1
|
Reynolds WT, Votava-Smith JK, Gabriel G, Lee VK, Rajagopalan V, Wu Y, Liu X, Yagi H, Slabicki R, Gibbs B, Tran NN, Weisert M, Cabral L, Subramanian S, Wallace J, del Castillo S, Baust T, Weinberg JG, Lorenzi Quigley L, Gaesser J, O’Neil SH, Schmithorst V, Panigrahy A, Ceschin R, Lo CW. Validation of a Paralimbic-Related Subcortical Brain Dysmaturation MRI Score in Infants with Congenital Heart Disease. J Clin Med 2024; 13:5772. [PMID: 39407833 PMCID: PMC11476423 DOI: 10.3390/jcm13195772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Brain magnetic resonance imaging (MRI) of infants with congenital heart disease (CHD) shows brain immaturity assessed via a cortical-based semi-quantitative score. Our primary aim was to develop an infant paralimbic-related subcortical-based semi-quantitative dysmaturation score, termed brain dysplasia score (BDS), to detect abnormalities in CHD infants compared to healthy controls and secondarily to predict clinical outcomes. We also validated our BDS in a preclinical mouse model of hypoplastic left heart syndrome. Methods: A paralimbic-related subcortical BDS, derived from structural MRIs of infants with CHD, was compared to healthy controls and correlated with clinical risk factors, regional cerebral volumes, feeding, and 18-month neurodevelopmental outcomes. The BDS was validated in a known CHD mouse model named Ohia with two disease-causing genes, Sap130 and Pchda9. To relate clinical findings, RNA-Seq was completed on Ohia animals. Findings: BDS showed high incidence of paralimbic-related subcortical abnormalities (including olfactory, cerebellar, and hippocampal abnormalities) in CHD infants (n = 215) compared to healthy controls (n = 92). BDS correlated with reduced cortical maturation, developmental delay, poor language and feeding outcomes, and increased length of stay. Ohia animals (n = 63) showed similar BDS findings, and RNA-Seq analysis showed altered neurodevelopmental and feeding pathways. Sap130 mutants correlated with a more severe BDS, whereas Pcdha9 correlated with a milder phenotype. Conclusions: Our BDS is sensitive to dysmaturational differences between CHD and healthy controls and predictive of poor outcomes. A similar spectrum of paralimbic and subcortical abnormalities exists between human and Ohia mutants, suggesting a common genetic mechanistic etiology.
Collapse
Affiliation(s)
- William T. Reynolds
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
| | - Jodie K. Votava-Smith
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - George Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Vincent K. Lee
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vidya Rajagopalan
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yijen Wu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Xiaoqin Liu
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Hisato Yagi
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ruby Slabicki
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Brian Gibbs
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Nhu N. Tran
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Division of Neonatology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Molly Weisert
- Division of Cardiology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura Cabral
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Subramanian Subramanian
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pediatric Radiology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Julia Wallace
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sylvia del Castillo
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Anesthesiology Critical Care Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Tracy Baust
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 51213, USA
| | - Jacqueline G. Weinberg
- Division of Cardiology, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Lauren Lorenzi Quigley
- Cardiac Neurodevelopmental Care Program, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Jenna Gaesser
- Division of Neurology and Child Development, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Sharon H. O’Neil
- Division of Neurology, Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Vanessa Schmithorst
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ashok Panigrahy
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rafael Ceschin
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15206, USA
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Cecilia W. Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| |
Collapse
|
2
|
Yamaguchi M. Connectivity of the olfactory tubercle: inputs, outputs, and their plasticity. Front Neural Circuits 2024; 18:1423505. [PMID: 38841557 PMCID: PMC11150588 DOI: 10.3389/fncir.2024.1423505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
The olfactory tubercle (OT) is a unique part of the olfactory cortex of the mammal brain in that it is also a component of the ventral striatum. It is crucially involved in motivational behaviors, particularly in adaptive olfactory learning. This review introduces the basic properties of the OT, its synaptic connectivity with other brain areas, and the plasticity of the connectivity associated with learning behavior. The adaptive properties of olfactory behavior are discussed further based on the characteristics of OT neuronal circuits.
Collapse
Affiliation(s)
- Masahiro Yamaguchi
- Department of Physiology, Kochi Medical School, Kochi University, Kochi, Japan
| |
Collapse
|
3
|
Chalençon L, Midroit M, Athanassi A, Thevenet M, Breton M, Forest J, Richard M, Didier A, Mandairon N. Age-related differences in perception and coding of attractive odorants in mice. Neurobiol Aging 2024; 137:8-18. [PMID: 38394723 DOI: 10.1016/j.neurobiolaging.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/23/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Hedonic perception deeply changes with aging, significantly impacting health and quality of life in elderly. In young adult mice, an odor hedonic signature is represented along the antero-posterior axis of olfactory bulb, and transferred to the olfactory tubercle and ventral tegmental area, promoting approach behavior. Here, we show that while the perception of unattractive odorants was unchanged in older mice (22 months), the appreciation of some but not all attractive odorants declined. Neural activity in the olfactory bulb and tubercle of older mice was consistently altered when attraction to pleasant odorants was impaired while maintained when the odorants kept their attractivity. Finally, in a self-stimulation paradigm, optogenetic stimulation of the olfactory bulb remained rewarding in older mice even without ventral tegmental area's response to the stimulation. Aging degrades behavioral and neural responses to some pleasant odorants but rewarding properties of olfactory bulb stimulation persisted, providing new insights into developing novel olfactory training strategies to elicit motivation even when the dopaminergic system is altered as observed in normal and/or neurodegenerative aging.
Collapse
Affiliation(s)
- Laura Chalençon
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Maëllie Midroit
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Anna Athanassi
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Marc Thevenet
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Marine Breton
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Jérémy Forest
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Marion Richard
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France
| | - Anne Didier
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France; Institut Universitaire de France (IUF), France
| | - Nathalie Mandairon
- CNRS, UMR 5292, France; INSERM, U1028, France; Lyon Neuroscience Research Center, Neuroplasticity and neuropathology of olfactory perception Team, University Lyon1, F-69000, France.
| |
Collapse
|
4
|
Xiao T, Roland A, Chen Y, Guffey S, Kash T, Kimbrough A. A role for circuitry of the cortical amygdala in excessive alcohol drinking, withdrawal, and alcohol use disorder. Alcohol 2024; 121:151-159. [PMID: 38447789 PMCID: PMC11371945 DOI: 10.1016/j.alcohol.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Alcohol use disorder (AUD) poses a significant public health challenge. Individuals with AUD engage in chronic and excessive alcohol consumption, leading to cycles of intoxication, withdrawal, and craving behaviors. This review explores the involvement of the cortical amygdala (CoA), a cortical brain region that has primarily been examined in relation to olfactory behavior, in the expression of alcohol dependence and excessive alcohol drinking. While extensive research has identified the involvement of numerous brain regions in AUD, the CoA has emerged as a relatively understudied yet promising candidate for future study. The CoA plays a vital role in rewarding and aversive signaling and olfactory-related behaviors and has recently been shown to be involved in alcohol-dependent drinking in mice. The CoA projects directly to brain regions that are critically important for AUD, such as the central amygdala, bed nucleus of the stria terminalis, and basolateral amygdala. These projections may convey key modulatory signaling that drives excessive alcohol drinking in alcohol-dependent subjects. This review summarizes existing knowledge on the structure and connectivity of the CoA and its potential involvement in AUD. Understanding the contribution of this region to excessive drinking behavior could offer novel insights into the etiology of AUD and potential therapeutic targets.
