1
|
Bin JM, Emberley K, Buscham TJ, Eichel-Vogel MA, Doan RA, Steyer AM, Nolan MF, Möbius W, Monk KR, Werner HB, Emery B, Lyons DA. Developmental axon diameter growth of central nervous system axons does not depend on ensheathment or myelination by oligodendrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632348. [PMID: 39829751 PMCID: PMC11741303 DOI: 10.1101/2025.01.10.632348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Myelination facilitates the rapid conduction of action potentials along axons. In the central nervous system (CNS), myelinated axons vary over 100-fold in diameter, with conduction speed scaling linearly with increasing diameter. Axon diameter and myelination are closely interlinked, with axon diameter exerting a strong influence on myelination. Conversely, myelinating Schwann cells in the peripheral nervous system can both positively and negatively affect axon diameter. However, whether axon diameter is regulated by CNS oligodendrocytes is less clear. Here, we investigated CNS axon diameter growth in the absence of myelin using mouse (Mbp shi/shi and Myrf conditional knockout) and zebrafish (olig2 morpholino) models. We find that neither the ensheathment of axons, nor the formation of compact myelin are required for CNS axons to achieve appropriate and diverse diameters. This indicates that developmental CNS axon diameter growth is independent of myelination, and shows that myelinating cells of CNS and PNS differentially influence axonal morphology.
Collapse
Affiliation(s)
- Jenea M Bin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
- MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Katie Emberley
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland OR 97239 USA
| | - Tobias J Buscham
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Maria A Eichel-Vogel
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
- MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ryan A Doan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland OR 97239 USA
| | - Anna M Steyer
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Electron Microscopy Unit-City Campus, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Matthew F Nolan
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Electron Microscopy Unit-City Campus, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kelly R Monk
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland OR 97239 USA
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Faculty for Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - David A Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH16 4SB, UK
- MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| |
Collapse
|
2
|
Schumacher N, Vandenbosch R, Franzen R. Peripheral myelin: From development to maintenance. J Neurochem 2025; 169:e16268. [PMID: 39655795 DOI: 10.1111/jnc.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Peripheral myelin is synthesized by glial cells called Schwann cells (SCs). SC development and differentiation must be tightly regulated to avoid any pathological consequence affecting peripheral nerve function. Neuropathic symptoms can arise from developmental issues in SCs, as well as in adult life through processes affecting mature SCs. In this review we focus on SC differentiation from the immature towards the myelinating and non-myelinating SC stages, defining molecular mechanisms outlining radial sorting, a multi-stepped event essential for immature SC differentiation and myelination. We also describe mechanisms regulating myelin sheath maintenance and SC homeostasis during aging. Finally, we will conclude with some remaining questions in the field of SC biology.
Collapse
Affiliation(s)
- Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA Institute, University of Liège, Liège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Muppirala AN, Limbach LE, Bradford EF, Petersen SC. Schwann cell development: From neural crest to myelin sheath. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e398. [PMID: 33145925 DOI: 10.1002/wdev.398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Vertebrate nervous system function requires glial cells, including myelinating glia that insulate axons and provide trophic support that allows for efficient signal propagation by neurons. In vertebrate peripheral nervous systems, neural crest-derived glial cells known as Schwann cells (SCs) generate myelin by encompassing and iteratively wrapping membrane around single axon segments. SC gliogenesis and neurogenesis are intimately linked and governed by a complex molecular environment that shapes their developmental trajectory. Changes in this external milieu drive developing SCs through a series of distinct morphological and transcriptional stages from the neural crest to a variety of glial derivatives, including the myelinating sublineage. Cues originate from the extracellular matrix, adjacent axons, and the developing SC basal lamina to trigger intracellular signaling cascades and gene expression changes that specify stages and transitions in SC development. Here, we integrate the findings from in vitro neuron-glia co-culture experiments with in vivo studies investigating SC development, particularly in zebrafish and mouse, to highlight critical factors that specify SC fate. Ultimately, we connect classic biochemical and mutant studies with modern genetic and visualization tools that have elucidated the dynamics of SC development. This article is categorized under: Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Anoohya N Muppirala
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neuroscience, Kenyon College, Gambier, Ohio, USA
| | | | | | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, Ohio, USA.,Department of Biology, Kenyon College, Gambier, Ohio, USA
| |
Collapse
|
4
|
Raasakka A, Kursula P. How Does Protein Zero Assemble Compact Myelin? Cells 2020; 9:E1832. [PMID: 32759708 PMCID: PMC7465998 DOI: 10.3390/cells9081832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Myelin protein zero (P0), a type I transmembrane protein, is the most abundant protein in peripheral nervous system (PNS) myelin-the lipid-rich, periodic structure of membrane pairs that concentrically encloses long axonal segments. Schwann cells, the myelinating glia of the PNS, express P0 throughout their development until the formation of mature myelin. In the intramyelinic compartment, the immunoglobulin-like domain of P0 bridges apposing membranes via homophilic adhesion, forming, as revealed by electron microscopy, the electron-dense, double "intraperiod line" that is split by a narrow, electron-lucent space corresponding to the extracellular space between membrane pairs. The C-terminal tail of P0 adheres apposing membranes together in the narrow cytoplasmic compartment of compact myelin, much like myelin basic protein (MBP). In mouse models, the absence of P0, unlike that of MBP or P2, severely disturbs myelination. Therefore, P0 is the executive molecule of PNS myelin maturation. How and when P0 is trafficked and modified to enable myelin compaction, and how mutations that give rise to incurable peripheral neuropathies alter the function of P0, are currently open questions. The potential mechanisms of P0 function in myelination are discussed, providing a foundation for the understanding of mature myelin development and how it derails in peripheral neuropathies.
Collapse
Affiliation(s)
- Arne Raasakka
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
| | - Petri Kursula
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, NO-5009 Bergen, Norway;
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90220 Oulu, Finland
| |
Collapse
|
5
|
Bagheri H, Friedman H, Siminovitch KA, Peterson AC. Transcriptional regulators of the Golli/myelin basic protein locus integrate additive and stealth activities. PLoS Genet 2020; 16:e1008752. [PMID: 32790717 PMCID: PMC7446974 DOI: 10.1371/journal.pgen.1008752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/25/2020] [Accepted: 07/01/2020] [Indexed: 11/19/2022] Open
Abstract
Myelin is composed of plasma membrane spirally wrapped around axons and compacted into dense sheaths by myelin-associated proteins. Myelin is elaborated by neuroepithelial derived oligodendrocytes in the central nervous system (CNS) and by neural crest derived Schwann cells in the peripheral nervous system (PNS). While some myelin proteins accumulate in only one lineage, myelin basic protein (Mbp) is expressed in both. Overlapping the Mbp gene is Golli, a transcriptional unit that is expressed widely both within and beyond the nervous system. A super-enhancer domain within the Golli/Mbp locus contains multiple enhancers shown previously to drive reporter construct expression specifically in oligodendrocytes or Schwann cells. In order to determine the contribution of each enhancer to the Golli/Mbp expression program, and to reveal if functional interactions occur among them, we derived mouse lines in which they were deleted, either singly or in different combinations, and relative mRNA accumulation was measured at key stages of early development and at maturity. Although super-enhancers have been shown previously to facilitate interaction among their component enhancers, the enhancers investigated here demonstrated largely additive relationships. However, enhancers demonstrating autonomous activity strictly in one lineage, when missing, were found to significantly reduce output in the other, thus revealing cryptic "stealth" activity. Further, in the absence of a key oligodendrocyte enhancer, Golli accumulation was markedly and uniformly attenuated in all cell types investigated. Our observations suggest a model in which enhancer-mediated DNA-looping and potential super-enhancer properties underlie Golli/Mbp regulatory organization.
Collapse
Affiliation(s)
- Hooman Bagheri
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Hana Friedman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Katherine A. Siminovitch
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Lunenfeld-Tanenbaum and Toronto General Hospital Research Institutes, Toronto, Ontario, Canada
| | - Alan C. Peterson
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
6
|
Abstract
Afferent and efferent nerve fibers cannot be distinguished based on the axonal diameter or the presence of the Remark bundle. The compaction of the myelin sheath involves 2 steps: 1) The distance between the 2 layers of cell membranes in the double-bilayer decreases; 2) the adjacent double-bilayers close to form MDL. The expression of MBP is positively correlated with the formation of the MDL. Anchoring of the myelin sheath by lipophilin particles might be required for the formation of a compacted myelin sheath. The abnormalities in nerve fiber structure observed in autologous nerve grafts do not appear to be related to either MBP or lipophilin, so further research is needed to determine their causes. Observing the structure and regeneration of the myelin sheath in peripheral nerves following injury and during repair would help in understanding the pathogenesis and treatment of neurological diseases caused by an abnormal myelin sheath. In the present study, transmission electron microscopy, immunofluorescence staining, and transcriptome analyses were used to investigate the structure and regeneration of the myelin sheath after end-to-end anastomosis, autologous nerve transplantation, and nerve tube transplantation in a rat model of sciatic nerve injury, with normal optic nerve, oculomotor nerve, sciatic nerve, and Schwann cells used as controls. The results suggested that the double-bilayer was the structural unit that constituted the myelin sheath. The major feature during regeneration was the compaction of the myelin sheath, wherein the distance between the 2 layers of cell membrane in the double-bilayer became shorter and the adjacent double-bilayers tightly closed together and formed the major dense line. The expression level of myelin basic protein was positively correlated with the formation of the major dense line, and the compacted myelin sheath could not be formed without the anchoring of the lipophilin particles to the myelin sheath.
