1
|
Ludington SC, McKinney JE, Butler JM, Goolsby BC, Callan AA, Gaines-Richardson M, O’Connell LA. Activity of forkhead box P2-positive neurons is associated with tadpole begging behaviour. Biol Lett 2024; 20:20240395. [PMID: 39317327 PMCID: PMC11421926 DOI: 10.1098/rsbl.2024.0395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Motor function is a critical aspect of social behaviour in a wide range of taxa. The transcription factor forkhead box P2 (FoxP2) is well studied in the context of vocal communication in humans, mice and songbirds, but its role in regulating social behaviour in other vertebrate taxa is unclear. We examined the distribution and activity of FoxP2-positive neurons in tadpoles of the mimic poison frog (Ranitomeya imitator). In this species, tadpoles are reared in isolated plant nurseries and are aggressive to other tadpoles. Mothers provide unfertilized egg meals to tadpoles that perform a begging display by vigorously vibrating back and forth. We found that FoxP2 is widely distributed in the tadpole brain and parallels the brain distribution in mammals, birds and fishes. We then tested the hypothesis that FoxP2-positive neurons would have differential activity levels in begging or aggression contexts compared to non-social controls. We found that FoxP2-positive neurons showed increased activation in the striatum and cerebellum during begging and in the nucleus accumbens during aggression. Overall, these findings lay a foundation for testing the hypothesis that FoxP2 has a generalizable role in social behaviour beyond vocal communication across terrestrial vertebrates.
Collapse
Affiliation(s)
| | | | - Julie M. Butler
- Department of Biology, Stanford University, Stanford, CA94305, USA
| | | | - Ashlyn A. Callan
- Department of Biology, Stanford University, Stanford, CA94305, USA
| | | | | |
Collapse
|
2
|
Ludington SC, McKinney JE, Butler JM, Goolsby BC, Callan AA, Gaines-Richardson M, O’Connell LA. Activity of FoxP2-positive neurons is associated with tadpole begging behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.542531. [PMID: 37292748 PMCID: PMC10246011 DOI: 10.1101/2023.05.26.542531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Motor function is a critical aspect of social behavior in a wide range of taxa. The transcription factor FoxP2 is well studied in the context of vocal communication in humans, mice, and songbirds, but its role in regulating social behavior in other vertebrate taxa is unclear. We examined the distribution and activity of FoxP2-positive neurons in tadpoles of the mimic poison frog (Ranitomeya imitator). In this species, tadpoles are reared in isolated plant nurseries and are aggressive to other tadpoles. Mothers provide unfertilized egg meals to tadpoles that perform a begging display by vigorously vibrating back and forth. We found that FoxP2 is widely distributed in the tadpole brain and parallels the brain distribution in mammals, birds, and fishes. We then tested the hypothesis that FoxP2-positive neurons would have differential activity levels in begging or aggression contexts compared to non-social controls. We found that FoxP2-positive neurons showed increased activation in the striatum and cerebellum during begging and in the nucleus accumbens during aggression. Overall, these findings lay a foundation for testing the hypothesis that FoxP2 has a generalizable role in social behavior beyond vocal communication across terrestrial vertebrates.
Collapse
Affiliation(s)
| | | | - Julie M. Butler
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Ashlyn A. Callan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
3
|
Wirthlin ME, Schmid TA, Elie JE, Zhang X, Kowalczyk A, Redlich R, Shvareva VA, Rakuljic A, Ji MB, Bhat NS, Kaplow IM, Schäffer DE, Lawler AJ, Wang AZ, Phan BN, Annaldasula S, Brown AR, Lu T, Lim BK, Azim E, Clark NL, Meyer WK, Pond SLK, Chikina M, Yartsev MM, Pfenning AR. Vocal learning-associated convergent evolution in mammalian proteins and regulatory elements. Science 2024; 383:eabn3263. [PMID: 38422184 PMCID: PMC11313673 DOI: 10.1126/science.abn3263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.
