1
|
Vommaro ML, Donato S, Caputo S, Agostino RG, Montali A, Tettamanti G, Giglio A. Anatomical changes of Tenebrio molitor and Tribolium castaneum during complete metamorphosis. Cell Tissue Res 2024; 396:19-40. [PMID: 38409390 PMCID: PMC10997553 DOI: 10.1007/s00441-024-03877-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
In holometabolous insects, extensive reorganisation of tissues and cells occurs at the pupal stage. The remodelling of the external exoskeleton and internal organs that intervenes during metamorphosis has been traditionally studied in many insect species based on histological or ultrastructural methods. This study demonstrates the use of synchrotron X-ray phase-contrast micro-computed tomography as a powerful, non-destructive tool for in situ morphological observation of anatomical structures at the pupal stage in two Tenebrionid beetles, i.e. Tribolium castaneum and Tenebrio molitor, known as important pests, as well as emerging and promising models in experimental biology. Virtual sections and three-dimensional reconstructions were performed on both males and females at early, intermediate, and late pupal stage. The dataset allowed us to observe the remodelling of the gut and nervous system as well as the shaping of the female and male reproductive system at different pupal ages in both mealworm and red flour beetles. Moreover, we observed that the timing and duration pattern of organ development varied between the species analysed, likely related to the species-specific adaptations of the pre-imaginal stages to environmental conditions, which ultimately affect their life cycle. This research provides new knowledge on the morphological modifications that occur during the pupal stage of holometabolous insects and provides a baseline set of information on beetle metamorphosis that may support future research in forensics, physiology, and ecology as well as an image atlas for educational purposes.
Collapse
Affiliation(s)
- Maria Luigia Vommaro
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy
| | - Sandro Donato
- University of Calabria, Department of Physics and STAR research infrastructure, Rende, Italy
- Istituto Nazionale di Fisica Nucleare, Division of Frascati, Rome, Italy
| | - Simone Caputo
- University of Calabria, Department of Environmental Engineering, Rende, Italy
| | - Raffaele G Agostino
- University of Calabria, Department of Physics and STAR research infrastructure, Rende, Italy
| | - Aurora Montali
- University of Insubria, Department of Biotechnology and Life Sciences, Varese, Italy
| | - Gianluca Tettamanti
- University of Insubria, Department of Biotechnology and Life Sciences, Varese, Italy
- Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy
| | - Anita Giglio
- University of Calabria, Department of Biology, Ecology and Earth Science, Rende, Italy.
| |
Collapse
|
2
|
Althaus V, Exner G, von Hadeln J, Homberg U, Rosner R. Anatomical organization of the cerebrum of the praying mantis Hierodula membranacea. J Comp Neurol 2024; 532:e25607. [PMID: 38501930 DOI: 10.1002/cne.25607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
Many predatory animals, such as the praying mantis, use vision for prey detection and capture. Mantises are known in particular for their capability to estimate distances to prey by stereoscopic vision. While the initial visual processing centers have been extensively documented, we lack knowledge on the architecture of central brain regions, pivotal for sensory motor transformation and higher brain functions. To close this gap, we provide a three-dimensional (3D) reconstruction of the central brain of the Asian mantis, Hierodula membranacea. The atlas facilitates in-depth analysis of neuron ramification regions and aides in elucidating potential neuronal pathways. We integrated seven 3D-reconstructed visual interneurons into the atlas. In total, 42 distinct neuropils of the cerebrum were reconstructed based on synapsin-immunolabeled whole-mount brains. Backfills from the antenna and maxillary palps, as well as immunolabeling of γ-aminobutyric acid (GABA) and tyrosine hydroxylase (TH), further substantiate the identification and boundaries of brain areas. The composition and internal organization of the neuropils were compared to the anatomical organization of the brain of the fruit fly (Drosophila melanogaster) and the two available brain atlases of Polyneoptera-the desert locust (Schistocerca gregaria) and the Madeira cockroach (Rhyparobia maderae). This study paves the way for detailed analyses of neuronal circuitry and promotes cross-species brain comparisons. We discuss differences in brain organization between holometabolous and polyneopteran insects. Identification of ramification sites of the visual neurons integrated into the atlas supports previous claims about homologous structures in the optic lobes of flies and mantises.
Collapse
Affiliation(s)
- Vanessa Althaus
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Gesa Exner
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Joss von Hadeln
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| | - Ronny Rosner
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Department of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
- Biosciences Institute, Henry Wellcome Building for Neuroecology, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Jahn S, Althaus V, Heckmann J, Janning M, Seip AK, Takahashi N, Grigoriev C, Kolano J, Homberg U. Neuroarchitecture of the central complex in the Madeira cockroach Rhyparobia maderae: Pontine and columnar neuronal cell types. J Comp Neurol 2023; 531:1689-1714. [PMID: 37608556 DOI: 10.1002/cne.25535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Insects have evolved remarkable abilities to navigate over short distances and during long-range seasonal migrations. The central complex (CX) is a navigation center in the insect brain that controls spatial orientation and directed locomotion. It is composed of the protocerebral bridge (PB), the upper (CBU) and lower (CBL) division of the central body, and a pair of noduli. While most of its functional organization and involvement in head-direction coding has been obtained from work on flies, bees, and locusts that largely rely on vision for navigation, little contribution has been provided by work on nocturnal species. To close this gap, we have investigated the columnar organization of the CX in the cockroach Rhyparobia maderae. Rhyparobia maderae is a highly agile nocturnal insect that relies largely but not exclusively on antennal information for navigation. A particular feature of the cockroach CX is an organization of the CBU and CBL into interleaved series of eight and nine columns. Single-cell tracer injections combined with imaging and 3D analysis revealed five systems of pontine neurons connecting columns along the vertical and horizontal axis and 18 systems of columnar neurons with topographically organized projection patterns. Among these are six types of neurons with no correspondence in other species. Many neurons send processes into the anterior lip, a brain area highly reduced in bees and unknown in flies. While sharing many features with the CX in other species, the cockroach CX shows some unique attributes that may be related to the ecological niche of this insect.
Collapse
Affiliation(s)
- Stefanie Jahn
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Vanessa Althaus
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Jannik Heckmann
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Mona Janning
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Ann-Katrin Seip
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Naomi Takahashi
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Clara Grigoriev
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Juliana Kolano
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
4
|
Mitchell R, Shaverdian S, Dacke M, Webb B. A model of cue integration as vector summation in the insect brain. Proc Biol Sci 2023; 290:20230767. [PMID: 37357865 PMCID: PMC10291719 DOI: 10.1098/rspb.2023.0767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 06/27/2023] Open
Abstract
Ball-rolling dung beetles are known to integrate multiple cues in order to facilitate their straight-line orientation behaviour. Recent work has suggested that orientation cues are integrated according to a vector sum, that is, compass cues are represented by vectors and summed to give a combined orientation estimate. Further, cue weight (vector magnitude) appears to be set according to cue reliability. This is consistent with the popular Bayesian view of cue integration: cues are integrated to reduce or minimize an agent's uncertainty about the external world. Integration of orientation cues is believed to occur at the input to the insect central complex. Here, we demonstrate that a model of the head direction circuit of the central complex, including plasticity in input synapses, can act as a substrate for cue integration as vector summation. Further, we show that cue influence is not necessarily driven by cue reliability. Finally, we present a dung beetle behavioural experiment which, in combination with simulation, strongly suggests that these beetles do not weight cues according to reliability. We suggest an alternative strategy whereby cues are weighted according to relative contrast, which can also explain previous results.