Collapse
|
7
|
Vallières N, Barrette B, Wang LX, Bélanger E, Thiry L, Schneider MR, Filali M, Côté D, Bretzner F, Lacroix S. Betacellulin regulates schwann cell proliferation and myelin formation in the injured mouse peripheral nerve. Glia 2017; 65:657-669. [DOI: 10.1002/glia.23119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 12/05/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolas Vallières
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| | - Benoit Barrette
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| | - Linda Xiang Wang
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| | - Erik Bélanger
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ) et Département de physique, génie physique et optique, Faculté des sciences et de génie, Université Laval; Québec Canada
- Centre d'optique, photonique et laser (COPL), Université Laval; Québec Canada
| | - Louise Thiry
- Centre de recherche du CHU de Québec-CHUL et Département de psychiatrie et de neurosciences de l'Université Laval; Faculté de Médecine, Université Laval; Québec Canada
| | - Marlon R. Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich; Munich Germany
| | - Mohammed Filali
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| | - Daniel Côté
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ) et Département de physique, génie physique et optique, Faculté des sciences et de génie, Université Laval; Québec Canada
- Centre d'optique, photonique et laser (COPL), Université Laval; Québec Canada
| | - Frédéric Bretzner
- Centre de recherche du CHU de Québec-CHUL et Département de psychiatrie et de neurosciences de l'Université Laval; Faculté de Médecine, Université Laval; Québec Canada
| | - Steve Lacroix
- Centre de recherche du Centre hospitalier universitaire (CHU) de Québec-CHUL et Département de médecine moléculaire; Faculté de médecine, Université Laval; Québec Canada
| |
Collapse
|
8
|
Poggi G, Boretius S, Möbius W, Moschny N, Baudewig J, Ruhwedel T, Hassouna I, Wieser GL, Werner HB, Goebbels S, Nave KA, Ehrenreich H. Cortical network dysfunction caused by a subtle defect of myelination. Glia 2016; 64:2025-40. [PMID: 27470661 PMCID: PMC5129527 DOI: 10.1002/glia.23039] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 07/08/2016] [Indexed: 12/11/2022]
Abstract
Subtle white matter abnormalities have emerged as a hallmark of brain alterations in magnetic resonance imaging or upon autopsy of mentally ill subjects. However, it is unknown whether such reduction of white matter and myelin contributes to any disease‐relevant phenotype or simply constitutes an epiphenomenon, possibly even treatment‐related. Here, we have re‐analyzed Mbp heterozygous mice, the unaffected parental strain of shiverer, a classical neurological mutant. Between 2 and 20 months of age, Mbp+/‐ versus Mbp+/+ littermates were deeply phenotyped by combining extensive behavioral/cognitive testing with MRI, 1H‐MR spectroscopy, electron microscopy, and molecular techniques. Surprisingly, Mbp‐dependent myelination was significantly reduced in the prefrontal cortex. We also noticed a mild but progressive hypomyelination of the prefrontal corpus callosum and low‐grade inflammation. While most behavioral functions were preserved, Mbp+/‐ mice exhibited defects of sensorimotor gating, as evidenced by reduced prepulse‐inhibition, and a late‐onset catatonia phenotype. Thus, subtle but primary abnormalities of CNS myelin can be the cause of a persistent cortical network dysfunction including catatonia, features typical of neuropsychiatric conditions. GLIA 2016;64:2025–2040
Collapse
Affiliation(s)
- Giulia Poggi
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen
| | - Susann Boretius
- Department of Radiology and Neuroradiology, Christian-Albrechts-University, Kiel.,Department of Functional Imaging, German Primate Center, Leibniz Institute of Primate Research, Göttingen
| | - Wiebke Möbius
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Nicole Moschny
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen
| | - Jürgen Baudewig
- Department of Radiology and Neuroradiology, Christian-Albrechts-University, Kiel.,Department of Functional Imaging, German Primate Center, Leibniz Institute of Primate Research, Göttingen
| | - Torben Ruhwedel
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Imam Hassouna
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen
| | - Georg L Wieser
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Hauke B Werner
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Sandra Goebbels
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen
| | - Klaus-Armin Nave
- Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
9
|
Desmond KL, Al-Ebraheem A, Janik R, Oakden W, Kwiecien JM, Dabrowski W, Rola R, Geraki K, Farquharson MJ, Stanisz GJ, Bock NA. Differences in iron and manganese concentration may confound the measurement of myelin from R1 and R2 relaxation rates in studies of dysmyelination. NMR IN BIOMEDICINE 2016; 29:985-998. [PMID: 27226282 DOI: 10.1002/nbm.3549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/20/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
A model of dysmyelination, the Long Evans Shaker (les) rat, was used to study the contribution of myelin to MR tissue properties in white matter. A large region of white matter was identified in the deep cerebellum and was used for measurements of the MR relaxation rate constants, R1 = 1/T1 and R2 = 1/T2 , at 7 T. In this study, R1 of the les deep cerebellar white matter was found to be 0.55 ± 0.08 s (-1) and R2 was found to be 15 ± 1 s(-1) , revealing significantly lower R1 and R2 in les white matter relative to wild-type (wt: R1 = 0.69 ± 0.05 s(-1) and R2 = 18 ± 1 s(-1) ). These deviated from the expected ΔR1 and ΔR2 values, given a complete lack of myelin in the les white matter, derived from the literature using values of myelin relaxivity, and we suspect that metals could play a significant role. The absolute concentrations of the paramagnetic transition metals iron (Fe) and manganese (Mn) were measured by a micro-synchrotron radiation X-ray fluorescence (μSRXRF) technique, with significantly greater Fe and Mn in les white matter than in wt (in units of μg [metal]/g [wet weight tissue]: les: Fe concentration,19 ± 1; Mn concentration, 0.71 ± 0.04; wt: Fe concentration,10 ± 1; Mn concentration, 0.47 ± 0.04). These changes in Fe and Mn could explain the deviations in R1 and R2 from the expected values in white matter. Although it was found that the influence of myelin still dominates R1 and R2 in wt rats, there were non-negligible changes in the contribution of the metals to relaxation. Although there are already problems with the estimation of myelin from R1 and R2 changes in disease models with pathology that also affects the relaxation rate constants, this study points to a specific pitfall in the estimation of changes in myelin in diseases or models with disrupted concentrations of paramagnetic transition metals. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kimberly L Desmond
- Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
- Imaging Research, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Alia Al-Ebraheem
- School of Interdisciplinary Science, Medical Radiation Sciences program, McMaster University, Hamilton, ON, Canada
| | - Rafal Janik
- Imaging Research, Sunnybrook Research Institute, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, ON, Canada
| | - Wendy Oakden
- Imaging Research, Sunnybrook Research Institute, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, ON, Canada
| | - Jacek M Kwiecien
- Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
- Department of Clinical Pathomorphology, Lublin Medical University, Lublin, Poland
| | - Wojciech Dabrowski
- Anaesthesiology and Intensive Therapy, Lublin Medical University, Lublin, Poland
| | - Radoslaw Rola
- Neurosurgery & Pediatric Neurosurgery, Lublin Medical University, Lublin, Poland
| | - Kalotina Geraki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Michael J Farquharson
- School of Interdisciplinary Science, Medical Radiation Sciences program, McMaster University, Hamilton, ON, Canada
| | - Greg J Stanisz
- Imaging Research, Sunnybrook Research Institute, Toronto, ON, Canada
- Medical Biophysics, University of Toronto, ON, Canada
- Neurosurgery & Pediatric Neurosurgery, Lublin Medical University, Lublin, Poland
| | - Nicholas A Bock
- Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Knoll W, Peters J, Kursula P, Gerelli Y, Ollivier J, Demé B, Telling M, Kemner E, Natali F. Structural and dynamical properties of reconstituted myelin sheaths in the presence of myelin proteins MBP and P2 studied by neutron scattering. SOFT MATTER 2014; 10:519-529. [PMID: 24651633 DOI: 10.1039/c3sm51393a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The myelin sheath is a tightly packed, multilayered membrane structure wrapped around selected nerve axons in the central and the peripheral nervous system. Because of its electrical insulation of the axons, which allows fast, saltatory nerve impulse conduction, myelin is crucial for the proper functioning of the vertebrate nervous system. A subset of myelin-specific proteins is well-defined, but their influence on membrane dynamics, i.e. myelin stability, has not yet been explored in detail. We investigated the structure and the dynamics of reconstituted myelin membranes on a pico- to nanosecond timescale, influenced by myelin basic protein (MBP) and myelin protein 2 (P2), using neutron diffraction and quasi-elastic neutron scattering. A model for the scattering function describing molecular lipid motions is suggested. Although dynamical properties are not affected significantly by MBP and P2 proteins, they act in a highly synergistic manner influencing the membrane structure.
Collapse
Affiliation(s)
- Wiebke Knoll
- University Joseph Fourier UFR PhITEM, Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Beirowski B. Concepts for regulation of axon integrity by enwrapping glia. Front Cell Neurosci 2013; 7:256. [PMID: 24391540 PMCID: PMC3867696 DOI: 10.3389/fncel.2013.00256] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
Long axons and their enwrapping glia (EG; Schwann cells (SCs) and oligodendrocytes (OLGs)) form a unique compound structure that serves as conduit for transport of electric and chemical information in the nervous system. The peculiar cytoarchitecture over an enormous length as well as its substantial energetic requirements make this conduit particularly susceptible to detrimental alterations. Degeneration of long axons independent of neuronal cell bodies is observed comparatively early in a range of neurodegenerative conditions as a consequence of abnormalities in SCs and OLGs . This leads to the most relevant disease symptoms and highlights the critical role that these glia have for axon integrity, but the underlying mechanisms remain elusive. The quest to understand why and how axons degenerate is now a crucial frontier in disease-oriented research. This challenge is most likely to lead to significant progress if the inextricable link between axons and their flanking glia in pathological situations is recognized. In this review I compile recent advances in our understanding of the molecular programs governing axon degeneration, and mechanisms of EG’s non-cell autonomous impact on axon-integrity. A particular focus is placed on emerging evidence suggesting that EG nurture long axons by virtue of their intimate association, release of trophic substances, and neurometabolic coupling. The correction of defects in these functions has the potential to stabilize axons in a variety of neuronal diseases in the peripheral nervous system and central nervous system (PNS and CNS).
