1
|
Dolleman-van der Weel MJ, Witter MP. The thalamic midline nucleus reuniens: potential relevance for schizophrenia and epilepsy. Neurosci Biobehav Rev 2020; 119:422-439. [PMID: 33031816 DOI: 10.1016/j.neubiorev.2020.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/03/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023]
Abstract
Anatomical, electrophysiological and behavioral studies in rodents have shown that the thalamic midline nucleus reuniens (RE) is a crucial link in the communication between hippocampal formation (HIP, i.e., CA1, subiculum) and medial prefrontal cortex (mPFC), important structures for cognitive and executive functions. A common feature in neurodevelopmental and neurodegenerative brain diseases is a dysfunctional connectivity/communication between HIP and mPFC, and disturbances in the cognitive domain. Therefore, it is assumed that aberrant functioning of RE may contribute to behavioral/cognitive impairments in brain diseases characterized by cortico-thalamo-hippocampal circuit dysfunctions. In the human brain the connections of RE are largely unknown. Yet, recent studies have found important similarities in the functional connectivity of HIP-mPFC-RE in humans and rodents, making cautious extrapolating experimental findings from animal models to humans justifiable. The focus of this review is on a potential involvement of RE in schizophrenia and epilepsy.
Collapse
Affiliation(s)
- M J Dolleman-van der Weel
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| | - M P Witter
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU Norwegian University of Science and Technology, Trondheim NO-7491, Norway.
| |
Collapse
|
2
|
Wallois F, Routier L, Bourel-Ponchel E. Impact of prematurity on neurodevelopment. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:341-375. [PMID: 32958184 DOI: 10.1016/b978-0-444-64150-2.00026-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The consequences of prematurity on brain functional development are numerous and diverse, and impact all brain functions at different levels. Prematurity occurs between 22 and 36 weeks of gestation. This period is marked by extreme dynamics in the physiologic maturation, structural, and functional processes. These different processes appear sequentially or simultaneously. They are dependent on genetic and/or environmental factors. Disturbance of these processes or of the fine-tuning between them, when caring for premature children, is likely to induce disturbances in the structural and functional development of the immature neural networks. These will appear as impairments in learning skills progress and are likely to have a lasting impact on the development of children born prematurely. The level of severity depends on the initial alteration, whether structural or functional. In this chapter, after having briefly reviewed the neurodevelopmental, structural, and functional processes, we describe, in a nonexhaustive manner, the impact of prematurity on the different brain, motor, sensory, and cognitive functions.
Collapse
Affiliation(s)
- Fabrice Wallois
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France.
| | - Laura Routier
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France
| | - Emilie Bourel-Ponchel
- Research Group on Multimodal Analysis of Brain Function, Jules Verne Picardie University, Amiens, France; Department of Pediatric Functional Exploration of the Nervous System, University Hospital, Picardie, Amiens, France
| |
Collapse
|
3
|
Sequeira A, Shen K, Gottlieb A, Limon A. Human brain transcriptome analysis finds region- and subject-specific expression signatures of GABA AR subunits. Commun Biol 2019; 2:153. [PMID: 31069263 PMCID: PMC6494906 DOI: 10.1038/s42003-019-0413-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/03/2019] [Indexed: 11/19/2022] Open
Abstract
Altered expression of GABA receptors (GABAARs) has been implicated in neurological and psychiatric disorders, but limited information about region-specific GABAAR subunit expression in healthy human brains, heteromeric assembly of major isoforms, and their collective organization across healthy individuals, are major roadblocks to understanding their role in non-physiological states. Here, by using microarray and RNA-Seq datasets-from single cell nuclei to global brain expression-from the Allen Institute, we find that transcriptional expression of GABAAR subunits is anatomically organized according to their neurodevelopmental origin. The data show a combination of complementary and mutually-exclusive expression patterns that delineate major isoforms, and which is highly stereotypical across brains from control donors. We summarize the region-specific signature of GABAR subunits per subject and its variability in a control population sample that can be used as a reference for remodeling changes during homeostatic rearrangements of GABAAR subunits after physiological, pharmacological or pathological challenges.
Collapse
Affiliation(s)
- Adolfo Sequeira
- Department of Psychiatry and Human Behavior, School of Medicine, University of California Irvine, Irvine, CA USA
| | - Kevin Shen
- Department of Neurology, Mitchel Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX USA
| | - Assaf Gottlieb
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX USA
| | - Agenor Limon
- Department of Neurology, Mitchel Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX USA
| |
Collapse
|
4
|
Mai JK, Majtanik M. Toward a Common Terminology for the Thalamus. Front Neuroanat 2019; 12:114. [PMID: 30687023 PMCID: PMC6336698 DOI: 10.3389/fnana.2018.00114] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/27/2018] [Indexed: 01/08/2023] Open
Abstract
The wealth of competing parcellations with limited cross-correspondence between atlases of the human thalamus raises problems in a time when the usefulness of neuroanatomical methods is increasingly appreciated for modern computational analyses of the brain. An unequivocal nomenclature is, however, compulsory for the understanding of the organization of the thalamus. This situation cannot be improved by renewed discussion but with implementation of neuroinformatics tools. We adopted a new volumetric approach to characterize the significant subdivisions and determined the relationships between the parcellation schemes of nine most influential atlases of the human thalamus. The volumes of each atlas were 3d-reconstructed and spatially registered to the standard MNI/ICBM2009b reference volume of the Human Brain Atlas in the MNI (Montreal Neurological Institute) space (Mai and Majtanik, 2017). This normalization of the individual thalamus shapes allowed for the comparison of the nuclear regions delineated by the different authors. Quantitative cross-comparisons revealed the extent of predictability of territorial borders for 11 area clusters. In case of discordant parcellations we re-analyzed the underlying histological features and the original descriptions. The final scheme of the spatial organization provided the frame for the selected terms for the subdivisions of the human thalamus using on the (modified) terminology of the Federative International Programme for Anatomical Terminology (FIPAT). Waiving of exact individual definition of regional boundaries in favor of the statistical representation within the open MNI platform provides the common and objective (standardized) ground to achieve concordance between results from different sources (microscopy, imaging etc.).