Collapse
Affiliation(s)
- Tiange Xiao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Alison Roland
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Yueyi Chen
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Skylar Guffey
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | - Thomas Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine, Chapel Hill, NC, United States; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Adam Kimbrough
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States; Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States; Purdue Institute of Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
5
|
Killinger BA, Mercado G, Choi S, Tittle T, Chu Y, Brundin P, Kordower JH. Distribution of phosphorylated alpha-synuclein in non-diseased brain implicates olfactory bulb mitral cells in synucleinopathy pathogenesis. NPJ Parkinsons Dis 2023; 9:43. [PMID: 36966145 PMCID: PMC10039879 DOI: 10.1038/s41531-023-00491-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/10/2023] [Indexed: 03/27/2023] Open
Abstract
Synucleinopathies are neurodegenerative diseases characterized by pathological inclusions called "Lewy pathology" (LP) that consist of aggregated alpha-synuclein predominantly phosphorylated at serine 129 (PSER129). Despite the importance for understanding disease, little is known about the endogenous function of PSER129 or why it accumulates in the diseased brain. Here we conducted several observational studies using a sensitive tyramide signal amplification (TSA) technique to determine PSER129 distribution and function in the non-diseased mammalian brain. In wild-type non-diseased mice, PSER129 was detected in the olfactory bulb (OB) and several brain regions across the neuroaxis (i.e., OB to brainstem). In contrast, PSER129 immunoreactivity was not observed in any brain region of alpha-synuclein knockout mice. We found evidence of PSER129 positive structures in OB mitral cells of non-diseased mice, rats, non-human primates, and healthy humans. Using TSA multiplex fluorescent labeling, we showed that PSER129 positive punctate structures occur within inactive (i.e., c-fos negative) T-box transcription factor 21 (TBX21) positive mitral cells and PSER129 within these cells was spatially associated with PK-resistant alpha-synuclein. Ubiquitin was found in PSER129 mitral cells but was not closely associated with PSER129. Biotinylation by antibody recognition (BAR) identified 125 PSER129-interacting proteins in the OB of healthy mice, which were significantly enriched for presynaptic vesicle trafficking/recycling, SNARE, fatty acid oxidation, oxidative phosphorylation, and RNA binding. TSA multiplex labeling confirmed the physical association of BAR-identified protein Ywhag with PSER129 in the OB and in other regions across the neuroaxis. We conclude that PSER129 accumulates in the mitral cells of the healthy OB as part of alpha-synuclein normal cellular functions. Incidental LP has been reported in the OB, and therefore we speculate that for synucleinopathies, either the disease processes begin locally in OB mitral cells or a systemic disease process is most apparent in the OB because of the natural tendency to accumulate PSER129.
Collapse
Affiliation(s)
- Bryan A Killinger
- Graduate College, Rush University Medical Center, Chicago, IL, 60612, USA.
| | - Gabriela Mercado
- Parkinson's disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Solji Choi
- Graduate College, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Tyler Tittle
- Graduate College, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Yaping Chu
- ASU-Banner Neurodegenerative Disease Research Center (NDRC), Arizona State University, Tempe, AZ, 85287, USA
| | - Patrik Brundin
- Parkinson's disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Pharma Research and Early Development (pRED), F Hoffman-La Roche, New York, NY, USA
| | - Jeffrey H Kordower
- ASU-Banner Neurodegenerative Disease Research Center (NDRC), Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
6
|
Idris A, Christensen BA, Walker EM, Maier JX. Multisensory integration of orally-sourced gustatory and olfactory inputs to the posterior piriform cortex in awake rats. J Physiol 2023; 601:151-169. [PMID: 36385245 PMCID: PMC9869978 DOI: 10.1113/jp283873] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Flavour refers to the sensory experience of food, which is a combination of sensory inputs sourced from multiple modalities during consumption, including taste and odour. Previous work has demonstrated that orally-sourced taste and odour cues interact to determine perceptual judgements of flavour stimuli, although the underlying cellular- and circuit-level neural mechanisms remain unknown. We recently identified a region of the piriform olfactory cortex in rats that responds to both taste and odour stimuli. Here, we investigated how converging taste and odour inputs to this area interact to affect single neuron responsiveness ensemble coding of flavour identity. To accomplish this, we recorded spiking activity from ensembles of single neurons in the posterior piriform cortex (pPC) in awake, tasting rats while delivering taste solutions, odour solutions and taste + odour mixtures directly into the oral cavity. Our results show that taste and odour inputs evoke highly selective, temporally-overlapping responses in multisensory pPC neurons. Comparing responses to mixtures and their unisensory components revealed that taste and odour inputs interact in a non-linear manner to produce unique response patterns. Taste input enhances trial-by-trial decoding of odour identity from small ensembles of simultaneously recorded neurons. Together, these results demonstrate that taste and odour inputs to pPC interact in complex, non-linear ways to form amodal flavour representations that enhance identity coding. KEY POINTS: Experience of food involves taste and smell, although how information from these different senses is combined by the brain to create our sense of flavour remains unknown. We recorded from small groups of neurons in the olfactory cortex of awake rats while they consumed taste solutions, odour solutions and taste + odour mixtures. Taste and smell solutions evoke highly selective responses. When presented in a mixture, taste and smell inputs interacted to alter responses, resulting in activation of unique sets of neurons that could not be predicted by the component responses. Synergistic interactions increase discriminability of odour representations. The olfactory cortex uses taste and smell to create new information representing multisensory flavour identity.
Collapse
Affiliation(s)
- Ammar Idris
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Brooke A. Christensen
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Ellen M. Walker
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| | - Joost X. Maier
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNCUSA
| |
Collapse
|
7
|
Chen Y, Chen X, Baserdem B, Zhan H, Li Y, Davis MB, Kebschull JM, Zador AM, Koulakov AA, Albeanu DF. High-throughput sequencing of single neuron projections reveals spatial organization in the olfactory cortex. Cell 2022; 185:4117-4134.e28. [PMID: 36306734 PMCID: PMC9681627 DOI: 10.1016/j.cell.2022.09.038] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/22/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
In most sensory modalities, neuronal connectivity reflects behaviorally relevant stimulus features, such as spatial location, orientation, and sound frequency. By contrast, the prevailing view in the olfactory cortex, based on the reconstruction of dozens of neurons, is that connectivity is random. Here, we used high-throughput sequencing-based neuroanatomical techniques to analyze the projections of 5,309 mouse olfactory bulb and 30,433 piriform cortex output neurons at single-cell resolution. Surprisingly, statistical analysis of this much larger dataset revealed that the olfactory cortex connectivity is spatially structured. Single olfactory bulb neurons targeting a particular location along the anterior-posterior axis of piriform cortex also project to matched, functionally distinct, extra-piriform targets. Moreover, single neurons from the targeted piriform locus also project to the same matched extra-piriform targets, forming triadic circuit motifs. Thus, as in other sensory modalities, olfactory information is routed at early stages of processing to functionally diverse targets in a coordinated manner.
Collapse
Affiliation(s)
- Yushu Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Xiaoyin Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Huiqing Zhan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Yan Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Martin B Davis
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Anthony M Zador
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | | - Dinu F Albeanu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
8
|
Ahnaou A, Whim D. REM sleep behavior and olfactory dysfunction: improving the utility and translation of animal models in the search for neuroprotective therapies for Parkinson's disease. Neurosci Biobehav Rev 2022; 143:104897. [PMID: 36183864 DOI: 10.1016/j.neubiorev.2022.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease that belongs to the family of synucleiopathies, varying in age, symptoms and progression. Hallmark of the disease is the accumulation of misfolded α-synuclein protein (α-Syn) in neuronal and non-neuronal brain cells. In past decades, diagnosis and treatment of PD has focused on motor deficits, which for the clinical endpoint, have contributed to the prevalence of deficits in the nigrostriatal dopaminergic system and animal models related to motor behavior to study disease. However, clinical trials have failed to translate results from animal models into effective treatments. PD as a multisystem disorder therefore requires additional assessment of motor and non-motor symptoms. Braak's staging revealed early α-Syn pathology in pontine brainstem and olfactory circuits controlling rapid eye movement sleep behavior disorder (RBD) and olfaction, respectively. Recent converging evidence from multicenter clinical studies supports that RBD is the most important risk factor for prodromal PD and the conduct of neuroprotective therapeutic trials in RBD-enriched cohorts has been recommended. Animal models of RBD and olfaction dysfunction can aid to fill the gap in translational research.