Collapse
Affiliation(s)
- Bogdan Beirowski
- Department of Genetics, Washington University School of Medicine Saint Louis, MO, USA
| |
Collapse
|
12
|
Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 2013; 125:334-61. [PMID: 23398367 DOI: 10.1111/jnc.12195] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP's protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
13
|
Veeravalli KK, Dasari VR, Fassett D, Dinh DH, Rao JS. Human umbilical cord blood-derived mesenchymal stem cells upregulate myelin basic protein in shiverer mice. Stem Cells Dev 2010; 20:881-91. [PMID: 20925478 DOI: 10.1089/scd.2010.0187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human umbilical cord blood is a rich source of pluripotent mesenchymal stem cells and possesses significant advantages over other stem cell sources such as the embryo and bone marrow. In the present study, we aimed to investigate the potential of human umbilical cord blood-derived pluripotent mesenchymal stem cells (hUCB) to myelinate the axons of shiverer mice brains. We also investigated the effect of hUCB treatment on regulation of myelin basic protein in vitro in PC-12 cells, which are normally not myelinated. The results of our study clearly demonstrated that hUCB survive and migrate in vivo and has the potential to myelinate shiverer mice brains. The expression level of myelin basic protein, a major component of the myelin sheath, has been significantly increased in vivo and in vitro as revealed by Western blot, reverse transcription (RT)-polymerase chain reaction, immunohistochemistry, immunocytochemistry, and fluorescent in situ hybridization results. Further, transmission electron microscopic images of hUCB-treated shiverer mice brains showed several layers of myelin around the axons compared with a thin and fragmented layer of myelin in untreated animals. Moreover, the frequency of shivering was diminished 1 month after hUCB treatment in shiverer mice. Our results strongly indicated that hUCB transplantation could be an effective means of treating demyelinating or hypomyelinating disorders.
Collapse
Affiliation(s)
- Krishna Kumar Veeravalli
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61656, USA
| | | | | | | | | |
Collapse
|
14
|
Abstract
All vertebrate nervous systems, except those of agnathans, make extensive use of the myelinated fiber, a structure formed by coordinated interplay between neuronal axons and glial cells. Myelinated fibers, by enhancing the speed and efficiency of nerve cell communication allowed gnathostomes to evolve extensively, forming a broad range of diverse lifestyles in most habitable environments. The axon-covering myelin sheaths are structurally and biochemically novel as they contain high portions of lipid and a few prominent low molecular weight proteins often considered unique to myelin. Here we searched genome and EST databases to identify orthologs and paralogs of the following myelin-related proteins: (1) myelin basic protein (MBP), (2) myelin protein zero (MPZ, formerly P0), (3) proteolipid protein (PLP1, formerly PLP), (4) peripheral myelin protein-2 (PMP2, formerly P2), (5) peripheral myelin protein-22 (PMP22) and (6) stathmin-1 (STMN1). Although widely distributed in gnathostome/vertebrate genomes, neither MBP nor MPZ are present in any of nine invertebrate genomes examined. PLP1, which replaced MPZ in tetrapod CNS myelin sheaths, includes a novel 'tetrapod-specific' exon (see also Möbius et al., 2009). Like PLP1, PMP2 first appears in tetrapods and like PLP1 its origins can be traced to invertebrate paralogs. PMP22, with origins in agnathans, and STMN1 with origins in protostomes, existed well before the evolution of gnathostomes. The coordinated appearance of MBP and MPZ with myelin sheaths and of PLP1 with tetrapod CNS myelin suggests interdependence - new proteins giving rise to novel vertebrate structures.
Collapse
|
15
|
Bartzokis G. Alzheimer's disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 2009; 32:1341-71. [PMID: 19775776 DOI: 10.1016/j.neurobiolaging.2009.08.007] [Citation(s) in RCA: 387] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 12/11/2022]
Abstract
The amyloid hypothesis (AH) of Alzheimer's disease (AD) posits that the fundamental cause of AD is the accumulation of the peptide amyloid beta (Aβ) in the brain. This hypothesis has been supported by observations that genetic defects in amyloid precursor protein (APP) and presenilin increase Aβ production and cause familial AD (FAD). The AH is widely accepted but does not account for important phenomena including recent failures of clinical trials to impact dementia in humans even after successfully reducing Aβ deposits. Herein, the AH is viewed from the broader overarching perspective of the myelin model of the human brain that focuses on functioning brain circuits and encompasses white matter and myelin in addition to neurons and synapses. The model proposes that the recently evolved and extensive myelination of the human brain underlies both our unique abilities and susceptibility to highly prevalent age-related neuropsychiatric disorders such as late onset AD (LOAD). It regards oligodendrocytes and the myelin they produce as being both critical for circuit function and uniquely vulnerable to damage. This perspective reframes key observations such as axonal transport disruptions, formation of axonal swellings/sphenoids and neuritic plaques, and proteinaceous deposits such as Aβ and tau as by-products of homeostatic myelin repair processes. It delineates empirically testable mechanisms of action for genes underlying FAD and LOAD and provides "upstream" treatment targets. Such interventions could potentially treat multiple degenerative brain disorders by mitigating the effects of aging and associated changes in iron, cholesterol, and free radicals on oligodendrocytes and their myelin.
Collapse
Affiliation(s)
- George Bartzokis
- Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
16
|
Post-transcriptional regulation of myelin formation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:486-94. [PMID: 18590840 DOI: 10.1016/j.bbagrm.2008.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 05/15/2008] [Accepted: 06/03/2008] [Indexed: 12/21/2022]
Abstract
Myelin is a specialized structure of the nervous system that both enhances electrical conductance and protects neurons from degeneration. In the central nervous system, extensively polarized oligodendrocytes form myelin by wrapping cellular processes in a spiral pattern around neuronal axons. Myelin formation requires the oligodendrocyte to regulate gene expression in response to changes in its extracellular environment. Because these changes occur at a distance from the cell body, post-transcriptional control of gene expression allows the cell to fine-tune its response. Here, we review the RNA-binding proteins that control myelin formation in the brain, highlighting the molecular mechanisms by which they control gene expression and drawing parallels from studies in other cell types.
Collapse
|
17
|
Hu X, He W, Diaconu C, Tang X, Kidd GJ, Macklin WB, Trapp BD, Yan R. Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. FASEB J 2008; 22:2970-80. [PMID: 18413858 DOI: 10.1096/fj.08-106666] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACE1 is a promising therapeutic and preventive target for Alzheimer's disease because it is essential for amyloid deposition. However, the recent demonstration of BACE1 in modulating developmental myelination in both peripheral and central nervous systems raises a concern of its effect on myelin maintenance or remyelination, and inhibition of these processes will potentially be detrimental to the BACE1 inhibitor users who are susceptible to myelination diseases such as adult peripheral nerve injury or multiple sclerosis. In this report, we investigated the role of BACE1 during peripheral nerve remyelination in wild-type (WT) and BACE1-null mice. We show here that genetic deletion of BACE1 affects sciatic nerve remyelination. The impaired remyelination appears to stem from the loss of neuregulin-1 cleavage by BACE1. To demonstrate a direct cleavage of neuregulin-1 by BACE1, we have identified a BACE1 cleavage site that turns out be highly conserved among neuregulin-1 paralogues. Moreover, we show that neuregulin-1 family member neuregulin-3 is also cleavable by BACE1. We hypothesize that the BACE1-cleaved extracellular domain of axonal neuregulin-1, perhaps neuregulin-3 as well, binds to Schwann cell ErbB receptors, which in turn regulate remyelination. Pharmacological inhibition of BACE1 should be carefully monitored to avoid alteration of signaling pathway that regulates remyelination.
Collapse
Affiliation(s)
- Xiangyou Hu
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Fernandes KJ, Toma JG, Miller FD. Multipotent skin-derived precursors: adult neural crest-related precursors with therapeutic potential. Philos Trans R Soc Lond B Biol Sci 2008; 363:185-98. [PMID: 17282990 PMCID: PMC2605494 DOI: 10.1098/rstb.2006.2020] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We previously made the surprising finding that cultures of multipotent precursors can be grown from the dermis of neonatal and adult mammalian skin. These skin-derived precursors (SKPs) display multi-lineage differentiation potential, producing both neural and mesodermal progeny in vitro, and are an apparently novel precursor cell type that is distinct from other known precursors within the skin. In this review, we begin by placing these findings within the context of the rapidly evolving stem cell field. We then describe our recent efforts focused on understanding the developmental biology of SKPs, discussing the idea that SKPs are neural crest-related precursors that (i) migrate into the skin during embryogenesis, (ii) persist within a specific dermal niche, and (iii) play a key role in the normal physiology, and potentially pathology, of the skin. We conclude by highlighting some of the therapeutic implications and unresolved questions raised by these studies.
