1
|
McKinnon C, Mo C, Sherman SM. DISRUPTION OF TRANSTHALAMIC CIRCUITRY FROM PRIMARY VISUAL CORTEX IMPAIRS VISUAL DISCRIMINATION IN MICE. J Neurosci 2025; 45:e0002252025. [PMID: 40139804 PMCID: PMC12044039 DOI: 10.1523/jneurosci.0002-25.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/06/2025] [Accepted: 03/01/2025] [Indexed: 03/29/2025] Open
Abstract
Layer 5 (L5) of the cortex provides strong driving input to higher-order thalamic nuclei, such as the pulvinar in the visual system, forming the basis of cortico-thalamo-cortical (transthalamic) circuits. These circuits provide a communication route between cortical areas in parallel to direct corticocortical connections, but their specific role in perception and behavior remains unclear. Using targeted optogenetic inhibition in mice of both sexes performing a visual discrimination task, we selectively suppressed the corticothalamic input from L5 cells in primary visual cortex (V1) at their terminals in pulvinar. This suppresses transthalamic circuits from V1; furthermore, any effect on direct corticocortical projections and local V1 circuitry would thus result from transthalamic inputs (e.g., V1 to pulvinar back to V1 (Miller-Hansen and Sherman, 2022). Such suppression of transthalamic processing during visual stimulus presentation of drifting gratings significantly impaired discrimination performance across different orientations. The impact on behavior was specific to the portion of visual space that retinotopically coincided with the V1 L5 corticothalamic inhibition. These results highlight the importance of incorporating L5-initiated transthalamic circuits into cortical processing frameworks, particularly those addressing how the hierarchical propagation of sensory signals supports perceptual decision-making.Significance statement Appreciation of pathways for transthalamic communication between cortical areas, organized in parallel with direct connections, has transformed our thinking about cortical functioning writ large. Studies of transthalamic pathways initially concentrated on their anatomy and physiology, but there has been a shift towards understanding their importance to cognitive behavior. Here, we have used an optogenetic approach in mice to selectively inhibit the transthalamic pathway from primary visual cortex to other cortical areas and back to itself. We find that such inhibition degrades the animals' ability to discriminate, showing for the first time that specific inhibition of visual transthalamic circuitry reduces visual discrimination. This causal data adds to the growing evidence for the importance of transthalamic signaling in perceptual processing.
Collapse
Affiliation(s)
- Claire McKinnon
- Committee on Computational Neuroscience, University of Chicago, Chicago, Illinois 60637
| | - Christina Mo
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - S. Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
2
|
Smith JB, Hong SS, Murphy DJ, Dangcil E, Nacipucha J, Tucker A, Carayannopoulos NL, Beshy M, Chandrasekar S, Peci E, Kiel MY, Wackym PA, Yao JD, Mowery TM. Neuroanatomical Mapping of Gerbil Corticostriatal and Thalamostriatal Projections Reveals the Parafascicular Nucleus as a Relay for Vestibular Information to the Entire Striatum. eNeuro 2025; 12:ENEURO.0246-24.2025. [PMID: 39952676 PMCID: PMC11913323 DOI: 10.1523/eneuro.0246-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 02/17/2025] Open
Abstract
The striatum is the primary input nucleus of the basal ganglia, integrating a dense plexus of inputs from the cerebral cortex and thalamus to regulate action selection and learning. Neuroanatomical mapping of the striatum and its subcompartments has been carried out extensively in rats and mice, nonhuman primates, and cats allowing comparative neuroanatomy studies to derive heuristics about striatal composition and function. Here, we systematically map corticostriatal topography from motor, somatosensory, auditory, and visual cortices as well as thalamostriatal parafascicular (PfN) inputs in the Mongolian gerbil. We also map a pathway reported in mice from medial vestibular nucleus to the PfN that could convey vestibular information to the striatum. Our findings align with those of similar studies in other rodents, indicating homologous neuroanatomical connectivity patterns within the corticostriatal projectome across Rodentia. We observed corticostriatal peaks of dense labeling for each input with a diffuse projection throughout striatal subregions from each cortical region, suggesting a global integration of all cortical information by the striatum. Thalamostriatal projections from PfN covered most of the striatum with a peak of PfN-specific compartmentalized labeling similar to other sensory and motor systems. We also confirm the connection from the medial vestibular nucleus to PfN thalamus, indicating that vestibular information may be widely integrated throughout the striatum. The findings build upon our body of knowledge on striatal connectivity across mammalian species and provide a foundation for striatal research focusing on vestibulothalamostriatal circuits in Rodentia.
Collapse
Affiliation(s)
- Jared B Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037
| | - Sean S Hong
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Damian J Murphy
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Evelynne Dangcil
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Jacqueline Nacipucha
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Aaron Tucker
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Nicolas L Carayannopoulos
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Mina Beshy
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Shrivaishnavi Chandrasekar
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Eran Peci
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - Matthew Y Kiel
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
| | - P Ashley Wackym
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
- Rutgers Brain Health Institute, New Brunswick, New Jersey 08854
| | - Justin D Yao
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
- Rutgers Brain Health Institute, New Brunswick, New Jersey 08854
| | - Todd M Mowery
- Department of Otolaryngology - Head and Neck Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854
- Rutgers Brain Health Institute, New Brunswick, New Jersey 08854
| |
Collapse
|
3
|
Meier AM, D'Souza RD, Ji W, Han EB, Burkhalter A. Interdigitating Modules for Visual Processing During Locomotion and Rest in Mouse V1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639505. [PMID: 40060542 PMCID: PMC11888233 DOI: 10.1101/2025.02.21.639505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Layer 1 of V1 has been shown to receive locomotion-related signals from the dorsal lateral geniculate (dLGN) and lateral posterior (LP) thalamic nuclei (Roth et al., 2016). Inputs from the dLGN terminate in M2+ patches while inputs from LP target M2- interpatches (D'Souza et al., 2019) suggesting that motion related signals are processed in distinct networks. Here, we investigated by calcium imaging in head-fixed awake mice whether L2/3 neurons underneath L1 M2+ and M2- modules are differentially activated by locomotion, and whether distinct networks of feedback connections from higher cortical areas to L1 may contribute to these differences. We found that strongly locomotion-modulated cell clusters during visual stimulation were aligned with M2- interpatches, while weakly modulated cells clustered under M2+ patches. Unlike M2+ patch cells, pairs of M2- interpatch cells showed increased correlated variability of calcium transients when the sites in the visuotopic map were far apart, suggesting that activity is integrated across large parts of the visual field. Pathway tracing further suggests that strong locomotion modulation in L2/3 M2- interpatch cells of V1 relies on looped, like-to-like networks between apical dendrites of MOs-, PM- and RSP-projecting neurons and feedback input from these areas to L1. M2- interpatches receive strong inputs from SST neurons, suggesting that during locomotion these interneurons influence the firing of specific subnetworks by controlling the excitability of apical dendrites in M2- interpatches.