Collapse
Affiliation(s)
- Jürgen K. Mai
- Institute for Anatomy, Heinrich-Heine-University, Duesseldorf, Germany
| | - Milan Majtanik
- Institute of Informatics, Heinrich-Heine-University, Duesseldorf, Germany
| |
Collapse
|
5
|
Giraldo-Chica M, Rogers BP, Damon SM, Landman BA, Woodward ND. Prefrontal-Thalamic Anatomical Connectivity and Executive Cognitive Function in Schizophrenia. Biol Psychiatry 2018; 83:509-517. [PMID: 29113642 PMCID: PMC5809301 DOI: 10.1016/j.biopsych.2017.09.022] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/30/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Executive cognitive functions, including working memory, cognitive flexibility, and inhibition, are impaired in schizophrenia. Executive functions rely on coordinated information processing between the prefrontal cortex (PFC) and thalamus, particularly the mediodorsal nucleus. This raises the possibility that anatomical connectivity between the PFC and mediodorsal thalamus may be 1) reduced in schizophrenia and 2) related to deficits in executive function. The current investigation tested these hypotheses. METHODS Forty-five healthy subjects and 62 patients with a schizophrenia spectrum disorder completed a battery of tests of executive function and underwent diffusion-weighted imaging. Probabilistic tractography was used to quantify anatomical connectivity between six cortical regions, including PFC, and the thalamus. Thalamocortical anatomical connectivity was compared between healthy subjects and patients with schizophrenia using region-of-interest and voxelwise approaches, and the association between PFC-thalamic anatomical connectivity and severity of executive function impairment was examined in patients. RESULTS Anatomical connectivity between the thalamus and PFC was reduced in schizophrenia. Voxelwise analysis localized the reduction to areas of the mediodorsal thalamus connected to lateral PFC. Reduced PFC-thalamic connectivity in schizophrenia correlated with impaired working memory but not cognitive flexibility and inhibition. In contrast to reduced PFC-thalamic connectivity, thalamic connectivity with somatosensory and occipital cortices was increased in schizophrenia. CONCLUSIONS The results are consistent with models implicating disrupted PFC-thalamic connectivity in the pathophysiology of schizophrenia and mechanisms of cognitive impairment. PFC-thalamic anatomical connectivity may be an important target for procognitive interventions. Further work is needed to determine the implications of increased thalamic connectivity with sensory cortex.
Collapse
Affiliation(s)
- Monica Giraldo-Chica
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - Baxter P. Rogers
- Vanderbilt University Institute of Imaging Science, Nashville, TN
| | | | - Bennett A. Landman
- Vanderbilt University Institute of Imaging Science, Nashville, TN,Vanderbilt University School of Engineering, Nashville, TN
| | - Neil D. Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
6
|
Krsnik Ž, Majić V, Vasung L, Huang H, Kostović I. Growth of Thalamocortical Fibers to the Somatosensory Cortex in the Human Fetal Brain. Front Neurosci 2017; 11:233. [PMID: 28496398 PMCID: PMC5406414 DOI: 10.3389/fnins.2017.00233] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/07/2017] [Indexed: 01/17/2023] Open
Abstract
Thalamocortical (TH-C) fiber growth begins during the embryonic period and is completed by the third trimester of gestation in humans. Here we determined the timing and trajectories of somatosensory TH-C fibers in the developing human brain. We analyzed the periods of TH-C fiber outgrowth, path-finding, "waiting" in the subplate (SP), target selection, and ingrowth in the cortical plate (CP) using histological sections from post-mortem fetal brain [from 7 to 34 postconceptional weeks (PCW)] that were processed with acetylcholinesterase (AChE) histochemistry and immunohistochemical methods. Images were compared with post mortem diffusion tensor imaging (DTI)-based fiber tractography (code No NO1-HD-4-3368). The results showed TH-C axon outgrowth occurs as early as 7.5 PCW in the ventrolateral part of the thalamic anlage. Between 8 and 9.5 PCW, TH-C axons form massive bundles that traverse the diencephalic-telencephalic boundary. From 9.5 to 11 PCW, thalamocortical axons pass the periventricular area at the pallial-subpallial boundary and enter intermediate zone in radiating fashion. Between 12 and 14 PCW, the TH-C axons, aligned along the fibers from the basal forebrain, continue to grow for a short distance within the deep intermediate zone and enter the deep CP, parallel with SP expansion. Between 14 and 18 PCW, the TH-C interdigitate with callosal fibers, running shortly in the sagittal stratum and spreading through the deep SP ("waiting" phase). From 19 to 22 PCW, TH-C axons accumulate in the superficial SP below the somatosensory cortical area; this occurs 2 weeks earlier than in the frontal and occipital cortices. Between 23 and 24 PCW, AChE-reactive TH-C axons penetrate the CP concomitantly with its initial lamination. Between 25 and 34 PCW, AChE reactivity of the CP exhibits an uneven pattern suggestive of vertical banding, showing a basic 6-layer pattern. In conclusion, human thalamocortical axons show prolonged growth (4 months), and somatosensory fibers precede the ingrowth of fibers destined for frontal and occipital areas. The major features of growing TH-C somatosensory fiber trajectories are fan-like radiation, short runs in the sagittal strata, and interdigitation with the callosal system. These results support our hypothesis that TH-C axons are early factors in SP and CP morphogenesis and synaptogenesis and may regulate cortical somatosensory system maturation.