Collapse
Affiliation(s)
- Morgan E. Wirthlin
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Tobias A. Schmid
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Julie E. Elie
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
- Department of Bioengineering, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Xiaomeng Zhang
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Amanda Kowalczyk
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Ruby Redlich
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Varvara A. Shvareva
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Ashley Rakuljic
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Maria B. Ji
- Department of Psychology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Ninad S. Bhat
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Irene M. Kaplow
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Daniel E. Schäffer
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Alyssa J. Lawler
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
- Department of Biological Sciences, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Andrew Z. Wang
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - BaDoi N. Phan
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Siddharth Annaldasula
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Ashley R. Brown
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
- Present address: Department of Biomedical Engineering, Duke University; Durham, NC 27705
| | - Tianyu Lu
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| | - Byung Kook Lim
- Neurobiology section, Division of Biological Science, University of California, San Diego; La Jolla, CA 92093, USA
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies; La Jolla, CA 92037, USA
| | - Nathan L. Clark
- Department of Biological Sciences, University of Pittsburgh; Pittsburgh, PA 15213, USA
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University; Bethlehem, PA 18015, USA
| | | | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh; Pittsburgh, PA 15213, USA
| | - Michael M. Yartsev
- Helen Wills Neuroscience Institute, University of California, Berkeley; Berkeley, CA 94708, USA
- Department of Bioengineering, University of California, Berkeley; Berkeley, CA 94708, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, Carnegie Mellon University; Pittsburgh, PA 15213, USA
| |
Collapse
|
4
|
Möhrle D, Yuen M, Zheng A, Haddad FL, Allman BL, Schmid S. Characterizing maternal isolation-induced ultrasonic vocalizations in a gene-environment interaction rat model for autism. GENES, BRAIN, AND BEHAVIOR 2023:e12841. [PMID: 36751016 DOI: 10.1111/gbb.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023]
Abstract
Deficits in social communication and language development belong to the earliest diagnostic criteria of autism spectrum disorders. Of the many risk factors for autism spectrum disorder, the contactin-associated protein-like 2 gene, CNTNAP2, is thought to be important for language development. The present study used a rat model to investigate the potential compounding effects of autism spectrum disorder risk gene mutation and environmental challenges, including breeding conditions or maternal immune activation during pregnancy, on early vocal communication in the offspring. Maternal isolation-induced ultrasonic vocalizations from Cntnap2 wildtype and knockout rats at selected postnatal days were analyzed for their acoustic, temporal and syntax characteristics. Cntnap2 knockout pups from heterozygous breeding showed normal numbers and largely similar temporal structures of ultrasonic vocalizations to wildtype controls, whereas both parameters were affected in homozygously bred knockouts. Homozygous breeding further exacerbated altered pitch and transitioning between call types found in Cntnap2 knockout pups from heterozygous breeding. In contrast, the effect of maternal immune activation on the offspring's vocal communication was confined to call type syntax, but left ultrasonic vocalization acoustic and temporal organization intact. Our results support the "double-hit hypothesis" of autism spectrum disorder risk gene-environment interactions and emphasize that complex features of vocal communication are a useful tool for identifying early autistic-like features in rodent models.
Collapse
Affiliation(s)
- Dorit Möhrle
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Megan Yuen
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Alice Zheng
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Faraj L Haddad
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian L Allman
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
5
|
Vernes SC, Devanna P, Hörpel SG, Alvarez van Tussenbroek I, Firzlaff U, Hagoort P, Hiller M, Hoeksema N, Hughes GM, Lavrichenko K, Mengede J, Morales AE, Wiesmann M. The pale spear-nosed bat: A neuromolecular and transgenic model for vocal learning. Ann N Y Acad Sci 2022; 1517:125-142. [PMID: 36069117 PMCID: PMC9826251 DOI: 10.1111/nyas.14884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Vocal learning, the ability to produce modified vocalizations via learning from acoustic signals, is a key trait in the evolution of speech. While extensively studied in songbirds, mammalian models for vocal learning are rare. Bats present a promising study system given their gregarious natures, small size, and the ability of some species to be maintained in captive colonies. We utilize the pale spear-nosed bat (Phyllostomus discolor) and report advances in establishing this species as a tractable model for understanding vocal learning. We have taken an interdisciplinary approach, aiming to provide an integrated understanding across genomics (Part I), neurobiology (Part II), and transgenics (Part III). In Part I, we generated new, high-quality genome annotations of coding genes and noncoding microRNAs to facilitate functional and evolutionary studies. In Part II, we traced connections between auditory-related brain regions and reported neuroimaging to explore the structure of the brain and gene expression patterns to highlight brain regions. In Part III, we created the first successful transgenic bats by manipulating the expression of FoxP2, a speech-related gene. These interdisciplinary approaches are facilitating a mechanistic and evolutionary understanding of mammalian vocal learning and can also contribute to other areas of investigation that utilize P. discolor or bats as study species.