Collapse
Affiliation(s)
- Robert Mitchell
- Institute for Perception, Action, and Behaviour, The University of Edinburgh School of Informatics, Edinburgh, Edinburgh EH8 9AB, UK
| | - Shahrzad Shaverdian
- Lund Vision Group, Department of Biology, Lund University, Lund SE-223 62, Sweden
| | - Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, Lund SE-223 62, Sweden
| | - Barbara Webb
- Institute for Perception, Action, and Behaviour, The University of Edinburgh School of Informatics, Edinburgh, Edinburgh EH8 9AB, UK
| |
Collapse
|
5
|
Li S, Kong F, Xu H, Guo X, Li H, Ruan Y, Cao S, Guo Y. Biomimetic Polarized Light Navigation Sensor: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5848. [PMID: 37447698 DOI: 10.3390/s23135848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023]
Abstract
A polarized light sensor is applied to the front-end detection of a biomimetic polarized light navigation system, which is an important part of analyzing the atmospheric polarization mode and realizing biomimetic polarized light navigation, having received extensive attention in recent years. In this paper, biomimetic polarized light navigation in nature, the mechanism of polarized light navigation, point source sensor, imaging sensor, and a sensor based on micro nano machining technology are compared and analyzed, which provides a basis for the optimal selection of different polarized light sensors. The comparison results show that the point source sensor can be divided into basic point source sensor with simple structure and a point source sensor applied to integrated navigation. The imaging sensor can be divided into a simple time-sharing imaging sensor, a real-time amplitude splitting sensor that can detect images of multi-directional polarization angles, a real-time aperture splitting sensor that uses a light field camera, and a real-time focal plane light splitting sensor with high integration. In recent years, with the development of micro and nano machining technology, polarized light sensors are developing towards miniaturization and integration. In view of this, this paper also summarizes the latest progress of polarized light sensors based on micro and nano machining technology. Finally, this paper summarizes the possible future prospects and current challenges of polarized light sensor design, providing a reference for the feasibility selection of different polarized light sensors.
Collapse
Affiliation(s)
- Shunzi Li
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fang Kong
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Han Xu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaohan Guo
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haozhe Li
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yaohuang Ruan
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shouhu Cao
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yinjing Guo
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
6
|
Farnworth MS, Bucher G, Hartenstein V. An atlas of the developing Tribolium castaneum brain reveals conservation in anatomy and divergence in timing to Drosophila melanogaster. J Comp Neurol 2022; 530:2335-2371. [PMID: 35535818 PMCID: PMC9646932 DOI: 10.1002/cne.25335] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
Abstract
Insect brains are formed by conserved sets of neural lineages whose fibers form cohesive bundles with characteristic projection patterns. Within the brain neuropil, these bundles establish a system of fascicles constituting the macrocircuitry of the brain. The overall architecture of the neuropils and the macrocircuitry appear to be conserved. However, variation is observed, for example, in size, shape, and timing of development. Unfortunately, the developmental and genetic basis of this variation is poorly understood, although the rise of new genetically tractable model organisms such as the red flour beetle Tribolium castaneum allows the possibility to gain mechanistic insights. To facilitate such work, we present an atlas of the developing brain of T. castaneum, covering the first larval instar, the prepupal stage, and the adult, by combining wholemount immunohistochemical labeling of fiber bundles (acetylated tubulin) and neuropils (synapsin) with digital 3D reconstruction using the TrakEM2 software package. Upon comparing this anatomical dataset with the published work in Drosophila melanogaster, we confirm an overall high degree of conservation. Fiber tracts and neuropil fascicles, which can be visualized by global neuronal antibodies like antiacetylated tubulin in all invertebrate brains, create a rich anatomical framework to which individual neurons or other regions of interest can be referred to. The framework of a largely conserved pattern allowed us to describe differences between the two species with respect to parameters such as timing of neuron proliferation and maturation. These features likely reflect adaptive changes in developmental timing that govern the change from larval to adult brain.
Collapse
Affiliation(s)
- Max S Farnworth
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
- Evolution of Brains and Behaviour lab, School of Biological Sciences, University of Bristol, Bristol, UK
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California/Los Angeles, Los Angeles, USA
| |
Collapse
|
7
|
Althaus V, Jahn S, Massah A, Stengl M, Homberg U. 3D-atlas of the brain of the cockroach Rhyparobia maderae. J Comp Neurol 2022; 530:3126-3156. [PMID: 36036660 DOI: 10.1002/cne.25396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 11/07/2022]
Abstract
The Madeira cockroach Rhyparobia maderae is a nocturnal insect and a prominent model organism for the study of circadian rhythms. Its master circadian clock, controlling circadian locomotor activity and sleep-wake cycles, is located in the accessory medulla of the optic lobe. For a better understanding of brain regions controlled by the circadian clock and brain organization of this insect in general, we created a three-dimensional (3D) reconstruction of all neuropils of the cerebral ganglia based on anti-synapsin and anti-γ-aminobutyric acid immunolabeling of whole mount brains. Forty-nine major neuropils were identified and three-dimensionally reconstructed. Single-cell dye fills complement the data and provide evidence for distinct subdivisions of certain brain areas. Most neuropils defined in the fruit fly Drosophila melanogaster could be distinguished in the cockroach as well. However, some neuropils identified in the fruit fly do not exist as distinct entities in the cockroach while others are lacking in the fruit fly. In addition to neuropils, major fiber systems, tracts, and commissures were reconstructed and served as important landmarks separating brain areas. Being a nocturnal insect, R. maderae is an important new species to the growing collection of 3D insect brain atlases and only the second hemimetabolous insect, for which a detailed 3D brain atlas is available. This atlas will be highly valuable for an evolutionary comparison of insect brain organization and will greatly facilitate addressing brain areas that are supervised by the circadian clock.
Collapse
Affiliation(s)
- Vanessa Althaus
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Stefanie Jahn
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
| | - Azar Massah
- Faculty of Mathematics and Natural Sciences, Institute of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | - Monika Stengl
- Faculty of Mathematics and Natural Sciences, Institute of Biology, Animal Physiology, University of Kassel, Kassel, Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology, Philipps-University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University of Giessen, Marburg, Germany
| |
Collapse
|
8
|
Hamanaka Y, Lu Z, Shiga S. Morphology and synaptic connections of pigment-dispersing factor-immunoreactive neurons projecting to the lateral protocerebrum in the large black chafer, Holotrichia parallela. J Comp Neurol 2022; 530:2994-3010. [PMID: 35881849 DOI: 10.1002/cne.25391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
Abstract
Pigment-dispersing factor (PDF) is a well-known output neuropeptide modulator of circadian pacemakers in insects. Here, we investigated PDF-immunoreactive (ir) neurons in the brain of the large black chafer Holotrichia parallela to search for circadian neural components, which are potentially involved in its circabidian rhythm. PDF-ir cells were exclusively detected near the accessory medulla (AME) as a cluster of ∼ 100 cells with almost homogeneous size. No other cells exhibited immunoreactivity. The PDF-ir cells send beaded fibers into the proximal half of the AME and ventral elongation in an anterior region between the medulla (ME) and lobula (LO). Neither the lamina, ME, LO, nor lobula plate receives PDF-ir fibers. Primary axons derived from the PDF-ir cells extend toward the contralateral hemisphere through the dorsolateral protocerebrum anterior to the calyx to connect the bilateral AME. The axons form varicose outgrowths exclusively in the lateral protocerebrum. Double labeling with antisynapsin revealed partial overlaps between PDF-ir varicosities and synapsin-ir puncta. Thus, it was assumed that the PDF-ir fibers form output synapses there. To verify this, we investigated the ultrastructure of the PDF-ir varicosities in the lateral protocerebrum by preembedding immunoelectron microscopy. The PDF-ir profiles contain small clear synaptic vesicles as well as both PDF-positive and PDF-negative dense-core vesicles, and the profiles form output synapses upon unknown profiles and receive synapses from other PDF-ir profiles. PDF neurons near the AME are considered to be prominent circadian pacemakers in the cockroach and flies. Their possible function in the circabidian rhythm was discussed based on these anatomical insights.