Collapse
Affiliation(s)
- Željka Krsnik
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagreb, Croatia
| | - Visnja Majić
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagreb, Croatia
| | - Lana Vasung
- Harvard Medical School, Boston Children's HospitalBoston, MA, USA
| | - Hao Huang
- Laboratory of Neural MRI and Brain Connectivity, School of Medicine and Children's Hospital of Philadelphia, University of Pennsylvania PerelmanPhiladelphia, PA, USA
| | - Ivica Kostović
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of ZagrebZagreb, Croatia
| |
Collapse
|
7
|
O'Donovan SM, Hasselfeld K, Bauer D, Simmons M, Roussos P, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Glutamate transporter splice variant expression in an enriched pyramidal cell population in schizophrenia. Transl Psychiatry 2015; 5:e579. [PMID: 26057049 PMCID: PMC4490284 DOI: 10.1038/tp.2015.74] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/02/2015] [Accepted: 03/01/2015] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of the glutamate transporters EAAT1 and EAAT2 and their isoforms have been implicated in schizophrenia. EAAT1 and EAAT2 expression has been studied in different brain regions but the prevalence of astrocytic glutamate transporter expression masks the more subtle changes in excitatory amino acid transporters (EAATs) isoforms in neurons in the cortex. Using laser capture microdissection, pyramidal neurons were cut from the anterior cingulate cortex of postmortem schizophrenia (n = 20) and control (n = 20) subjects. The messenger RNA (mRNA) levels of EAAT1, EAAT2 and the splice variants EAAT1 exon9skipping, EAAT2 exon9skipping and EAAT2b were analyzed by real time PCR (RT-PCR) in an enriched population of neurons. Region-level expression of these transcripts was measured in postmortem schizophrenia (n = 25) and controls (n = 25). The relationship between selected EAAT polymorphisms and EAAT splice variant expression was also explored. Anterior cingulate cortex pyramidal cell expression of EAAT2b mRNA was increased (P < 0.001; 67%) in schizophrenia subjects compared with controls. There was no significant change in other EAAT variants. EAAT2 exon9skipping mRNA was increased (P < 0.05; 38%) at region level in the anterior cingulate cortex with no significant change in other EAAT variants at region level. EAAT2 single-nucleotide polymorphisms were significantly associated with changes in EAAT2 isoform expression. Haloperidol decanoate-treated animals, acting as controls for possible antipsychotic effects, did not have significantly altered neuronal EAAT2b mRNA levels. The novel finding that EAAT2b levels are increased in populations of anterior cingulate cortex pyramidal cells further demonstrates a role for neuronal glutamate transporter splice variant expression in schizophrenia.
Collapse
Affiliation(s)
- S M O'Donovan
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - K Hasselfeld
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - D Bauer
- Department of Neuroscience, Wellesley College, Wellesley, MA, USA
| | - M Simmons
- Department of Psychiatry, University of Alabama, Birmingham, AL, USA
| | - P Roussos
- Department of Psychiatry, Department of Genetics and Genomic Sciences, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA,James J. Peters VA Medical Center, Mental Illness Research Education and Clinical Center, Bronx, NY, USA
| | - V Haroutunian
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - R E McCullumsmith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA,Department of Neuroscience, Wellesley College, Wellesley, MA, USA,Department of Psychiatry, University of Alabama, Birmingham, AL, USA,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, CARE 5830, 231 Albert Sabin Way Cincinnati, Cincinnati, OH 45267-0583, USA. E-mail:
| |
Collapse
|
8
|
Eaton-Rosen Z, Melbourne A, Orasanu E, Cardoso MJ, Modat M, Bainbridge A, Kendall GS, Robertson NJ, Marlow N, Ourselin S. Longitudinal measurement of the developing grey matter in preterm subjects using multi-modal MRI. Neuroimage 2015; 111:580-9. [PMID: 25681570 DOI: 10.1016/j.neuroimage.2015.02.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/03/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Preterm birth is a major public health concern, with the severity and occurrence of adverse outcome increasing with earlier delivery. Being born preterm disrupts a time of rapid brain development: in addition to volumetric growth, the cortex folds, myelination is occurring and there are changes on the cellular level. These neurological events have been imaged non-invasively using diffusion-weighted (DW) MRI. In this population, there has been a focus on examining diffusion in the white matter, but the grey matter is also critically important for neurological health. We acquired multi-shell high-resolution diffusion data on 12 infants born at ≤ 28 weeks of gestational age at two time-points: once when stable after birth, and again at term-equivalent age. We used the Neurite Orientation Dispersion and Density Imaging model (NODDI) (Zhang et al., 2012) to analyse the changes in the cerebral cortex and the thalamus, both grey matter regions. We showed region-dependent changes in NODDI parameters over the preterm period, highlighting underlying changes specific to the microstructure. This work is the first time that NODDI parameters have been evaluated in both the cortical and the thalamic grey matter as a function of age in preterm infants, offering a unique insight into neuro-development in this at-risk population.