Collapse
Affiliation(s)
- Sonja C. Vernes
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Paolo Devanna
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Stephen Gareth Hörpel
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands,TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Ine Alvarez van Tussenbroek
- School of BiologyUniversity of St AndrewsSt AndrewsUK,Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Uwe Firzlaff
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Peter Hagoort
- Neurobiology of Language DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Faculty of Biosciences, Senckenberg Research Institute, Goethe‐UniversityFrankfurtGermany
| | - Nienke Hoeksema
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands,Neurobiology of Language DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Graham M. Hughes
- School of Biology and Environmental ScienceUniversity College DublinBelfieldIreland
| | - Ksenia Lavrichenko
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Janine Mengede
- Neurogenetics of Vocal Communication GroupMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Ariadna E. Morales
- LOEWE Centre for Translational Biodiversity Genomics, Faculty of Biosciences, Senckenberg Research Institute, Goethe‐UniversityFrankfurtGermany
| | - Maximilian Wiesmann
- Department of Medical ImagingAnatomyRadboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer CenterNijmegenThe Netherlands
| |
Collapse
|
6
|
Li Z, Wang D, Guo W, Zhang S, Chen L, Zhang YH, Lu L, Pan X, Huang T, Cai YD. Identification of cortical interneuron cell markers in mouse embryos based on machine learning analysis of single-cell transcriptomics. Front Neurosci 2022; 16:841145. [PMID: 35911980 PMCID: PMC9337837 DOI: 10.3389/fnins.2022.841145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Mammalian cortical interneurons (CINs) could be classified into more than two dozen cell types that possess diverse electrophysiological and molecular characteristics, and participate in various essential biological processes in the human neural system. However, the mechanism to generate diversity in CINs remains controversial. This study aims to predict CIN diversity in mouse embryo by using single-cell transcriptomics and the machine learning methods. Data of 2,669 single-cell transcriptome sequencing results are employed. The 2,669 cells are classified into three categories, caudal ganglionic eminence (CGE) cells, dorsal medial ganglionic eminence (dMGE) cells, and ventral medial ganglionic eminence (vMGE) cells, corresponding to the three regions in the mouse subpallium where the cells are collected. Such transcriptomic profiles were first analyzed by the minimum redundancy and maximum relevance method. A feature list was obtained, which was further fed into the incremental feature selection, incorporating two classification algorithms (random forest and repeated incremental pruning to produce error reduction), to extract key genes and construct powerful classifiers and classification rules. The optimal classifier could achieve an MCC of 0.725, and category-specified prediction accuracies of 0.958, 0.760, and 0.737 for the CGE, dMGE, and vMGE cells, respectively. The related genes and rules may provide helpful information for deepening the understanding of CIN diversity.
