1
|
de Barcellos Filho PG, Dantzler HA, Hasser EM, Kline DD. Oxytocin and corticotropin-releasing hormone exaggerate nucleus tractus solitarii neuronal and synaptic activity following chronic intermittent hypoxia. J Physiol 2024; 602:3375-3400. [PMID: 38698722 PMCID: PMC11251298 DOI: 10.1113/jp286069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/28/2024] [Indexed: 05/05/2024] Open
Abstract
Chronic intermittent hypoxia (CIH) in rodents mimics the hypoxia-induced elevation of blood pressure seen in individuals experiencing episodic breathing. The brainstem nucleus tractus solitarii (nTS) is the first site of visceral sensory afferent integration, and thus is critical for cardiorespiratory homeostasis and its adaptation during a variety of stressors. In addition, the paraventricular nucleus of the hypothalamus (PVN), in part through its nTS projections that contain oxytocin (OT) and/or corticotropin-releasing hormone (CRH), contributes to cardiorespiratory regulation. Within the nTS, these PVN-derived neuropeptides alter nTS activity and the cardiorespiratory response to hypoxia. Nevertheless, their contribution to nTS activity after CIH is not fully understood. We hypothesized that OT and CRH would increase nTS activity to a greater extent following CIH, and co-activation of OT+CRH receptors would further magnify nTS activity. Our data show that compared to their normoxic controls, 10 days' CIH exaggerated nTS discharge, excitatory synaptic currents and Ca2+ influx in response to CRH, which were further enhanced by the addition of OT. CIH increased the tonic functional contribution of CRH receptors, which occurred with elevation of mRNA and protein. Together, our data demonstrate that intermittent hypoxia exaggerates the expression and function of neuropeptides on nTS activity. KEY POINTS: Episodic breathing and chronic intermittent hypoxia (CIH) are associated with autonomic dysregulation, including elevated sympathetic nervous system activity. Altered nucleus tractus solitarii (nTS) activity contributes to this response. Neurons originating in the paraventricular nucleus (PVN), including those containing oxytocin (OT) and corticotropin-releasing hormone (CRH), project to the nTS, and modulate the cardiorespiratory system. Their role in CIH is unknown. In this study, we focused on OT and CRH individually and together on nTS activity from rats exposed to either CIH or normoxia control. We show that after CIH, CRH alone and with OT increased to a greater extent overall nTS discharge, neuronal calcium influx, synaptic transmission to second-order nTS neurons, and OT and CRH receptor expression. These results provide insights into the underlying circuits and mechanisms contributing to autonomic dysfunction during periods of episodic breathing.
Collapse
Affiliation(s)
- Procopio Gama de Barcellos Filho
- Department of Biomedical Sciences, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
- Department of Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
| | - Heather A. Dantzler
- Department of Biomedical Sciences, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
- Department of Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
| | - Eileen M. Hasser
- Department of Biomedical Sciences, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
- Department of Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
- Department of Dalton Cardiovascular Research Center, University of Missouri, 1500 Research Park Dr., Columbia, MO 65211, USA
| |
Collapse
|
2
|
Lopes LM, Reis-Silva LL, Rodrigues B, Crestani CC. Pharmacological Manipulation of Corticotropin-Releasing Factor Receptors in the Anterior and Posterior Subregions of the Insular Cortex Differently Affects Anxiety-Like Behaviors in the Elevated Plus Maze in Rats. BIOMED RESEARCH INTERNATIONAL 2024; 2024:8322844. [PMID: 38327803 PMCID: PMC10849808 DOI: 10.1155/2024/8322844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
Neuroimaging data in humans and neurobiological studies in rodents have suggested an involvement of the insular cortex (IC) in anxiety manifestations. However, the local neurochemical mechanisms involved are still poorly understood. Corticotropin-releasing factor (CRF) neurotransmission has been described as a prominent neurochemical mechanism involved in the expression of anxiety-like behaviors, but the brain sites related are poorly understood. Additionally, several findings indicate that control of physiological and behavioral responses by the IC occurs in a site-specific manner along its rostrocaudal axis. Thus, this study is aimed at evaluating the effect of CRF receptor agonism and antagonism within the anterior and posterior subregions of the IC in controlling anxiety-related behaviors in the elevated plus maze (EPM). For this, independent groups (six groups) of animals received bilateral microinjections of vehicle, the selective CRF1 receptor antagonist CP376395, or CRF into either the anterior or posterior subregions of the IC. Ten minutes later, the behavior in the EPM was evaluated for five minutes. Treatment of the anterior IC with CP376395, but not with CRF, increased the time and number of entries into the open arms of the EPM. CRF, but not the CRF1 receptor antagonist, microinjected into the posterior IC also increased exploration of the EPM open arms. Taken together, these data indicate that CRFergic neurotransmission in the anterior IC is involved in the expression of anxiety-related behaviors in the EPM. This neurochemical mechanism does not seem to be activated within the posterior IC during exposure to the EPM, but the effects caused by CRF microinjection indicate that activation of CRF receptors in this IC subregion might evoke anxiolytic-like effects.