Collapse
Affiliation(s)
- Karl J.L Fernandes
- Programs in Developmental Biology, University of TorontoToronto, Ontario, Canada M5G 1X8
- Programs in Cancer Research, University of TorontoToronto, Canada M5G 1X8
| | - Jean G Toma
- Programs in Developmental Biology, University of TorontoToronto, Ontario, Canada M5G 1X8
| | - Freda D Miller
- Programs in Developmental Biology, University of TorontoToronto, Ontario, Canada M5G 1X8
- Programs in Brain and Behaviour, University of TorontoToronto, Canada M5G 1X8
- Department of Molecular and Medical Genetics, University of TorontoToronto, Canada M5G 1X8
- Department of Physiology, University of TorontoToronto, Canada M5G 1X8
- Author for correspondence ()
| |
Collapse
|
19
|
Hayashi A, Nakashima K, Yamagishi K, Hoshi T, Suzuki A, Baba H. Localization of annexin II in the paranodal regions and Schmidt-Lanterman incisures in the peripheral nervous system. Glia 2007; 55:1044-52. [PMID: 17549680 DOI: 10.1002/glia.20529] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Annexin II (AX II) is a member of the family of calcium-dependent actin- and phospholipid-binding proteins implicated in numerous intracellular functions such as signal transduction, membrane trafficking, and mRNA transport, as well as in the regulation of membrane/cytoskeleton contacts and extracellular functions. AX II is expressed in the central nervous system (CNS) and is upregulated in some pathological conditions. However, expression and localization of this protein in the peripheral nervous system (PNS) is still uncertain. In the present study, we examined the expression and distribution of AX II in the PNS. By western blot analysis, we found that a higher level of AX II was present in sciatic nerve homogenates than in brain homogenates. RT-PCR of total RNA from rat sciatic nerves revealed that AX II was synthesized within the nerves. Immunohistological analysis showed the characteristic distribution of AX II in Schmidt-Lanterman incisures (SLI) as well as in the paranodal regions. Localization of AX II in the PNS was examined in two mutant mouse models, shiverer and cerebroside sulfotransferase knockout mice, both of which show increased numbers of SLI. The paranodal axo-glial junction is also disrupted in the latter. Interestingly, the staining intensities of AX II in these regions were increased markedly in both mutants, suggesting that not only the numbers but also AX II content in each incisure and paranodal loop were affected. From its characteristic distribution and molecular features, AX II may be important for myelin function in the PNS.
Collapse
Affiliation(s)
- Akiko Hayashi
- Department of Molecular Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Hoshi T, Suzuki A, Hayashi S, Tohyama K, Hayashi A, Yamaguchi Y, Takeuchi K, Baba H. Nodal protrusions, increased Schmidt-Lanterman incisures, and paranodal disorganization are characteristic features of sulfatide-deficient peripheral nerves. Glia 2007; 55:584-94. [PMID: 17299768 DOI: 10.1002/glia.20487] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Galactocerebroside and sulfatide are two major glycolipids in myelin; however, their independent functions are not fully understood. The absence of these glycolipids causes disruption of paranodal junctions, which separate voltage-gated Na(+) and Shaker-type K(+) channels in the node and juxtaparanode, respectively. In contrast to glial cells in the central nervous system (CNS), myelinating Schwann cells in the peripheral nervous system (PNS) possess characteristic structures, including microvilli and Schmidt-Lanterman incisures, in addition to paranodal loops. All of these regions are involved in axo-glial interactions. In the present study, we examined cerebroside sulfotransferase-deficient mice to determine whether sulfatide is essential for axo-glial interactions in these PNS regions. Interestingly, marked axonal protrusions were observed in some of the nodal segments, which often contained abnormally enlarged vesicles, like degenerated mitochondria. Moreover, many transversely cut ends of microvilli surrounded the mutant nodes, suggesting that alignments of the microvilli were disordered. The mutant PNS showed mild elongation of nodal Na(+) channel clusters. Even though Caspr and NF155 were completely absent in half of the paranodes, short clusters of these molecules remained in the rest of the paranodal regions. Ultrastructural analysis indicated the presence of transverse bands in some paranodal regions and detachment of the outermost several loops. Furthermore, the numbers of incisures were remarkably increased in the mutant internode. Therefore, these results indicate that sulfatide may play an important role in the PNS, especially in the regions where myelin-axon interactions occur.
Collapse
Affiliation(s)
- Tomiko Hoshi
- Department of Molecular Neurobiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Avila RL, Tevlin BR, Lees JPB, Inouye H, Kirschner DA. Myelin Structure and Composition in Zebrafish. Neurochem Res 2006; 32:197-209. [PMID: 16951904 DOI: 10.1007/s11064-006-9136-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2006] [Indexed: 10/24/2022]
Abstract
To establish a standard for genotype/phenotype studies on the myelin of zebrafish (Danio rerio), an organism increasingly popular as a model system for vertebrates, we have initiated a detailed characterization of the structure and biochemical composition of its myelinated central and peripheral nervous system (CNS; PNS) tissues. Myelin periods, determined by X-ray diffraction from whole, unfixed optic and lateral line nerves, were approximately 153 and approximately 162 Angstrom, respectively. In contrast with the lability of PNS myelin in higher vertebrates, zebrafish lateral line nerve myelin exhibited structural stability when exposed to substantial changes in pH and ionic strength. Neither optic nor lateral line nerves showed swelling at the cytoplasmic apposition in CaCl(2)-containing Ringer's solution, in contrast with nerves from other teleost and elasmobranch fishes. Zebrafish optic nerve showed greater stability against changes in NaCl and CaCl(2) than lateral line nerve. The nerves from zebrafish having mutations in the gene for myelin basic protein (mbpAla2Thr and mbpAsp25Val) showed similar myelin periods as the wildtype (WT), but gave approximately 20% less compact myelin. Analysis of proteins by SDS-PAGE and Western blotting identified in both CNS and PNS of WT zebrafish two orthologues of myelin P0 glycoprotein that have been characterized extensively in trout--intermediate protein 1 (24 kDa) and intermediate protein 2 (28 kDa). Treatment with endoglycosidase-F demonstrated a carbohydrate moiety of approximately 7 kDa, which is nearly threefold larger than for higher vertebrates. Thin-layer chromatography for lipids revealed a similar composition as for other teleosts. Taken together, these data will serve as a baseline for detecting changes in the structure and/or amount of myelin resulting from mutations in myelin-related genes or from exogenous, potentially cytotoxic compounds that could affect myelin formation or stability.
Collapse
Affiliation(s)
- Robin L Avila
- Biology Department, Boston College, Chestnut Hill, MA 02467-3811, USA
| | | | | | | | | |
Collapse
|
22
|
Avila RL, Inouye H, Baek RC, Yin X, Trapp BD, Feltri ML, Wrabetz L, Kirschner DA. Structure and Stability of Internodal Myelin in Mouse Models of Hereditary Neuropathy. J Neuropathol Exp Neurol 2005; 64:976-90. [PMID: 16254492 DOI: 10.1097/01.jnen.0000186925.95957.dc] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Peripheral neuropathies often result in abnormalities in the structure of internodal myelin, including changes in period and membrane packing, as observed by electron microscopy (EM). Mutations in the gene that encodes the major adhesive structural protein of internodal myelin in the peripheral nervous system of humans and mice--P0 glycoprotein--correlate with these defects. The mechanisms by which P0 mutations interfere with myelin packing and stability are not well understood and cannot be provided by EM studies that give static and qualitative information on fixed material. To gain insights into the pathogenesis of mutant P0, we used x-ray diffraction, which can detect more subtle and dynamic changes in native myelin, to investigate myelin structure in sciatic nerves from murine models of hereditary neuropathies. We used mice with disruption of one or both copies of the P0 gene (models of Charcot-Marie-Tooth-like neuropathy [CMT1B] or Dejerine-Sottas-like neuropathy) and mice with a CMT1B resulting from a transgene encoding P0 with an amino terminal myc-tag. To directly test the structural role of P0, we also examined a mouse that expresses P0 instead of proteolipid protein in central nervous system myelin. To link our findings on unfixed nerves with EM results, we analyzed x-ray patterns from unembedded, aldehyde-fixed nerves and from plastic-embedded nerves. From the x-ray patterns recorded from whole nerves, we assessed the amount of myelin and its quality (i.e. relative thickness and regularity). Among sciatic nerves having different levels of P0, we found that unfixed nerves and, to a lesser extent, fixed but unembedded nerves gave diffraction patterns of sufficient quality to distinguish periods, sometimes differing by a few Angstroms. Certain packing abnormalities were preserved qualitatively by aldehyde fixation, and the relative amount and structural integrity of myelin among nerves could be distinguished. Measurements from the same nerve over time showed that the amount of P0 affected myelin's stability against swelling, thus directly supporting the hypothesis that packing defects underlie instability in "live" or intact myelin. Our findings demonstrate that diffraction can provide a quantitative basis for understanding, at a molecular level, the membrane packing defects that occur in internodal myelin in demyelinating peripheral neuropathies.