Collapse
Affiliation(s)
- Zhandong Li
- College of Biological and Food Engineering, Jilin Engineering Normal University, Changchun, China
| | - Deling Wang
- State Key Laboratory of Oncology in South China, Department of Radiology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shiqi Zhang
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lin Lu
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - XiaoYong Pan
- Key Laboratory of System Control and Information Processing, Ministry of Education of China, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Tao Huang,
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
- Yu-Dong Cai,
| |
Collapse
|
7
|
Increased locomotor activity via regulation of GABAergic signalling in foxp2 mutant zebrafish-implications for neurodevelopmental disorders. Transl Psychiatry 2021; 11:529. [PMID: 34650032 PMCID: PMC8517032 DOI: 10.1038/s41398-021-01651-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 12/14/2022] Open
Abstract
Recent advances in the genetics of neurodevelopmental disorders (NDDs) have identified the transcription factor FOXP2 as one of numerous risk genes, e.g. in autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). FOXP2 function is suggested to be involved in GABAergic signalling and numerous studies demonstrate that GABAergic function is altered in NDDs, thus disrupting the excitation/inhibition balance. Interestingly, GABAergic signalling components, including glutamate-decarboxylase 1 (Gad1) and GABA receptors, are putative transcriptional targets of FOXP2. However, the specific role of FOXP2 in the pathomechanism of NDDs remains elusive. Here we test the hypothesis that Foxp2 affects behavioural dimensions via GABAergic signalling using zebrafish as model organism. We demonstrate that foxp2 is expressed by a subset of GABAergic neurons located in brain regions involved in motor functions, including the subpallium, posterior tuberculum, thalamus and medulla oblongata. Using CRISPR/Cas9 gene-editing we generated a novel foxp2 zebrafish loss-of-function mutant that exhibits increased locomotor activity. Further, genetic and/or pharmacological disruption of Gad1 or GABA-A receptors causes increased locomotor activity, resembling the phenotype of foxp2 mutants. Application of muscimol, a GABA-A receptor agonist, rescues the hyperactive phenotype induced by the foxp2 loss-of-function. By reverse translation of the therapeutic effect on hyperactive behaviour exerted by methylphenidate, we note that application of methylphenidate evokes different responses in wildtype compared to foxp2 or gad1b loss-of-function animals. Together, our findings support the hypothesis that foxp2 regulates locomotor activity via GABAergic signalling. This provides one targetable mechanism, which may contribute to behavioural phenotypes commonly observed in NDDs.
Collapse
|
8
|
den Hoed J, Devaraju K, Fisher SE. Molecular networks of the FOXP2 transcription factor in the brain. EMBO Rep 2021; 22:e52803. [PMID: 34260143 PMCID: PMC8339667 DOI: 10.15252/embr.202152803] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 06/23/2021] [Indexed: 01/06/2023] Open
Abstract
The discovery of the FOXP2 transcription factor, and its implication in a rare severe human speech and language disorder, has led to two decades of empirical studies focused on uncovering its roles in the brain using a range of in vitro and in vivo methods. Here, we discuss what we have learned about the regulation of FOXP2, its downstream effectors, and its modes of action as a transcription factor in brain development and function, providing an integrated overview of what is currently known about the critical molecular networks.
Collapse
Affiliation(s)
- Joery den Hoed
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- International Max Planck Research School for Language SciencesMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Karthikeyan Devaraju
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - Simon E Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| |
Collapse
|
9
|
CNTNAP2 gene polymorphisms in autism spectrum disorder and language impairment among Bangladeshi children: a case-control study combined with a meta-analysis. Hum Cell 2021; 34:1410-1423. [PMID: 33950402 DOI: 10.1007/s13577-021-00546-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Autism spectrum disorder (ASD) is a multifactorial neurodevelopmental disorder characterized by communication deficits, impaired social interactions, repetitive and stereotyped behaviors with restricted interests, and connected with the interaction between environmental factors and genetic vulnerability. CNTNAP2 gene has been extensively investigated for ASD and related neurodevelopment diseases. However, previous studies have resulted in an inconsistent outcome. Based on this fact, we conducted a case-control study followed by a meta-analysis to investigate the association of rs7794745 and rs2710102 polymorphisms with ASD. A total of 216 autistic children and 240 healthy volunteers were recruited, and genotyping was performed using the PCR-RFLP method. We observed that SNP rs7794745 revealed a significantly (p < 0.05) increased association with the development of ASD in children in all genetic models. No significant association was found for rs2710102 with ASD. Besides, rs2710102 exhibited a significant association with language impairment in TC genotype, C allele, and dominant model. From the meta-analysis of both SNPs, we found a significant association in codominant 1, 2, and the dominant model of rs2710102 and codominant 1 and dominant model of rs7794745 with ASD. Our case-control study suggests that rs7794745 polymorphism is associated with ASD, while rs2710102 is correlated with language impairment. Moreover, meta-analysis results indicated the association between both rs7794745 and rs2710102 polymorphisms and ASD.