Collapse
Affiliation(s)
- Lucas M. Lopes
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Lilian L. Reis-Silva
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Bruno Rodrigues
- Department of Adapted Physical Activity, Faculty of Physical Education, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carlos C. Crestani
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
3
|
Rieger NS, Varela JA, Ng AJ, Granata L, Djerdjaj A, Brenhouse HC, Christianson JP. Insular cortex corticotropin-releasing factor integrates stress signaling with social affective behavior. Neuropsychopharmacology 2022; 47:1156-1168. [PMID: 35220413 PMCID: PMC9018766 DOI: 10.1038/s41386-022-01292-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/10/2022] [Accepted: 02/02/2022] [Indexed: 02/02/2023]
Abstract
Impairments in identifying and responding to the emotions of others manifest in a variety of psychopathologies. Therefore, elaborating the neurobiological mechanisms that underpin social responses to social emotions, or social affective behavior, is a translationally important goal. The insular cortex is consistently implicated in stress-related social and anxiety disorders, which are associated with diminished ability to make and use inferences about the emotions of others to guide behavior. We investigated how corticotropin-releasing factor (CRF), a neuromodulator evoked upon exposure to stressed conspecifics, influenced the insula. We hypothesized that social affective behavior requires CRF signaling in the insular cortex in order to detect stress in social interactions. In acute slices from male and female rats, CRF depolarized insular pyramidal neurons. In males, but not females, CRF suppressed presynaptic GABAergic inhibition leading to greater excitatory synaptic efficacy in a CRF receptor 1 (CRF1)- and cannabinoid receptor 1 (CB1)-dependent fashion. In males only, insular CRF increased social investigation, and CRF1 and CB1 antagonists interfered with social interactions with stressed conspecifics. To investigate the molecular and cellular basis for the effect of CRF we examined insular CRF1 and CB1 mRNAs and found greater total insula CRF1 mRNA in females but greater CRF1 and CB1 mRNA colocalization in male insular cortex glutamatergic neurons that suggest complex, sex-specific organization of CRF and endocannabinoid systems. Together these results reveal a new mechanism by which stress and affect contribute to social affective behavior.
Collapse
Affiliation(s)
- Nathaniel S Rieger
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Juan A Varela
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Alexandra J Ng
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Lauren Granata
- Psychology Department, Northeastern University, 360 Huntington Avenue, 115 Richards Hall, Boston, MA, 02115, USA
| | - Anthony Djerdjaj
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA
| | - Heather C Brenhouse
- Psychology Department, Northeastern University, 360 Huntington Avenue, 115 Richards Hall, Boston, MA, 02115, USA
| | - John P Christianson
- Department of Psychology & Neuroscience, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA, 02467, USA.