Collapse
Affiliation(s)
- Robin L Avila
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Seiwa C, Kojima-Aikawa K, Matsumoto I, Asou H. CNS myelinogenesis in vitro: myelin basic protein deficient shiverer oligodendrocytes. J Neurosci Res 2002; 69:305-17. [PMID: 12125072 DOI: 10.1002/jnr.10291] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The shiverer mutant mouse is an autosomal recessive mutant characterized by incomplete myelin sheath formation in the central nervous system (CNS). Such mice contain a deletion in the MBP gene, do not produce MBP proteins, and have little or no compact myelin in the CNS. To investigate the myelin sheath formation in shiverer mutant mice resulting from the absence of compact myelin, firstly we developed new methods for generating oligodendrocyte precursor cells (OPCs) from an E17 mouse brain, and examined homozygous shiverer (shi/shi) OPCs with respect to myelinogenesis in vitro. After treatment of shi/shi OPCs in vitro with PDGF or bFGF, proliferation of shi/shi OPCs was enhanced similar to that observed in wild-type OPCs. The majority of cells from the shiverer mutant mouse, however, remained as A2B5-immunoreactive early OPCs. To determine which molecular events affect the differentiation of shi/shi OPCs, we determined the signaling pathway that could be responsible for activating myelin sheath-specific proteins. We found that the developmental schedule of shi/shi OPCs in vitro was accelerated by the addition of cyclic AMP analogs, dibutyryl cAMP (dbcAMP). Treatment of shi/shi OPCs with dbcAMP had significant effect on the differentiation of OPCs that became MAG-expressing oligodendrocytes. To further determine the possible mechanism involved in the activation of MAG by dbcAMP, we examined the cAMP-dependent signaling cascades. The activation of JNK was markedly stimulated by treatment with dbcAMP, and the phosphorylation of transcription factor ATF-2 was also stimulated by dbcAMP. We demonstrated that the MAG-positive shi/shi oligodendrocytes extend processes around axons and finally covered the axon, this was clearly observed by immunocytochemistry of shi/shi oligodendrocyte-DRG cocultures. These results suggest that ATF-2 coupled to specific signal transduction cascades plays an important regulatory role in MAG expression at a specific stage of shi/shi oligodendrocyte differentiation, and OPCs grow to become myelin-forming cells with numerous cell processes that wraps around an axon to form a thin myelin sheath.
Collapse
Affiliation(s)
- Chika Seiwa
- Department of Neurobiology, Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | | | |
Collapse
|
24
|
Boyle ME, Berglund EO, Murai KK, Weber L, Peles E, Ranscht B. Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 2001; 30:385-97. [PMID: 11395001 DOI: 10.1016/s0896-6273(01)00296-3] [Citation(s) in RCA: 384] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Rapid nerve impulse conduction depends on specialized membrane domains in myelinated nerve, the node of Ranvier, the paranode, and the myelinated internodal region. We report that GPI-linked contactin enables the formation of the paranodal septate-like axo-glial junctions in myelinated peripheral nerve. Contactin clusters at the paranodal axolemma during Schwann cell myelination. Ablation of contactin in mutant mice disrupts junctional attachment at the paranode and reduces nerve conduction velocity 3-fold. The mutation impedes intracellular transport and surface expression of Caspr and leaves NF155 on apposing paranodal myelin disengaged. The contactin mutation does not affect sodium channel clustering at the nodes of Ranvier but alters the location of the Shaker-type Kv1.1 and Kv1.2 potassium channels. Thus, contactin is a crucial part in the machinery that controls junctional attachment at the paranode and ultimately the physiology of myelinated nerve.
Collapse
MESH Headings
- Aging
- Animals
- Axons/physiology
- Cell Adhesion Molecules, Neuronal/deficiency
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/physiology
- Contactins
- Crosses, Genetic
- Gene Expression Regulation, Developmental
- Kv1.1 Potassium Channel
- Kv1.2 Potassium Channel
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron
- Models, Neurological
- Nerve Fibers, Myelinated/physiology
- Nerve Fibers, Myelinated/ultrastructure
- Neuroglia/physiology
- Potassium Channels/physiology
- Potassium Channels, Voltage-Gated
- Ranvier's Nodes/physiology
- Ranvier's Nodes/ultrastructure
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Schwann Cells/physiology
- Sciatic Nerve/physiology
Collapse
Affiliation(s)
- M E Boyle
- Neurobiology Program, The Burnham Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
25
|
Early onset of axonal degeneration in double (plp-/-mag-/-) and hypomyelinosis in triple (plp-/-mbp-/-mag-/-) mutant mice. J Neurosci 2000. [PMID: 10884306 DOI: 10.1523/jneurosci.20-14-05225.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Double (plp-/-mag-/-) and triple (plp-/-mbp-/-mag-/-) null-allelic mouse lines deficient in proteolipid protein (PLP), myelin-associated glycoprotein (MAG), and myelin basic protein (MBP) were generated and characterized genetically, biochemically, and morphologically including their behavioral capacities. The plp-/-mag-/- mutant develops a rapidly progressing axon degeneration in CNS with severe cognitive and motor coordinative deficits but has a normal longevity. CNS axons of the plp-/-mbp-/-mag-/- mouse are hypomyelinated and ensheathed by "pseudomyelin" with disturbed protein and complex lipid composition. The shiverer trait in the plp-/-mbp-/-mag-/- similar to the plp-/-mbp-/- mutant is significantly ameliorated, and its lifespan is considerably prolonged. The longevity of these dysmyelinosis mouse mutants recommends them as suitable models for the long-term evaluation of stem cell therapeutic strategies.
Collapse
|
26
|
Rasband MN, Shrager P. Ion channel sequestration in central nervous system axons. J Physiol 2000; 525 Pt 1:63-73. [PMID: 10811725 PMCID: PMC2269925 DOI: 10.1111/j.1469-7793.2000.00063.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2000] [Accepted: 03/28/2000] [Indexed: 11/29/2022] Open
Abstract
Na+ and K+ channel localization and clustering are essential for proper electrical signal generation and transmission in CNS myelinated nerve fibres. In particular, Na+ channels are clustered at high density at nodes of Ranvier, and Shaker-type K+ channels are sequestered in juxtaparanodal zones, just beyond the paranodal axoglial junctions. The mechanisms of channel localization at nodes of Ranvier in the CNS during development in both normal and hypomyelinating mutant animals are discussed and reviewed. As myelination proceeds, Na+ channels are initially found in broad zones within gaps between neighbouring oligodendroglial processes, and then are condensed into focal clusters. This process appears to depend on the formation of axoglial junctions. K+ channels are first detected in juxtaparanodal zones, and in mutant mice lacking normal axoglial junctions, these channels fail to cluster. In these mice, despite the presence of numerous oligodendrocytes, Na+ channel clusters are rare, and when present, are highly irregular. A number of molecules have recently been described that are candidates for a role in the neuron-glial interactions driving ion channel clustering. This paper reviews the cellular and molecular events responsible for formation of the mature node of Ranvier in the CNS.
Collapse
Affiliation(s)
- M N Rasband
- Department of Biochemistry and Cell Biology, Institute for Cell and Developmental Biology, State University of New York, Stony Brook, NY 11794, USA
| | | |
Collapse
|
27
|
Abstract
Myelin basic protein (MBP) plays an essential adhesive role in the formation of compact myelin in the central nervous system (CNS), but not in the peripheral nervous system (PNS). Morphologic data suggest that MBP controls the number of cytoplasmic channels or Schmidt-Lanterman incisures (SLI) present in PNS myelin. The levels of connexin-32 (Cx32) and myelin-associated glycoprotein (MAG), two components of the incisures, are inversely proportional to the levels of MBP in sciatic nerves of mice affected by the shiverer (shi) mutation, while protein zero (P0) and peripheral membrane protein 22 (PMP22), two structural components of compact myelin, remain constant. The levels of P0, PMP22, Cx32, and MAG mRNA do not vary in relationship to the levels of MBP. This indicates that MBP exerts its effect on Cx32 and MAG at a posttranscriptional level and suggests a new function for MBP in regulating gene expression in the PNS.
Collapse
Affiliation(s)
- C Smith-Slatas
- Department of Neurology, University of Connecticut Health Center, Farmington 06030, USA
| | | |
Collapse
|
28
|
Dupree JL, Girault JA, Popko B. Axo-glial interactions regulate the localization of axonal paranodal proteins. J Cell Biol 1999; 147:1145-52. [PMID: 10601330 PMCID: PMC2168103 DOI: 10.1083/jcb.147.6.1145] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/1999] [Accepted: 11/03/1999] [Indexed: 11/22/2022] Open
Abstract
Mice incapable of synthesizing the abundant galactolipids of myelin exhibit disrupted paranodal axo-glial interactions in the central and peripheral nervous systems. Using these mutants, we have analyzed the role that axo-glial interactions play in the establishment of axonal protein distribution in the region of the node of Ranvier. Whereas the clustering of the nodal proteins, sodium channels, ankyrin(G), and neurofascin was only slightly affected, the distribution of potassium channels and paranodin, proteins that are normally concentrated in the regions juxtaposed to the node, was dramatically altered. The potassium channels, which are normally concentrated in the paranode/juxtaparanode, were not restricted to this region but were detected throughout the internode in the galactolipid-defi- cient mice. Paranodin/contactin-associated protein (Caspr), a paranodal protein that is a potential neuronal mediator of axon-myelin binding, was not concentrated in the paranodal regions but was diffusely distributed along the internodal regions. Collectively, these findings suggest that the myelin galactolipids are essential for the proper formation of axo-glial interactions and demonstrate that a disruption in these interactions results in profound abnormalities in the molecular organization of the paranodal axolemma.
Collapse
Affiliation(s)
- Jeffrey L. Dupree
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jean-Antoine Girault
- Institut National de la Santé et la Recherche Médicale, Unit 114, Collège de France, Paris 75231, France
| | - Brian Popko
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
29
|
Abstract
Although traditional roles ascribed to myelinating glial cells are structural and supportive, the importance of compact myelin for proper functioning of the nervous system can be inferred from mutations in myelin proteins and neuropathologies associated with loss of myelin. Myelinating Schwann cells are known to affect local properties of peripheral axons (de Waegh et al., 1992), but little is known about effects of oligodendrocytes on CNS axons. The shiverer mutant mouse has a deletion in the myelin basic protein gene that eliminates compact myelin in the CNS. In shiverer mice, both local axonal features like phosphorylation of cytoskeletal proteins and neuronal perikaryon functions like cytoskeletal gene expression are altered. This leads to changes in the organization and composition of the axonal cytoskeleton in shiverer unmyelinated axons relative to age-matched wild-type myelinated fibers, although connectivity and patterns of neuronal activity are comparable. Remarkably, transgenic shiverer mice with thin myelin sheaths display an intermediate phenotype indicating that CNS neurons are sensitive to myelin sheath thickness. These results indicate that formation of a normal compact myelin sheath is required for normal maturation of the neuronal cytoskeleton in large CNS neurons.