Collapse
Affiliation(s)
- Yoshitaka Hamanaka
- Laboratory of Comparative Neurobiology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Zhiyuan Lu
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, Canada
| | - Sakiko Shiga
- Laboratory of Comparative Neurobiology, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
9
|
Garcia-Perez NC, Bucher G, Buescher M. Shaking hands is a homeodomain transcription factor that controls axon outgrowth of central complex neurons in the insect model Tribolium. Development 2021; 148:272435. [PMID: 34415334 PMCID: PMC8543150 DOI: 10.1242/dev.199368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/09/2021] [Indexed: 01/22/2023]
Abstract
Gene regulatory mechanisms that specify subtype identity of central complex (CX) neurons are the subject of intense investigation. The CX is a compartment within the brain common to all insect species and functions as a ‘command center’ that directs motor actions. It is made up of several thousand neurons, with more than 60 morphologically distinct identities. Accordingly, transcriptional programs must effect the specification of at least as many neuronal subtypes. We demonstrate a role for the transcription factor Shaking hands (Skh) in the specification of embryonic CX neurons in Tribolium. The developmental dynamics of skh expression are characteristic of terminal selectors of subtype identity. In the embryonic brain, skh expression is restricted to a subset of neurons, many of which survive to adulthood and contribute to the mature CX. skh expression is maintained throughout the lifetime in at least some CX neurons. skh knockdown results in axon outgrowth defects, thus preventing the formation of an embryonic CX primordium. The previously unstudied Drosophila skh shows a similar embryonic expression pattern, suggesting that subtype specification of CX neurons may be conserved. Summary: A detailed examination of the developmental expression of the homeodomain transcription factor Shaking hands in Tribolium reveals a role in the formation of the central complex primordium.
Collapse
Affiliation(s)
- Natalia Carolina Garcia-Perez
- Johann Friedrich Blumenbach Institute of Zoology, GZMB, Department of Evolutionary Developmental Genetics, University of Goettingen, Justus-von-Liebig Weg 11, 37077 Goettingen, Germany
| | - Gregor Bucher
- Johann Friedrich Blumenbach Institute of Zoology, GZMB, Department of Evolutionary Developmental Genetics, University of Goettingen, Justus-von-Liebig Weg 11, 37077 Goettingen, Germany
| | - Marita Buescher
- Johann Friedrich Blumenbach Institute of Zoology, GZMB, Department of Evolutionary Developmental Genetics, University of Goettingen, Justus-von-Liebig Weg 11, 37077 Goettingen, Germany
| |
Collapse
|
10
|
Sayre ME, Templin R, Chavez J, Kempenaers J, Heinze S. A projectome of the bumblebee central complex. eLife 2021; 10:e68911. [PMID: 34523418 PMCID: PMC8504972 DOI: 10.7554/elife.68911] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/14/2021] [Indexed: 12/29/2022] Open
Abstract
Insects have evolved diverse and remarkable strategies for navigating in various ecologies all over the world. Regardless of species, insects share the presence of a group of morphologically conserved neuropils known collectively as the central complex (CX). The CX is a navigational center, involved in sensory integration and coordinated motor activity. Despite the fact that our understanding of navigational behavior comes predominantly from ants and bees, most of what we know about the underlying neural circuitry of such behavior comes from work in fruit flies. Here, we aim to close this gap, by providing the first comprehensive map of all major columnar neurons and their projection patterns in the CX of a bee. We find numerous components of the circuit that appear to be highly conserved between the fly and the bee, but also highlight several key differences which are likely to have important functional ramifications.
Collapse
Affiliation(s)
- Marcel Ethan Sayre
- Lund University, Lund Vision Group, Department of BiologyLundSweden
- Macquarie University, Department of Biological SciencesSydneyAustralia
| | - Rachel Templin
- Queensland Brain Institute, University of QueenslandBrisbaneSweden
| | - Johanna Chavez
- Lund University, Lund Vision Group, Department of BiologyLundSweden
| | | | - Stanley Heinze
- Lund University, Lund Vision Group, Department of BiologyLundSweden
- Lund University, NanoLundLundSweden
| |
Collapse
|
11
|
Heinze S, El Jundi B, Berg BG, Homberg U, Menzel R, Pfeiffer K, Hensgen R, Zittrell F, Dacke M, Warrant E, Pfuhl G, Rybak J, Tedore K. A unified platform to manage, share, and archive morphological and functional data in insect neuroscience. eLife 2021; 10:65376. [PMID: 34427185 PMCID: PMC8457822 DOI: 10.7554/elife.65376] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 08/21/2021] [Indexed: 01/08/2023] Open
Abstract
Insect neuroscience generates vast amounts of highly diverse data, of which only a small fraction are findable, accessible and reusable. To promote an open data culture, we have therefore developed the InsectBrainDatabase (IBdb), a free online platform for insect neuroanatomical and functional data. The IBdb facilitates biological insight by enabling effective cross-species comparisons, by linking neural structure with function, and by serving as general information hub for insect neuroscience. The IBdb allows users to not only effectively locate and visualize data, but to make them widely available for easy, automated reuse via an application programming interface. A unique private mode of the database expands the IBdb functionality beyond public data deposition, additionally providing the means for managing, visualizing, and sharing of unpublished data. This dual function creates an incentive for data contribution early in data management workflows and eliminates the additional effort normally associated with publicly depositing research data. Insect neuroscience, like any field in the natural sciences, generates vast amounts of data. Currently, only a fraction are publicly available, and even less are reusable. This is because insect neuroscience data come in many formats and from many species. Some experiments focus on what insect brains look like (morphology), while others focus on how insect brains work (function). Some data come in the form of high-speed video, while other data contain voltage traces from individual neurons. Sharing is not as simple as uploading the raw files to the internet. To get a clear picture of how insect brains work, researchers need a way to cross-reference and connect different experiments. But, as it stands, there is no dedicated place for insect neuroscientists to share and explore such a diverse body of work. The community needs an open data repository that can link different types of data across many species, and can evolve as more data become available. Above all, this repository needs to be easy for researchers to use. To meet these specifications, Heinze et al. developed the Insect Brain Database. The database organizes data into three categories: species, brain structures, and neuron types. Within these categories, each entry has its own profile page. These pages bring different experiments together under one heading, allowing researchers to combine and compare data of different types. As researchers add more experiments, the profile pages will grow and evolve. To make the data easy to navigate, Heinze et al. developed a visual search tool. A combination of 2D and 3D images allow users to explore the data by anatomical location, without the need for expert knowledge. Researchers also have the option to upload their work in private mode, allowing them to securely share unpublished data. The Insect Brain Database brings data together in a way that is accessible not only to researchers, but also to students, and non-scientists. It will help researchers to find related work, to reuse existing data, and to build an open data culture. This has the potential to drive new discoveries combining research across the whole of the insect neuroscience field.