Collapse
|
10
|
Rebelo MÂ, Gómez C, Gomes I, Poza J, Martins S, Maturana-Candelas A, Ruiz-Gómez SJ, Durães L, Sousa P, Figueruelo M, Rodríguez M, Pita C, Arenas M, Álvarez L, Hornero R, Pinto N, Lopes AM. Genome-Wide Scan for Five Brain Oscillatory Phenotypes Identifies a New QTL Associated with Theta EEG Band. Brain Sci 2020; 10:brainsci10110870. [PMID: 33218114 PMCID: PMC7698967 DOI: 10.3390/brainsci10110870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022] Open
Abstract
Brain waves, measured by electroencephalography (EEG), are a powerful tool in the investigation of neurophysiological traits and a noninvasive and cost-effective alternative in the diagnostic of some neurological diseases. In order to identify novel Quantitative Trait Loci (QTLs) for brain wave relative power (RP), we collected resting state EEG data in five frequency bands (δ, θ, α, β1, and β2) and genome-wide data in a cohort of 105 patients with late onset Alzheimer’s disease (LOAD), 41 individuals with mild cognitive impairment and 45 controls from Iberia, correcting for disease status. One novel association was found with an interesting candidate for a role in brain wave biology, CLEC16A (C-type lectin domain family 16), with a variant at this locus passing the adjusted genome-wide significance threshold after Bonferroni correction. This finding reinforces the importance of immune regulation in brain function. Additionally, at a significance cutoff value of 5 × 10−6, 18 independent association signals were detected. These signals comprise brain expression Quantitative Loci (eQTLs) in caudate basal ganglia, spinal cord, anterior cingulate cortex and hypothalamus, as well as chromatin interactions in adult and fetal cortex, neural progenitor cells and hippocampus. Moreover, in the set of genes showing signals of association with brain wave RP in our dataset, there is an overrepresentation of loci previously associated with neurological traits and pathologies, evidencing the pleiotropy of the genetic variation modulating brain function.
Collapse
Affiliation(s)
- Miguel Ângelo Rebelo
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carlos Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Correspondence: (C.G.); (N.P.)
| | - Iva Gomes
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Jesús Poza
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, 47011 Valladolid, Spain
| | - Sandra Martins
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Aarón Maturana-Candelas
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
| | - Saúl J. Ruiz-Gómez
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
| | - Luis Durães
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Delegação Norte, 4455-301 Lavra, Portugal; (L.D.); (P.S.)
| | - Patrícia Sousa
- Associação Portuguesa de Familiares e Amigos de Doentes de Alzheimer, Delegação Norte, 4455-301 Lavra, Portugal; (L.D.); (P.S.)
| | - Manuel Figueruelo
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - María Rodríguez
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - Carmen Pita
- Asociación de Familiares y Amigos de Enfermos de Alzheimer y otras demencias de Zamora, 49021 Zamora, Spain; (M.F.); (M.R.); (C.P.)
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain;
| | | | - Roberto Hornero
- Grupo de Ingeniería Biomédica, Universidad de Valladolid, 47011 Valladolid, Spain; (J.P.); (A.M.-C.); (S.J.R.-G.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), 47011 Valladolid, Spain
- Instituto de Investigación en Matemáticas (IMUVA), Universidad de Valladolid, 47011 Valladolid, Spain
| | - Nádia Pinto
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Centro de Matemática da, Universidade do Porto, 4169-007 Porto, Portugal
- Correspondence: (C.G.); (N.P.)
| | - Alexandra M. Lopes
- IPATIMUP—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4200-135 Porto, Portugal; (M.Â.R.); (I.G.); (S.M.); (A.M.L.)