Collapse
|
30
|
Abstract
Our understanding of myelination has been greatly enhanced via the study of spontaneous mutants that harbor a defect in a gene encoding one of the major myelin proteins (myelin mutants). In this study, we describe a unique genetic defect in a new myelin mutant called the Long Evans shaker (les) rat that causes severe dysmyelination of the CNS. Myelin deficits result from disruption of the myelin basic protein (Mbp) gene caused by the insertion of an endogenous retrotransposon [early transposons (ETn) element] into a noncoding region (intron 3) of the gene. The ETn element alters the normal splicing dynamics of MBP mRNA, leading to a dramatic reduction in the levels of full-length isoforms (<5% of normal) and the appearance of improperly spliced, chimeric transcripts. Although these aberrant transcripts contain proximal coding regions of the MBP gene (exons 1-3), they are unable to encode functional proteins required to maintain the structural integrity of the myelin sheath. These chimeric transcripts seem capable, however, of producing the necessary signal to initiate and coordinate myelin gene expression because normal numbers of mature oligodendrocytes synthesizing abundant levels of other myelin proteins are present in the mutant CNS. The les rat is thus an excellent model to study alternative functions of MBP beyond its well characterized role in myelin compaction.
Collapse
|
31
|
Martini R, Schachner M. Molecular bases of myelin formation as revealed by investigations on mice deficient in glial cell surface molecules. Glia 1997. [DOI: 10.1002/(sici)1098-1136(199704)19:4<298::aid-glia3>3.0.co;2-u] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Yoshida M, Colman DR. Parallel evolution and coexpression of the proteolipid proteins and protein zero in vertebrate myelin. Neuron 1996; 16:1115-26. [PMID: 8663988 DOI: 10.1016/s0896-6273(00)80138-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Vertebrate myelin contains two proteins that mediate compaction: protein zero (P0), an immunoglobulin gene superfamily member, or proteolipid proteins, 4-hydrophobic domain-motif proteins biogenetically unrelated to P0. The prevailing view has been that expression of P0 and proteolipid proteins is mutually exclusive; P0, which mediates myelin compaction in fish, is thought to be completely replaced by the newer proteolipid proteins in the terrestrial vertebrate CNS. However, we now find that proteolipid proteins are actually major myelin constituents in bony fish and amphibia, and so are coexpressed with P0. Clearly, myelin proteolipids are not new additions to the myelin protein repertoire, but instead were ancestral sheath components, expressed approximately 440 million years ago in the first myelinated fish that existed at least approximately 100 million years before the origin of amphibians. In conclusion, P0 and the proteolipid proteins are evolving in parallel in myelinating cells of most vertebrate species.
Collapse
Affiliation(s)
- M Yoshida
- The Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York 10029, USA
| | | |
Collapse
|
33
|
Wang H, Allen ML, Grigg JJ, Noebels JL, Tempel BL. Hypomyelination alters K+ channel expression in mouse mutants shiverer and Trembler. Neuron 1995; 15:1337-47. [PMID: 8845157 DOI: 10.1016/0896-6273(95)90012-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Voltage-gated K+ channels are localized to juxtaparanodal regions of myelinated axons. To begin to understand the role of normal compact myelin in this localization, we examined mKv1.1 and mKv1.2 expression in the dysmyelinating mouse mutants shiverer and Trembler. In neonatal wild-type and shiverer mice, the focal localization of both proteins in axon fiber tracts is similar, suggesting that cues other than mature myelin can direct initial K+ channel localization in shiverer mutants. In contrast, K+ channel localization is altered in hypomyelinated axonal fiber tracts of adult mutants, suggesting that abnormal myelination leads to channel redistribution. In shiverer adult, K+ channel expression is up-regulated in both axons and glia, as revealed by immunocytochemistry, RNase protection, and in situ hybridization studies. This up-regulation of K+ channels in hypomyelinated axon tracts may reflect a compensatory reorganization of ionic currents, allowing impulse conduction to occur in these dysmyelinating mouse mutants.
Collapse
Affiliation(s)
- H Wang
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
34
|
Kuhn PL, Petroulakis E, Zazanis GA, McKinnon RD. Motor function analysis of myelin mutant mice using a rotarod. Int J Dev Neurosci 1995; 13:715-22. [PMID: 8787862 DOI: 10.1016/0736-5748(96)81215-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have examined motor control in normal and shiverer mutant mice using the rotarod assay, a forced motor activity which tests for balance and co-ordination. Shiverer mice carry a deletion of the myelin basic protein (MBP) gene, resulting in CNS dysmyelination and characteristic motor dysfunction. Homozygous mutant mice had a significant increase in cumulative falls from the rotarod relative to heterozygous mice. Non-acclimated animals of both genotypes showed progressive improvement in performance when tested on successive days. The rotarod test also discriminated shiverer mutants from animals that received gene therapy intervention. Shiverer animals carrying an MBP transgene showed gene-dosage-dependent improvements in motor function, and mutants which received thalamic transplants of wild type oligodendrocyte precursor cells showed improvement relative to sham operated and non-transplanted controls. Thus the rotarod is a sensitive measure of motor function in hypomyelinated mice, and may be useful for assessing the results of experimental manipulations including transgenic gene therapy and cell transplantation.
Collapse
Affiliation(s)
- P L Kuhn
- Department of Psychology, California State University, Chico 95927, USA
| | | | | | | |
Collapse
|
35
|
Gould RM, Byrd AL, Barbarese E. The number of Schmidt-Lanterman incisures is more than doubled in shiverer PNS myelin sheaths. JOURNAL OF NEUROCYTOLOGY 1995; 24:85-98. [PMID: 7745445 DOI: 10.1007/bf01181552] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the PNS, myelin basic protein (MBP) appears not to be essential for myelination, for in shiverer (shi) and mld mutant mice peripheral nerves, where MBP is not or only poorly expressed, myelination occurs normally. Only a few morphological abnormalities, i.e. reduction in axon calibre and myelin sheath thickness, and aberrant Schwann cell-axon contacts, have been reported. Here, we document a consistent difference between shi and wild type (wt) myelinated sciatic nerve fibres. The number of Schmidt-Lanterman incisures seen in longitudinally and transversely-sectioned sciatic nerves, or in teased fibres stained for the presence of F-actin, is dramatically increased in homozygous shi mice. With both methods, a twofold increase in Schmidt-Lanterman incisure number is seen in 15-day-old mice, the earliest time examined. The increase is slightly greater in nerve fibres from 30- and 90-day-old mice. The overproduction of Schmidt-Lanterman incisures in shi occurs in spite of the fact that the mean diameter of myelinated fibres in shi sciatic nerves is smaller than in wt sciatic nerves. These results lead us to suggest that the increase in Schmidt-Lanterman incisure density in shi compensates for a defect in Schwann cell-axon communication.
Collapse
Affiliation(s)
- R M Gould
- Laboratory of Membrane Biology, N.Y.S. Institute for Basic Research in Developmental Disabilities, Staten Island, USA
| | | | | |
Collapse
|
36
|
Montag D, Giese KP, Bartsch U, Martini R, Lang Y, Blüthmann H, Karthigasan J, Kirschner DA, Wintergerst ES, Nave KA. Mice deficient for the myelin-associated glycoprotein show subtle abnormalities in myelin. Neuron 1994; 13:229-46. [PMID: 7519026 DOI: 10.1016/0896-6273(94)90472-3] [Citation(s) in RCA: 269] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using homologous recombination in embryonic stem cells, we have generated mice with a null mutation in the gene encoding the myelin-associated glycoprotein (MAG), a recognition molecule implicated in myelin formation. MAG-deficient mice appeared normal in motor coordination and spatial learning tasks. Normal myelin structure and nerve conduction in the PNS, with N-CAM overexpression at sites normally expressing MAG, suggested compensatory mechanisms. In the CNS, the onset of myelination was delayed, and subtle morphological abnormalities were detected in that the content of oligodendrocyte cytoplasm at the inner aspect of most myelin sheaths was reduced and that some axons were surrounded by two or more myelin sheaths. These observations suggest that MAG participates in the formation of the periaxonal cytoplasmic collar of oligodendrocytes and in the recognition between oligodendrocyte processes and axons.
Collapse
Affiliation(s)
- D Montag
- Department of Neurobiology, Swiss Federal Institute of Technology Hönggerberg, Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fujiyoshi T, Hood L, Yoo TJ. Restoration of brain stem auditory-evoked potentials by gene transfer in shiverer mice. Ann Otol Rhinol Laryngol 1994; 103:449-56. [PMID: 7515606 DOI: 10.1177/000348949410300606] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We studied the shiverer mouse as a model for correcting hearing disorders resulting from genetic abnormalities of the central nervous system (CNS). Shiverer mice are homozygous for an autosomal recessive mutation (deletion) in the gene for myelin basic protein (MBP), a major protein component of the myelin sheath in the CNS. Under electron microscopic observation of the cochlear nerve, the CNS portion in shiverer mice showed hypomyelination, but the peripheral portion, including spiral ganglion cells, was normal. We produced MBP-transgenic mice by microinjection of an MBP cosmid clone into the pronucleus of fertilized eggs from shiverer mice. The transgenic mice were found to recover MBP levels up to 25% of normal. A greater number of axons in the transgenic mice were myelinated than in the shiverer mice, but the myelin sheath was not as thick as in normal controls. Every interpeak latency of brain stem auditory-evoked potentials was prolonged in the shiverer mice and improved in the transgenic mice. This study provides an example of gene therapy for hearing disorders caused by a CNS abnormality. We discuss some strategies for researching genetic hearing impairment or deafness in both animals and humans.