Collapse
Affiliation(s)
- A M Meier
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| | - R D D'Souza
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| | - W Ji
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| | - E B Han
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| | - A Burkhalter
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110; USA
| |
Collapse
|
4
|
McKinnon C, Mo C, Sherman SM. DISRUPTION OF TRANSTHALAMIC CIRCUITRY FROM PRIMARY VISUAL CORTEX IMPAIRS VISUAL DISCRIMINATION IN MICE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637190. [PMID: 39975026 PMCID: PMC11839038 DOI: 10.1101/2025.02.07.637190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Layer 5 (L5) of the cortex provides strong driving input to higher-order thalamic nuclei, such as the pulvinar in the visual system, forming the basis of cortico-thalamo-cortical (transthalamic) circuits. These circuits provide a communication route between cortical areas in parallel to direct corticocortical connections, but their specific role in perception and behavior remains unclear. Using targeted optogenetic inhibition in mice performing a visual discrimination task, we selectively suppressed the corticothalamic input from L5 cells in primary visual cortex (V1) at their terminals in pulvinar. This suppresses transthalamic circuits from V1; furthermore, any effect on direct corticocortical projections and local V1 circuitry would thus result from transthalamic inputs (e.g., V1 to pulvinar back to V1 (Miller-Hansen and Sherman, 2022). Such suppression of transthalamic processing during visual stimulus presentation of drifting gratings significantly impaired discrimination performance across different orientations. The impact on behavior was specific to the portion of visual space that retinotopically coincided with the V1 L5 corticothalamic inhibition. These results highlight the importance of incorporating L5-initiated transthalamic circuits into cortical processing frameworks, particularly those addressing how the hierarchical propagation of sensory signals supports perceptual decision-making.
Collapse
Affiliation(s)
- C. McKinnon
- Committee on Computational Neuroscience, University of Chicago, Illinois, USA
| | - C. Mo
- Department of Neurobiology, University of Chicago, Illinois, USA
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria, Australia
| | - S. M. Sherman
- Department of Neurobiology, University of Chicago, Illinois, USA
| |
Collapse
|
5
|
Cassidy RM, Macias AV, Lagos WN, Ugorji C, Callaway EM. Complementary Organization of Mouse Driver and Modulator Cortico-thalamo-cortical Circuits. J Neurosci 2025; 45:e1167242024. [PMID: 39824633 PMCID: PMC11780356 DOI: 10.1523/jneurosci.1167-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 01/20/2025] Open
Abstract
Corticocortical (CC) projections in the visual system facilitate hierarchical processing of sensory information. In addition to direct CC connections, indirect cortico-thalamo-cortical (CTC) pathways through the pulvinar nucleus of the thalamus can relay sensory signals and mediate cortical interactions according to behavioral demands. While the pulvinar connects extensively to the entire visual cortex, it is unknown whether transthalamic pathways link all cortical areas or whether they follow systematic organizational rules. Because mouse pulvinar neurons projecting to different areas are spatially intermingled, their input/output relationships have been difficult to characterize using traditional anatomical methods. To determine the organization of CTC circuits, we mapped the higher visual areas (HVAs) of male and female mice with intrinsic signal imaging and targeted five pulvinar→HVA pathways for projection-specific rabies tracing. We aligned postmortem cortical tissue to in vivo maps for precise quantification of the areas and cell types projecting to each pulvinar→HVA population. Layer 5 corticothalamic (L5CT) "driver" inputs to the pulvinar originate predominantly from primary visual cortex (V1), consistent with the CC hierarchy. L5CT inputs from lateral HVAs specifically avoid driving reciprocal connections, consistent with the "no-strong-loops" hypothesis. Conversely, layer 6 corticothalamic (L6CT) "modulator" inputs are distributed across areas and are biased toward reciprocal connections. Unlike previous studies in primates, we find that every HVA receives disynaptic input from the superior colliculus. CTC circuits in the pulvinar thus depend on both target HVA and input cell type, such that driving and modulating higher-order pathways follow complementary connection rules similar to those governing first-order CT circuits.
Collapse
Affiliation(s)
- Rachel M Cassidy
- The Salk Institute for Biological Studies, La Jolla, California 92037
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92037
| | - Angel V Macias
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Willian N Lagos
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Chiamaka Ugorji
- The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Edward M Callaway
- The Salk Institute for Biological Studies, La Jolla, California 92037
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92037
| |
Collapse
|
6
|
Bouvier G, Sanzeni A, Hamada E, Brunel N, Scanziani M. Inter- and Intrahemispheric Sources of Vestibular Signals to V1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624137. [PMID: 39605728 PMCID: PMC11601413 DOI: 10.1101/2024.11.18.624137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Head movements are sensed by the vestibular organs. Unlike classical senses, signals from vestibular organs are not conveyed to a dedicated cortical area but are broadcast throughout the cortex. Surprisingly, the routes taken by vestibular signals to reach the cortex are still largely uncharted. Here we show that the primary visual cortex (V1) receives real-time head movement signals - direction, velocity, and acceleration - from the ipsilateral pulvinar and contralateral visual cortex. The ipsilateral pulvinar provides the main head movement signal, with a bias toward contraversive movements (e.g. clockwise movements in left V1). Conversely, the contralateral visual cortex provides head movement signals during ipsiversive movements. Crucially, head movement variables encoded in V1 are already encoded in the pulvinar, suggesting that those variables are computed subcortically. Thus, the convergence of inter- and intrahemispheric signals endows V1 with a rich representation of the animal's head movements.
Collapse
Affiliation(s)
- Guy Bouvier
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France
| | - Alessandro Sanzeni
- Department of Computing Sciences, Bocconi University, 20100 Milan, Italy
- Center for Theoretical Neuroscience and Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Elizabeth Hamada
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Nicolas Brunel
- Department of Computing Sciences, Bocconi University, 20100 Milan, Italy
- Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Massimo Scanziani
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Han X, Bonin V. Higher-order cortical and thalamic pathways shape visual processing streams in the mouse cortex. Curr Biol 2024; 34:5671-5684.e6. [PMID: 39566501 DOI: 10.1016/j.cub.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Mammalian visual functions rely on distributed processing across interconnected cortical and subcortical regions. In higher-order visual areas (HVAs), visual features are processed in specialized streams that integrate feedforward and higher-order inputs from intracortical and thalamocortical pathways. However, the precise circuit organization responsible for HVA specialization remains unclear. We investigated the cellular architecture of primary visual cortex (V1) and higher-order visual pathways in the mouse, focusing on their roles in shaping visual representations. Using in vivo functional imaging and neural circuit tracing, we found that HVAs preferentially receive inputs from both V1 and higher-order pathways tuned to similar spatiotemporal properties, with the strongest selectivity seen in layer 2/3 neurons. These neurons exhibit target-specific tuning and sublaminar specificity in their projections, reflecting cell-type-specific visual information flow. In contrast, HVA layer 5 pathways nonspecifically broadcast visual signals across cortical areas, suggesting a role in distributing HVA outputs. Additionally, thalamocortical pathways from the lateral posterior thalamic nucleus (LP) provide highly specific, nearly non-overlapping visual inputs to HVAs, complementing intracortical inputs and contributing to input functional diversity. Our findings suggest that the convergence of laminar and cell-type-specific pathways V1 and higher-order intracortical and thalamocortical pathways plays a key role in shaping the functional specialization and diversity of HVAs.