Collapse
Affiliation(s)
- A Ahnaou
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV. Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Drinkenburg Whim
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV. Turnhoutseweg 30, B-2340 Beerse, Belgium
| |
Collapse
|
9
|
Dasgupta D, Warner TPA, Erskine A, Schaefer AT. Coupling of Mouse Olfactory Bulb Projection Neurons to Fluctuating Odor Pulses. J Neurosci 2022; 42:4278-4296. [PMID: 35440491 PMCID: PMC9145232 DOI: 10.1523/jneurosci.1422-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022] Open
Abstract
Odors are transported by turbulent air currents, creating complex temporal fluctuations in odor concentration that provide a potentially informative stimulus dimension. We have shown that mice are able to discriminate odor stimuli based on their temporal structure, indicating that information contained in the temporal structure of odor plumes can be extracted by the mouse olfactory system. Here, using in vivo extracellular and intracellular electrophysiological recordings, we show that mitral cells (MCs) and tufted cells (TCs) of the male C57BL/6 mouse olfactory bulb can encode the dominant temporal frequencies present in odor stimuli up to at least 20 Hz. A substantial population of cell-odor pairs showed significant coupling of their subthreshold membrane potential with the odor stimulus at both 2 Hz (29/70) and the suprasniff frequency 20 Hz (24/70). Furthermore, mitral/tufted cells (M/TCs) show differential coupling of their membrane potential to odor concentration fluctuations with tufted cells coupling more strongly for the 20 Hz stimulation. Frequency coupling was always observed to be invariant to odor identity, and M/TCs that coupled well to a mixture also coupled to at least one of the components of the mixture. Interestingly, pharmacological blocking of the inhibitory circuitry strongly modulated frequency coupling of cell-odor pairs at both 2 Hz (10/15) and 20 Hz (9/15). These results provide insight into how both cellular and circuit properties contribute to the encoding of temporal odor features in the mouse olfactory bulb.SIGNIFICANCE STATEMENT Odors in the natural environment have a strong temporal structure that can be extracted and used by mice in their behavior. Here, using in vivo extracellular and intracellular electrophysiological techniques, we show that the projection neurons in the olfactory bulb can encode and couple to the dominant frequency present in an odor stimulus. Furthermore, frequency coupling was observed to be differential between mitral and tufted cells and was odor invariant but strongly modulated by local inhibitory circuits. In summary, this study provides insight into how both cellular and circuit properties modulate encoding of odor temporal features in the mouse olfactory bulb.
Collapse
Affiliation(s)
- Debanjan Dasgupta
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Tom P A Warner
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Andrew Erskine
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
10
|
Echevarria-Cooper SL, Zhou G, Zelano C, Pestilli F, Parrish TB, Kahnt T. Mapping the Microstructure and Striae of the Human Olfactory Tract with Diffusion MRI. J Neurosci 2022; 42:58-68. [PMID: 34759031 PMCID: PMC8741165 DOI: 10.1523/jneurosci.1552-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/30/2021] [Accepted: 10/31/2021] [Indexed: 11/21/2022] Open
Abstract
The human sense of smell plays an important role in appetite and food intake, detecting environmental threats, social interactions, and memory processing. However, little is known about the neural circuity supporting its function. The olfactory tracts project from the olfactory bulb along the base of the frontal cortex, branching into several striae to meet diverse cortical regions. Historically, using diffusion magnetic resonance imaging (dMRI) to reconstruct the human olfactory tracts has been prevented by susceptibility and motion artifacts. Here, we used a dMRI method with readout segmentation of long variable echo-trains (RESOLVE) to minimize image distortions and characterize the human olfactory tracts in vivo We collected high-resolution dMRI data from 25 healthy human participants (12 male and 13 female) and performed probabilistic tractography using constrained spherical deconvolution (CSD). At the individual subject level, we identified the lateral, medial, and intermediate striae with their respective cortical connections to the piriform cortex and amygdala (AMY), olfactory tubercle (OT), and anterior olfactory nucleus (AON). We combined individual results across subjects to create a normalized, probabilistic atlas of the olfactory tracts. We then investigated the relationship between olfactory perceptual scores and measures of white matter integrity, including mean diffusivity (MD). Importantly, we found that olfactory tract MD negatively correlated with odor discrimination performance. In summary, our results provide a detailed characterization of the connectivity of the human olfactory tracts and demonstrate an association between their structural integrity and olfactory perceptual function.SIGNIFICANCE STATEMENT This study provides the first detailed in vivo description of the cortical connectivity of the three olfactory tract striae in the human brain, using diffusion magnetic resonance imaging (dMRI). Additionally, we show that tract microstructure correlates with performance on an odor discrimination task, suggesting a link between the structural integrity of the olfactory tracts and odor perception. Lastly, we generated a normalized probabilistic atlas of the olfactory tracts that may be used in future research to study its integrity in health and disease.
Collapse
Affiliation(s)
- Shiloh L Echevarria-Cooper
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
- The Graduate School, Northwestern University Interdepartmental Neuroscience (NUIN), Evanston, Illinois 60208
| | - Guangyu Zhou
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Christina Zelano
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Franco Pestilli
- Department of Psychology, The University of Texas at Austin, Austin, Texas 78712
- Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas 78712
| | - Todd B Parrish
- Department of Radiology, Northwestern University, Chicago, Illinois 60611
| | - Thorsten Kahnt
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
- Department of Psychology, Northwestern University, Weinberg College of Arts and Sciences, Evanston, Illinois 60208
| |
Collapse
|
11
|
Zeppilli S, Ackels T, Attey R, Klimpert N, Ritola KD, Boeing S, Crombach A, Schaefer AT, Fleischmann A. Molecular characterization of projection neuron subtypes in the mouse olfactory bulb. eLife 2021; 10:e65445. [PMID: 34292150 PMCID: PMC8352594 DOI: 10.7554/elife.65445] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Projection neurons (PNs) in the mammalian olfactory bulb (OB) receive input from the nose and project to diverse cortical and subcortical areas. Morphological and physiological studies have highlighted functional heterogeneity, yet no molecular markers have been described that delineate PN subtypes. Here, we used viral injections into olfactory cortex and fluorescent nucleus sorting to enrich PNs for high-throughput single nucleus and bulk RNA deep sequencing. Transcriptome analysis and RNA in situ hybridization identified distinct mitral and tufted cell populations with characteristic transcription factor network topology, cell adhesion, and excitability-related gene expression. Finally, we describe a new computational approach for integrating bulk and snRNA-seq data and provide evidence that different mitral cell populations preferentially project to different target regions. Together, we have identified potential molecular and gene regulatory mechanisms underlying PN diversity and provide new molecular entry points into studying the diverse functional roles of mitral and tufted cell subtypes.
Collapse
Affiliation(s)
- Sara Zeppilli
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, and CNRS UMR 7241 and INSERM U1050ParisFrance
| | - Tobias Ackels
- The Francis Crick Institute, Sensory Circuits and Neurotechnology LaboratoryLondonUnited Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Robin Attey
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Nell Klimpert
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Kimberly D Ritola
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Stefan Boeing
- The Francis Crick Institute, Bioinformatics and BiostatisticsLondonUnited Kingdom
- The Francis Crick Institute, Scientific Computing - Digital Development TeamLondonUnited Kingdom
| | - Anton Crombach
- Inria Antenne Lyon La DouaVilleurbanneFrance
- Université de Lyon, INSA-Lyon, LIRIS, UMR 5205VilleurbanneFrance
| | - Andreas T Schaefer
- The Francis Crick Institute, Sensory Circuits and Neurotechnology LaboratoryLondonUnited Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, and CNRS UMR 7241 and INSERM U1050ParisFrance
| |
Collapse
|
12
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
13
|
Lothmann K, Amunts K, Herold C. The Neurotransmitter Receptor Architecture of the Mouse Olfactory System. Front Neuroanat 2021; 15:632549. [PMID: 33967704 PMCID: PMC8102831 DOI: 10.3389/fnana.2021.632549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
The uptake, transmission and processing of sensory olfactory information is modulated by inhibitory and excitatory receptors in the olfactory system. Previous studies have focused on the function of individual receptors in distinct brain areas, but the receptor architecture of the whole system remains unclear. Here, we analyzed the receptor profiles of the whole olfactory system of adult male mice. We examined the distribution patterns of glutamatergic (AMPA, kainate, mGlu2/3, and NMDA), GABAergic (GABAA, GABAA(BZ), and GABAB), dopaminergic (D1/5) and noradrenergic (α1 and α2) neurotransmitter receptors by quantitative in vitro receptor autoradiography combined with an analysis of the cyto- and myelo-architecture. We observed that each subarea of the olfactory system is characterized by individual densities of distinct neurotransmitter receptor types, leading to a region- and layer-specific receptor profile. Thereby, the investigated receptors in the respective areas and strata showed a heterogeneous expression. Generally, we detected high densities of mGlu2/3Rs, GABAA(BZ)Rs and GABABRs. Noradrenergic receptors revealed a highly heterogenic distribution, while the dopaminergic receptor D1/5 displayed low concentrations, except in the olfactory tubercle and the dorsal endopiriform nucleus. The similarities and dissimilarities of the area-specific multireceptor profiles were analyzed by a hierarchical cluster analysis. A three-cluster solution was found that divided the areas into the (1) olfactory relay stations (main and accessory olfactory bulb), (2) the olfactory cortex (anterior olfactory cortex, dorsal peduncular cortex, taenia tecta, piriform cortex, endopiriform nucleus, entorhinal cortex, orbitofrontal cortex) and the (3) olfactory tubercle, constituting its own cluster. The multimodal receptor-architectonic analysis of each component of the olfactory system provides new insights into its neurochemical organization and future possibilities for pharmaceutic targeting.