Collapse
Affiliation(s)
- Stanley Heinze
- Department of Biology, Lund University, Lund, Sweden.,NanoLund, Lund University, Lund, Sweden
| | - Basil El Jundi
- Biocenter, Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Bente G Berg
- Department of Psychology, Chemosensory lab, Norwegian University of Science and Technology, Trondheim, Norway
| | - Uwe Homberg
- Fachbereich Biologie, Tierphysiologie, and Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Randolf Menzel
- Institut für Biologie - Neurobiologie, Free University, Berlin, Germany
| | - Keram Pfeiffer
- Biocenter, Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Ronja Hensgen
- Fachbereich Biologie, Tierphysiologie, and Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Frederick Zittrell
- Fachbereich Biologie, Tierphysiologie, and Center for Mind Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Marie Dacke
- Department of Biology, Lund University, Lund, Sweden
| | - Eric Warrant
- Research School of Biology, Australian National University, Canberra, Australia
| | - Gerit Pfuhl
- Department of Psychology, Chemosensory lab, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Psychology, UiT The Arctic University of Norway, Tromso, Norway
| | - Jürgen Rybak
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Kevin Tedore
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
12
|
Rother L, Kraft N, Smith DB, El Jundi B, Gill RJ, Pfeiffer K. A micro-CT-based standard brain atlas of the bumblebee. Cell Tissue Res 2021; 386:29-45. [PMID: 34181089 PMCID: PMC8526489 DOI: 10.1007/s00441-021-03482-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/03/2021] [Indexed: 02/07/2023]
Abstract
In recent years, bumblebees have become a prominent insect model organism for a variety of biological disciplines, particularly to investigate learning behaviors as well as visual performance. Understanding these behaviors and their underlying neurobiological principles requires a clear understanding of brain anatomy. Furthermore, to be able to compare neuronal branching patterns across individuals, a common framework is required, which has led to the development of 3D standard brain atlases in most of the neurobiological insect model species. Yet, no bumblebee 3D standard brain atlas has been generated. Here we present a brain atlas for the buff-tailed bumblebee Bombus terrestris using micro-computed tomography (micro-CT) scans as a source for the raw data sets, rather than traditional confocal microscopy, to produce the first ever micro-CT-based insect brain atlas. We illustrate the advantages of the micro-CT technique, namely, identical native resolution in the three cardinal planes and 3D structure being better preserved. Our Bombus terrestris brain atlas consists of 30 neuropils reconstructed from ten individual worker bees, with micro-CT allowing us to segment neuropils completely intact, including the lamina, which is a tissue structure often damaged when dissecting for immunolabeling. Our brain atlas can serve as a platform to facilitate future neuroscience studies in bumblebees and illustrates the advantages of micro-CT for specific applications in insect neuroanatomy.
Collapse
Affiliation(s)
- Lisa Rother
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Nadine Kraft
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Dylan B Smith
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Basil El Jundi
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Keram Pfeiffer
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
13
|
Habenstein J, Thamm M, Rössler W. Neuropeptides as potential modulators of behavioral transitions in the ant Cataglyphis nodus. J Comp Neurol 2021; 529:3155-3170. [PMID: 33950523 DOI: 10.1002/cne.25166] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
Age-related behavioral plasticity is a major prerequisite for the ecological success of insect societies. Although ecological aspects of behavioral flexibility have been targeted in many studies, the underlying intrinsic mechanisms controlling the diverse changes in behavior along the individual life history of social insects are not completely understood. Recently, the neuropeptides allatostatin-A, corazonin, and tachykinin have been associated with the regulation of behavioral transitions in social insects. Here, we investigated changes in brain localization and expression of these neuropeptides following major behavioral transitions in Cataglyphis nodus ants. Our immunohistochemical analyses in the brain revealed that the overall branching pattern of neurons immunoreactive (ir) for the three neuropeptides is largely independent of the behavioral stages. Numerous allatostatin-A- and tachykinin-ir neurons innervate primary sensory neuropils and high-order integration centers of the brain. In contrast, the number of corazonergic neurons is restricted to only four neurons per brain hemisphere with cell bodies located in the pars lateralis and axons extending to the medial protocerebrum and the retrocerebral complex. Most interestingly, the cell-body volumes of these neurons are significantly increased in foragers compared to freshly eclosed ants and interior workers. Quantification of mRNA expression levels revealed a stage-related change in the expression of allatostatin-A and corazonin mRNA in the brain. Given the presence of the neuropeptides in major control centers of the brain and the neurohemal organs, these mRNA-changes strongly suggest an important modulatory role of both neuropeptides in the behavioral maturation of Cataglyphis ants.
Collapse
Affiliation(s)
- Jens Habenstein
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Thamm
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
14
|
Hardcastle BJ, Omoto JJ, Kandimalla P, Nguyen BCM, Keleş MF, Boyd NK, Hartenstein V, Frye MA. A visual pathway for skylight polarization processing in Drosophila. eLife 2021; 10:e63225. [PMID: 33755020 PMCID: PMC8051946 DOI: 10.7554/elife.63225] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/08/2021] [Indexed: 11/13/2022] Open
Abstract
Many insects use patterns of polarized light in the sky to orient and navigate. Here, we functionally characterize neural circuitry in the fruit fly, Drosophila melanogaster, that conveys polarized light signals from the eye to the central complex, a brain region essential for the fly's sense of direction. Neurons tuned to the angle of polarization of ultraviolet light are found throughout the anterior visual pathway, connecting the optic lobes with the central complex via the anterior optic tubercle and bulb, in a homologous organization to the 'sky compass' pathways described in other insects. We detail how a consistent, map-like organization of neural tunings in the peripheral visual system is transformed into a reduced representation suited to flexible processing in the central brain. This study identifies computational motifs of the transformation, enabling mechanistic comparisons of multisensory integration and central processing for navigation in the brains of insects.
Collapse
Affiliation(s)
- Ben J Hardcastle
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Jaison J Omoto
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Pratyush Kandimalla
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Bao-Chau M Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Mehmet F Keleş
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| | - Natalie K Boyd
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Volker Hartenstein
- Department of Molecular, Cell and Developmental Biology, University of California, Los AngelesLos AngelesUnited States
| | - Mark A Frye
- Department of Integrative Biology and Physiology, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
15
|
Dacke M, Baird E, El Jundi B, Warrant EJ, Byrne M. How Dung Beetles Steer Straight. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:243-256. [PMID: 32822556 DOI: 10.1146/annurev-ento-042020-102149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Distant and predictable features in the environment make ideal compass cues to allow movement along a straight path. Ball-rolling dung beetles use a wide range of different signals in the day or night sky to steer themselves along a fixed bearing. These include the sun, the Milky Way, and the polarization pattern generated by the moon. Almost two decades of research into these remarkable creatures have shown that the dung beetle's compass is flexible and readily adapts to the cues available in its current surroundings. In the morning and afternoon, dung beetles use the sun to orient, but at midday, they prefer to use the wind, and at night or in a forest, they rely primarily on polarized skylight to maintain straight paths. We are just starting to understand the neuronal substrate underlying the dung beetle's compass and the mystery of why these beetles start each journey with a dance.