Collapse
Affiliation(s)
- Xu Han
- Neuro-Electronics Research Flanders, 3000 Leuven, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium; VIB, 3000 Leuven, Belgium.
| | - Vincent Bonin
- Neuro-Electronics Research Flanders, 3000 Leuven, Belgium; KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium; VIB, 3000 Leuven, Belgium.
| |
Collapse
|
8
|
Petty GH, Bruno RM. Attentional modulation of secondary somatosensory and visual thalamus of mice. eLife 2024; 13:RP97188. [PMID: 39601499 PMCID: PMC11602186 DOI: 10.7554/elife.97188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Each sensory modality has its own primary and secondary thalamic nuclei. While the primary thalamic nuclei are well understood to relay sensory information from the periphery to the cortex, the role of secondary sensory nuclei is elusive. We trained head-fixed mice to attend to one sensory modality while ignoring a second modality, namely to attend to touch and ignore vision, or vice versa. Arrays were used to record simultaneously from the secondary somatosensory thalamus (POm) and secondary visual thalamus (LP). In mice trained to respond to tactile stimuli and ignore visual stimuli, POm was robustly activated by touch and largely unresponsive to visual stimuli. A different pattern was observed when mice were trained to respond to visual stimuli and ignore touch, with POm now more robustly activated during visual trials. This POm activity was not explained by differences in movements (i.e. whisking, licking, pupil dilation) resulting from the two tasks. Post hoc histological reconstruction of array tracks through POm revealed that subregions varied in their degree of plasticity. LP exhibited similar phenomena. We conclude that behavioral training reshapes activity in secondary thalamic nuclei. Secondary nuclei respond to the same behaviorally relevant, reward-predicting stimuli regardless of stimulus modality.
Collapse
Affiliation(s)
- Gordon H Petty
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Department of Physiology, Anatomy, & Genetics, University of OxfordOxfordUnited Kingdom
| | - Randy M Bruno
- Department of Neuroscience, Columbia UniversityNew YorkUnited States
- Department of Physiology, Anatomy, & Genetics, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
9
|
Petty GH, Bruno RM. Attentional modulation of secondary somatosensory and visual thalamus of mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586242. [PMID: 38585833 PMCID: PMC10996504 DOI: 10.1101/2024.03.22.586242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Each sensory modality has its own primary and secondary thalamic nuclei. While the primary thalamic nuclei are well understood to relay sensory information from the periphery to the cortex, the role of secondary sensory nuclei is elusive. We trained head-fixed mice to ateend to one sensory modality while ignoring a second modality, namely to ateend to touch and ignore vision, or vice versa. Arrays were used to record simultaneously from secondary somatosensory thalamus (POm) and secondary visual thalamus (LP). In mice trained to respond to tactile stimuli and ignore visual stimuli, POm was robustly activated by touch and largely unresponsive to visual stimuli. A different pateern was observed when mice were trained to respond to visual stimuli and ignore touch, with POm now more robustly activated during visual trials. This POm activity was not explained by differences in movements (i.e., whisking, licking, pupil dilation) resulting from the two tasks. Post hoc histological reconstruction of array tracks through POm revealed that subregions varied in their degree of plasticity. LP exhibited similar phenomena. We conclude that behavioral training reshapes activity in secondary thalamic nuclei. Secondary nuclei respond to the same behaviorally relevant, reward-predicting stimuli regardless of stimulus modality.
Collapse
Affiliation(s)
- Gordon H Petty
- Department of Neuroscience, Columbia University, New York, NY 10027 USA
- Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Randy M Bruno
- Department of Neuroscience, Columbia University, New York, NY 10027 USA
- Department of Physiology, Anatomy, & Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
10
|
Sherman SM, Usrey WM. Transthalamic Pathways for Cortical Function. J Neurosci 2024; 44:e0909242024. [PMID: 39197951 PMCID: PMC11358609 DOI: 10.1523/jneurosci.0909-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/06/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
The cerebral cortex contains multiple, distinct areas that individually perform specific computations. A particular strength of the cortex is the communication of signals between cortical areas that allows the outputs of these compartmentalized computations to influence and build on each other, thereby dramatically increasing the processing power of the cortex and its role in sensation, action, and cognition. Determining how the cortex communicates signals between individual areas is, therefore, critical for understanding cortical function. Historically, corticocortical communication was thought to occur exclusively by direct anatomical connections between areas that often sequentially linked cortical areas in a hierarchical fashion. More recently, anatomical, physiological, and behavioral evidence is accumulating indicating a role for the higher-order thalamus in corticocortical communication. Specifically, the transthalamic pathway involves projections from one area of the cortex to neurons in the higher-order thalamus that, in turn, project to another area of the cortex. Here, we consider the evidence for and implications of having two routes for corticocortical communication with an emphasis on unique processing available in the transthalamic pathway and the consequences of disorders and diseases that affect transthalamic communication.
Collapse
Affiliation(s)
- S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, California 95618
| |
Collapse
|
11
|
Nakamura H, Ohta K. Understanding subcortical projections to the lateral posterior thalamic nucleus and its subregions using retrograde neural tracing. Front Neuroanat 2024; 18:1430636. [PMID: 39170852 PMCID: PMC11335648 DOI: 10.3389/fnana.2024.1430636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
The rat lateral posterior thalamic nucleus (LP) is composed of the rostromedial (LPrm), lateral (LPl), and caudomedial parts, with LPrm and LPl being areas involved in information processing within the visual cortex. Nevertheless, the specific differences in the subcortical projections to the LPrm and LPl remain elusive. In this study, we aimed to reveal the subcortical regions that project axon fibers to the LPl and LPrm using a retrograde neural tracer, Fluorogold (FG). After FG injection into the LPrm or LPl, the area was visualized immunohistochemically. Retrogradely labeled neurons from the LPrm were distributed in the retina and the region from the diencephalon to the medulla oblongata. Diencephalic labeling was found in the reticular thalamic nucleus (Rt), zona incerta (ZI), ventral lateral geniculate nucleus (LGv), intergeniculate leaflet (IGL), and hypothalamus. In the midbrain, prominent labeling was found in the periaqueductal gray (PAG) and deep layers of the superior colliculus. Additionally, retrograde labeling was observed in the cerebellar and trigeminal nuclei. When injected into the LPl, several cell bodies were labeled in the visual-related regions, including the retina, LGv, IGL, and olivary pretectal nucleus (OPT), as well as in the Rt and anterior pretectal nucleus (APT). Less labeling was found in the cerebellum and medulla oblongata. When the number of retrogradely labeled neurons from the LPrm or LPl was compared as a percentage of total subcortical labeling, a larger percentage of subcortical inputs to the LPl included projections from the APT, OPT, and Rt, whereas a large proportion of subcortical inputs to the LPrm originated from the ZI, reticular formation, and PAG. These results suggest that LPrm not only has visual but also multiple sensory-and motor-related functions, whereas the LPl takes part in a more visual-specific role. This study enhances our understanding of subcortical neural circuits in the thalamus and may contribute to our exploration of the mechanisms and disorders related to sensory perception and sensory-motor integration.
