- Department of Neurobiology, Northwestern University, Evanston, United States
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States
| | - Uri Magaram
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, United States
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States
| | - Indira M Raman
- Department of Neurobiology, Northwestern University, Evanston, United States
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, United States
| |
Collapse
|
21
|
Hibi M, Matsuda K, Takeuchi M, Shimizu T, Murakami Y. Evolutionary mechanisms that generate morphology and neural-circuit diversity of the cerebellum. Dev Growth Differ 2017; 59:228-243. [DOI: 10.1111/dgd.12349] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Masahiko Hibi
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Koji Matsuda
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Miki Takeuchi
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
| | - Takashi Shimizu
- Bioscience and Biotechnology Center; Nagoya University; Nagoya 464-8601 Japan
- Graduate School of Science; Nagoya University; Nagoya Aichi 464-8602 Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering; Ehime University; Matsuyama 790-8577 Japan
| |
Collapse
|