Collapse
Affiliation(s)
- Marie Dacke
- Department of Biology, Lund University, 223 62 Lund, Sweden; ,
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa;
| | - Emily Baird
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden;
| | - Basil El Jundi
- Biocenter, University of Wuerzburg, 97074 Wuerzburg, Germany;
| | - Eric J Warrant
- Department of Biology, Lund University, 223 62 Lund, Sweden; ,
| | - Marcus Byrne
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa;
| |
Collapse
|
16
|
Bouchebti S, Arganda S. Insect lifestyle and evolution of brain morphology. CURRENT OPINION IN INSECT SCIENCE 2020; 42:90-96. [PMID: 33038535 DOI: 10.1016/j.cois.2020.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Insect lifestyles are extremely diversified and have important consequences for brain function. Lifestyle determines the resources and information that brains might access and also those that are required to produce adaptive behaviors. Most of the observed adaptations in brain morphology to variation in lifestyle are related to the first stages of sensory information processing (e.g. adaptations to diel habits). However, morphological signatures of lifestyles related to higher order processing of information are more difficult to demonstrate. Co-option of existing neural structures for new behaviors might hinder the detection of morphological changes at a large scale. Current methodological advances will make it possible to investigate finer structural changes (e.g. variation in the connectivity between neurons) and might shed light on whether or not some lifestyles (e.g. eusociality) require morphological adaptations.
Collapse
Affiliation(s)
- Sofia Bouchebti
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Sara Arganda
- Departamento de Biología y Geología, Física y Química Inorgánica, Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Madrid, Spain.
| |
Collapse
|
17
|
Timaeus L, Geid L, Sancer G, Wernet MF, Hummel T. Parallel Visual Pathways with Topographic versus Nontopographic Organization Connect the Drosophila Eyes to the Central Brain. iScience 2020; 23:101590. [PMID: 33205011 PMCID: PMC7648135 DOI: 10.1016/j.isci.2020.101590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/21/2020] [Accepted: 09/16/2020] [Indexed: 11/12/2022] Open
Abstract
One hallmark of the visual system is a strict retinotopic organization from the periphery toward the central brain, where functional imaging in Drosophila revealed a spatially accurate representation of visual cues in the central complex. This raised the question how, on a circuit level, the topographic features are implemented, as the majority of visual neurons enter the central brain converge in optic glomeruli. We discovered a spatial segregation of topographic versus nontopographic projections of distinct classes of medullo-tubercular (MeTu) neurons into a specific visual glomerulus, the anterior optic tubercle (AOTU). These parallel channels synapse onto different tubercular-bulbar (TuBu) neurons, which in turn relay visual information onto specific central complex ring neurons in the bulb neuropil. Hence, our results provide the circuit basis for spatially accurate representation of visual information and highlight the AOTU's role as a prominent relay station for spatial information from the retina to the central brain. A Drosophila visual circuit conveys input from the periphery to the central brain Several synaptic pathways form parallel channels using the anterior optic tubercle Some pathways maintain topographic relationships across several synaptic steps Different target neurons in the central brain are identified
Collapse
Affiliation(s)
- Lorin Timaeus
- Department of Neurobiology, University of Vienna, Vienna, Austria
| | - Laura Geid
- Department of Neurobiology, University of Vienna, Vienna, Austria.,Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Gizem Sancer
- Department of Biology, Freie Universität Berlin, Berlin, Germany
| | - Mathias F Wernet
- Department of Biology, Freie Universität Berlin, Berlin, Germany
| | - Thomas Hummel
- Department of Neurobiology, University of Vienna, Vienna, Austria
| |
Collapse
|
18
|
Habenstein J, Amini E, Grübel K, el Jundi B, Rössler W. The brain of
Cataglyphis
ants: Neuronal organization and visual projections. J Comp Neurol 2020; 528:3479-3506. [DOI: 10.1002/cne.24934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Jens Habenstein
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Emad Amini
- Biocenter, Neurobiology and Genetics University of Würzburg Würzburg Germany
| | - Kornelia Grübel
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Basil el Jundi
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| | - Wolfgang Rössler
- Biocenter, Behavioral Physiology and Sociobiology (Zoology II) University of Würzburg Würzburg Germany
| |
Collapse
|
19
|
Hensgen R, England L, Homberg U, Pfeiffer K. Neuroarchitecture of the central complex in the brain of the honeybee: Neuronal cell types. J Comp Neurol 2020; 529:159-186. [PMID: 32374034 DOI: 10.1002/cne.24941] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022]
Abstract
The central complex (CX) in the insect brain is a higher order integration center that controls a number of behaviors, most prominently goal directed locomotion. The CX comprises the protocerebral bridge (PB), the upper division of the central body (CBU), the lower division of the central body (CBL), and the paired noduli (NO). Although spatial orientation has been extensively studied in honeybees at the behavioral level, most electrophysiological and anatomical analyses have been carried out in other insect species, leaving the morphology and physiology of neurons that constitute the CX in the honeybee mostly enigmatic. The goal of this study was to morphologically identify neuronal cell types of the CX in the honeybee Apis mellifera. By performing iontophoretic dye injections into the CX, we traced 16 subtypes of neuron that connect a subdivision of the CX with other regions in the bee's central brain, and eight subtypes that mainly interconnect different subdivisions of the CX. They establish extensive connections between the CX and the lateral complex, the superior protocerebrum and the posterior protocerebrum. Characterized neuron classes and subtypes are morphologically similar to those described in other insects, suggesting considerable conservation in the neural network relevant for orientation.
Collapse
Affiliation(s)
- Ronja Hensgen
- Animal Physiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Laura England
- Animal Physiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Uwe Homberg
- Animal Physiology, Department of Biology, Philipps-Universität Marburg, Marburg, Germany
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Würzburg, Germany
| |
Collapse
|
20
|
Adden A, Wibrand S, Pfeiffer K, Warrant E, Heinze S. The brain of a nocturnal migratory insect, the Australian Bogong moth. J Comp Neurol 2020; 528:1942-1963. [PMID: 31994724 DOI: 10.1002/cne.24866] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/12/2022]
Abstract
Every year, millions of Australian Bogong moths (Agrotis infusa) complete an astonishing journey: In Spring, they migrate over 1,000 km from their breeding grounds to the alpine regions of the Snowy Mountains, where they endure the hot summer in the cool climate of alpine caves. In autumn, the moths return to their breeding grounds, where they mate, lay eggs and die. These moths can use visual cues in combination with the geomagnetic field to guide their flight, but how these cues are processed and integrated into the brain to drive migratory behavior is unknown. To generate an access point for functional studies, we provide a detailed description of the Bogong moth's brain. Based on immunohistochemical stainings against synapsin and serotonin (5HT), we describe the overall layout as well as the fine structure of all major neuropils, including the regions that have previously been implicated in compass-based navigation. The resulting average brain atlas consists of 3D reconstructions of 25 separate neuropils, comprising the most detailed account of a moth brain to date. Our results show that the Bogong moth brain follows the typical lepidopteran ground pattern, with no major specializations that can be attributed to their spectacular migratory lifestyle. These findings suggest that migratory behavior does not require widespread modifications of brain structure, but might be achievable via small adjustments of neural circuitry in key brain areas. Locating these subtle changes will be a challenging task for the future, for which our study provides an essential anatomical framework.