| |
Collapse
|
4
|
Dong Z, Zhang G, Xiang S, Jiang C, Chen Z, Li Y, Huang B, Zhou W, Lian Q, Wu B. The Antagonism of Corticotropin-Releasing Factor Receptor-1 in Brain Suppress Stress-Induced Propofol Self-Administration in Rats. Front Behav Neurosci 2021; 15:775209. [PMID: 34924971 PMCID: PMC8674615 DOI: 10.3389/fnbeh.2021.775209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
Abstract
Propofol addiction has been detected in humans and rats, which may be facilitated by stress. Corticotropin-releasing factor acts through the corticotropin-releasing factor (CRF) receptor-1 (CRF1R) and CRF2 receptor-2 (CRF2R) and is a crucial candidate target for the interaction between stress and drug abuse, but its role on propofol addiction remains unknown. Tail clip stressful stimulation was performed in rats to test the stress on the establishment of the propofol self-administration behavioral model. Thereafter, the rats were pretreated before the testing session at the bilateral lateral ventricle with one of the doses of antalarmin (CRF1R antagonist, 100–500 ng/site), antisauvagine 30 (CRF2R antagonist, 100–500 ng/site), and RU486 (glucocorticoid receptor antagonist, 100–500 ng/site) or vehicle. The dopamine D1 receptor (D1R) in the nucleus accumbens (NAc) was detected to explore the underlying molecular mechanism. The sucrose self-administration establishment and maintenance, and locomotor activities were also examined to determine the specificity. We found that the establishment of propofol self-administration was promoted in the tail clip treated group (the stress group), which was inhibited by antalarmin at the dose of 100–500 ng/site but was not by antisauvagine 30 or RU486. Accordingly, the expression of D1R in the NAc was attenuated by antalarmin, dose-dependently. Moreover, pretreatments fail to change sucrose self-administration behavior or locomotor activities. This study supports the role of CRF1R in the brain in mediating the central reward processing through D1R in the NAc and provided a possibility that CRF1R antagonist may be a new therapeutic approach for the treatment of propofol addiction.
Collapse
Affiliation(s)
- Zhanglei Dong
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gaolong Zhang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Saiqiong Xiang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chenchen Jiang
- Clinical Research Unit, The Second Affiliated and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhichuan Chen
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Medical School, Institution of Reproductive Medicine, Nantong University, Nantong, China
| | - Yan Li
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingwu Huang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenhua Zhou
- Zhejiang Provincial Key Lab of Addiction, Ningbo Kangning Hospital, School of Medicine, Ningbo Universtiy, Ningbo, China
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binbin Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Locci A, Yan Y, Rodriguez G, Dong H. Sex differences in CRF1, CRF, and CRFBP expression in C57BL/6J mouse brain across the lifespan and in response to acute stress. J Neurochem 2021; 158:943-959. [PMID: 32813270 PMCID: PMC9811412 DOI: 10.1111/jnc.15157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 01/07/2023]
Abstract
Signaling pathways mediated by corticotropin-releasing factor and its receptor 1 (CRF1) play a central role in stress responses. Dysfunction of the CRF system has been associated with neuropsychiatric disorders. However, dynamic changes in the CRF system during brain development and aging are not well investigated. In this study, we characterized CRF1, CRF, and corticotropin-releasing factor binding protein (CRFBP) expression in different brain regions in both male and female C57BL/6J mice from 1 to 18 months of age under basal conditions as well as after an acute 2-hr-restraint stress. We found that CRF and CRF1 levels tended to increase in the hippocampus and hypothalamus, and to decrease in the prefrontal cortex with aging, especially at 18 months of age, whereas CRFBP expression followed an opposite direction in these brain areas. We also observed area-specific sex differences in the expression of these three proteins. For example, CRF expression was lower in females than in males in all the brain regions examined except the prefrontal cortex. After acute stress, CRF and CRF1 were up-regulated at 1, 6, and 12 months of age, and down-regulated at 18 months of age. Females showed more robust changes compared to males of the same age. CRFBP expression either decreased or remained unchanged in most of the brain areas following acute stress. Our findings suggest that brain CRF1, CRF, and CRFBP expression changes dynamically across the lifespan and under stress condition in a sex- and regional-specific manner. Sex differences in the CRF system in response to stress may contribute to the etiology of stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Andrea Locci