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
11
|
Radtke-Schuller S, Fenzl T, Peremans H, Schuller G, Firzlaff U. Cyto- and myeloarchitectural brain atlas of the pale spear-nosed bat (Phyllostomus discolor) in CT Aided Stereotaxic Coordinates. Brain Struct Funct 2020; 225:2509-2520. [PMID: 32936343 PMCID: PMC7544721 DOI: 10.1007/s00429-020-02138-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/29/2020] [Indexed: 12/19/2022]
Abstract
The pale spear-nosed bat Phyllostomus discolor, a microchiropteran bat, is well established as an animal model for research on the auditory system, echolocation and social communication of species-specific vocalizations. We have created a brain atlas of Phyllostomus discolor that provides high-quality histological material for identification of brain structures in reliable stereotaxic coordinates to strengthen neurobiological studies of this key species. The new atlas combines high-resolution images of frontal sections alternately stained for cell bodies (Nissl) and myelinated fibers (Gallyas) at 49 rostrocaudal levels, at intervals of 350 µm. To facilitate comparisons with other species, brain structures were named according to the widely accepted Paxinos nomenclature and previous neuroanatomical studies of other bat species. Outlines of auditory cortical fields, as defined in earlier studies, were mapped onto atlas sections and onto the brain surface, together with the architectonic subdivisions of the neocortex. X-ray computerized tomography (CT) of the bat's head was used to establish the relationship between coordinates of brain structures and the skull. We used profile lines and the occipital crest as skull landmarks to line up skull and brain in standard atlas coordinates. An easily reproducible protocol allows sectioning of experimental brains in the standard frontal plane of the atlas. An electronic version of the atlas plates and supplementary material is available from https://doi.org/10.12751/g-node.8bbcxy.
Collapse
Affiliation(s)
- Susanne Radtke-Schuller
- Lehrstuhl für Zoologie, Technical University Munich, Freising, Germany.
- Department of Psychiatry, University of North Carolina At Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Thomas Fenzl
- Klinikum für Anästhesiologie und Intensivmedizin am Klinikum Rechts der Isar, TU München, Munich, Germany
| | - Herbert Peremans
- Department of Engineering Management, University of Antwerp, Antwerp, Belgium
| | - Gerd Schuller
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Uwe Firzlaff
- Lehrstuhl für Zoologie, Technical University Munich, Freising, Germany
| |
Collapse
|
12
|
Co M, Anderson AG, Konopka G. FOXP transcription factors in vertebrate brain development, function, and disorders. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2020; 9:e375. [PMID: 31999079 PMCID: PMC8286808 DOI: 10.1002/wdev.375] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/17/2019] [Accepted: 01/08/2020] [Indexed: 12/22/2022]
Abstract
FOXP transcription factors are an evolutionarily ancient protein subfamily coordinating the development of several organ systems in the vertebrate body. Association of their genes with neurodevelopmental disorders has sparked particular interest in their expression patterns and functions in the brain. Here, FOXP1, FOXP2, and FOXP4 are expressed in distinct cell type-specific spatiotemporal patterns in multiple regions, including the cortex, hippocampus, amygdala, basal ganglia, thalamus, and cerebellum. These varied sites and timepoints of expression have complicated efforts to link FOXP1 and FOXP2 mutations to their respective developmental disorders, the former affecting global neural functions and the latter specifically affecting speech and language. However, the use of animal models, particularly those with brain region- and cell type-specific manipulations, has greatly advanced our understanding of how FOXP expression patterns could underlie disorder-related phenotypes. While many questions remain regarding FOXP expression and function in the brain, studies to date have illuminated the roles of these transcription factors in vertebrate brain development and have greatly informed our understanding of human development and disorders. This article is categorized under: Nervous System Development > Vertebrates: General Principles Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Marissa Co
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon
| | - Ashley G Anderson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
13
|
Vernes SC, Wilkinson GS. Behaviour, biology and evolution of vocal learning in bats. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190061. [PMID: 31735153 DOI: 10.1098/rstb.2019.0061] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The comparative approach can provide insight into the evolution of human speech, language and social communication by studying relevant traits in animal systems. Bats are emerging as a model system with great potential to shed light on these processes given their learned vocalizations, close social interactions, and mammalian brains and physiology. A recent framework outlined the multiple levels of investigation needed to understand vocal learning across a broad range of non-human species, including cetaceans, pinnipeds, elephants, birds and bats. Here, we apply this framework to the current state-of-the-art in bat research. This encompasses our understanding of the abilities bats have displayed for vocal learning, what is known about the timing and social structure needed for such learning, and current knowledge about the prevalence of the trait across the order. It also addresses the biology (vocal tract morphology, neurobiology and genetics) and evolution of this trait. We conclude by highlighting some key questions that should be answered to advance our understanding of the biological encoding and evolution of speech and spoken communication. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, PO Box 310, Nijmegen 6500 AH, The Netherlands.,Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29, Nijmegen 6525 EN, The Netherlands