Collapse
Affiliation(s)
- Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Sara Wibrand
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden.,NanoLund, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
21
|
Abstract
Continuously monitoring its position in space relative to a goal is one of the most essential tasks for an animal that moves through its environment. Species as diverse as rats, bees, and crabs achieve this by integrating all changes of direction with the distance covered during their foraging trips, a process called path integration. They generate an estimate of their current position relative to a starting point, enabling a straight-line return, following what is known as a home vector. While in theory path integration always leads the animal precisely back home, in the real world noise limits the usefulness of this strategy when operating in isolation. Noise results from stochastic processes in the nervous system and from unreliable sensory information, particularly when obtaining heading estimates. Path integration, during which angular self-motion provides the sole input for encoding heading (idiothetic path integration), results in accumulating errors that render this strategy useless over long distances. In contrast, when using an external compass this limitation is avoided (allothetic path integration). Many navigating insects indeed rely on external compass cues for estimating body orientation, whereas they obtain distance information by integration of steps or optic-flow-based speed signals. In the insect brain, a region called the central complex plays a key role for path integration. Not only does the central complex house a ring-attractor network that encodes head directions, neurons responding to optic flow also converge with this circuit. A neural substrate for integrating direction and distance into a memorized home vector has therefore been proposed in the central complex. We discuss how behavioral data and the theoretical framework of path integration can be aligned with these neural data.
Collapse
Affiliation(s)
| | | | - Allen Cheung
- The University of Queensland, Queensland Brain Institute, Upland Road, St. Lucia, Queensland, Australia
| |
Collapse
|
22
|
Abstract
What do a burly rower, a backstroke swimmer and a hard-working South African dung beetle all have in common? The answer is: they all benefit from moving along a straight path, and do so moving backwards. This, however, is where the similarity ends. While the rower has solved this navigational challenge by handing the task of steering to the coxswain, who faces the direction of travel, and the swimmer is guided down her lane by colourful ropes, the beetle puts its faith in the sky. From here, it utilises a larger repertoire of celestial compass cues than is known to be used by any other animal studied to date. A robust internal compass, designed to interpret directional information, has evolved under the selective pressure of shifting today's lunch efficiently out of reach of competitors, also drawn to the common buffet. While this is a goal that beetles might share with the hungry athletes, they reach it with drastically different brain powers; the brain of the beetle is several times smaller than a match head, containing fewer than a million neurons.
Collapse
Affiliation(s)
- Marie Dacke
- Lund Vision Group, Department of Biology, Lund University, 22362 Sweden.
| | - Basil El Jundi
- Emmy Noether Animal Navigation Group, Zoology II, Biocenter, University of Wuerzburg, 97074 Germany.
| |
Collapse
|
23
|
Xie GY, Ma BW, Liu XL, Chang YJ, Chen WB, Li GP, Feng HQ, Zhang YJ, Berg BG, Zhao XC. Brain Organization of Apolygus lucorum: A Hemipteran Species With Prominent Antennal Lobes. Front Neuroanat 2019; 13:70. [PMID: 31379518 PMCID: PMC6654032 DOI: 10.3389/fnana.2019.00070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
The anatomical organization of distinct regions in the insect brain often reflects their functions. In the present study, the brain structure of Apolygus lucorum was examined by using immunolabeling and three-dimensional reconstruction. The results revealed the location and volume of prominent neuropils, such as the antennal lobes (AL), optic lobes (OL), anterior optic tubercles (AOTU), central body (CB), lateral accessory lobes (LAL), mushroom lobes, and distinct tritocerebral neuropils. As expected, this brain is similar to that of other insects. One exception, however, is that the antennal lobes were found to be the most prominent neuropils. Their size relative to the entire brain is the largest among all insect species studied so far. In contrast, the calyx, a region getting direct input from the antennal lobe, has a smaller size relative to the brain than that of other species. These findings may suggest that olfaction plays an essential role for A. lucorum.
Collapse
Affiliation(s)
- Gui-Ying Xie
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Bai-Wei Ma
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiao-Lan Liu
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ya-Jun Chang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wen-Bo Chen
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Guo-Ping Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences (HAAS), Zhengzhou, China
| | - Hong-Qiang Feng
- Institute of Plant Protection, Henan Academy of Agricultural Sciences (HAAS), Zhengzhou, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bente G Berg
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
24
|
Groothuis J, Pfeiffer K, El Jundi B, Smid HM. The Jewel Wasp Standard Brain: Average shape atlas and morphology of the female Nasonia vitripennis brain. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 51:41-51. [PMID: 31357033 DOI: 10.1016/j.asd.2019.100878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Nasonia, a genus of parasitoid wasps, is a promising model system in the study of developmental and evolutionary genetics, as well as complex traits such as learning. Of these "jewel wasps", the species Nasonia vitripennis is widely spread and widely studied. To accelerate neuroscientific research in this model species, fundamental knowledge of its nervous system is needed. To this end, we present an average standard brain of recently eclosed naïve female N. vitripennis wasps obtained by the iterative shape averaging method. This "Jewel Wasp Standard Brain" includes the optic lobe (excluding the lamina), the anterior optic tubercle, the antennal lobe, the lateral horn, the mushroom body, the central complex, and the remaining unclassified neuropils in the central brain. Furthermore, we briefly describe these well-defined neuropils and their subregions in the N. vitripennis brain. A volumetric analysis of these neuropils is discussed in the context of brains of other insect species. The Jewel Wasp Standard Brain will provide a framework to integrate and consolidate the results of future neurobiological studies in N. vitripennis. In addition, the volumetric analysis provides a baseline for future work on age- and experience-dependent brain plasticity.
Collapse
Affiliation(s)
- Jitte Groothuis
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Basil El Jundi
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.
| |
Collapse
|
25
|
Abstract
South African ball-rolling dung beetles exhibit a unique orientation behavior to avoid competition for food: after forming a piece of dung into a ball, they efficiently escape with it from the dung pile along a straight-line path. To keep track of their heading, these animals use celestial cues, such as the sun, as an orientation reference. Here we show that wind can also be used as a guiding cue for the ball-rolling beetles. We demonstrate that this mechanosensory compass cue is only used when skylight cues are difficult to read, i.e., when the sun is close to the zenith. This raises the question of how the beetles combine multimodal orientation input to obtain a robust heading estimate. To study this, we performed behavioral experiments in a tightly controlled indoor arena. This revealed that the beetles register directional information provided by the sun and the wind and can use them in a weighted manner. Moreover, the directional information can be transferred between these 2 sensory modalities, suggesting that they are combined in the spatial memory network in the beetle's brain. This flexible use of compass cue preferences relative to the prevailing visual and mechanosensory scenery provides a simple, yet effective, mechanism for enabling precise compass orientation at any time of the day.
Collapse
|
26
|
Tang QB, Song WW, Chang YJ, Xie GY, Chen WB, Zhao XC. Distribution of Serotonin-Immunoreactive Neurons in the Brain and Gnathal Ganglion of Caterpillar Helicoverpa armigera. Front Neuroanat 2019; 13:56. [PMID: 31191263 PMCID: PMC6547022 DOI: 10.3389/fnana.2019.00056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is an important biogenic amine that acts as a neural circuit modulator. It is widespread in the central nervous system of insects. However, little is known about the distribution of serotonin in the nervous system of the cotton bollworm Helicoverpa armigera. In the present study, we performed immunohistochemical experiments with anti-serotonin serum to examine the distribution of serotonin in the central nervous system of H. armigera larvae. We found about 40 serotonin-immunoreactive neurons in the brain and about 20 in the gnathal ganglion. Most of these neurons are wide-field neurons giving rise to processes throughout the neuropils of the brain and the gnathal ganglion. In the central brain, serotonin-immunoreactive processes are present bilaterally in the tritocerebrum, the deutocerebrum, and major regions of the protocerebrum, including the central body (CB), lateral accessory lobes (LALs), clamps, crepine, superior protocerebrum, and lateral protocerebrum. The CB, anterior ventrolateral protocerebrum (AVLP), and posterior optic tubercle (POTU) contain extensive serotonin-immunoreactive process terminals. However, the regions of mushroom bodies, the lateral horn, and protocerebral bridges (PBs) are devoid of serotonin-immunoreactivity. In the gnathal ganglion, the serotonin-immunoreactive processes are also widespread throughout the neuropil, and some process projections extend to the tritocerebrum. Our results provide the first comprehensive description of the serotonergic neuronal network in H. armigera larvae, and they reveal the neural architecture and the distribution of neural substances, allowing us to explore the neural mechanisms of behaviors by using electrophysiological and pharmacological approaches on the target regions.