Collapse
Affiliation(s)
| | | | | | | | - Marc Modat
- Translational Imaging Group, CMIC, UCL, UK
| | | | - Giles S Kendall
- Academic Neonatology, EGA UCL Institute for Women's Health, London, UK
| | | | - Neil Marlow
- Academic Neonatology, EGA UCL Institute for Women's Health, London, UK
| | | |
Collapse
|
9
|
Alexander M, Garbus H, Smith AL, Fitch RH. Cell size anomalies in the auditory thalamus of rats with hypoxic-ischemic injury on postnatal day 3 or 7. Int J Dev Neurosci 2014; 33:1-7. [PMID: 24184287 PMCID: PMC3945053 DOI: 10.1016/j.ijdevneu.2013.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/17/2013] [Accepted: 10/18/2013] [Indexed: 11/28/2022] Open
Abstract
Children born prematurely (<37 weeks gestational age) or at very low birth weight (VLBW; <1500g) are at increased risk for hypoxic ischemic (HI) brain injuries. Term infants can also suffer HI from birth complications. In both groups, blood/oxygen delivery to the brain is compromised, often resulting in brain damage and later cognitive delays (e.g., language deficits). Literature suggests that language delays in a variety of developmentally impaired populations (including specific language impairment (SLI), dyslexia, and early HI-injury) may be associated with underlying deficits in rapid auditory processing (RAP; the ability to process and discriminate brief acoustic cues). Data supporting a relationship between RAP deficits and poor language outcomes is consistent with the "magnocellular theory," which purports that damage to or loss of large (magnocellular) cells in thalamic nuclei could underlie disruptions in temporal processing of sensory input, possibly including auditory (medial geniculate nucleus; MGN) information This theory could be applied to neonatal HI populations that show subsequent RAP deficits. In animal models of neonatal HI, persistent RAP deficits are seen in postnatal (P)7 HI injured rats (who exhibit neuropathology comparable to term birth injury), but not in P1-3 HI injured rodents (who exhibit neuropathology comparable to human pre-term injury). The current study sought to investigate the mean cell size, cell number, and cumulative probability of cell size in the MGN of P3 HI and P7 HI injured male rats that had previously demonstrated behavioral RAP deficits. Pilot data from our lab (Alexander, 2011) previously revealed cell size abnormalities (a shift toward smaller cells) in P7 but not P1 HI injured animals when compared to shams. Our current finding support this result, with evidence of a significant shift to smaller cells in the experimental MGN of P7 HI but not P3 HI subjects. P7 HI animals also showed significantly fewer cells in the affected (right) MGN as compared P3 HI and shams animals. Moreover, cell number in the right hemisphere was found to correlate with gap detection (fewer cells=worse performance) in P7 HI injured subjects. These findings could be applied to clinical populations, providing an anatomic marker that may index potential long-term language disabilities in HI injured infants and possibly other at-risk populations.
Collapse
Affiliation(s)
- Michelle Alexander
- University of Connecticut, Department of Psychology, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States.
| | - Haley Garbus
- University of Connecticut, Department of Psychology, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States
| | - Amanda L Smith
- University of Connecticut, Department of Psychology, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States
| | - R Holly Fitch
- University of Connecticut, Department of Psychology, 406 Babbidge Road, Unit 1020, Storrs, CT 06269, United States
| |
Collapse
|
10
|
Xie Y, Chen YA, De Bellis MD. The relationship of age, gender, and IQ with the brainstem and thalamus in healthy children and adolescents: a magnetic resonance imaging volumetric study. J Child Neurol 2012; 27:325-31. [PMID: 21954432 PMCID: PMC3252469 DOI: 10.1177/0883073811419260] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In healthy children, there is a paucity of information on the growth of the brainstem and thalamus measured anatomically magnetic resonance imaging. The relations of age, gender, and age by gender with brainstem and thalamus volumes were analyzed from magnetic resonance brain images of 122 healthy children and adolescents (62 males, 60 females; ages 4 to 17). Results showed that age is a significant predictor of brainstem and thalamus volumes. The volume of the brainstem increases with age, while thalamus volume declines with age. The volume of the right thalamus is significantly larger than that of the left in both genders, with greater rightward asymmetry and greater thalamus to grey matter ratio in females. Males have larger brainstems, but these differences are not significant when covarying for cerebral volume. Larger thalami were associated with higher Verbal IQ. These normative pediatric data are of value to researchers who study these regions in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yuhuan Xie
- Resident in Psychiatry, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center
| | - Yian Ann Chen
- Assistant Member, Department of Biostatistics, H. Lee Moffitt Cancer Center & Research Institute, Oncologic Sciences, Assistant Professor, University of South Florida, 12902 Magnolia Drive, Tampa, FL 33612
| | - Michael D. De Bellis
- Professor of Psychiatry and Behavioral Sciences, Director of Healthy Childhood Brain Development and Developmental Traumatology Research Program, Department of Psychiatry and Behavioral Sciences, Duke University Medical Center Box 3613 Durham NC, 27710
| |
Collapse
|
11
|
Abstract
This review traces the structural maturation of the human auditory system, and compares the timeline of anatomical development with cotemporaneous physiological and behavioral events. During the embryonic period, there is formation of basic structure at all levels of the system, i.e. the inner ear, the brainstem pathway, and the cortex. The second trimester is a time of rapid growth and development, and by the end of this period, the cochlea has acquired a very adult-like configuration. During the perinatal period, the brainstem reaches a mature state, and brainstem activity is reflected in behavioral responses to sound, including phonetic discrimination, and in evoked brainstem and early middle latency responses. The perinatal period is also the time of peak development of brainstem input to the cortex through the marginal layer, and of the long latency cortical potentials, the N(2) and mismatch negativity. In early childhood, from the sixth post-natal month to age five, there is progressive maturation of the thalamic projections to the cortex and of the longer latency Pa and P(1) evoked potentials. Later childhood, from six to twelve years, is the time of maturation of the superficial cortical layers and their intracortical connections, accompanied by appearance of the N(1) potential and improved linguistic discriminative abilities. Some consideration is given to the potential negative effects of deafness-induced sound deprivation during the perinatal period and childhood.