Collapse
Affiliation(s)
- Kimberley Lothmann
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
| | - Christina Herold
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Wei D, Talwar V, Lin D. Neural circuits of social behaviors: Innate yet flexible. Neuron 2021; 109:1600-1620. [PMID: 33705708 DOI: 10.1016/j.neuron.2021.02.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022]
Abstract
Social behaviors, such as mating, fighting, and parenting, are fundamental for survival of any vertebrate species. All members of a species express social behaviors in a stereotypical and species-specific way without training because of developmentally hardwired neural circuits dedicated to these behaviors. Despite being innate, social behaviors are flexible. The readiness to interact with a social target or engage in specific social acts can vary widely based on reproductive state, social experience, and many other internal and external factors. Such high flexibility gives vertebrates the ability to release the relevant behavior at the right moment and toward the right target. This maximizes reproductive success while minimizing the cost and risk associated with behavioral expression. Decades of research have revealed the basic neural circuits underlying each innate social behavior. The neural mechanisms that support behavioral plasticity have also started to emerge. Here we provide an overview of these social behaviors and their underlying neural circuits and then discuss in detail recent findings regarding the neural processes that support the flexibility of innate social behaviors.
Collapse
Affiliation(s)
- Dongyu Wei
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Vaishali Talwar
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
15
|
The Tubular Striatum. J Neurosci 2021; 40:7379-7386. [PMID: 32968026 DOI: 10.1523/jneurosci.1109-20.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 01/10/2023] Open
Abstract
In the mid-19th century, a misconception was born, which understandably persists in the minds of many neuroscientists today. The eminent scientist Albert von Kölliker named a tubular-shaped piece of tissue found in the brains of all mammals studied to date, the tuberculum olfactorium - or what is commonly known as the olfactory tubercle (OT). In doing this, Kölliker ascribed "olfactory" functions and an "olfactory" purpose to the OT. The OT has since been classified as one of several olfactory cortices. However, further investigations of OT functions, especially over the last decade, have provided evidence for roles of the OT beyond olfaction, including in learning, motivated behaviors, and even seeking of psychoactive drugs. Indeed, research to date suggests caution in assigning the OT with a purely olfactory role. Here, I build on previous research to synthesize a model wherein the OT, which may be more appropriately termed the "tubular striatum" (TuS), is a neural system in which sensory information derived from an organism's experiences is integrated with information about its motivational states to guide affective and behavioral responses.
Collapse
|
16
|
Zang Y, Han P, Chen B, Hähner A, Yan X, Hummel T. Brain response to odors presented inside the nose, directly in front of the nose or with ambient air. Eur Arch Otorhinolaryngol 2021; 278:2843-2850. [PMID: 33389011 DOI: 10.1007/s00405-020-06547-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/01/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Functional magnetic resonance imaging (fMRI) allows the measurement of changes in blood flow in association with changes in brain activity. This technique has been used frequently to study brain activation in response to odorous stimuli. The aim of this study was to evaluate the effects of odor delivery conditions on brain responses obtained with fMRI. STUDY DESIGN Prospective cohort study SETTING: Academic institution. METHODS Twenty healthy volunteers (mean age = 29.5 years; 9 women, 11 men) participated. Three odor delivery methods were used: "tube" (odor presented intranasally with separate tubing for each nostril), "mask" (odor presented in a face mask covering the subject's nose) and "vacuum" (odor presented into the ambient air). Presentation of the pleasant "peach" odor was performed using a computer-controlled olfactometer. Subjects were asked to evaluate the intensity of the odors after each fMRI run. RESULTS "Tube" showed higher self-rated odor intensity compared to "mask" and "vacuum" (F = 18.4, p < 0.001). Odor intensity had a positive correlation (r = 0.6, p < 0.05) with percent signal change extracted from the secondary olfactory cortex region in the mask condition. In the tube condition, several selected regions of interest (Amygdala, Insula, Thalamus) showed lower activations compared to the other two conditions (puncorrected < 0.001, mask > tube, vacuum > tube). CONCLUSION Activations of region of interests (ROIs) in response to the odorous stimuli showed differences under the three conditions (mask, tube, vacuum). In this passive fMRI paradigm, this may partly reflect the differences in odor intensity, but also in attention and contextual variables related to odor perception.
Collapse
Affiliation(s)
- Yunpeng Zang
- Interdisciplinary Center Smell and Taste Clinic, Department of Otorhinolaryngology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
- Department of Otorhinolaryngology, The Affiliated Hospital Xuzhou Medical University, Xuzhou, China.
| | - Pengfei Han
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Ben Chen
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University Guangzhou Huiai Hospital, Guangzhou, China
| | - Antje Hähner
- Interdisciplinary Center Smell and Taste Clinic, Department of Otorhinolaryngology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Xiaoguang Yan
- Interdisciplinary Center Smell and Taste Clinic, Department of Otorhinolaryngology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Thomas Hummel
- Interdisciplinary Center Smell and Taste Clinic, Department of Otorhinolaryngology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| |
Collapse
|
17
|
Topographically Distinct Projection Patterns of Early-Generated and Late-Generated Projection Neurons in the Mouse Olfactory Bulb. eNeuro 2020; 7:ENEURO.0369-20.2020. [PMID: 33158934 PMCID: PMC7716433 DOI: 10.1523/eneuro.0369-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022] Open
Abstract
In the mouse brain, olfactory information is transmitted to the olfactory cortex via olfactory bulb (OB) projection neurons known as mitral and tufted cells. Although mitral and tufted cells share many cellular characteristics, these cell types are distinct in their somata location and in their axonal and dendritic projection patterns. Moreover, mitral cells consist of heterogeneous subpopulations. In the mouse brain, olfactory information is transmitted to the olfactory cortex via olfactory bulb (OB) projection neurons known as mitral and tufted cells. Although mitral and tufted cells share many cellular characteristics, these cell types are distinct in their somata location and in their axonal and dendritic projection patterns. Moreover, mitral cells consist of heterogeneous subpopulations. We have previously shown that mitral cells generated at different embryonic days differentially localize within the mitral cell layer (MCL) and extend their lateral dendrites to different sublayers of the external plexiform layer (EPL). Here, we examined the axonal projection patterns from the subpopulations of OB projection neurons that are determined by the timing of neurogenesis (neuronal birthdate) to understand the developmental origin of the diversity in olfactory pathways. We separately labeled early-generated and late-generated OB projection neurons using in utero electroporation performed at embryonic day (E)11 and E12, respectively, and quantitatively analyzed their axonal projection patterns in the whole mouse brain using high-resolution 3D imaging. In this study, we demonstrate that the axonal projection of late-generated OB projection neurons is restricted to the anterior portion of the olfactory cortex while those of the early-generated OB projection neurons innervate the entire olfactory cortex. Our results suggest that the late-generated mitral cells do not extend their axons to the posterior regions of the olfactory cortex. Therefore, the mitral cells having different birthdates differ, not only in cell body location and dendritic projections within the OB, but also in their axonal projection pattern to the olfactory cortex.