Collapse
Affiliation(s)
- T Fujiyoshi
- Department of Otolaryngology-Head and Neck Surgery, Oita Medical University, Japan
| | | | | |
Collapse
|
38
|
Shine HD, Readhead C, Popko B, Hood L, Sidman RL. Morphometric Analysis of Normal, Mutant, and Transgenic CNS: Correlation of Myelin Basic Protein Expression to Myelinogenesis. J Neurochem 1992; 58:342-9. [PMID: 1370079 DOI: 10.1111/j.1471-4159.1992.tb09316.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The neurological mutant mice shiverer (shi) and myelin deficient (shimld) lack a functional gene for the myelin basic proteins (MBP), have virtually no myelin in their CNS, shiver, seize, and die early. Mutant mice homozygous for an MBP transgene have MBP mRNA and MBP in net amounts approximately 25% of normal, have compact myelin, do not shiver or seize, and live normal life spans. We bred mice with various combinations of the normal, transgenic, shi, and shimld genes to produce mice that expressed MBP mRNA at levels of 0, 5, 12.5, 17.5, 50, 62.5, and 100% of normal. The CNS of these mice were analyzed for MBP content, tissue localization of MBP, degree of myelination, axon size, and myelin thickness. MBP protein content correlated with predicted MBP gene expression. Immunocytochemical staining localized MBP to white matter in normal and transgenic shi mice with an intensity of staining comparable to the degree of MBP gene expression. An increase in the percentage of myelinated axons and the thickness of myelin correlated with increased gene expression up to 50% of normal. The percentage of myelinated axons and myelin thickness remained constant at expression levels greater than 50%. The presence of axons loosely wrapped with oligodendrocytic membrane in mice expressing lower amounts of MBP mRNA and protein suggested that the oligodendroglia produced sufficient MBP to elicit axon wrapping but not enough to form compact myelin. Mean axon circumference of myelinated axons was greater than axon circumference of unmyelinated axons at each level of gene expression, further evidence that oligodendroglial cells preferentially myelinate axons of larger caliber.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H D Shine
- Center for Biotechnology, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | |
Collapse
|
39
|
Agrawal HC, Agrawal D, Strauss AW. Cleavage of the P0 glycoprotein of the rat peripheral nerve myelin: tentative identification of cleavage site and evidence for the precursor-product relationship. Neurochem Res 1990; 15:993-1001. [PMID: 1706488 DOI: 10.1007/bf00965745] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incubation of sciatic nerve slices in Krebs Ringer bicarbonate (KRB) buffer (pH 7.4) at 37 degrees C, or the incubation of freshly isolated myelin in ammonium bicarbonate buffer (pH 8), resulted in the generation of a 24 kDa protein with a concomitant decrease of P0 protein. The conversion of P0 into 24 kDa protein was blocked by heating isolated myelin at 100 degrees C for 5 min suggesting that the reaction is enzyme mediated. Inclusion of the protease inhibitors and chelating agent to isolated myelin did not prevent the formation of 24 kDa protein. Similarly, addition of CaCl2 to isolated myelin did not accentuate the formation of 24 kDa protein suggesting that the conversion of P0 into 24 kDa protein may not be due to Ca2+ activated protease. It is postulated that the formation of 24 kDa protein may be due to neutral protease and/or metalloproteinase associated with the PNS myelin. 24 kDa protein was purified and characterized. The N-terminal sequence of 1-17 amino acid residues of 24 kDa protein was identical to P0. 24 kDa protein was immunostained and immunoprecipitated with anti-P0 antiserum indicating the immunological similarities between P0 and 24 kDa protein. Labeling of 24 kDa protein with [35S]methionine provided evidence that P0 may be in all probability cleaved between Met-168 and Met-193. Further studies were carried out to demonstrate that 24 kDa protein was phosphorylated, glycosylated and acylated like P0. Phosphorylation of 24 kDa protein in the nerve slices was increased five-fold by phorbol esters and phosphoserine was the only phosphoamino acid identified after partial acid hydrolysis of 24 kDa protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H C Agrawal
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
40
|
Readhead C, Hood L. The dysmyelinating mouse mutations shiverer (shi) and myelin deficient (shimld). Behav Genet 1990; 20:213-34. [PMID: 1693848 DOI: 10.1007/bf01067791] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Shiverer (shi/shi) is an autosomal recessive mouse mutation that produces a shivering phenotype in affected mice. A shivering gait can be seen from a few weeks after birth until their early death, which occurs between 50 and 100 days. The central nervous system of the mutant mouse is hypomyelinated but the peripheral nervous system appears normal. The myelin of the CNS, wherever present, is not well compacted and lacks the major dense line. Myelin basic protein (MBP), which is associated with the major dense line, is absent, and this is due to a deletion of the major part of the gene encoding MBP. Transgenic shiverer mice that have integrated and express the wild-type mouse MBP transgene no longer shiver and have normal life spans. Conversely, normal mice that have integrated an antisense MBP transgene, shiver. Myelin deficient shimld/shimld is allelic to shiverer (shi/shi) but the mutant mouse is less severely affected. Although MBP is present in the CNS, it is low in quantity and is not developmentally regulated. The gene encoding MBP has been both duplicated and inverted. Transgenic shimld/shimld mice with the wild-type MBP transgene have normal phenotypes.
Collapse
Affiliation(s)
- C Readhead
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | |
Collapse
|
41
|
Panagopoulos G, King RH, Gabriel G, Stolinski C, Sofer D, Lachapelle F, Thomas PK. Morphometric and freeze-fracture studies on peripheral nerve in shiverer mice. J Comp Neurol 1989; 286:337-44. [PMID: 2768561 DOI: 10.1002/cne.902860304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Observations have been made on the peripheral nerves of shiverer (shi/shi) mice in comparison with control animals. Although this mutant lacks P1 myelin basic protein in peripheral and central myelin, myelin is defective only in the central nervous system. No ultrastructural abnormalities were observed in the shiverer nerves. Myelin spacing was normal. The density and distribution of intramembranous particles on the E and P faces of myelin and in the axolemma of myelinated and unmyelinated axons did not differ between the shiverer and control mice. Morphometric studies showed that external myelinated fiber diameter was significantly less and that myelin thickness was slightly but significantly greater in relation to axon diameter in the shiverer mice, suggesting a minor degree of axonal atrophy. It is concluded that P1 protein is not necessary for the formation and maintenance of the normal structure of peripheral myelin. The failure to detect differences in intramembranous particle density in myelin between shiverer and control mice indicates that P1 protein is not detected in freeze-fracture preparations.
Collapse
Affiliation(s)
- G Panagopoulos
- Department of Neurological Science, Royal Free Hospital School of Medicine, London, England
| | | | | | | | | | | | | |
Collapse
|
42
|
Sheedlo HJ, Siegel GJ. Comparison of the distribution of Na+,K+-ATPase and myelin-associated glycoprotein (MAG) in the optic nerve, spinal cord and trigeminal ganglion of shiverer (shi/shi) and control (+/+) mice. Brain Res 1987; 415:105-14. [PMID: 2441806 DOI: 10.1016/0006-8993(87)90273-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Na+,K+ ATPase and myelin-associated glycoprotein (MAG) were studied by immunocytochemistry on paraffin sections of the spinal cord, optic nerve and trigeminal ganglion of adult control (+/+) and CNS myelin-deficient shiverer (shi/shi) mice. Immunostaining for Na+, K+-ATPase outlined the periphery of nerve fibers in the spinal cord white matter, optic nerve and trigeminal ganglion of +/+ and shi/shi mice. Immunostaining for Na+,K+-ATPase appeared somewhat denser in the optic nerve and spinal cord lateral funiculi of shi/shi than in +/+ mice. In addition, immunostaining for Na+,K+-ATPase was demonstrated at the plasmalemma of presumed satellite cells situated at the periphery of ganglion cell bodies in the trigeminal ganglion of both species of mice. Immunostaining for MAG was localized along the periphery of nerve fibers in the spinal cord funiculi (with little immunostaining within gray horns), optic nerve and trigeminal ganglion of both +/+ and shi/shi mice. The major differences between shi/shi and +/+ mice were that the number of MAG-immunostained nerve fibers was greatly reduced in the spinal cord funiculi and the density of immunostaining was slightly increased in the optic nerve of shi/shi mice. The numbers of MAG-immunostained nerve fibers in trigeminal ganglion were similar in both species. Also, the cytoplasm of some oligodendrocyte-like cells was found densely immunostained for MAG in the spinal cord and optic nerve of shi/shi mice, but not of +/+ mice. This light microscopic study provides evidence that the defective shiverer gene leads to a decrease in MAG deposition and to aggregations of MAG-like material within perikarya of oligodendrocyte-like cells in regions of the CNS.
Collapse
|
43
|
Readhead C, Popko B, Takahashi N, Shine HD, Saavedra RA, Sidman RL, Hood L. Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell 1987; 48:703-12. [PMID: 2434242 DOI: 10.1016/0092-8674(87)90248-0] [Citation(s) in RCA: 272] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mice homozygous for the autosomal recessive mutation shiverer (shi) lack myelin basic protein (MBP) and exhibit a distinct behavioral pattern including tremors (shivering), convulsions, and early death. We have previously demonstrated that shiverer mice have a partial deletion in the gene encoding MBP. We now have introduced the wild-type MBP gene into the germ line of shiverer mice by microinjection into fertilized eggs. Transgenic shiverer mice homozygous for the introduced gene have MBP mRNA and protein levels that are approximately 25% of normal, and produce compacted myelin with major dense lines. Correct temporal and spatial expression of the MBP gene is achieved with a genomic MBP cosmid clone containing 4 kb of 5' flanking sequence and 1 kb of 3' flanking sequence. Moreover, the four different forms of MBP produced by alternative patterns of RNA splicing are present. These homozygous transgenic shiverer mice no longer shiver nor die prematurely.