Collapse
Affiliation(s)
- Jean K Moore
- Department of Histopathology, House Ear Institute, Los Angeles, USA.
| | | |
Collapse
|
12
|
Forutan F, Mai JK, Ashwell KW, Lensing-Höhn S, Nohr D, Voss T, Bohl J, Andressen C. Organisation and maturation of the human thalamus as revealed by CD15. J Comp Neurol 2001; 437:476-95. [PMID: 11503147 DOI: 10.1002/cne.1296] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The distribution of the CD15 antigen (CD15, 3-fucosyl-N-acetyl-lactosamine, Lewis x) has been studied immunohistochemically in the fetal human thalamus. Its changing patterns could be related to three successive, but overlapping, periods primarily due to its association with radial glial cells, neuropil, and neural cell bodies, respectively. From 9 weeks of gestation (wg), a subset of CD15-positive radial glial cells distinguished the neuroepithelium of the ventral thalamus, a characteristic also seen in the developing mouse. Distal processes of the radial glial cells converged at the root of the forebrain choroid tenia, which was also CD15 positive. From 13 wg until approximately 20 wg, CD15-positive neuropil labeling marked the differentiation areas of prospective nuclei within the dorsal thalamus and progressively outlined their territories in a time sequence, which appeared specific for each nucleus. CD15 labeling of differentiating nuclei of the ventral, medial, anterior, and intralaminar thalamic divisions showed a transient topographic relationship with restricted areas of the ventricular wall. After 26 wg, CD15 immunoreactivity was observed in subpopulations of glial cells and neurons. Transient CD15 immunoreactivity was also found in delimited compartments within the subventricular region. The time of CD15 expression, its location, and cellular association suggest that CD15 is involved in segmentation of diencephalon, in the specification of differentiating nuclear areas and initial processes regarding the formation of intercellular contacts and cellular maturation.
Collapse
Affiliation(s)
- F Forutan
- Institute of Neuroanatomy, H.-Heine University, D-40001 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cant NB. Structural Development of the Mammalian Auditory Pathways. DEVELOPMENT OF THE AUDITORY SYSTEM 1998. [DOI: 10.1007/978-1-4612-2186-9_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Letini? K, Kostovi? I. Transient fetal structure, the gangliothalamic body, connects telencephalic germinal zone with all thalamic regions in the developing human brain. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970804)384:3<373::aid-cne5>3.0.co;2-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Hashimoto T, Tayama M, Miyazaki M, Fujii E, Harada M, Miyoshi H, Tanouchi M, Kuroda Y. Developmental brain changes investigated with proton magnetic resonance spectroscopy. Dev Med Child Neurol 1995; 37:398-405. [PMID: 7768339 DOI: 10.1111/j.1469-8749.1995.tb12023.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Volume-selective proton magnetic resonance spectroscopy (1H-MRS) of the brain was performed with a 1.5 Tesla magnet in 47 healthy children and in six healthy adults. Peaks of N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) were observed in all cases, but a lactate peak was not observed. In the right parietal region. 1H-MRS revealed increases in the rations of NAAJCho and NAA/Cr and a decrease in Cho/Cr with advancing age. The most rapid changes were noted between one and three years of age. 1H-MRS of the right frontal region also was performed in 21 cases (20 children and one adult). In the right frontal region, there was an increase in the ratio of NAA/Cho and a decrease in Cho/Cr with advancing age, while a developmental change was not observed in the ratio of NAA/Cr. The ratios of both NAA/Cho and NAA/Cr were lower in the right frontal region than in the right parietal region. These results show that developmental changes and regional variation of metabolites are observed in 1H-MRS of the brain, and need to be considered in its application.
Collapse
Affiliation(s)
- T Hashimoto
- Department of Paediatrics, Tokushima University School of Medical Sciences
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Khan AA, Wadhwa S, Bijlani V. Development of human lateral geniculate nucleus: an electron microscopic study. Int J Dev Neurosci 1994; 12:661-72. [PMID: 7900548 DOI: 10.1016/0736-5748(94)90018-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A qualitative and quantitative ultrastructural study has been carried out on lateral geniculate nuclei (LGN) of 21 human fetuses ranging in gestational age from 13-14 to 34-35 weeks. At the early age period of 13-15 weeks, LGN is characterized by immature cells with indented nuclei possessing multiple nucleoli and by a sparse neuropil. During the subsequent age periods studied progressive maturational changes lead to neurons having round nuclei with a single nucleolus and well-developed cytoplasmic organelles as well as to an elaborate neuropil. Synaptic contacts which are seen for the first time at the age of 13-14 weeks are of retinogeniculate type. They show features of immature synapses and are located mainly on the juxtasomatic parts of dendrites. With increasing gestational age, the synapses increase in size, maturity, types and complexity; an acquisition of complex synaptic arrangement (triad) occurs by 20-21 weeks. Excitatory synapses appear earlier than do the inhibitory ones. Formation of retinogeniculate contacts precedes that of the corticogeniculate type. The synaptic density and total synapse number show a progressive increase with increasing gestational age. The age period of 15-20 weeks of gestation is marked by presence of organelles suggestive of a high rate of metabolic activity, significant increase in synaptogenesis, presence of transient contacts on soma and large number of free postsynaptic membrane densities (PSD). The period thereby represents a critical period in the development of synapses in LGN. The numerical values obtained by by the age of 34-35 weeks are still low as compared to the values reported for other areas of brain.