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yan Yan
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Guadalupe Rodriguez
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
6
|
Functional and Anatomical Characterization of Corticotropin-Releasing Factor Receptor Subtypes of the Rat Spinal Cord Involved in Somatic Pain Relief. Mol Neurobiol 2021; 58:5459-5472. [PMID: 34331656 PMCID: PMC8599353 DOI: 10.1007/s12035-021-02481-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 12/17/2022]
Abstract
Corticotropin-releasing factor (CRF) orchestrates our body’s response to stressful stimuli. Pain is often stressful and counterbalanced by activation of CRF receptors along the nociceptive pathway, although the involvement of the CRF receptor subtypes 1 and/or 2 (CRF-R1 and CRF-R2, respectively) in CRF-induced analgesia remains controversial. Thus, the aim of the present study was to examine CRF-R1 and CRF-R2 expression within the spinal cord of rats with Freund’s complete adjuvant-induced unilateral inflammation of the hind paw using reverse transcriptase polymerase chain reaction, Western blot, radioligand binding, and immunofluorescence confocal analysis. Moreover, the antinociceptive effects of intrathecal (i.t.) CRF were measured by paw pressure algesiometer and their possible antagonism by selective antagonists for CRF-R1 and/or CRF-R2 as well as for opioid receptors. Our results demonstrated a preference for the expression of CRF-R2 over CRF-R1 mRNA, protein, binding sites and immunoreactivity in the dorsal horn of the rat spinal cord. Consistently, CRF as well as CRF-R2 agonists elicited potent dose-dependent antinociceptive effects which were antagonized by the i.t. CRF-R2 selective antagonist K41498, but not by the CRF-R1 selective antagonist NBI35965. In addition, i.t. applied opioid antagonist naloxone dose-dependently abolished the i.t. CRF- as well as CRF-R2 agonist-elicited inhibition of somatic pain. Importantly, double immunofluorescence confocal microscopy of the spinal dorsal horn showed CRF-R2 on enkephalin (ENK)-containing inhibitory interneurons in close opposition of incoming mu-opioid receptor-immunoreactive nociceptive neurons. CRF-R2 was, however, not seen on pre- or on postsynaptic sensory neurons of the spinal cord. Taken together, these findings suggest that i.t. CRF or CRF-R2 agonists inhibit somatic inflammatory pain predominantly through CRF-R2 receptors located on spinal enkephalinergic inhibitory interneurons which finally results in endogenous opioid-mediated pain inhibition.
Collapse
|
7
|
Cano G, Hernan SL, Sved AF. Centrally Projecting Edinger-Westphal Nucleus in the Control of Sympathetic Outflow and Energy Homeostasis. Brain Sci 2021; 11:1005. [PMID: 34439626 PMCID: PMC8392615 DOI: 10.3390/brainsci11081005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The centrally projecting Edinger-Westphal nucleus (EWcp) is a midbrain neuronal group, adjacent but segregated from the preganglionic Edinger-Westphal nucleus that projects to the ciliary ganglion. The EWcp plays a crucial role in stress responses and in maintaining energy homeostasis under conditions that require an adjustment of energy expenditure, by virtue of modulating heart rate and blood pressure, thermogenesis, food intake, and fat and glucose metabolism. This modulation is ultimately mediated by changes in the sympathetic outflow to several effector organs, including the adrenal gland, heart, kidneys, brown and white adipose tissues and pancreas, in response to environmental conditions and the animal's energy state, providing for appropriate energy utilization. Classic neuroanatomical studies have shown that the EWcp receives inputs from forebrain regions involved in these functions and projects to presympathetic neuronal populations in the brainstem. Transneuronal tracing with pseudorabies virus has demonstrated that the EWcp is connected polysynaptically with central circuits that provide sympathetic innervation to all these effector organs that are critical for stress responses and energy homeostasis. We propose that EWcp integrates multimodal signals (stress, thermal, metabolic, endocrine, etc.) and modulates the sympathetic output simultaneously to multiple effector organs to maintain energy homeostasis under different conditions that require adjustments of energy demands.