Collapse
|
18
|
Imamura F, Ito A, LaFever BJ. Subpopulations of Projection Neurons in the Olfactory Bulb. Front Neural Circuits 2020; 14:561822. [PMID: 32982699 PMCID: PMC7485133 DOI: 10.3389/fncir.2020.561822] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/12/2020] [Indexed: 12/17/2022] Open
Abstract
Generation of neuronal diversity is a biological strategy widely used in the brain to process complex information. The olfactory bulb is the first relay station of olfactory information in the vertebrate central nervous system. In the olfactory bulb, axons of the olfactory sensory neurons form synapses with dendrites of projection neurons that transmit the olfactory information to the olfactory cortex. Historically, the olfactory bulb projection neurons have been classified into two populations, mitral cells and tufted cells. The somata of these cells are distinctly segregated within the layers of the olfactory bulb; the mitral cells are located in the mitral cell layer while the tufted cells are found in the external plexiform layer. Although mitral and tufted cells share many morphological, biophysical, and molecular characteristics, they differ in soma size, projection patterns of their dendrites and axons, and odor responses. In addition, tufted cells are further subclassified based on the relative depth of their somata location in the external plexiform layer. Evidence suggests that different types of tufted cells have distinct cellular properties and play different roles in olfactory information processing. Therefore, mitral and different types of tufted cells are considered as starting points for parallel pathways of olfactory information processing in the brain. Moreover, recent studies suggest that mitral cells also consist of heterogeneous subpopulations with different cellular properties despite the fact that the mitral cell layer is a single-cell layer. In this review, we first compare the morphology of projection neurons in the olfactory bulb of different vertebrate species. Next, we explore the similarities and differences among subpopulations of projection neurons in the rodent olfactory bulb. We also discuss the timing of neurogenesis as a factor for the generation of projection neuron heterogeneity in the olfactory bulb. Knowledge about the subpopulations of olfactory bulb projection neurons will contribute to a better understanding of the complex olfactory information processing in higher brain regions.
Collapse
Affiliation(s)
- Fumiaki Imamura
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Ayako Ito
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| | - Brandon J LaFever
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
19
|
Ackels T, Jordan R, Schaefer AT, Fukunaga I. Respiration-Locking of Olfactory Receptor and Projection Neurons in the Mouse Olfactory Bulb and Its Modulation by Brain State. Front Cell Neurosci 2020; 14:220. [PMID: 32765224 PMCID: PMC7378796 DOI: 10.3389/fncel.2020.00220] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023] Open
Abstract
For sensory systems of the brain, the dynamics of an animal’s own sampling behavior has a direct consequence on ensuing computations. This is particularly the case for mammalian olfaction, where a rhythmic flow of air over the nasal epithelium entrains activity in olfactory system neurons in a phenomenon known as sniff-locking. Parameters of sniffing can, however, change drastically with brain states. Coupled to the fact that different observation methods have different kinetics, consensus on the sniff-locking properties of neurons is lacking. To address this, we investigated the sniff-related activity of olfactory sensory neurons (OSNs), as well as the principal neurons of the olfactory bulb (OB), using 2-photon calcium imaging and intracellular whole-cell patch-clamp recordings in vivo, both in anesthetized and awake mice. Our results indicate that OSNs and OB output neurons lock robustly to the sniff rhythm, but with a slight temporal shift between behavioral states. We also observed a slight delay between methods. Further, the divergent sniff-locking by tufted cells (TCs) and mitral cells (MCs) in the absence of odor can be used to determine the cell type reliably using a simple linear classifier. Using this classification on datasets where morphological identification is unavailable, we find that MCs use a wider range of temporal shifts to encode odors than previously thought, while TCs have a constrained timing of activation due to an early-onset hyperpolarization. We conclude that the sniff rhythm serves as a fundamental rhythm but its impact on odor encoding depends on cell type, and this difference is accentuated in awake mice.
Collapse
Affiliation(s)
- Tobias Ackels
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Rebecca Jordan
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Andreas T Schaefer
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Izumi Fukunaga
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
20
|
Abstract
Axons from the olfactory bulb (OB) project to multiple central structures of the brain, many of which, in turn, send axons back into the OB and/or to one another. These secondary sensory regions underlie many aspects of odor representation, valence, and learning, as well as serving some nonolfactory functions, though many details remain unclear. We here describe the connectivity and essential structural and functional properties of these postbulbar olfactory regions in the mammalian brain.
Collapse
Affiliation(s)
- Thomas A Cleland
- Department of Psychology, Cornell University, Ithaca, NY, United States.
| | - Christiane Linster
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, United States
| |
Collapse
|
21
|
Cansler HL, Wright KN, Stetzik LA, Wesson DW. Neurochemical organization of the ventral striatum's olfactory tubercle. J Neurochem 2020; 152:425-448. [PMID: 31755104 PMCID: PMC7042089 DOI: 10.1111/jnc.14919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 12/11/2022]
Abstract
The ventral striatum is a collection of brain structures, including the nucleus accumbens, ventral pallidum and the olfactory tubercle (OT). While much attention has been devoted to the nucleus accumbens, a comprehensive understanding of the ventral striatum and its contributions to neurological diseases requires an appreciation for the complex neurochemical makeup of the ventral striatum's other components. This review summarizes the rich neurochemical composition of the OT, including the neurotransmitters, neuromodulators and hormones present. We also address the receptors and transporters involved in each system as well as their putative functional roles. Finally, we end with briefly reviewing select literature regarding neurochemical changes in the OT in the context of neurological disorders, specifically neurodegenerative disorders. By overviewing the vast literature on the neurochemical composition of the OT, this review will serve to aid future research into the neurobiology of the ventral striatum.
Collapse
Affiliation(s)
- Hillary L Cansler
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Katherine N Wright
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lucas A Stetzik
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
| | - Daniel W Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Sequential pattern of sublayer formation in the paleocortex and neocortex. Med Mol Morphol 2020; 53:168-176. [PMID: 32002665 DOI: 10.1007/s00795-020-00245-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 01/29/2023]
Abstract
The piriform cortex (paleocortex) is the olfactory cortex or the primary cortex for the sense of smell. It receives the olfactory input from the mitral and tufted cells of the olfactory bulb and is involved in the processing of information pertaining to odors. The piriform cortex and the adjoining neocortex have different cytoarchitectures; while the former has a three-layered structure, the latter has a six-layered structure. The regulatory mechanisms underlying the building of the six-layered neocortex are well established; in contrast, less is known about of the regulatory mechanisms responsible for structure formation of the piriform cortex. The differences as well as similarities in the regulatory mechanisms between the neocortex and the piriform cortex remain unclear. Here, the expression of neocortical layer-specific genes in the piriform cortex was examined. Two sublayers were found to be distinguished in layer II of the piriform cortex using Ctip2/Bcl11b and Brn1/Pou3f3. The sequential expression pattern of Ctip2 and Brn1 in the piriform cortex was similar to that detected in the neocortex, although the laminar arrangement in the piriform cortex exhibited an outside-in arrangement, unlike that observed in the neocortex.
Collapse
|
23
|
Kulkarni AS, del Mar Cortijo M, Roberts ER, Suggs TL, Stover HB, Pena-Bravo JI, Steiner JA, Luk KC, Brundin P, Wesson DW. Perturbation of in vivo Neural Activity Following α-Synuclein Seeding in the Olfactory Bulb. JOURNAL OF PARKINSON'S DISEASE 2020; 10:1411-1427. [PMID: 32925105 PMCID: PMC8018612 DOI: 10.3233/jpd-202241] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Parkinson's disease (PD) neuropathology is characterized by intraneuronal protein aggregates composed of misfolded α-Synuclein (α-Syn), as well as degeneration of substantia nigra dopamine neurons. Deficits in olfactory perception and aggregation of α-Syn in the olfactory bulb (OB) are observed during early stages of PD, and have been associated with the PD prodrome, before onset of the classic motor deficits. α-Syn fibrils injected into the OB of mice cause progressive propagation of α-Syn pathology throughout the olfactory system and are coupled to olfactory perceptual deficits. OBJECTIVE We hypothesized that accumulation of pathogenic α-Syn in the OB impairs neural activity in the olfactory system. METHODS To address this, we monitored spontaneous and odor-evoked local field potential dynamics in awake wild type mice simultaneously in the OB and piriform cortex (PCX) one, two, and three months following injection of pathogenic preformed α-Syn fibrils in the OB. RESULTS We detected α-Syn pathology in both the OB and PCX. We also observed that α-Syn fibril injections influenced odor-evoked activity in the OB. In particular, α-Syn fibril-injected mice displayed aberrantly high odor-evoked power in the beta spectral range. A similar change in activity was not detected in the PCX, despite high levels of α-Syn pathology. CONCLUSION Together, this work provides evidence that synucleinopathy impacts in vivo neural activity in the olfactory system at the network-level.