Collapse
Affiliation(s)
- A A Khan
- Department of Anatomy, J.N. Medical College, A.M.U., Aligarh, India
| | | | | |
Collapse
|
17
|
Mai JK, Schönlau C. Age-related expression patterns of the CD15 epitope in the human lateral geniculate nucleus (LGN). THE HISTOCHEMICAL JOURNAL 1992; 24:878-89. [PMID: 1282510 DOI: 10.1007/bf01046359] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The age-related distribution of the trisaccharide epitope 3-fucosyl-N-acetyl-lactosamine (CD15) was evaluated in the human lateral geniculate nucleus (LGN). Coronal paraffin sections from individuals between the 12th week of gestation to 99 years of age were processed for immunohistochemistry using monoclonal antibodies against the CD15 epitope. CD15 immunoreactivity was present in the neuropil from the 14th week of gestation with a graded pattern along the anteroposterior and mediolateral axes of the LGN. Immunoreactivity then became preferentially located within the future cell layers, shortly before cellular segregation was visible in Cresyl Violet stained sections. Maximal CD15 expression occurred from the 22nd week of gestation until the beginning of visual experience (second week of postnatal life). During the subsequent period the spatial pattern of CD15 expression changed. Whereas immunoreactivity in the cell layers gradually disappeared, CD15 positive astrocytes became transiently concentrated in the intercellular layers. The staining within the interlaminar region was best developed at about one year of postnatal life. The adult pattern was found at around 10 years of age, when the LGN appeared almost unstained. Two stages of CD15 expression can thus be separated. The first is characterized by neuropil staining and is synchronized with the time profile of neuronal maturation and of formation of non-stabilized contacts. CD15 is at this time possibly correlated with structural instability and increased vulnerability but at the same time with a high degree of plasticity. The second, peri- and postnatal stage is characterized by CD15 positive astrocytes. These appeared when CD15 in the neuropil disappeared. This loss of CD15 expression in the neuropil occurs during the phase of experience-dependent establishment of the mature interconnectivity and probably heralds loss in plasticity. The time-related expression pattern of CD15 is therefore compatible with the idea that CD15 levels reflect different degrees of developmental determination of retino-geniculate interaction.
Collapse
Affiliation(s)
- J K Mai
- Department of Neuroanatomy, Heinrich-Heine University, Düsseldorf, Germany
| | | |
Collapse
|
18
|
Hasegawa M, Houdou S, Mito T, Takashima S, Asanuma K, Ohno T. Development of myelination in the human fetal and infant cerebrum: a myelin basic protein immunohistochemical study. Brain Dev 1992; 14:1-6. [PMID: 1375444 DOI: 10.1016/s0387-7604(12)80271-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The early development of myelination was studied by means of myelin basic protein (MBP) and luxol fast blue (LFB) stainings of large sections of the cerebral hemispheres. Myelination first occurs in the globus pallidus, pallidothalamic fibers of the posterior internal capsule and the thalamus at 25 weeks, which may be related to the cellular maturation in the globus pallidus and thalamus. Then myelination is observed in the striatum, and precentral and postcentral gyri at 35 weeks, and the anterior internal capsule and optic radiation at 37 weeks. Immunoreactivity with MBP is observed earlier and more strongly in the early myelination period than that with LFB. Thus, MBP may play an important role in myelination and its delay. The macroscopic positivity as to MBP as well as LFB staining may be related to the development of high signal intensity observed in a T1-weighted magnetic resonance imaging, which was observed 1 to 3 months after the first microscopic appearance of myelin.
Collapse
Affiliation(s)
- M Hasegawa
- Division of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Minciacchi D, Granato A. Development of the thalamocortical system: transient-crossed projections to the frontal cortex in neonatal rats. J Comp Neurol 1989; 281:1-12. [PMID: 2925895 DOI: 10.1002/cne.902810102] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The developmental remodeling of thalamic projections to frontal and prefrontal cortical fields was investigated in the rat by using a double retrograde tracing technique. Bilateral cortical injections of fluorescent tracers were made either in neonatal (first or second postnatal day) or in adult animals. In neonates, the cell populations retrogradely labeled from each cortical injection overlapped in a medial thalamic region that included the midline nuclei and the medial part of the mediodorsal nucleus, ventral medial nucleus, and nucleus gelatinosus. In adults, the overlap region was confined within the boundaries of the midline nuclei. Quantitative analysis showed that this overlap area was three times as wide in neonates as in adults. The neurons located in this region projected unilaterally both in neonatal and adult animals; bilaterally projecting cells were virtually absent. In neonates, a second set of contralaterally projecting neurons was found in more lateral thalamic regions. This population consisted of cell clusters in the dorsal part of the central lateral nucleus and in the lateral part of the ventral medial nucleus; scattered cells were also observed throughout other nuclei. This second cell population was represented in part by neurons bifurcating bilaterally. In adult animals, neurons projecting contralaterally were observed only occasionally in the lateral thalamus. The present results demonstrate that the bilaterality of thalamocortical projections undergoes a reduction during postnatal development. The mechanisms underlying this remodeling and the possible functional role of the transient-crossed thalamocortical system are discussed.
Collapse
Affiliation(s)
- D Minciacchi
- Institute of Neurology, Catholic University, Rome, Italy
| | | |
Collapse
|
20
|
Nishimura M, Takashima S, Takeshita K, Tanaka J. Developmental changes of neuron-specific enolase in human brain: an immunohistochemical study. Brain Dev 1985; 7:1-6. [PMID: 3890586 DOI: 10.1016/s0387-7604(85)80052-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Developmental changes of neurons containing neuron-specific enolase (NSE) in human brain were studied in various areas of the central nervous system by immunohistochemistry with the peroxidase-antiperoxidase (PAP) method. In the brain stem, Purkinje cells, dentate nucleus, globus pallidus and thalamus, the number of NSE-positive neurons increased from an early period in gestation. However, in the pontine nucleus and putamen, it gradually increased along with decreasing cellularity later in gestation and in the infantile period. In the cerebral cortex, NSE-positive neurons developed as late as in the putamen and their cellularity increased earlier in the 5th layer than in the 3rd layer. Developmental changes of NSE-positive neurons parallel phylogenesis. The appearance of NSE-positive neurons can be a marker of neuronal maturation.