Collapse
Affiliation(s)
- Qing-Bo Tang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wei-Wei Song
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Ya-Jun Chang
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gui-Ying Xie
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Wen-Bo Chen
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
27
|
Suver MP, Matheson AMM, Sarkar S, Damiata M, Schoppik D, Nagel KI. Encoding of Wind Direction by Central Neurons in Drosophila. Neuron 2019; 102:828-842.e7. [PMID: 30948249 PMCID: PMC6533146 DOI: 10.1016/j.neuron.2019.03.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/21/2018] [Accepted: 03/05/2019] [Indexed: 11/30/2022]
Abstract
Wind is a major navigational cue for insects, but how wind direction is decoded by central neurons in the insect brain is unknown. Here we find that walking flies combine signals from both antennae to orient to wind during olfactory search behavior. Movements of single antennae are ambiguous with respect to wind direction, but the difference between left and right antennal displacements yields a linear code for wind direction in azimuth. Second-order mechanosensory neurons share the ambiguous responses of a single antenna and receive input primarily from the ipsilateral antenna. Finally, we identify novel "wedge projection neurons" that integrate signals across the two antennae and receive input from at least three classes of second-order neurons to produce a more linear representation of wind direction. This study establishes how a feature of the sensory environment-wind direction-is decoded by neurons that compare information across two sensors.
Collapse
Affiliation(s)
- Marie P Suver
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Andrew M M Matheson
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Sinekdha Sarkar
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Matthew Damiata
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - David Schoppik
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA
| | - Katherine I Nagel
- NYU Neuroscience Institute, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
28
|
Keesey IW, Grabe V, Gruber L, Koerte S, Obiero GF, Bolton G, Khallaf MA, Kunert G, Lavista-Llanos S, Valenzano DR, Rybak J, Barrett BA, Knaden M, Hansson BS. Inverse resource allocation between vision and olfaction across the genus Drosophila. Nat Commun 2019; 10:1162. [PMID: 30858374 PMCID: PMC6411718 DOI: 10.1038/s41467-019-09087-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 02/14/2019] [Indexed: 11/09/2022] Open
Abstract
Divergent populations across different environments are exposed to critical sensory information related to locating a host or mate, as well as avoiding predators and pathogens. These sensory signals generate evolutionary changes in neuroanatomy and behavior; however, few studies have investigated patterns of neural architecture that occur between sensory systems, or that occur within large groups of closely-related organisms. Here we examine 62 species within the genus Drosophila and describe an inverse resource allocation between vision and olfaction, which we consistently observe at the periphery, within the brain, as well as during larval development. This sensory variation was noted across the entire genus and appears to represent repeated, independent evolutionary events, where one sensory modality is consistently selected for at the expense of the other. Moreover, we provide evidence of a developmental genetic constraint through the sharing of a single larval structure, the eye-antennal imaginal disc. In addition, we examine the ecological implications of visual or olfactory bias, including the potential impact on host-navigation and courtship.
Collapse
Affiliation(s)
- Ian W Keesey
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Veit Grabe
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Lydia Gruber
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Sarah Koerte
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - George F Obiero
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
- Department of Biochemistry and Biotechnology, Technical University of Kenya, Haille-Sellasie Avenue, Workshop Road, 0200, Nairobi, Kenya
| | - Grant Bolton
- University of Missouri, Division of Plant Sciences, 3-22I Agriculture Building, Columbia, Missouri, 65211, USA
| | - Mohammed A Khallaf
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Grit Kunert
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Sofia Lavista-Llanos
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Dario Riccardo Valenzano
- Max Planck Institute for Biology of Ageing and CECAD at University of Cologne, Joseph-Stelzmann-Str 9b and 26, Cologne, 50931, Germany
| | - Jürgen Rybak
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Bruce A Barrett
- University of Missouri, Division of Plant Sciences, 3-22I Agriculture Building, Columbia, Missouri, 65211, USA
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745, Jena, Germany.
| |
Collapse
|
29
|
Honkanen A, Adden A, da Silva Freitas J, Heinze S. The insect central complex and the neural basis of navigational strategies. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb188854. [PMID: 30728235 DOI: 10.1242/jeb.188854] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oriented behaviour is present in almost all animals, indicating that it is an ancient feature that has emerged from animal brains hundreds of millions of years ago. Although many complex navigation strategies have been described, each strategy can be broken down into a series of elementary navigational decisions. In each moment in time, an animal has to compare its current heading with its desired direction and compensate for any mismatch by producing a steering response either to the right or to the left. Different from reflex-driven movements, target-directed navigation is not only initiated in response to sensory input, but also takes into account previous experience and motivational state. Once a series of elementary decisions are chained together to form one of many coherent navigation strategies, the animal can pursue a navigational target, e.g. a food source, a nest entrance or a constant flight direction during migrations. Insects show a great variety of complex navigation behaviours and, owing to their small brains, the pursuit of the neural circuits controlling navigation has made substantial progress over the last years. A brain region as ancient as insects themselves, called the central complex, has emerged as the likely navigation centre of the brain. Research across many species has shown that the central complex contains the circuitry that might comprise the neural substrate of elementary navigational decisions. Although this region is also involved in a wide range of other functions, we hypothesize in this Review that its role in mediating the animal's next move during target-directed behaviour is its ancestral function, around which other functions have been layered over the course of evolution.
Collapse
Affiliation(s)
- Anna Honkanen
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | - Andrea Adden
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| | | | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund University, 22362 Lund, Sweden
| |
Collapse
|
30
|
El Jundi B, Baird E, Byrne MJ, Dacke M. The brain behind straight-line orientation in dung beetles. ACTA ACUST UNITED AC 2019; 222:222/Suppl_1/jeb192450. [PMID: 30728239 DOI: 10.1242/jeb.192450] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For many insects, celestial compass cues play an important role in keeping track of their directional headings. One well-investigated group of celestial orientating insects are the African ball-rolling dung beetles. After finding a dung pile, these insects detach a piece, form it into a ball and roll it away along a straight path while facing backwards. A brain region, termed the central complex, acts as an internal compass that constantly updates the ball-rolling dung beetle about its heading. In this review, we give insights into the compass network behind straight-line orientation in dung beetles and place it in the context of the orientation mechanisms and neural networks of other insects. We find that the neuronal network behind straight-line orientation in dung beetles has strong similarities to the ones described in path-integrating and migrating insects, with the central complex being the key control point for this behavior. We conclude that, despite substantial differences in behavior and navigational challenges, dung beetles encode compass information in a similar way to other insects.