Collapse
Affiliation(s)
- Hisashi Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Japan
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
12
|
Sherman SM, Usrey WM. A Reconsideration of the Core and Matrix Classification of Thalamocortical Projections. J Neurosci 2024; 44:e0163242024. [PMID: 38866538 PMCID: PMC11170670 DOI: 10.1523/jneurosci.0163-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/18/2024] [Accepted: 04/16/2024] [Indexed: 06/14/2024] Open
Abstract
In 1998, Jones suggested a classification of thalamocortical projections into core and matrix divisions (Jones, 1998). In this classification, core projections are specific, topographical, innervate middle cortical layers, and serve to transmit specific information to the cortex for further analysis; matrix projections, in contrast, are diffuse, much less topographic, innervate upper layers, especially Layer 1, and serve a more global, modulatory function, such as affecting levels of arousal. This classification has proven especially influential in studies of thalamocortical relationships. Whereas it may be the case that a clear subset of thalamocortical connections fit the core motif, since they are specific, topographic, and innervate middle layers, we argue that there is no clear evidence for any single class that encompasses the remainder of thalamocortical connections as is claimed for matrix. Instead, there is great morphological variation in connections made by thalamocortical projections fitting neither a core nor matrix classification. We thus conclude that the core/matrix classification should be abandoned, because its application is not helpful in providing insights into thalamocortical interactions and can even be misleading. As one example of the latter, recent suggestions indicate that core projections are equivalent to first-order thalamic relays (i.e., those that relay subcortical information to the cortex) and matrix to higher-order relays (i.e., those that relay information from one cortical area to another), but available evidence does not support this relationship. All of this points to a need to replace the core/matrix grouping with a more complete classification of thalamocortical projections.
Collapse
Affiliation(s)
- S Murray Sherman
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - W Martin Usrey
- Center for Neuroscience, University of California, Davis, California 95616
| |
Collapse
|
13
|
Dorkenwald S, Li PH, Januszewski M, Berger DR, Maitin-Shepard J, Bodor AL, Collman F, Schneider-Mizell CM, da Costa NM, Lichtman JW, Jain V. Multi-layered maps of neuropil with segmentation-guided contrastive learning. Nat Methods 2023; 20:2011-2020. [PMID: 37985712 PMCID: PMC10703674 DOI: 10.1038/s41592-023-02059-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 10/02/2023] [Indexed: 11/22/2023]
Abstract
Maps of the nervous system that identify individual cells along with their type, subcellular components and connectivity have the potential to elucidate fundamental organizational principles of neural circuits. Nanometer-resolution imaging of brain tissue provides the necessary raw data, but inferring cellular and subcellular annotation layers is challenging. We present segmentation-guided contrastive learning of representations (SegCLR), a self-supervised machine learning technique that produces representations of cells directly from 3D imagery and segmentations. When applied to volumes of human and mouse cortex, SegCLR enables accurate classification of cellular subcompartments and achieves performance equivalent to a supervised approach while requiring 400-fold fewer labeled examples. SegCLR also enables inference of cell types from fragments as small as 10 μm, which enhances the utility of volumes in which many neurites are truncated at boundaries. Finally, SegCLR enables exploration of layer 5 pyramidal cell subtypes and automated large-scale analysis of synaptic partners in mouse visual cortex.
Collapse
Affiliation(s)
- Sven Dorkenwald
- Google Research, Mountain View, CA, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Computer Science Department, Princeton University, Princeton, NJ, USA
| | | | | | - Daniel R Berger
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard, Cambridge, MA, USA
| | | | | | | | | | | | - Jeff W Lichtman
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard, Cambridge, MA, USA
| | - Viren Jain
- Google Research, Mountain View, CA, USA.
| |
Collapse
|
14
|
Jiang S, Honnuraiah S, Stuart GJ. Characterization of primary visual cortex input to specific cell types in the superior colliculus. Front Neuroanat 2023; 17:1282941. [PMID: 38020214 PMCID: PMC10667433 DOI: 10.3389/fnana.2023.1282941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The superior colliculus is a critical brain region involved in processing visual information. It receives visual input directly from the retina, as well as via a projection from primary visual cortex. Here we determine which cell types in the superficial superior colliculus receive visual input from primary visual cortex in mice. Neurons in the superficial layers of the superior colliculus were classified into four groups - Wide-field, narrow-field, horizontal and stellate - based on their morphological and electrophysiological properties. To determine functional connections between V1 and these four different cell types we expressed Channelrhodopsin2 in primary visual cortex and then optically stimulated these axons while recording from different neurons in the superficial superior colliculus using whole-cell patch-clamp recording in vitro. We found that all four cell types in the superficial layers of the superior colliculus received monosynaptic (direct) input from V1. Wide-field neurons were more likely than other cell types to receive primary visual cortex input. Our results provide information on the cell specificity of the primary visual cortex to superior colliculus projection, increasing our understanding of how visual information is processed in the superior colliculus at the single cell level.
Collapse
Affiliation(s)
- Shuang Jiang
- Eccles Institute for Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Suraj Honnuraiah
- Eccles Institute for Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Greg J. Stuart
- Eccles Institute for Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
15
|
Murakami T, Ohki K. Thalamocortical circuits for the formation of hierarchical pathways in the mammalian visual cortex. Front Neural Circuits 2023; 17:1155195. [PMID: 37139079 PMCID: PMC10149680 DOI: 10.3389/fncir.2023.1155195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 05/05/2023] Open
Abstract
External sensory inputs propagate from lower-order to higher-order brain areas, and the hierarchical neural network supporting this information flow is a fundamental structure of the mammalian brain. In the visual system, multiple hierarchical pathways process different features of the visual information in parallel. The brain can form this hierarchical structure during development with few individual differences. A complete understanding of this formation mechanism is one of the major goals of neuroscience. For this purpose, it is necessary to clarify the anatomical formation process of connections between individual brain regions and to elucidate the molecular and activity-dependent mechanisms that instruct these connections in each areal pair. Over the years, researchers have unveiled developmental mechanisms of the lower-order pathway from the retina to the primary visual cortex. The anatomical formation of the entire visual network from the retina to the higher visual cortex has recently been clarified, and higher-order thalamic nuclei are gaining attention as key players in this process. In this review, we summarize the network formation process in the mouse visual system, focusing on projections from the thalamic nuclei to the primary and higher visual cortices, which are formed during the early stages of development. Then, we discuss how spontaneous retinal activity that propagates through thalamocortical pathways is essential for the formation of corticocortical connections. Finally, we discuss the possible role of higher-order thalamocortical projections as template structures in the functional maturation of visual pathways that process different visual features in parallel.