Collapse
|
21
|
O'Rahilly R, Müller F, Hutchins GM, Moore GW. Computer ranking of the sequence of appearance of 100 features of the brain and related structures in staged human embryos during the first 5 weeks of development. THE AMERICAN JOURNAL OF ANATOMY 1984; 171:243-57. [PMID: 6517029 DOI: 10.1002/aja.1001710302] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The sequence of events in the development of the brain in staged human embryos was investigated in much greater detail than in previous studies by listing 100 features in 165 embryos of the first 5 weeks. Using a computerized bubble-sort algorithm, individual embryos were ranked in ascending order of the features present. This procedure made feasible an appreciation of the slight variation found in the developmental features. The vast majority of features appeared during either one or two stages (about 2 or 3 days). In general, the soundness of the Carnegie system of embryonic staging was amply confirmed. The rhombencephalon was found to show increasing complexity around stage 13, and the postoptic portion of the diencephalon underwent considerable differentiation by stage 15. The need for similar investigations of other systems of the body is emphasized, and the importance of such studies in assessing the timing of congenital malformations and in clarifying syndromic clusters is suggested.
Collapse
|
22
|
Kostovic I, Goldman-Rakic PS. Transient cholinesterase staining in the mediodorsal nucleus of the thalamus and its connections in the developing human and monkey brain. J Comp Neurol 1983; 219:431-47. [PMID: 6196382 DOI: 10.1002/cne.902190405] [Citation(s) in RCA: 190] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The histochemical and morphological maturation of the mediodorsal nucleus (MD) and its connections were compared in human and rhesus monkey using acetylthiocholine iodide and Nissl methods. Histochemical analysis in fetuses, neonates, and adults of both primate species revealed that MD passes through three major stages of cholinesterase (ChE) reactivity. In Stage I (up to about 16 fetal weeks in man; 9 fetal weeks in monkey), ChE staining gradually increases in the MD nucleus and is intense in axons directed toward the frontal lobe through the internal and external capsules. In Stage II (about 16-28 fetal weeks in man; about 9-14 weeks in monkey), ChE staining in MD reaches peak intensity so that reaction product in the neurons and neuropil blackens the entire nucleus in both species. In favorable planes of section, ChE-positive fibers appear to connect MD and the basal forebrain both of which stain intensely. ChE-positive fibers can also be traced from the lateral margins of MD to the subplate zone beneath the developing frontal cortical plate where they continue to accumulate before later invading the cortex with heaviest concentration in presumptive layers 3 and 5. In Stage III (after 28 weeks of gestation to 6 postnatal months in man; from about 14 fetal weeks until 2 postnatal months in monkey), except for scattered positive cells, ChE staining gradually disappears in MD and the formerly dense laminar pattern in the cortex begins to lighten. The dramatic but transient increase in ChE staining in MD during fetal development as well as the sequentially related changes in its projections indicate that this early appearing enzyme may play a role in the development of the frontal lobe by influencing the differentiation of thalamoprefrontal connections.
Collapse
|
23
|
Krmpotić-Nemanić J, Kostović I, Nemanić D. The development of medial geniculate body in man: changes in the cholinesterase (CHE) activity during fetal and perinatal life. Acta Otolaryngol 1983; 95:695-9. [PMID: 6880680 DOI: 10.3109/00016488309139464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the present study cholinesterase histochemical (ChE) techniques have been used to demonstrate differentiation and maturation of the medial geniculate body (MGB) in the human fetuses (ranging between 10.5 to 28 weeks) and infants (premature and three postnatal months). In the youngest specimens examined (10.5 to 15 weeks) moderate ChE activity was found in the neuropil of MGB. In the next developmental stage ChE activity is significantly increased with stronger reactivity in the peripheral part of MGB. In the fetuses between 22 to 26 weeks of gestation peak ChE reactivity was observed in MGB. Reactivity is strong and homogeneous. In the premature infant (28 weeks and older) ChE reactivity becomes inhomogeneous and irregular with appearance of ChE positive bands in the moderately stained MGB matrix. In addition, strongly ChE reactive cell bodies can be discerned. In 3-month-old infant brain we have found significant decrease of ChE reactivity in the neuropil of the MGB. In conclusion we can say that MGB shows very strong, transient ChE reactivity during second half of gestation. Since a great majority of ChE reactivity disappears during later postnatal development, it is very likely that strong fetal activity is related to the histogenetic events and maturation of MGB.
Collapse
|
24
|
Armstrong E. A quantitative comparison of the hominoid thalamus. IV. Posterior association nuclei-the pulvinar and lateral posterior nucleus. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 1981; 55:369-83. [PMID: 7270664 DOI: 10.1002/ajpa.1330550311] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nuclear volumes, nerve cell densities, numbers of neurons, and volumes of nerve cell perikarya in the thalamic association complex, the pulvinar and lateral posterior nuclei (Pu-LP) were compared among two gibbons, one gorilla, one chimpanzee, and three humans. The human Pu has approximately twice as many neurons as do the great apes, whereas the human and gorilla LP have a similar number. The numbers of neurons in the human Pu and combined Pu-LP complex were predictable from the ape data. Nevertheless, a shift in perikaryal sizes from a unimodal to a bimodal population distinguished the human specimen. It is hypothesized that during human evolution Pu expanded in proportion to the rest of the brain, but that not all parts of Pu expanded equally.