Collapse
Affiliation(s)
- Aishwarya S. Kulkarni
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Maria del Mar Cortijo
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Elizabeth R. Roberts
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Tamara L. Suggs
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Heather B. Stover
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - José I. Pena-Bravo
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| | - Jennifer A. Steiner
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, U.S.A
| | - Kelvin C. Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research and Institute on Aging, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, U.S.A
| | - Daniel W. Wesson
- Department of Pharmacology & Therapeutics, University of Florida, 1200 Newell Dr.; Gainesville, FL, 32610, U.S.A
| |
Collapse
|
24
|
Li R, Wang YQ, Liu WY, Zhang MQ, Li L, Cherasse Y, Schiffmann SN, de Kerchove d'Exaerde A, Lazarus M, Qu WM, Huang ZL. Activation of adenosine A 2A receptors in the olfactory tubercle promotes sleep in rodents. Neuropharmacology 2019; 168:107923. [PMID: 31874169 DOI: 10.1016/j.neuropharm.2019.107923] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/01/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022]
Abstract
The olfactory tubercle (OT), an important nucleus in processing sensory information, has been reported to change cortical activity under odor. However, little is known about the physiological role and mechanism of the OT in sleep-wake regulation. The OT expresses abundant adenosine A2A receptors (A2ARs), which are important in sleep regulation. Therefore, we hypothesized that the OT regulates sleep via A2ARs. This study examined sleep-wake profiles through electroencephalography and electromyography recordings with pharmacological and chemogenetic manipulations in freely moving rodents. Compared with their controls, activation of OT A2ARs pharmacologically and OT A2AR neurons via chemogenetics increased non-rapid eye movement sleep for 5 and 3 h, respectively, while blockade of A2ARs decreased non-rapid eye movement sleep. Tracing and electrophysiological studies showed OT A2AR neurons projected to the ventral pallidum and lateral hypothalamus, forming inhibitory innervations. Together, these findings indicate that A2ARs in the OT play an important role in sleep regulation.
Collapse
Affiliation(s)
- Rui Li
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Science, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Centre for Brain Science, Fudan University, Shanghai, 200032, China; Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China
| | - Yi-Qun Wang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Science, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Centre for Brain Science, Fudan University, Shanghai, 200032, China; Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China
| | - Wen-Ying Liu
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Science, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Centre for Brain Science, Fudan University, Shanghai, 200032, China; Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China
| | - Meng-Qi Zhang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Science, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Centre for Brain Science, Fudan University, Shanghai, 200032, China; Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China
| | - Lei Li
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Science, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Centre for Brain Science, Fudan University, Shanghai, 200032, China; Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China
| | - Yoan Cherasse
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Serge N Schiffmann
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Wei-Min Qu
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Science, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Centre for Brain Science, Fudan University, Shanghai, 200032, China; Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China
| | - Zhi-Li Huang
- Department of Pharmacology and Shanghai Key Laboratory of Bioactive Small Molecules, School of Basic Medical Science, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Centre for Brain Science, Fudan University, Shanghai, 200032, China; Institute for Basic Research on Aging and Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Glutamatergic Neurons in the Piriform Cortex Influence the Activity of D1- and D2-Type Receptor-Expressing Olfactory Tubercle Neurons. J Neurosci 2019; 39:9546-9559. [PMID: 31628176 DOI: 10.1523/jneurosci.1444-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 11/21/2022] Open
Abstract
Sensory cortices process stimuli in manners essential for perception. Very little is known regarding interactions between olfactory cortices. The piriform "primary" olfactory cortex, especially its anterior division (aPCX), extends dense association fibers into the ventral striatum's olfactory tubercle (OT), yet whether this corticostriatal pathway is capable of shaping OT activity, including odor-evoked activity, is unknown. Further unresolved is the synaptic circuitry and the spatial localization of OT-innervating PCX neurons. Here we build upon standing literature to provide some answers to these questions through studies in mice of both sexes. First, we recorded the activity of OT neurons in awake mice while optically stimulating principal neurons in the aPCX and/or their association fibers in the OT while the mice were delivered odors. This uncovered evidence that PCX input indeed influences OT unit activity. We then used patch-clamp recordings and viral tracing to determine the connectivity of aPCX neurons upon OT neurons expressing dopamine receptor types D1 or D2, two prominent cell populations in the OT. These investigations uncovered that both populations of neurons receive monosynaptic inputs from aPCX glutamatergic neurons. Interestingly, this input originates largely from the ventrocaudal aPCX. These results shed light on some of the basic physiological properties of this pathway and the cell-types involved and provide a foundation for future studies to identify, among other things, whether this pathway has implications for perception.SIGNIFICANCE STATEMENT Sensory cortices interact to process stimuli in manners considered essential for perception. Very little is known regarding interactions between olfactory cortices. The present study sheds light on some of the basic physiological properties of a particular intercortical pathway in the olfactory system and provides a foundation for future studies to identify, among other things, whether this pathway has implications for perception.
Collapse
|
26
|
Hakim M, Battle AR, Belmer A, Bartlett SE, Johnson LR, Chehrehasa F. Pavlovian Olfactory Fear Conditioning: Its Neural Circuity and Importance for Understanding Clinical Fear-Based Disorders. Front Mol Neurosci 2019; 12:221. [PMID: 31607858 PMCID: PMC6761252 DOI: 10.3389/fnmol.2019.00221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/03/2019] [Indexed: 11/13/2022] Open
Abstract
Odors have proven to be the most resilient trigger for memories of high emotional saliency. Fear associated olfactory memories pose a detrimental threat of potentially transforming into severe mental illness such as fear and anxiety-related disorders. Many studies have deliberated on auditory, visual and general contextual fear memory (CFC) processes; however, fewer studies have investigated mechanisms of olfactory fear memory. Evidence strongly suggests that the neuroanatomical representation of olfactory fear memory differs from that of auditory and visual fear memory. The aim of this review article is to revisit the literature regarding the understanding of the neurobiological process of fear conditioning and to illustrate the circuitry of olfactory fear memory.
Collapse
Affiliation(s)
- Marziah Hakim
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia
| | - Andrew R Battle
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Arnauld Belmer
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia
| | - Selena E Bartlett
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Luke R Johnson
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,Division of Psychology, School of Medicine, University of Tasmania, Launceston, TAS, Australia.,Center for the Study of Traumatic Stress, School of Medicine, College of Health and Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Fatemeh Chehrehasa
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Mater Medical Research Institute and Queensland Health, Queensland University of Technology, The University of Queensland, Woolloongabba, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
27
|
Zhou G, Lane G, Cooper SL, Kahnt T, Zelano C. Characterizing functional pathways of the human olfactory system. eLife 2019; 8:47177. [PMID: 31339489 PMCID: PMC6656430 DOI: 10.7554/elife.47177] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022] Open
Abstract
The central processing pathways of the human olfactory system are not fully understood. The olfactory bulb projects directly to a number of cortical brain structures, but the distinct networks formed by projections from each of these structures to the rest of the brain have not been well-defined. Here, we used functional magnetic resonance imaging and k-means clustering to parcellate human primary olfactory cortex into clusters based on whole-brain functional connectivity patterns. Resulting clusters accurately corresponded to anterior olfactory nucleus, olfactory tubercle, and frontal and temporal piriform cortices, suggesting dissociable whole-brain networks formed by the subregions of primary olfactory cortex. This result was replicated in an independent data set. We then characterized the unique functional connectivity profiles of each subregion, producing a map of the large-scale processing pathways of the human olfactory system. These results provide insight into the functional and anatomical organization of the human olfactory system.