Collapse
Affiliation(s)
- Tomonari Murakami
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Kenichi Ohki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- World Premier International Research Center Initiative-International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo, Japan
| |
Collapse
|
16
|
Cui JJ, Wang J, Xu DS, Wu S, Guo YT, Su YX, Liu YH, Wang YQ, Jing XH, Bai WZ. Alexa Fluor 488-conjugated cholera toxin subunit B optimally labels neurons 3-7 days after injection into the rat gastrocnemius muscle. Neural Regen Res 2022; 17:2316-2320. [PMID: 35259856 PMCID: PMC9083145 DOI: 10.4103/1673-5374.337055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Neural tract tracing is used to study neural pathways and evaluate neuronal regeneration following nerve injuries. However, it is not always clear which tracer should be used to yield optimal results. In this study, we examined the use of Alexa Fluor 488-conjugated cholera toxin subunit B (AF488-CTB). This was injected into the gastrocnemius muscle of rats, and it was found that motor, sensory, and sympathetic neurons were labeled in the spinal ventral horn, dorsal root ganglia, and sympathetic chain, respectively. Similar results were obtained when we injected AF594-CTB into the tibialis anterior muscle. The morphology and number of neurons were evaluated at different time points following the AF488-CTB injection. It was found that labeled motor and sensory neurons could be observed 12 hours post-injection. The intensity was found to increase over time, and the morphology appeared clear and complete 3-7 days post-injection, with clearly distinguishable motor neuron axons and dendrites. However, 14 days after the injection, the quality of the images decreased and the neurons appeared blurred and incomplete. Nissl and immunohistochemical staining showed that the AF488-CTB-labeled neurons retained normal neurochemical and morphological features, and the surrounding microglia were also found to be unaltered. Overall, these results imply that the cholera toxin subunit B, whether unconjugated or conjugated with Alexa Fluor, is effective for retrograde tracing in muscular tissues and that it would also be suitable for evaluating the regeneration or degeneration of injured nerves.
Collapse
Affiliation(s)
- Jing-Jing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dong-Sheng Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuang Wu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ya-Ting Guo
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Xin Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi-Han Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Qing Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiang-Hong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wan-Zhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
17
|
Conserved patterns of functional organization between cortex and thalamus in mice. Proc Natl Acad Sci U S A 2022; 119:e2201481119. [PMID: 35588455 DOI: 10.1073/pnas.2201481119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceNeuroanatomical tracing provides just a partial picture of information flow in the brain, because excitatory synapses are not all equal. Some strongly drive postsynaptic targets to transfer information, whereas others weakly modulate their responsiveness. Here, we show conserved patterns of synaptic function across somatosensory and visual thalamocortical circuits in mice involving higher-order thalamic nuclei. These nuclei serve as hubs in transthalamic or cortico-thalamo-cortical pathways. We report that feedforward transthalamic circuits in the somatosensory and visual systems operate to efficiently transmit information, whereas feedback transthalamic circuits act to modulate their target areas. These patterns may generalize to other brain systems and show how methods of synapse physiology and molecular biology can inform the exploration of brain circuitry and information processing.
Collapse
|
18
|
Leow YN, Zhou B, Sullivan HA, Barlowe AR, Wickersham IR, Sur M. Brain-wide mapping of inputs to the mouse lateral posterior (LP/Pulvinar) thalamus-anterior cingulate cortex network. J Comp Neurol 2022; 530:1992-2013. [PMID: 35383929 PMCID: PMC9167239 DOI: 10.1002/cne.25317] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 01/29/2023]
Abstract
The rodent homolog of the primate pulvinar, the lateral posterior (LP) thalamus, is extensively interconnected with multiple cortical areas. While these cortical interactions can span the entire LP, subdivisions of the LP are characterized by differential connections with specific cortical regions. In particular, the medial LP has reciprocal connections with frontoparietal cortical areas, including the anterior cingulate cortex (ACC). The ACC plays an integral role in top‐down sensory processing and attentional regulation, likely exerting some of these functions via the LP. However, little is known about how ACC and LP interact, and about the information potentially integrated in this reciprocal network. Here, we address this gap by employing a projection‐specific monosynaptic rabies tracing strategy to delineate brain‐wide inputs to bottom‐up LP→ACC and top‐down ACC→LP neurons. We find that LP→ACC neurons receive inputs from widespread cortical regions, including primary and higher order sensory and motor cortical areas. LP→ACC neurons also receive extensive subcortical inputs, particularly from the intermediate and deep layers of the superior colliculus (SC). Sensory inputs to ACC→LP neurons largely arise from visual cortical areas. In addition, ACC→LP neurons integrate cross‐hemispheric prefrontal cortex inputs as well as inputs from higher order medial cortex. Our brain‐wide anatomical mapping of inputs to the reciprocal LP‐ACC pathways provides a roadmap for understanding how LP and ACC communicate different sources of information to mediate attentional control and visuomotor functions.
Collapse
Affiliation(s)
- Yi Ning Leow
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Blake Zhou
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Heather A Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alexandria R Barlowe
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Kondo S, Kiyohara Y, Ohki K. Response Selectivity of the Lateral Posterior Nucleus Axons Projecting to the Mouse Primary Visual Cortex. Front Neural Circuits 2022; 16:825735. [PMID: 35296036 PMCID: PMC8918919 DOI: 10.3389/fncir.2022.825735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Neurons in the mouse primary visual cortex (V1) exhibit characteristic response selectivity to visual stimuli, such as orientation, direction and spatial frequency selectivity. Since V1 receives thalamic visual inputs from the lateral geniculate nucleus (LGN) and lateral posterior nucleus (LPN), the response selectivity of the V1 neurons could be influenced mostly by these inputs. However, it remains unclear how these two thalamic inputs contribute to the response selectivity of the V1 neurons. In this study, we examined the orientation, direction and spatial frequency selectivity of the LPN axons projecting to V1 and compared their response selectivity with our previous results of the LGN axons in mice. For this purpose, the genetically encoded calcium indicator, GCaMP6s, was locally expressed in the LPN using the adeno-associated virus (AAV) infection method. Visual stimulations were presented, and axonal imaging was conducted in V1 by two-photon calcium imaging in vivo. We found that LPN axons primarily terminate in layers 1 and 5 and, to a lesser extent, in layers 2/3 and 4 of V1, while LGN axons mainly terminate in layer 4 and, to a lesser extent, in layers 1 and 2/3 of V1. LPN axons send highly orientation- and direction-selective inputs to all the examined layers in V1, whereas LGN axons send highly orientation- and direction-selective inputs to layers 1 and 2/3 but low orientation and direction selective inputs to layer 4 in V1. The distribution of preferred orientation and direction was strongly biased toward specific orientations and directions in LPN axons, while weakly biased to cardinal orientations and directions in LGN axons. In spatial frequency tuning, both the LPN and LGN axons send selective inputs to V1. The distribution of preferred spatial frequency was more diverse in the LPN axons than in the LGN axons. In conclusion, LPN inputs to V1 are functionally different from LGN inputs and may have different roles in the orientation, direction and spatial frequency tuning of the V1 neurons.