Collapse
|
25
|
Ogren MP, Racic P. The prenatal development of the pulvinar in the monkey: 3H-thymidine autoradiographic and morphometric analyses. ANATOMY AND EMBRYOLOGY 1981; 162:1-20. [PMID: 7283168 DOI: 10.1007/bf00318090] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Abstract
The development of the human lateral geniculate nucleus has been studied on Nissl- and silver-stained sections from 61 fetal human brains collected during normal autopsy procedure. The age of the fetuses, which ranged from 16 to 40 (newborn) weeks was determined by comparing crown-to-rump lengths and body weights to the values published by Streeter ('20). The development of the human lateral geniculate nucleus is remarkably similar to that described for the rhesus monkey (Rakic, '77). As a result of the late growth of the pulvinar, the human lateral geniculate nucleus is displaced and rotated such that, at around week 24, the nucleus had come to lie along the ventrolateral border of the thalamus. The cellular laminae that characterize the adult nucleus are formed over a 3-week period of time beginning around the 22nd week of gestation. More caudal parts of the nucleus laminate first. During this same period of time, the optic disc representation in laminae 4 and 6 is also formed. Throughout most of the development of the human lateral geniculate nucleus, individual rows of cells can be seen extending across the nucleus. Although such rows of cells are best seen before the nucleus laminates, in older laminated nuclei the rows of cells are oriented either perpendicular or oblique, but never parallel, to the plane of the laminae. Previous findings in both the monkey (Rakic, '77) and human (Hickey and Guillery, '79) suggest it is possible that these rows of cells can be used to define the lines of projection through the nucleus. Incoming optic tract fibers run along, rather than perpendicular to, these rows of cells.
Collapse
|
27
|
Rubel EW. Ontogeny of Structure and Function in the Vertebrate Auditory System. HANDBOOK OF SENSORY PHYSIOLOGY 1978. [DOI: 10.1007/978-3-642-66880-7_5] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Rakic P. Genesis of the dorsal lateral geniculate nucleus in the rhesus monkey: site and time of origin, kinetics of proliferation, routes of migration and pattern of distribution of neurons. J Comp Neurol 1977; 176:23-52. [PMID: 409739 DOI: 10.1002/cne.901760103] [Citation(s) in RCA: 156] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
McAllister JP II, Das GD. Neurogenesis in the epithalamus, dorsal thalamus and ventral thalamus of the rat: an autoradiographic and cytological study. J Comp Neurol 1977; 172:647-86. [PMID: 838894 DOI: 10.1002/cne.901720407] [Citation(s) in RCA: 88] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Times of final mitotic division for neurons of the epithalamic, dorsal thalamic and subthalamic nuclei of the rat were determined with the aid of thymidine-H3 autoradiography. Intensely labelled neurons were observed in the brains of animals injected with radiochemical from days 13 to 19 of gestation. The pattern of distribution of the labelled neurons indicated that neurogenesis in the regions followed caudorostral, lateromedial and ventrodorsal neurogenetic gradients, all of which were found to operate simultaneously. Since neurogenesis in the epithalamus, subthalamus and caudolateral thalamic regions began on days 13 and 14 of gestation, the ventrodorsal and lateromedial proliferative gradients were clearly discerned only within the ventral and dorsal thalamus exclusive of the epithalamus. These directional neurogenetic gradients were apparent throughout the entire thalamus and within individual thalamic nuclei. No neurogenetic pattern based upon neuronal size was observed, i.e., large neurons were not preferentially formed earlier than smaller ones. Detailed information has also been provided on the cytological character of each thalamic nucleus.
Collapse
|
30
|
Goldman PS. Age, sex, and experience as related to the neural basis of cognitive development. UCLA FORUM IN MEDICAL SCIENCES 1975:379-92. [PMID: 812229 DOI: 10.1016/b978-0-12-139050-1.50028-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Studies of rhesus monkeys raised from infancy without portions of the central nervous systems provide evidence regarding the timing of functional maturity of specific regions. Some findings have been presented which show that deficits following lesions of specific cortical areas emerge at that age when abilities dependent upon the cortical area in question take on adult form in unoperated monkeys. However, age is but a convenient abstraction for conditions that vary over time. One such condition is the presence and titer of gonadal hormones. The finding that orbital functions may develop at different times in males and females is of interest from a number of perspectives, but it is especially stimulating to consider the possibility that the development of cortical tissue may be regulated by neuroendocrine factors in a fashion analogous to that envisioned for differentiation of hypothalamic mechanisms. Finally, experiential factors may depend greatly on the maturational status of those brain regions designed to be recipients of that stimulation. The fact that young children acquire second languages with far greater ease than adults or conversely that language fails to develop before 18-28 months of age regardless of training are features of human experience consistent with the interdependence of experience and neurological maturation. The present finding that training at relatively early periods of development facilitated recovery from brain injury indicates further that brain-damaged individuals can be even more sensitive to the effects of previous experience than intact cases. Age, sex, and experience are factors that may be isolated for experimental purposes and for the purpose of discussion. However, it is precisely the complex interactions of these variables that constitute the subject matter of future research in neurobiology, to which studies of infant monkeys may contribute animal models of normal and disordered human development.
Collapse
|
31
|
|
32
|
Dekaban AS, Patton VM, Cain DF. Structural and biochemical maturation of the cerebral pallium in rabbit fetuses: morphogenesis and lipids. J Neurochem 1971; 18:2451-9. [PMID: 5135905 DOI: 10.1111/j.1471-4159.1971.tb00202.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
33
|
Rakić P, Sidman RL. Telencephalic origin of pulvinar neurons in the fetal human brain. ZEITSCHRIFT FUR ANATOMIE UND ENTWICKLUNGSGESCHICHTE 1969; 129:53-82. [PMID: 4186810 DOI: 10.1007/bf00521955] [Citation(s) in RCA: 101] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
34
|
|
35
|
Duckett S, Pearse AG. Histoenzymology of the developing human basal ganglia. HISTOCHEMIE. HISTOCHEMISTRY. HISTOCHIMIE 1967; 8:334-41. [PMID: 4386158 DOI: 10.1007/bf00401976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Spezifische und Unspezifische Systeme des Menschlichen Zwischenhirns. PROGRESS IN BRAIN RESEARCH 1964. [DOI: 10.1016/s0079-6123(08)61363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
37
|
AGUINIS M. [The significance of the reticular nucleus of the thalamus in stereotactic therapy of parkinsonism]. Acta Neurochir (Wien) 1963; 11:151-60. [PMID: 14011313 DOI: 10.1007/bf01414203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|