| | - Gerald S Wilkinson
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
14
|
Chi T, Liu M, Tan X, Li Y, Xiao Y, Sun K, Jin L, Feng J. Vocal Development of Horsfield's Leaf-Nosed Bat Pups (Hipposideros larvatus). ACTA CHIROPTEROLOGICA 2019. [DOI: 10.3161/15081109acc2019.21.1.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Tingting Chi
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130024, China
| | - Muxun Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130024, China
| | - Xiao Tan
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130024, China
| | - Yu Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130024, China
| | - Yanhong Xiao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130024, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130024, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130024, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
15
|
Liu X, Zhang R, Wu Z, Si W, Ren Z, Zhang S, Zhou J, Chen D. miR‑134‑5p/Foxp2/Syn1 is involved in cognitive impairment in an early vascular dementia rat model. Int J Mol Med 2019; 44:1729-1740. [PMID: 31545395 PMCID: PMC6777691 DOI: 10.3892/ijmm.2019.4331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022] Open
Abstract
Forkhead box P2 (Foxp2) is a transcription factor involved in vocal learning. However, the number of previous studies that have investigated the role of Foxp2 in early vascular dementia (VD) is limited. The aim of the present study was to determine whether microRNA (miR)‑134‑5p/Foxp2 contributes to cognitive impairment in a chronic ischemia‑induced early VD model. miR‑134‑5p was found to be significantly increased in the cortex in a rat VD model. Intracerebroventricular injection of miR‑134‑5p antagomir into VD rats prevented the loss of synaptic proteins and the development of cognitive impairment phenotypes. Histopathological analysis revealed that miR‑134‑5p aggravated cognitive impairment in VD rats through damage to cortical neurons and loss of synaptic proteins. Bioinformatics analysis predicted that miR‑134‑5p targets Foxp2 mRNA. Dual luciferase analysis and western blotting supported the prediction that miR‑134‑5p targets Foxp2. Furthermore, the silencing of Foxp2 significantly inhibited the effect of miR‑134‑5p on synaptic protein loss. Chromatin immunoprecipitation‑quantitative polymerase chain reaction analysis indicated that Foxp2 binds to the synapsin I (Syn1) promoter at ‑400/‑600 bp upstream of the transcription start site. In conclusion, the miR‑134‑5p/Foxp2/Syn1 axis was found to contribute to cognitive impairment in a chronic ischemia‑induced early VD model, which may enable the development of new therapeutic strategies for the prevention and treatment of VD.
Collapse
Affiliation(s)
- Xin Liu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Ruilin Zhang
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zimei Wu
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Wenwen Si
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Zhenxing Ren
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Saixia Zhang
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Jianhong Zhou
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Dongfeng Chen
- Department of Anatomy, The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
16
|
Schreiweis C, Irinopoulou T, Vieth B, Laddada L, Oury F, Burguière E, Enard W, Groszer M. Mice carrying a humanized Foxp2 knock-in allele show region-specific shifts of striatal Foxp2 expression levels. Cortex 2019; 118:212-222. [DOI: 10.1016/j.cortex.2019.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/07/2018] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
|
17
|
Lattenkamp EZ, Shields SM, Schutte M, Richter J, Linnenschmidt M, Vernes SC, Wiegrebe L. The Vocal Repertoire of Pale Spear-Nosed Bats in a Social Roosting Context. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Washington SD, Hamaide J, Jeurissen B, van Steenkiste G, Huysmans T, Sijbers J, Deleye S, Kanwal JS, De Groof G, Liang S, Van Audekerke J, Wenstrup JJ, Van der Linden A, Radtke-Schuller S, Verhoye M. A three-dimensional digital neurological atlas of the mustached bat (Pteronotus parnellii). Neuroimage 2018; 183:300-313. [PMID: 30102998 DOI: 10.1016/j.neuroimage.2018.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/26/2018] [Accepted: 08/09/2018] [Indexed: 12/24/2022] Open
Abstract
Substantial knowledge of auditory processing within mammalian nervous systems emerged from neurophysiological studies of the mustached bat (Pteronotus parnellii). This highly social and vocal species retrieves precise information about the velocity and range of its targets through echolocation. Such high acoustic processing demands were likely the evolutionary pressures driving the over-development at peripheral (cochlea), metencephalic (cochlear nucleus), mesencephalic (inferior colliculus), diencephalic (medial geniculate body of the thalamus), and telencephalic (auditory cortex) auditory processing levels in this species. Auditory researchers stand to benefit from a three dimensional brain atlas of this species, due to its considerable contribution to auditory neuroscience. Our MRI-based atlas was generated from 2 sets of image data of an ex-vivo male mustached bat's brain: a detailed 3D-T2-weighted-RARE scan [(59 × 63 x 85) μm3] and track density images based on super resolution diffusion tensor images [(78) μm3] reconstructed from a set of low resolution diffusion weighted images using Super-Resolution-Reconstruction (SRR). By surface-rendering these delineations and extrapolating from cortical landmarks and data from previous studies, we generated overlays that estimate the locations of classic functional subregions within mustached bat auditory cortex. This atlas is freely available from our website and can simplify future electrophysiological, microinjection, and neuroimaging studies in this and related species.