Collapse
Affiliation(s)
- Basil El Jundi
- University of Wuerzburg, Biocenter, Zoology II, Emmy-Noether Group, 97074 Würzburg, Germany
| | - Emily Baird
- Stockholm University, Faculty of Science, Department of Zoology, Division of Functional Morphology, 10691 Stockholm, Sweden
| | - Marcus J Byrne
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa
| | - Marie Dacke
- University of the Witwatersrand, School of Animal, Plant and Environmental Sciences, Wits 2050, South Africa.,Lund University, Department of Biology, Lund Vision Group, 22362 Lund, Sweden
| |
Collapse
|
31
|
Dupeyroux J, Viollet S, Serres JR. Polarized skylight-based heading measurements: a bio-inspired approach. J R Soc Interface 2019; 16:20180878. [PMID: 30958149 PMCID: PMC6364636 DOI: 10.1098/rsif.2018.0878] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/20/2018] [Indexed: 11/12/2022] Open
Abstract
Many insects such as desert ants, crickets, locusts, dung beetles, bees and monarch butterflies have been found to extract their navigation cues from the regular pattern of the linearly polarized skylight. These species are equipped with ommatidia in the dorsal rim area of their compound eyes, which are sensitive to the angle of polarization of the skylight. In the polarization-based robotic vision, most of the sensors used so far comprise high-definition CCD or CMOS cameras topped with linear polarizers. Here, we present a 2-pixel polarization-sensitive visual sensor, which was strongly inspired by the dorsal rim area of desert ants' compound eyes, designed to determine the direction of polarization of the skylight. The spectral sensitivity of this minimalistic sensor, which requires no lenses, is in the ultraviolet range. Five different methods of computing the direction of polarization were implemented and tested here. Our own methods, the extended and AntBot method, outperformed the other three, giving a mean angular error of only 0.62° ± 0.40° (median: 0.24°) and 0.69° ± 0.52° (median: 0.39°), respectively (mean ± standard deviation). The results obtained in outdoor field studies show that our celestial compass gives excellent results at a very low computational cost, which makes it highly suitable for autonomous outdoor navigation purposes.
Collapse
|
32
|
Omoto JJ, Nguyen BCM, Kandimalla P, Lovick JK, Donlea JM, Hartenstein V. Neuronal Constituents and Putative Interactions Within the Drosophila Ellipsoid Body Neuropil. Front Neural Circuits 2018; 12:103. [PMID: 30546298 PMCID: PMC6278638 DOI: 10.3389/fncir.2018.00103] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/26/2018] [Indexed: 11/13/2022] Open
Abstract
The central complex (CX) is a midline-situated collection of neuropil compartments in the arthropod central brain, implicated in higher-order processes such as goal-directed navigation. Here, we provide a systematic genetic-neuroanatomical analysis of the ellipsoid body (EB), a compartment which represents a major afferent portal of the Drosophila CX. The neuropil volume of the EB, along with its prominent input compartment, called the bulb, is subdivided into precisely tessellated domains, distinguishable based on intensity of the global marker DN-cadherin. EB tangential elements (so-called ring neurons), most of which are derived from the DALv2 neuroblast lineage, predominantly interconnect the bulb and EB domains in a topographically organized fashion. Using the DN-cadherin domains as a framework, we first characterized this connectivity by Gal4 driver lines expressed in different DALv2 ring neuron (R-neuron) subclasses. We identified 11 subclasses, 6 of which correspond to previously described projection patterns, and 5 novel patterns. These subclasses both spatially (based on EB innervation pattern) and numerically (cell counts) summate to the total EB volume and R-neuron cell number, suggesting that our compilation of R-neuron subclasses approaches completion. EB columnar elements, as well as non-DALv2 derived extrinsic ring neurons (ExR-neurons), were also incorporated into this anatomical framework. Finally, we addressed the connectivity between R-neurons and their targets, using the anterograde trans-synaptic labeling method, trans-Tango. This study demonstrates putative interactions of R-neuron subclasses and reveals general principles of information flow within the EB network. Our work will facilitate the generation and testing of hypotheses regarding circuit interactions within the EB and the rest of the CX.
Collapse
Affiliation(s)
- Jaison Jiro Omoto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bao-Chau Minh Nguyen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pratyush Kandimalla
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jennifer Kelly Lovick
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey Michael Donlea
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Volker Hartenstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
33
|
El Jundi B, Warrant EJ, Pfeiffer K, Dacke M. Neuroarchitecture of the dung beetle central complex. J Comp Neurol 2018; 526:2612-2630. [PMID: 30136721 DOI: 10.1002/cne.24520] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/12/2018] [Accepted: 08/15/2018] [Indexed: 01/09/2023]
Abstract
Despite their tiny brains, insects show impressive abilities when navigating over short distances during path integration or during migration over thousands of kilometers across entire continents. Celestial compass cues often play an important role as references during navigation. In contrast to many other insects, South African dung beetles rely exclusively on celestial cues for visual reference during orientation. After finding a dung pile, these animals cut off a piece of dung from the pat, shape it into a ball and roll it away along a straight path until a suitable place for underground consumption is found. To maintain a constant bearing, a brain region in the beetle's brain, called the central complex, is crucially involved in the processing of skylight cues, similar to what has already been shown for path-integrating and migrating insects. In this study, we characterized the neuroanatomy of the sky-compass network and the central complex in the dung beetle brain in detail. Using tracer injections, combined with imaging and 3D modeling, we describe the anatomy of the possible sky-compass network in the central brain. We used a quantitative approach to study the central-complex network and found that several types of neuron exhibit a highly organized connectivity pattern. The architecture of the sky-compass network and central complex is similar to that described in insects that perform path integration or are migratory. This suggests that, despite their different orientation behaviors, this neural circuitry for compass orientation is highly conserved among the insects.
Collapse
Affiliation(s)
- Basil El Jundi
- Biocenter, Zoology II, Emmy Noether Animal Navigation Group, University of Würzburg, Germany
| | - Eric J Warrant
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| | | | - Marie Dacke
- Vision Group, Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
34
|
von Hadeln J, Althaus V, Häger L, Homberg U. Anatomical organization of the cerebrum of the desert locust Schistocerca gregaria. Cell Tissue Res 2018; 374:39-62. [DOI: 10.1007/s00441-018-2844-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 04/17/2018] [Indexed: 11/27/2022]
|
35
|
de Vries L, Pfeiffer K, Trebels B, Adden AK, Green K, Warrant E, Heinze S. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths. Front Behav Neurosci 2017; 11:158. [PMID: 28928641 PMCID: PMC5591330 DOI: 10.3389/fnbeh.2017.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/15/2017] [Indexed: 11/13/2022] Open
Abstract
Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species-thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX), lateral complex (LX) and anterior optic tubercles (AOTU)), it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB) between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior are found in the detailed wiring characteristics of the neural circuits underlying navigation-differences that are only accessible through detailed physiological and ultrastructural investigations. The presented results aid this task in two ways. First, the identified differences in neuropil volumes serve as promising initial targets for electrophysiology. Second, the new standard atlases provide an anatomical reference frame for embedding all functional data obtained from the brains of the Bogong and the Turnip moth.
Collapse
Affiliation(s)
- Liv de Vries
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Keram Pfeiffer
- Department of Biology, Marburg UniversityMarburg, Germany
| | - Björn Trebels
- Department of Biology, Marburg UniversityMarburg, Germany
| | - Andrea K Adden
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Ken Green
- New South Wales National Parks and Wildlife ServiceJindabyne, NSW, Australia
| | - Eric Warrant
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| | - Stanley Heinze
- Lund Vision Group, Department of Biology, Lund UniversityLund, Sweden
| |
Collapse
|