Collapse
Affiliation(s)
- Georgina Cano
- Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA; (S.L.H.); (A.F.S.)
| | | | | |
Collapse
|
8
|
Tenorio-Lopes L, Kinkead R. Sex-Specific Effects of Stress on Respiratory Control: Plasticity, Adaptation, and Dysfunction. Compr Physiol 2021; 11:2097-2134. [PMID: 34107062 DOI: 10.1002/cphy.c200022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As our understanding of respiratory control evolves, we appreciate how the basic neurobiological principles of plasticity discovered in other systems shape the development and function of the respiratory control system. While breathing is a robust homeostatic function, there is growing evidence that stress disrupts respiratory control in ways that predispose to disease. Neonatal stress (in the form of maternal separation) affects "classical" respiratory control structures such as the peripheral O2 sensors (carotid bodies) and the medulla (e.g., nucleus of the solitary tract). Furthermore, early life stress disrupts the paraventricular nucleus of the hypothalamus (PVH), a structure that has emerged as a primary determinant of the intensity of the ventilatory response to hypoxia. Although underestimated, the PVH's influence on respiratory function is a logical extension of the hypothalamic control of metabolic demand and supply. In this article, we review the functional and anatomical links between the stress neuroendocrine axis and the medullary network regulating breathing. We then present the persistent and sex-specific effects of neonatal stress on respiratory control in adult rats. The similarities between the respiratory phenotype of stressed rats and clinical manifestations of respiratory control disorders such as sleep-disordered breathing and panic attacks are remarkable. These observations are in line with the scientific consensus that the origins of adult disease are often found among developmental and biological disruptions occurring during early life. These observations bring a different perspective on the structural hierarchy of respiratory homeostasis and point to new directions in our understanding of the etiology of respiratory control disorders. © 2021 American Physiological Society. Compr Physiol 11:1-38, 2021.
Collapse
Affiliation(s)
- Luana Tenorio-Lopes
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, Alberta, Canada
| | - Richard Kinkead
- Département de Pédiatrie, Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
9
|
Bryce CA, Floresco SB. Central CRF and acute stress differentially modulate probabilistic reversal learning in male and female rats. Behav Brain Res 2020; 397:112929. [PMID: 32998044 DOI: 10.1016/j.bbr.2020.112929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/11/2020] [Accepted: 09/22/2020] [Indexed: 01/21/2023]
Abstract
Acute stress can have variable and sometimes sex-dependent effects on different executive functions, including cognitive flexibility, some of which may be mediated by increased corticotropin releasing factor (CRF). Previous studies on the effects of stress and CRF on cognitive flexibility have used procedures entailing deterministic rewards, yet how they may alter behavior when outcomes are probabilistic is unclear. The present study examined how acute stress and increased CRF activity alters probabilistic reversal learning (PRL) in male and female rats. Rats learned to discriminate between a 'correct' lever rewarded on 80 % of trials, and an "incorrect" lever delivering reward on 20 % of trials, with reward contingencies reversed after 8 consecutive correct choices. Separate groups received either intracerebroventricular infusions of CRF (3 μg) or restraint stress prior to a PRL session. Experiments examined how these manipulations affected learning when given prior to a one-day acquisition test or during performance in well-trained rats. Exogenous CRF, and to a lesser extent acute stress, impaired motivation across sexes, slowing deliberation times and increasing the number of trials omitted, particularly following a switch in reward contingencies. Neither manipulation significantly altered errors or reversal performance. However, increased CRF activity reduced negative feedback sensitivity. Across manipulations, females showed increased omissions and choice latencies, and were less sensitive to feedback than males. These results reveal the complexity with which stress, CRF, sex, and experience interact to alter aspects of motivation and probabilistic reinforcement learning and provide insight into how CRF activity may contribute to symptoms of stress-related disorders.