Collapse
Affiliation(s)
- Guangyu Zhou
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Gregory Lane
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Shiloh L Cooper
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Thorsten Kahnt
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States.,Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, United States
| | - Christina Zelano
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
28
|
Martin-Lopez E, Xu C, Liberia T, Meller SJ, Greer CA. Embryonic and postnatal development of mouse olfactory tubercle. Mol Cell Neurosci 2019; 98:82-96. [PMID: 31200100 DOI: 10.1016/j.mcn.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/09/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023] Open
Abstract
The olfactory tubercle (OT) is located in the ventral-medial region of the brain where it receives primary input from olfactory bulb (OB) projection neurons and processes olfactory behaviors related to motivation, hedonics of smell and sexual encounters. The OT is part of the dopamine reward system that shares characteristics with the striatum. Together with the nucleus accumbens, the OT has been referred to as the "ventral striatum". However, despite its functional importance little is known about the embryonic development of the OT and the phenotypic properties of the OT cells. Here, using thymidine analogs, we establish that mouse OT neurogenesis occurs predominantly between E11-E15 in a lateral-to-medial gradient. Then, using a piggyBac multicolor technique we characterized the migratory route of OT neuroblasts from their embryonic point of origin. Following neurogenesis in the ventral lateral ganglionic eminence (vLGE), neuroblasts destined for the OT followed a dorsal-ventral pathway we named "ventral migratory course" (VMC). Upon reaching the nascent OT, neurons established a prototypical laminar distribution that was determined, in part, by the progenitor cell of origin. A phenotypic analysis of OT neuroblasts using a single-color piggyBac technique, showed that OT shared the molecular specification of striatal neurons. In addition to primary afferent input from the OB, the OT also receives a robust dopaminergic input from ventral tegmentum (Ikemoto, 2007). We used tyrosine hydroxylase (TH) expression as a proxy for dopaminergic innervation and showed that TH onset occurs at E13 and progressively increased until postnatal stages following an 'inside-out' pattern. Postnatally, we established the myelination in the OT occurring between P7 and P14, as shown with CNPase staining, and we characterized the cellular phenotypes populating the OT by immunohistochemistry. Collectively, this work provides the first detailed analysis of the developmental and maturation processes occurring in mouse OT, and demonstrates the striatal nature of the OT as part of the ventral striatum (vST).
Collapse
Affiliation(s)
- Eduardo Martin-Lopez
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Christine Xu
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Teresa Liberia
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Sarah J Meller
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Charles A Greer
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; The Interdepartmental Neuroscience Graduate Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
29
|
Centrifugal Innervation of the Olfactory Bulb: A Reappraisal. eNeuro 2019; 6:eN-NRS-0390-18. [PMID: 30740517 PMCID: PMC6366934 DOI: 10.1523/eneuro.0390-18.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/14/2019] [Accepted: 01/19/2019] [Indexed: 12/11/2022] Open
Abstract
The inter-regional connectivity of sensory structures in the brain allows for the modulation of sensory processing in manners important for perception. In the olfactory system, odor representations in the olfactory bulb (OB) are modulated by feedback centrifugal innervation from several olfactory cortices, including the piriform cortex (PCX) and anterior olfactory nucleus (AON). Previous studies reported that an additional olfactory cortex, the olfactory tubercle (OT), also centrifugally innervates the OB and may even shape the activity of OB output neurons. In an attempt to identify the cell types of this centrifugal innervation, we performed retrograde tracing experiments in mice utilizing three unique strategies, including retrobeads, retrograde adeno-associated virus (AAV) driving a fluorescent reporter, and retrograde AAV driving Cre-expression in the Ai9-floxed transgenic reporter line. Our results replicated the standing literature and uncovered robustly labeled neurons in the ipsilateral PCX, AON, and numerous other structures known to innervate the OB. Surprisingly, consistent throughout all of our approaches, no labeled soma were observed in the OT. These findings indicate that the OT is unique among other olfactory cortices in that it does not innervate the OB, which refines our understanding of the centrifugal modulation of the OB.
Collapse
|
30
|
Kurnikova A, Deschênes M, Kleinfeld D. Functional brain stem circuits for control of nose motion. J Neurophysiol 2019; 121:205-217. [PMID: 30461370 PMCID: PMC6383659 DOI: 10.1152/jn.00608.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 11/22/2022] Open
Abstract
Rodents shift their nose from side to side when they actively explore and lateralize odors in the space. This motor action is driven by a pair of muscles, the deflector nasi. We studied the premotor control of this motion. We used replication-competent rabies virus to transsynaptically label inputs to the deflector nasi muscle and find putative premotor labeling throughout the parvocellular, intermediate, and gigantocellular reticular formations, as well as the trigeminal nuclei, pontine reticular formation, midbrain reticular formation, red nucleus, and superior colliculus. Two areas with extensive labeling were analyzed for their impact on nose movement. One area is in the reticular formation caudal to the facial motor nucleus and is denoted the nose retrofacial area. The second is in the caudal part of the intermediate reticular region near the oscillator for whisking (the nose IRt). Functionally, we find that optogenetic activation of glutamatergic cells in both areas drives deflection of the nose. Ablation of cells in the nose retrofacial area, but not the nose IRt, impairs movement of the nose in response to the presentation of odorants but otherwise leaves movement unaffected. These data suggest that the nose retrofacial area is a conduit for a sensory-driven orofacial motor action. Furthermore, we find labeling of neurons that are immediately upstream of premotor neurons in the preBötzinger complex that presumably synchronizes a small, rhythmic component of nose motion to breathing. NEW & NOTEWORTHY We identify two previously undescribed premotor areas in the medulla that control deflection of the nose. This includes a pathway for directed motion of the nose in response to an odorant.
Collapse
Affiliation(s)
- Anastasia Kurnikova
- Neurosciences Graduate Program, University of California San Diego , La Jolla, California
| | - Martin Deschênes
- Centre de Recherche Université Laval Robert-Giffard , Quebec City, Quebec , Canada
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, California
- Section of Neurobiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
31
|
Aversive learning-induced plasticity throughout the adult mammalian olfactory system: insights across development. J Bioenerg Biomembr 2018; 51:15-27. [PMID: 30171506 DOI: 10.1007/s10863-018-9770-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/27/2018] [Indexed: 10/28/2022]
Abstract
Experiences, such as sensory learning, are known to induce plasticity in mammalian sensory systems. In recent years aversive olfactory learning-induced plasticity has been identified at all stages of the adult olfactory pathway; however, the underlying mechanisms have yet to be identified. Much of the work regarding mechanisms of olfactory associative learning comes from neonates, a time point before which the brain or olfactory system is fully developed. In addition, pups and adults often express different behavioral outcomes when subjected to the same olfactory aversive conditioning paradigm, making it difficult to directly attribute pup mechanisms of plasticity to adults. Despite the differences, there is evidence of similarities between pups and adults in terms of learning-induced changes in the olfactory system, suggesting at least some conserved mechanisms. Identifying these conserved mechanisms of plasticity would dramatically increase our understanding of how the brain is able to alter encoding and consolidation of salient olfactory information even at the earliest stages following aversive learning. The focus of this review is to systematically examine literature regarding olfactory associative learning across developmental stages and search for similarities in order to build testable hypotheses that will inform future studies of aversive learning-induced sensory plasticity in adults.
Collapse
|
32
|
Mulholland MM, Olivas V, Caine NG. The nose may not know: Dogs’ reactions to rattlesnake odours. Appl Anim Behav Sci 2018. [DOI: 10.1016/j.applanim.2018.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Wacker D, Ludwig M. The role of vasopressin in olfactory and visual processing. Cell Tissue Res 2018; 375:201-215. [PMID: 29951699 PMCID: PMC6335376 DOI: 10.1007/s00441-018-2867-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/31/2018] [Indexed: 12/23/2022]
Abstract
Neural vasopressin is a potent modulator of behaviour in vertebrates. It acts at both sensory processing regions and within larger regulatory networks to mediate changes in social recognition, affiliation, aggression, communication and other social behaviours. There are multiple populations of vasopressin neurons within the brain, including groups in olfactory and visual processing regions. Some of these vasopressin neurons, such as those in the main and accessory olfactory bulbs, anterior olfactory nucleus, piriform cortex and retina, were recently identified using an enhanced green fluorescent protein-vasopressin (eGFP-VP) transgenic rat. Based on the interconnectivity of vasopressin-producing and sensitive brain areas and in consideration of autocrine, paracrine and neurohormone-like actions associated with somato-dendritic release, we discuss how these different neuronal populations may interact to impact behaviour.
Collapse
Affiliation(s)
- Douglas Wacker
- School of STEM (Division of Biological Sciences), University of Washington Bothell, Bothell, WA, USA.