Collapse
Affiliation(s)
- Satoru Kondo
- Department of Physiology, School of Medicine, The University of Tokyo, Tokyo, Japan
- World Premier International Research Center – International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
- *Correspondence: Satoru Kondo,
| | - Yuko Kiyohara
- Department of Physiology, School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Ohki
- Department of Physiology, School of Medicine, The University of Tokyo, Tokyo, Japan
- World Premier International Research Center – International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- Kenichi Ohki,
| |
Collapse
|
20
|
Kirchgessner MA, Franklin AD, Callaway EM. Distinct "driving" versus "modulatory" influences of different visual corticothalamic pathways. Curr Biol 2021; 31:5121-5137.e7. [PMID: 34614389 PMCID: PMC8665059 DOI: 10.1016/j.cub.2021.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/25/2021] [Accepted: 09/08/2021] [Indexed: 02/04/2023]
Abstract
Higher-order (HO) thalamic nuclei interact extensively and reciprocally with the cerebral cortex. These corticothalamic (CT) interactions are thought to be important for sensation and perception, attention, and many other important brain functions. CT projections to HO thalamic nuclei, such as the visual pulvinar, originate from two different excitatory populations in cortical layers 5 and 6, whereas first-order nuclei (such as the dorsolateral geniculate nucleus; dLGN) only receive layer 6 CT input. It has been proposed that these layer 5 and layer 6 CT pathways have different functional influences on the HO thalamus, but this has never been directly tested. By optogenetically inactivating different CT populations in the primary visual cortex (V1) and recording single-unit activity from V1, dLGN, and pulvinar of awake mice, we demonstrate that layer 5, but not layer 6, CT projections drive visual responses in the pulvinar, even while both pathways provide retinotopic, baseline excitation to their thalamic targets. Inactivating the superior colliculus also suppressed visual responses in the same subregion of the pulvinar, demonstrating that cortical layer 5 and subcortical inputs both contribute to HO visual thalamic activity-even at the level of putative single neurons. Altogether, these results indicate a functional division of "driver" and "modulator" CT pathways from V1 to the visual thalamus in vivo.
Collapse
Affiliation(s)
- Megan A Kirchgessner
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexis D Franklin
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
21
|
Meier AM, Wang Q, Ji W, Ganachaud J, Burkhalter A. Modular Network between Postrhinal Visual Cortex, Amygdala, and Entorhinal Cortex. J Neurosci 2021; 41:4809-4825. [PMID: 33849948 PMCID: PMC8260166 DOI: 10.1523/jneurosci.2185-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 11/21/2022] Open
Abstract
The postrhinal area (POR) is a known center for integrating spatial with nonspatial visual information and a possible hub for influencing landmark navigation by affective input from the amygdala. This may involve specific circuits within muscarinic acetylcholine receptor 2 (M2)-positive (M2+) or M2- modules of POR that associate inputs from the thalamus, cortex, and amygdala, and send outputs to the entorhinal cortex. Using anterograde and retrograde labeling with conventional and viral tracers in male and female mice, we found that all higher visual areas of the ventral cortical stream project to the amygdala, while such inputs are absent from primary visual cortex and dorsal stream areas. Unexpectedly for the presumed salt-and-pepper organization of mouse extrastriate cortex, tracing results show that inputs from the dorsal lateral geniculate nucleus and lateral posterior nucleus were spatially clustered in layer 1 (L1) and overlapped with M2+ patches of POR. In contrast, input from the amygdala to L1 of POR terminated in M2- interpatches. Importantly, the amygdalocortical input to M2- interpatches in L1 overlapped preferentially with spatially clustered apical dendrites of POR neurons projecting to amygdala and entorhinal area lateral, medial (ENTm). The results suggest that subnetworks in POR, used to build spatial maps for navigation, do not receive direct thalamocortical M2+ patch-targeting inputs. Instead, they involve local networks of M2- interpatches, which are influenced by affective information from the amygdala and project to ENTm, whose cells respond to visual landmark cues for navigation.SIGNIFICANCE STATEMENT A central purpose of visual object recognition is identifying the salience of objects and approaching or avoiding them. However, it is not currently known how the visual cortex integrates the multiple streams of information, including affective and navigational cues, which are required to accomplish this task. We find that in a higher visual area, the postrhinal cortex, the cortical sheet is divided into interdigitating modules receiving distinct inputs from visual and emotion-related sources. One of these modules is preferentially connected with the amygdala and provides outputs to entorhinal cortex, constituting a processing stream that may assign emotional salience to objects and landmarks for the guidance of goal-directed navigation.
Collapse
Affiliation(s)
- Andrew M Meier
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Quanxin Wang
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Weiqing Ji
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Jehan Ganachaud
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| | - Andreas Burkhalter
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110
| |
Collapse
|
22
|
Morimoto MM, Uchishiba E, Saleem AB. Organization of feedback projections to mouse primary visual cortex. iScience 2021; 24:102450. [PMID: 34113813 PMCID: PMC8169797 DOI: 10.1016/j.isci.2021.102450] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/01/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
Top-down, context-dependent modulation of visual processing has been a topic of wide interest, including in mouse primary visual cortex (V1). However, the organization of feedback projections to V1 is relatively unknown. Here, we investigated inputs to mouse V1 by injecting retrograde tracers. We developed a software pipeline that maps labeled cell bodies to corresponding brain areas in the Allen Reference Atlas. We identified more than 24 brain areas that provide inputs to V1 and quantified the relative strength of their projections. We also assessed the organization of the projections, based on either the organization of cell bodies in the source area (topography) or the distribution of projections across V1 (bias). Projections from most higher visual and some nonvisual areas to V1 showed both topography and bias. Such organization of feedback projections to V1 suggests that parts of the visual field are differentially modulated by context, which can be ethologically relevant for a navigating animal.
Collapse
Affiliation(s)
- Mai M. Morimoto
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Emi Uchishiba
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| | - Aman B. Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, WC1H 0AP, UK
| |
Collapse
|
23
|
Blot A, Roth MM, Gasler I, Javadzadeh M, Imhof F, Hofer SB. Visual intracortical and transthalamic pathways carry distinct information to cortical areas. Neuron 2021; 109:1996-2008.e6. [PMID: 33979633 PMCID: PMC8221812 DOI: 10.1016/j.neuron.2021.04.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/28/2021] [Accepted: 04/15/2021] [Indexed: 01/13/2023]
Abstract
Sensory processing involves information flow between neocortical areas, assumed to rely on direct intracortical projections. However, cortical areas may also communicate indirectly via higher-order nuclei in the thalamus, such as the pulvinar or lateral posterior nucleus (LP) in the visual system of rodents. The fine-scale organization and function of these cortico-thalamo-cortical pathways remains unclear. We find that responses of mouse LP neurons projecting to higher visual areas likely derive from feedforward input from primary visual cortex (V1) combined with information from many cortical and subcortical areas, including superior colliculus. Signals from LP projections to different higher visual areas are tuned to specific features of visual stimuli and their locomotor context, distinct from the signals carried by direct intracortical projections from V1. Thus, visual transthalamic pathways are functionally specific to their cortical target, different from feedforward cortical pathways, and combine information from multiple brain regions, linking sensory signals with behavioral context. Transthalamic pathway through pulvinar indirectly connects lower to higher cortical areas This pathway combines input from V1 with that of many cortical and subcortical areas Pulvinar conveys distinct visual and motor information to different higher visual areas Direct intracortical and transthalamic pathways convey different information
Collapse
Affiliation(s)
- Antonin Blot
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK; Biozentrum, University of Basel, Basel, Switzerland
| | | | - Ioana Gasler
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK; Biozentrum, University of Basel, Basel, Switzerland
| | - Mitra Javadzadeh
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK; Biozentrum, University of Basel, Basel, Switzerland
| | - Fabia Imhof
- Biozentrum, University of Basel, Basel, Switzerland
| | - Sonja B Hofer
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK; Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
24
|
Ma G, Liu Y, Wang L, Xiao Z, Song K, Wang Y, Peng W, Liu X, Wang Z, Jin S, Tao Z, Li CT, Xu T, Xu F, Xu M, Zhang S. Hierarchy in sensory processing reflected by innervation balance on cortical interneurons. SCIENCE ADVANCES 2021; 7:7/20/eabf5676. [PMID: 33990327 PMCID: PMC8121429 DOI: 10.1126/sciadv.abf5676] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Sensory processing is subjected to modulation by behavioral contexts that are often mediated by long-range inputs to cortical interneurons, but their selectivity to different types of interneurons remains largely unknown. Using rabies-virus tracing and optogenetics-assisted recording, we analyzed the long-range connections to various brain regions along the hierarchy of visual processing, including primary visual cortex, medial association cortices, and frontal cortices. We found that hierarchical corticocortical and thalamocortical connectivity is reflected by the relative weights of inputs to parvalbumin-positive (PV+) and vasoactive intestinal peptide-positive (VIP+) neurons within the conserved local circuit motif, with bottom-up and top-down inputs preferring PV+ and VIP+ neurons, respectively. Our algorithms based on innervation weights for these two types of local interneurons generated testable predictions of the hierarchical position of many brain areas. These results support the notion that preferential long-range inputs to specific local interneurons are essential for the hierarchical information flow in the brain.