Collapse
Affiliation(s)
- Courtney A Bryce
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
10
|
Stress-induced plasticity and functioning of ventral tegmental dopamine neurons. Neurosci Biobehav Rev 2020; 108:48-77. [DOI: 10.1016/j.neubiorev.2019.10.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022]
|
11
|
Roque A, Lajud N, Valdez JJ, Torner L. Early-life stress increases granule cell density in the cerebellum of male rats. Brain Res 2019; 1723:146358. [DOI: 10.1016/j.brainres.2019.146358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/14/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023]
|
12
|
Hupalo S, Bryce CA, Bangasser DA, Berridge CW, Valentino RJ, Floresco SB. Corticotropin-Releasing Factor (CRF) circuit modulation of cognition and motivation. Neurosci Biobehav Rev 2019; 103:50-59. [PMID: 31212019 DOI: 10.1016/j.neubiorev.2019.06.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/08/2019] [Accepted: 06/11/2019] [Indexed: 01/04/2023]
Abstract
The neuropeptide, corticotropin-releasing factor (CRF), is a key modulator of physiological, endocrine, and behavioral responses during stress. Dysfunction of the CRF system has been observed in stress-related affective disorders including post-traumatic stress disorder, depression, and anxiety. Beyond affective symptoms, these disorders are also characterized by impaired cognition, for which current pharmacological treatments are lacking. Thus, there is a need for pro-cognitive treatments to improve quality of life for individuals suffering from mental illness. In this review, we highlight research demonstrating that CRF elicits potent modulatory effects on higher-order cognition via actions within the prefrontal cortex and subcortical monoaminergic and cholinergic systems. Additionally, we identify questions for future preclinical research on this topic, such as the need to investigate sex differences in the cognitive and microcircuit actions of CRF, and whether CRF may represent a pharmacological target to treat cognitive dysfunction. Addressing these questions will provide new insight into pathophysiology underlying cognitive dysfunction and may lead to improved treatments for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sofiya Hupalo
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, United States.
| | - Courtney A Bryce
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Debra A Bangasser
- Psychology Department and Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Craig W Berridge
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Rita J Valentino
- National Institute on Drug Abuse, Bethesda, MD 20892, United States
| | - Stan B Floresco
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Deussing JM, Chen A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol Rev 2018; 98:2225-2286. [DOI: 10.1152/physrev.00042.2017] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The physiological stress response is responsible for the maintenance of homeostasis in the presence of real or perceived challenges. In this function, the brain activates adaptive responses that involve numerous neural circuits and effector molecules to adapt to the current and future demands. A maladaptive stress response has been linked to the etiology of a variety of disorders, such as anxiety and mood disorders, eating disorders, and the metabolic syndrome. The neuropeptide corticotropin-releasing factor (CRF) and its relatives, the urocortins 1–3, in concert with their receptors (CRFR1, CRFR2), have emerged as central components of the physiological stress response. This central peptidergic system impinges on a broad spectrum of physiological processes that are the basis for successful adaptation and concomitantly integrate autonomic, neuroendocrine, and behavioral stress responses. This review focuses on the physiology of CRF-related peptides and their cognate receptors with the aim of providing a comprehensive up-to-date overview of the field. We describe the major molecular features covering aspects of gene expression and regulation, structural properties, and molecular interactions, as well as mechanisms of signal transduction and their surveillance. In addition, we discuss the large body of published experimental studies focusing on state-of-the-art genetic approaches with high temporal and spatial precision, which collectively aimed to dissect the contribution of CRF-related ligands and receptors to different levels of the stress response. We discuss the controversies in the field and unravel knowledge gaps that might pave the way for future research directions and open up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jan M. Deussing
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany; and Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
14
|
McAlinn HR, Reich B, Contoreggi NH, Kamakura RP, Dyer AG, McEwen BS, Waters EM, Milner TA. Sex Differences in the Subcellular Distribution of Corticotropin-Releasing Factor Receptor 1 in the Rat Hippocampus following Chronic Immobilization Stress. Neuroscience 2018; 383:98-113. [PMID: 29753863 PMCID: PMC5994383 DOI: 10.1016/j.neuroscience.2018.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/01/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
Corticotropin-releasing factor receptors (CRFR1) contribute to stress-induced adaptations in hippocampal structure and function that can affect learning and memory processes. Our prior studies showed that female rats with elevated estrogens compared to males have more plasmalemmal CRFR1 in CA1 pyramidal cells, suggesting a greater sensitivity to stress. Here, we examined the distribution of hippocampal CRFR1 following chronic immobilization stress (CIS) in female and male rats using immuno-electron microscopy. Without stress, total CRFR1 dendritic levels were higher in females in CA1 and in males in the hilus; moreover, plasmalemmal CRFR1 was elevated in pyramidal cell dendrites in CA1 in females and in CA3 in males. Following CIS, near-plasmalemmal CRFR1 increased in CA1 pyramidal cell dendrites in males but not to levels of control or CIS females. In CA3 and the hilus, CIS decreased cytoplasmic and total CRFR1 in dendrites in males only. These results suggest that in naive rats, CRF could induce a greater activation of CA1 pyramidal cells in females than males. Moreover, after CIS, which leads to even greater sex differences in CRFR1 by trafficking it to different subcellular compartments, CRF could enhance activation of CA1 pyramidal cells in males but to a lesser extent than either unstressed or CIS females. Additionally, CA3 pyramidal cells and inhibitory interneurons in males have heightened sensitivity to CRF, regardless of stress state. These sex differences in CRFR1 distribution and trafficking in the hippocampus may contribute to reported sex differences in hippocampus-dependent learning processes in baseline conditions and following chronic stress.