Collapse
|
44
|
Molineaux SM, Engh H, de Ferra F, Hudson L, Lazzarini RA. Recombination within the myelin basic protein gene created the dysmyelinating shiverer mouse mutation. Proc Natl Acad Sci U S A 1986; 83:7542-6. [PMID: 2429310 PMCID: PMC386755 DOI: 10.1073/pnas.83.19.7542] [Citation(s) in RCA: 111] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Shiverer (shi) is an autosomal recessive mutation in the mouse characterized by an almost total lack of central nervous system myelin. While small amounts of other myelin components are present in the brain of the shi mouse, the four forms of myelin basic protein (MBP) are not detectable. Previous investigations by us and others indicate that the MBP gene has undergone a major rearrangement in the shi mutant. Herein, we report in detail the nature and extent of the rearrangement: a 20-kilobase region within the MBP gene is missing in the mutant. We map the 5' breakpoint of the deletion to the second intron and the 3' breakpoint to a site 2 kilobases beyond the last MBP exon. The junction of the upstream and downstream portions of the gene contains only one nucleotide not accounted for by the wild-type MBP gene sequence. The 3' side of the deletion occurs in the 3rd of 11 tandem repeats of a 31-base-pair sequence. This region is rich in alternating purine and pyrimidine stretches, sequences that have been associated with both Z-DNA structures and gene rearrangements. The recombination junction shares several features with the junctions characterized by Anderson et al. [Anderson, R., Kato, S. & Camerini-Otero, D. (1984) Proc. Natl. Acad. Sci. USA 81, 206-210] in mouse L cells and is consistent with their model for a partially homologous recombination event. The structure of the shi recombination junction suggests that the donor DNA molecules were aligned in a partially homologous region before staggered cutting and joining occurred.
Collapse
|
45
|
Inouye H, Ganser AL, Kirschner DA. Shiverer and normal peripheral myelin compared: basic protein localization, membrane interactions, and lipid composition. J Neurochem 1985; 45:1911-22. [PMID: 4056798 DOI: 10.1111/j.1471-4159.1985.tb10551.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We have correlated membrane structure and interactions in shiverer sciatic nerve myelin with its biochemical composition. Analysis of x-ray diffraction data from shiverer myelin swollen in water substantiates our previous localization of an electron density deficit in the cytoplasmic half of the membrane. The density loss correlates with the absence of the major myelin basic proteins and indicates that in normal myelin, the basic protein is localized to the cytoplasmic apposition. As in normal peripheral myelin, hypotonic swelling in the shiverer membrane arrays occurs in the extracellular space between membranes; the cytoplasmic surfaces remain closely apposed notwithstanding the absence of basic protein from this region. Surprisingly, we found that the interaction at the extracellular apposition of shiverer membranes is altered. The extracellular space swells to a greater extent than normal when nerves are incubated in distilled water, treated at a reduced ionic strength of 0.06 in the range of pH 4-9, or treated at constant pH (4 or 7) in the range of ionic strengths 0.02-0.20. To examine the biochemical basis of this difference in swelling, we compared the lipid composition of shiverer and normal myelin. We find that sulfatides, hydroxycerebroside, and phosphatidylcholine are 20-30% higher than normal; nonhydroxycerebroside and sphingomyelin are 15-20% lower than normal; and ethanolamine phosphatides, phosphatidylserine, and cholesterol show little or no change. A higher concentration of negatively charged sulfatides at the extracellular surface likely contributes to an increased electrostatic repulsion and greater swelling in shiverer. The cytoplasmic surfaces of the apposed membranes of normal and shiverer myelins did not swell apart appreciably in the pH and ionic strength ranges expected to produce electrostatic repulsion. This stability, then, clearly does not depend on basic protein. We propose that P0 glycoprotein molecules form the stable link between apposed cytoplasmic membrane surfaces in peripheral myelin.
Collapse
|
46
|
Peterson AC, Bray GM. Normal basal laminas are realized on dystrophic Schwann cells in dystrophic in equilibrium shiverer chimera nerves. J Cell Biol 1984; 99:1831-7. [PMID: 6490723 PMCID: PMC2113339 DOI: 10.1083/jcb.99.5.1831] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Multiple discontinuities are observed in the basal laminas of Schwann cells in mature dystrophic mice. To explore the pathogenesis of this abnormality we have exploited a dystrophic in equilibrium shiverer mouse chimera preparation in which both the basal lamina phenotype and the genotype of myelin-forming Schwann cells can be determined. If the basal lamina abnormality were to arise from an intrinsic deficiency of the dystrophic Schwann cell itself, only those Schwann cells of dystrophic genotype could express the mutant phenotype, whereas the coexisting population of shiverer Schwann cells should express typically normal basal laminas. No such distinction was observed; rather both dystrophic and shiverer Schwann cells were found to express relatively normal basal laminas and two pathogenetic mechanisms remain theoretical possibilities. The dystrophic Schwann cell population may be intrinsically defective but also may be rescued by obtaining the normal product of the dy locus synthesized by the coexisting shiverer cells. Alternatively, an extra Schwann cell deficiency existing within dystrophic mice may be normalized by shiverer cells and the normal intrinsic potential of both dystrophic and shiverer Schwann cells can then be realized. Regardless of the exact mechanism underlying these findings, some extracellularly mediated influence, emanating in vivo from shiverer cells, is capable of ameliorating the basal lamina deficiency typically expressed by dystrophic Schwann cells.
Collapse
|
47
|
Peterson AC, Bray GM. Hypomyelination in the peripheral nervous system of shiverer mice and in shiverer in equilibrium normal chimaera. J Comp Neurol 1984; 227:348-56. [PMID: 6207210 DOI: 10.1002/cne.902270305] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In shiverer mice, the P1 component of myelin basic protein (MBP) is deficient in both the central nervous system (CNS) and peripheral nervous system (PNS) but compact myelin is more grossly defective in the CNS. In the PNS, myelin exhibits a normal periodic structure, and although examples of subtle abnormalities of shiverer Schwann cell ultrastructure have been described previously, myelin thickness has been reported as unremarkable when observed by light microscopy. We report a quantitative investigation of the myelin sheath thickness of shiverer Schwann cells in which a mild but apparently consistent hypomyelination of axons ensheathed by shiverer Schwann cells was observed. This abnormality was expressed both in the peripheral nerves of a homozygous shiverer mouse and in the shiverer Schwann cells populating the mosaic nerves of a mature shiverer in equilibrium normal mouse chimaera. In addition, multiple interlamellar gaps was found to be a highly consistent feature of shiverer myelin. These observations extend the description of the peripheral nerve defects expressed in shiverer mice and further define these abnormalities as direct consequences of the shiverer Schwann cells' intrinsic genotype. In light of these results, a significant role for P1 in the formation and/or maintenance of normal myelin in the PNS is suggested.
Collapse
|
48
|
Cullen MJ, Peterson RG, Webster HD. Electron microscopic study of intramembranous changes in protein-extracted peripheral nervous system myelin. Anat Rec (Hoboken) 1983; 207:563-71. [PMID: 6670754 DOI: 10.1002/ar.1092070405] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sciatic nerves from young mice were incubated for 2-8 hours in 0.5% Triton X-100 in 0.5 M ammonium acetate, a solution which solubilizes the large and small basic proteins of the myelin sheath. As previously noted (Peterson and Gruener, 1978), myelin sheaths from treated nerves extensively split and unravelled along major dense lines. Small focal areas of compact myelin remained. In freeze-fracture replicas, areas of myelin with lamellar splitting contained few intramembranous particles, while membrane areas with greater than normal densities of particles were associated with the patches of compact myelin membrane. Fixation for as short a time as 15 minutes stabilized the myelin membrane enough to prevent the Triton X-100 effects, even when incubations were extended to 20 hours. Controls, both untreated and 0.5 M ammonium acetate-treated nerves, had predominantly compact myelin sheaths; their leaflets were covered with numerous intramembranous particles. The data suggest that Triton X-100 alters the compact structure of peripheral nervous system myelin. In areas where lamellae are split and separated, there is a loss of intramembranous particles. It appears that the loss of intramembranous particles is related to the removal of the basic proteins which are located in major dense line regions of compact myelin sheaths.
Collapse
|
49
|
Peterson A, Marler J. P1 deficiency in shiverer myelin is expressed by Schwann cells in shiverer dystrophic normal mouse chimaera nerves. Neurosci Lett 1983; 38:163-8. [PMID: 6194483 DOI: 10.1016/0304-3940(83)90034-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The myelin basic protein (P1) deficiency in shiverer myelin is expressed in shiverer reversible normal mouse chimaera nerves. Chimaera examined with immunocytochemical techniques have revealed populations of both densely labeled and unreacting myelinated Schwann cells. Single axons can innervate both Schwann cell types, demonstrating that the expression of P1 in Schwann cell myelin is unrelated to the shiverer or normal genotype of the neuron. The coexistence of both Schwann cell types in single nerves indicates that multiple progenitor Schwann cells are allocated to developing nerves and the mosaic patterns expressed further suggest that such cells tend to proliferate relatively small coherent clones of Schwann cells.
Collapse
|
50
|
|