Collapse
Affiliation(s)
- Guofen Ma
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanmei Liu
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lizhao Wang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhongyi Xiao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kun Song
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yanjie Wang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wanling Peng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaotong Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ziyue Wang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sen Jin
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Zi Tao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chengyu T Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Tianle Xu
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Fuqiang Xu
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Min Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| | - Siyu Zhang
- Center for Brain Science of Shanghai Children's Medical Center, Department of Anatomy and Physiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China
| |
Collapse
|
25
|
Zhuo C, Tian H, Fang T, Li R, Li Y, Kong L, Cai Z, Zheng L, Lin X, Chen C. Neural mechanisms underlying visual and auditory processing impairments in schizophrenia: insight into the etiology and implications for tailoring preventive and therapeutic interventions. Am J Transl Res 2020; 12:7657-7669. [PMID: 33437351 PMCID: PMC7791494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Schizophrenia is a complex and devastating neuropsychiatric disorder with an unknown etiology. Patients with schizophrenia have a high prevalence of visual disturbances, commonly accompanied by auditory impairments. In recent review articles, the perceptual deficits of visual and auditory sensory processing have been downplayed. However, visual and auditory impairments are associated with hallucinations, which is characteristic of schizophrenia across all cultures. Despite decades of research, the common neural mechanisms underlying hallucinations remain largely unknown. In recent years, neuroimaging technologies have empowered researchers to investigate the underlying neural mechanisms. In this review article, we performed a literature search of studies that assessed visual and auditory processing impairments, along with their relationship to visual disturbances and auditory hallucinations, in schizophrenia. We proposed that the pulvinar may play a critical role. In addition, disrupted visual and auditory projections from the pulvinar to the visual and auditory cortices could be shared pathways in relation to visual disturbances and auditory hallucinations in schizophrenia. Our findings suggest that early visual and auditory processing deficits may occur before the onset of the initial psychotic episode, including hallucinations, and the full manifestation of schizophrenia. Furthermore, we discussed the directions for future studies. Our findings from this review offer unique insights into the distinct underlying neural mechanisms of schizophrenia, which may help develop tailored preventive and therapeutic interventions in the future.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Key Laboratory of Real Time Brain Circuits Tracing (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Hospital Affiliated to Nankai UniversityTianjin 300222, China
- Department of Psychiatry, Tianjin Medical UniversityTianjin 300072, China
- Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical UniversityTianjin 300300, China
- Department of Psychiatry, Wenzhou Seventh Peoples HospitalWenzhou 325000, China
| | - Hongjun Tian
- Key Laboratory of Real Time Brain Circuits Tracing (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Hospital Affiliated to Nankai UniversityTianjin 300222, China
| | - Tao Fang
- Key Laboratory of Real Time Brain Circuits Tracing (RTBNP_Lab), Tianjin Fourth Center Hospital, Tianjin Fourth Hospital Affiliated to Nankai UniversityTianjin 300222, China
| | - Ranli Li
- Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical UniversityTianjin 300300, China
| | - Yachen Li
- Psychiatric-Neuroimaging-Genetics and Comorbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical UniversityTianjin 300300, China
| | - Lingguang Kong
- Department of Psychiatry, Wenzhou Seventh Peoples HospitalWenzhou 325000, China
| | - Ziyao Cai
- Department of Psychiatry, Wenzhou Seventh Peoples HospitalWenzhou 325000, China
| | - Lidan Zheng
- Department of Psychiatry, Wenzhou Seventh Peoples HospitalWenzhou 325000, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh Peoples HospitalWenzhou 325000, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh Peoples HospitalWenzhou 325000, China
| |
Collapse
|
26
|
de Souza BOF, Frigon ÉM, Tremblay-Laliberté R, Casanova C, Boire D. Laminar distribution of cortical projection neurons to the pulvinar: A comparative study in cats and mice. J Comp Neurol 2020; 529:2055-2069. [PMID: 33226127 DOI: 10.1002/cne.25072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 01/19/2023]
Abstract
The cortical processing of visual information is thought to follow a hierarchical framework. This framework of connections between visual areas is based on the laminar patterns of direct feedforward and feedback cortico-cortical projections. However, this view ignores the cortico-thalamo-cortical projections to the pulvinar nucleus in the thalamus, which provides an alternative transthalamic information transfer between cortical areas. It was proposed that corticothalamic (CT) pathways follow a similar hierarchical pattern as cortico-cortical connections. Two main types of CT projections have been recognized: drivers and modulators. Drivers originate mainly in Layer 5 whereas modulators are from Layer 6. Little is known about the laminar distribution of these projections to the pulvinar across visual cortical areas. Here, we analyzed the distribution of CT neurons projecting to the lateral posterior (LP) thalamus in two species: cats and mice. Injections of the retrograde tracer fragment B of cholera toxin (CTb) were performed in the LP. The morphology and cortical laminar distribution of CTb-labeled neurons was assessed. In cats, neurons were mostly found in Layer 6 except in Area 17, where they were mostly in Layer 5. In contrast, CT neurons in mice were mostly located in Layer 6 across all areas. Thus, our results demonstrate that CT projections in mice do not follow the same organization as cats suggesting that the transthalamic pathways play distinct roles in these species.