Collapse
Affiliation(s)
- Helena R McAlinn
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Batsheva Reich
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | | | - Andreina G Dyer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Elizabeth M Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
15
|
Egerod KL, Petersen N, Timshel PN, Rekling JC, Wang Y, Liu Q, Schwartz TW, Gautron L. Profiling of G protein-coupled receptors in vagal afferents reveals novel gut-to-brain sensing mechanisms. Mol Metab 2018; 12:62-75. [PMID: 29673577 PMCID: PMC6001940 DOI: 10.1016/j.molmet.2018.03.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/24/2018] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES G protein-coupled receptors (GPCRs) act as transmembrane molecular sensors of neurotransmitters, hormones, nutrients, and metabolites. Because unmyelinated vagal afferents richly innervate the gastrointestinal mucosa, gut-derived molecules may directly modulate the activity of vagal afferents through GPCRs. However, the types of GPCRs expressed in vagal afferents are largely unknown. Here, we determined the expression profile of all GPCRs expressed in vagal afferents of the mouse, with a special emphasis on those innervating the gastrointestinal tract. METHODS Using a combination of high-throughput quantitative PCR, RNA sequencing, and in situ hybridization, we systematically quantified GPCRs expressed in vagal unmyelinated Nav1.8-expressing afferents. RESULTS GPCRs for gut hormones that were the most enriched in Nav1.8-expressing vagal unmyelinated afferents included NTSR1, NPY2R, CCK1R, and to a lesser extent, GLP1R, but not GHSR and GIPR. Interestingly, both GLP1R and NPY2R were coexpressed with CCK1R. In contrast, NTSR1 was coexpressed with GPR65, a marker preferentially enriched in intestinal mucosal afferents. Only few microbiome-derived metabolite sensors such as GPR35 and, to a lesser extent, GPR119 and CaSR were identified in the Nav1.8-expressing vagal afferents. GPCRs involved in lipid sensing and inflammation (e.g. CB1R, CYSLTR2, PTGER4), and neurotransmitters signaling (CHRM4, DRD2, CRHR2) were also highly enriched in Nav1.8-expressing neurons. Finally, we identified 21 orphan GPCRs with unknown functions in vagal afferents. CONCLUSION Overall, this study provides a comprehensive description of GPCR-dependent sensing mechanisms in vagal afferents, including novel coexpression patterns, and conceivably coaction of key receptors for gut-derived molecules involved in gut-brain communication.
Collapse
Affiliation(s)
- Kristoffer L Egerod
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, and Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark.
| | - Natalia Petersen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, and Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark
| | - Pascal N Timshel
- Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genomics, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark
| | - Jens C Rekling
- Department of Neuroscience, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark
| | - Yibing Wang
- Department of Biochemistry, UT Southwestern Medical Center at Dallas, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Qinghua Liu
- Department of Biochemistry, UT Southwestern Medical Center at Dallas, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Thue W Schwartz
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, and Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Nørre Allé 14, 2200, Copenhagen, Denmark
| | - Laurent Gautron
- Division of Hypothalamic Research and Department of Internal Medicine, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|