Collapse
Affiliation(s)
- Stuart D Washington
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Julie Hamaide
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Ben Jeurissen
- Imec-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | | | - Toon Huysmans
- Imec-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Jan Sijbers
- Imec-Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Steven Deleye
- Molecular Imaging Center Antwerp, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Jagmeet S Kanwal
- Laboratory for Auditory Communication and Cognition, Georgetown University Medical Center, The Research Building, rm WP09, 3900 Reservoir Rd, NW, Washington, DC 20057, United States of America
| | - Geert De Groof
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Sayuan Liang
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Johan Van Audekerke
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Jeffrey J Wenstrup
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH, 44272, United States of America
| | | | - Susanne Radtke-Schuller
- Division of Neurobiology, Biocenter of Ludwig Maximilians University, Grosshadernerstrasse 2, 82152, Planegg-Martinsried, Germany
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
19
|
|
20
|
Rodenas-Cuadrado PM, Mengede J, Baas L, Devanna P, Schmid TA, Yartsev M, Firzlaff U, Vernes SC. Mapping the distribution of language related genes FoxP1, FoxP2, and CntnaP2 in the brains of vocal learning bat species. J Comp Neurol 2018; 526:1235-1266. [PMID: 29297931 PMCID: PMC5900884 DOI: 10.1002/cne.24385] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022]
Abstract
Genes including FOXP2, FOXP1, and CNTNAP2, have been implicated in human speech and language phenotypes, pointing to a role in the development of normal language‐related circuitry in the brain. Although speech and language are unique to humans a comparative approach is possible by addressing language‐relevant traits in animal systems. One such trait, vocal learning, represents an essential component of human spoken language, and is shared by cetaceans, pinnipeds, elephants, some birds and bats. Given their vocal learning abilities, gregarious nature, and reliance on vocalizations for social communication and navigation, bats represent an intriguing mammalian system in which to explore language‐relevant genes. We used immunohistochemistry to detail the distribution of FoxP2, FoxP1, and Cntnap2 proteins, accompanied by detailed cytoarchitectural histology in the brains of two vocal learning bat species; Phyllostomus discolor and Rousettus aegyptiacus. We show widespread expression of these genes, similar to what has been previously observed in other species, including humans. A striking difference was observed in the adult P. discolor bat, which showed low levels of FoxP2 expression in the cortex that contrasted with patterns found in rodents and nonhuman primates. We created an online, open‐access database within which all data can be browsed, searched, and high resolution images viewed to single cell resolution. The data presented herein reveal regions of interest in the bat brain and provide new opportunities to address the role of these language‐related genes in complex vocal‐motor and vocal learning behaviors in a mammalian model system.
Collapse
Affiliation(s)
- Pedro M Rodenas-Cuadrado
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Janine Mengede
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Laura Baas
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Paolo Devanna
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands
| | - Tobias A Schmid
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, 94720
| | - Michael Yartsev
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California, 94720.,Department of Bioengineering, UC Berkeley, 306 University of California, Berkeley, California, 94720
| | - Uwe Firzlaff
- Department Tierwissenschaften, Lehrstuhl für Zoologie, TU München, München, 85354, Germany
| | - Sonja C Vernes
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, 6500 AH, The Netherlands.,Donders Centre for Cognitive Neuroimaging, Nijmegen, 6525 EN, The Netherlands
| |
Collapse
|