Collapse
Affiliation(s)
| | - Éve-Marie Frigon
- Département d'Anatomie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | | - Denis Boire
- Département d'Anatomie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada.,École d'Optométrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
27
|
Gilissen SRJ, Farrow K, Bonin V, Arckens L. Reconsidering the Border between the Visual and Posterior Parietal Cortex of Mice. Cereb Cortex 2020; 31:1675-1692. [PMID: 33159207 DOI: 10.1093/cercor/bhaa318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
The posterior parietal cortex (PPC) contributes to multisensory and sensory-motor integration, as well as spatial navigation. Based on primate studies, the PPC is composed of several subdivisions with differing connection patterns, including areas that exhibit retinotopy. In mice the composition of the PPC is still under debate. We propose a revised anatomical delineation in which we classify the higher order visual areas rostrolateral area (RL), anteromedial area (AM), and Medio-Medial-Anterior cortex (MMA) as subregions of the mouse PPC. Retrograde and anterograde tracing revealed connectivity, characteristic for primate PPC, with sensory, retrosplenial, orbitofrontal, cingulate and motor cortex, as well as with several thalamic nuclei and the superior colliculus in the mouse. Regarding cortical input, RL receives major input from the somatosensory barrel field, while AM receives more input from the trunk, whereas MMA receives strong inputs from retrosplenial, cingulate, and orbitofrontal cortices. These input differences suggest that each posterior PPC subregion may have a distinct function. Summarized, we put forward a refined cortical map, including a mouse PPC that contains at least 6 subregions, RL, AM, MMA and PtP, MPta, LPta/A. These anatomical results set the stage for a more detailed understanding about the role that the PPC and its subdivisions play in multisensory integration-based behavior in mice.
Collapse
Affiliation(s)
- Sara R J Gilissen
- KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium
| | - Karl Farrow
- KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium.,Neuro-Electronics Research Flanders, 3001 Leuven, Belgium.,VIB, 3001 Leuven, Belgium.,Imec, 3001 Leuven, Belgium
| | - Vincent Bonin
- KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium.,Neuro-Electronics Research Flanders, 3001 Leuven, Belgium.,VIB, 3001 Leuven, Belgium.,Imec, 3001 Leuven, Belgium
| | - Lutgarde Arckens
- KU Leuven, Department of Biology & Leuven Brain Institute, 3000 Leuven, Belgium
| |
Collapse
|
28
|
Scholl LR, Foik AT, Lyon DC. Projections between visual cortex and pulvinar in the rat. J Comp Neurol 2020; 529:129-140. [PMID: 32361987 DOI: 10.1002/cne.24937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 12/27/2022]
Abstract
The extrageniculate visual pathway, which carries visual information from the retina through the superficial layers of the superior colliculus and the pulvinar, is poorly understood. The pulvinar is thought to modulate information flow between cortical areas, and has been implicated in cognitive tasks like directing visually guided actions. In order to better understand the underlying circuitry, we performed retrograde injections of modified rabies virus in the visual cortex and pulvinar of the Long-Evans rat. We found a relatively small population of cells projecting to primary visual cortex (V1), compared to a much larger population projecting to higher visual cortex. Reciprocal corticothalamic projections showed a similar result, implying that pulvinar does not play as big a role in directly modulating rodent V1 activity as previously thought.
Collapse
Affiliation(s)
- Leo R Scholl
- Department of Cognitive Sciences, School of Social Sciences, University of California, Irvine, California, USA.,Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California, USA
| | - Andrzej T Foik
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California, USA
| | - David C Lyon
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
29
|
Chou XL, Fang Q, Yan L, Zhong W, Peng B, Li H, Wei J, Tao HW, Zhang LI. Contextual and cross-modality modulation of auditory cortical processing through pulvinar mediated suppression. eLife 2020; 9:e54157. [PMID: 32142411 PMCID: PMC7080503 DOI: 10.7554/elife.54157] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/05/2020] [Indexed: 11/23/2022] Open
Abstract
Lateral posterior nucleus (LP) of thalamus, the rodent homologue of primate pulvinar, projects extensively to sensory cortices. However, its functional role in sensory cortical processing remains largely unclear. Here, bidirectional activity modulations of LP or its projection to the primary auditory cortex (A1) in awake mice reveal that LP improves auditory processing in A1 supragranular-layer neurons by sharpening their receptive fields and frequency tuning, as well as increasing the signal-to-noise ratio (SNR). This is achieved through a subtractive-suppression mechanism, mediated largely by LP-to-A1 axons preferentially innervating specific inhibitory neurons in layer 1 and superficial layers. LP is strongly activated by specific sensory signals relayed from the superior colliculus (SC), contributing to the maintenance and enhancement of A1 processing in the presence of auditory background noise and threatening visual looming stimuli respectively. Thus, a multisensory bottom-up SC-pulvinar-A1 pathway plays a role in contextual and cross-modality modulation of auditory cortical processing.
Collapse
Affiliation(s)
- Xiao-lin Chou
- Zilkha Neurogenetic Institute, University of Southern CaliforniaLos AngelesUnited States
- Graduate Program in Neuroscience, University of Southern CaliforniaLos AngelesUnited States
| | - Qi Fang
- Zilkha Neurogenetic Institute, University of Southern CaliforniaLos AngelesUnited States
- Graduate Program in Neuroscience, University of Southern CaliforniaLos AngelesUnited States
| | - Linqing Yan
- Zilkha Neurogenetic Institute, University of Southern CaliforniaLos AngelesUnited States
| | - Wen Zhong
- Zilkha Neurogenetic Institute, University of Southern CaliforniaLos AngelesUnited States
| | - Bo Peng
- Zilkha Neurogenetic Institute, University of Southern CaliforniaLos AngelesUnited States
- Graduate Program in Neuroscience, University of Southern CaliforniaLos AngelesUnited States
| | - Haifu Li
- Zilkha Neurogenetic Institute, University of Southern CaliforniaLos AngelesUnited States
| | - Jinxing Wei
- Zilkha Neurogenetic Institute, University of Southern CaliforniaLos AngelesUnited States
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute, University of Southern CaliforniaLos AngelesUnited States
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Li I Zhang
- Zilkha Neurogenetic Institute, University of Southern CaliforniaLos AngelesUnited States
- Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
30
|
Fang Q, Chou XL, Peng B, Zhong W, Zhang LI, Tao HW. A Differential Circuit via Retino-Colliculo-Pulvinar Pathway Enhances Feature Selectivity in Visual Cortex through Surround Suppression. Neuron 2019; 105:355-369.e6. [PMID: 31812514 DOI: 10.1016/j.neuron.2019.10.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/15/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023]
Abstract
In the mammalian visual system, information from the retina streams into parallel bottom-up pathways. It remains unclear how these pathways interact to contribute to contextual modulation of visual cortical processing. By optogenetic inactivation and activation of mouse lateral posterior nucleus (LP) of thalamus, a homolog of pulvinar, or its projection to primary visual cortex (V1), we found that LP contributes to surround suppression of layer (L) 2/3 responses in V1 by driving L1 inhibitory neurons. This results in subtractive suppression of visual responses and an overall enhancement of orientation, direction, spatial, and size selectivity. Neurons in V1-projecting LP regions receive bottom-up input from the superior colliculus (SC) and respond preferably to non-patterned visual noise. The noise-dependent LP activity allows V1 to "cancel" noise effects and maintain its orientation selectivity under varying noise background. Thus, the retina-SC-LP-V1 pathway forms a differential circuit with the canonical retino-geniculate pathway to achieve context-dependent sharpening of visual representations.
Collapse
Affiliation(s)
- Qi Fang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao-Lin Chou
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Bo Peng
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Graduate Program in Neuroscience, University of Southern California, Los Angeles, CA 90089, USA
| | - Wen Zhong
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Li I Zhang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Huizhong Whit Tao
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|