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
34
|
Mannewitz A, Bock J, Kreitz S, Hess A, Goldschmidt J, Scheich H, Braun K. Comparing brain activity patterns during spontaneous exploratory and cue-instructed learning using single photon-emission computed tomography (SPECT) imaging of regional cerebral blood flow in freely behaving rats. Brain Struct Funct 2018; 223:2025-2038. [PMID: 29340757 DOI: 10.1007/s00429-017-1605-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
Learning can be categorized into cue-instructed and spontaneous learning types; however, so far, there is no detailed comparative analysis of specific brain pathways involved in these learning types. The aim of this study was to compare brain activity patterns during these learning tasks using the in vivo imaging technique of single photon-emission computed tomography (SPECT) of regional cerebral blood flow (rCBF). During spontaneous exploratory learning, higher levels of rCBF compared to cue-instructed learning were observed in motor control regions, including specific subregions of the motor cortex and the striatum, as well as in regions of sensory pathways including olfactory, somatosensory, and visual modalities. In addition, elevated activity was found in limbic areas, including specific subregions of the hippocampal formation, the amygdala, and the insula. The main difference between the two learning paradigms analyzed in this study was the higher rCBF observed in prefrontal cortical regions during cue-instructed learning when compared to spontaneous learning. Higher rCBF during cue-instructed learning was also observed in the anterior insular cortex and in limbic areas, including the ectorhinal and entorhinal cortexes, subregions of the hippocampus, subnuclei of the amygdala, and the septum. Many of the rCBF changes showed hemispheric lateralization. Taken together, our study is the first to compare partly lateralized brain activity patterns during two different types of learning.
Collapse
Affiliation(s)
- A Mannewitz
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, Magdeburg, 39120, Germany
| | - J Bock
- "Epigenetics and Structural Plasticity", Institute of Biology, Otto von Guericke University Magdeburg, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - S Kreitz
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University, Fahrstr. 17, 91054, Erlangen, Germany
| | - A Hess
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University, Fahrstr. 17, 91054, Erlangen, Germany
| | - J Goldschmidt
- Department Acoustics, Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Department Systems Physiology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - H Scheich
- Department Acoustics, Learning and Speech, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto von Guericke University Magdeburg, Leipziger Straße 44, Bldg. 91, Magdeburg, 39120, Germany. .,Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
35
|
Zhang Z, Liu Q, Wen P, Zhang J, Rao X, Zhou Z, Zhang H, He X, Li J, Zhou Z, Xu X, Zhang X, Luo R, Lv G, Li H, Cao P, Wang L, Xu F. Activation of the dopaminergic pathway from VTA to the medial olfactory tubercle generates odor-preference and reward. eLife 2017; 6:25423. [PMID: 29251597 PMCID: PMC5777817 DOI: 10.7554/elife.25423] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 12/15/2017] [Indexed: 01/26/2023] Open
Abstract
Odor-preferences are usually influenced by life experiences. However, the neural circuit mechanisms remain unclear. The medial olfactory tubercle (mOT) is involved in both reward and olfaction, whereas the ventral tegmental area (VTA) dopaminergic (DAergic) neurons are considered to be engaged in reward and motivation. Here, we found that the VTA (DAergic)-mOT pathway could be activated by different types of naturalistic rewards as well as odors in DAT-cre mice. Optogenetic activation of the VTA-mOT DAergic fibers was able to elicit preferences for space, location and neutral odor, while pharmacological blockade of the dopamine receptors in the mOT fully prevented the odor-preference formation. Furthermore, inactivation of the mOT-projecting VTA DAergic neurons eliminated the previously formed odor-preference and strongly affected the Go-no go learning efficiency. In summary, our results revealed that the VTA (DAergic)-mOT pathway mediates a variety of naturalistic reward processes and different types of preferences including odor-preference in mice.
Collapse
Affiliation(s)
- Zhijian Zhang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Qing Liu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Pengjie Wen
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Jiaozhen Zhang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Xiaoping Rao
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Ziming Zhou
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Hongruo Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaobin He
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Juan Li
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Zheng Zhou
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoran Xu
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xueyi Zhang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Rui Luo
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Guanghui Lv
- Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Haohong Li
- Wuhan National Laboratory for Optoelectronics, Wuhan, China
| | - Pei Cao
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fuqiang Xu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,Wuhan National Laboratory for Optoelectronics, Wuhan, China
| |
Collapse
|
36
|
Robles E. The power of projectomes: genetic mosaic labeling in the larval zebrafish brain reveals organizing principles of sensory circuits. J Neurogenet 2017; 31:61-69. [PMID: 28797199 DOI: 10.1080/01677063.2017.1359834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In no vertebrate species do we possess an accurate, comprehensive tally of neuron types in the brain. This is in no small part due to the vast diversity of neuronal types that comprise complex vertebrate nervous systems. A fundamental goal of neuroscience is to construct comprehensive catalogs of cell types defined by structure, connectivity, and physiological response properties. This type of information will be invaluable for generating models of how assemblies of neurons encode and distribute sensory information and correspondingly alter behavior. This review summarizes recent efforts in the larval zebrafish to construct sensory projectomes, comprehensive analyses of axonal morphologies in sensory axon tracts. Focusing on the olfactory and optic tract, these studies revealed principles of sensory information processing in the olfactory and visual systems that could not have been directly quantified by other methods. In essence, these studies reconstructed the optic and olfactory tract in a virtual manner, providing insights into patterns of neuronal growth that underlie the formation of sensory axon tracts. Quantitative analysis of neuronal diversity revealed organizing principles that determine information flow through sensory systems in the zebrafish that are likely to be conserved across vertebrate species. The generation of comprehensive cell type classifications based on structural, physiological, and molecular features will lead to testable hypotheses on the functional role of individual sensory neuron subtypes in controlling specific sensory-evoked behaviors.
Collapse
Affiliation(s)
- Estuardo Robles
- a Department of Biological Sciences and Institute for Integrative Neuroscience , Purdue University , West Lafayette , IN , USA
| |
Collapse
|
37
|
Comparisons of MRI images, and auditory-related and vocal-related protein expressions in the brain of echolocation bats and rodents. Neuroreport 2016; 27:923-8. [PMID: 27337384 DOI: 10.1097/wnr.0000000000000633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although echolocating bats and other mammals share the basic design of laryngeal apparatus for sound production and auditory system for sound reception, they have a specialized laryngeal mechanism for ultrasonic sound emissions as well as a highly developed auditory system for processing species-specific sounds. Because the sounds used by bats for echolocation and rodents for communication are quite different, there must be differences in the central nervous system devoted to producing and processing species-specific sounds between them. The present study examines the difference in the relative size of several brain structures and expression of auditory-related and vocal-related proteins in the central nervous system of echolocation bats and rodents. Here, we report that bats using constant frequency-frequency-modulated sounds (CF-FM bats) and FM bats for echolocation have a larger volume of midbrain nuclei (inferior and superior colliculi) and cerebellum relative to the size of the brain than rodents (mice and rats). However, the former have a smaller volume of the cerebrum and olfactory bulb, but greater expression of otoferlin and forkhead box protein P2 than the latter. Although the size of both midbrain colliculi is comparable in both CF-FM and FM bats, CF-FM bats have a larger cerebrum and greater expression of otoferlin and forkhead box protein P2 than FM bats. These differences in brain structure and protein expression are discussed in relation to their biologically relevant sounds and foraging behavior.
Collapse
|
38
|
Huilgol D, Tole S. Cell migration in the developing rodent olfactory system. Cell Mol Life Sci 2016; 73:2467-90. [PMID: 26994098 PMCID: PMC4894936 DOI: 10.1007/s00018-016-2172-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
The components of the nervous system are assembled in development by the process of cell migration. Although the principles of cell migration are conserved throughout the brain, different subsystems may predominantly utilize specific migratory mechanisms, or may display unusual features during migration. Examining these subsystems offers not only the potential for insights into the development of the system, but may also help in understanding disorders arising from aberrant cell migration. The olfactory system is an ancient sensory circuit that is essential for the survival and reproduction of a species. The organization of this circuit displays many evolutionarily conserved features in vertebrates, including molecular mechanisms and complex migratory pathways. In this review, we describe the elaborate migrations that populate each component of the olfactory system in rodents and compare them with those described in the well-studied neocortex. Understanding how the components of the olfactory system are assembled will not only shed light on the etiology of olfactory and sexual disorders, but will also offer insights into how conserved migratory mechanisms may have shaped the evolution of the brain.
Collapse
Affiliation(s)
- Dhananjay Huilgol
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
| | - Shubha Tole
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
39
|
Xiong A, Wesson DW. Illustrated Review of the Ventral Striatum's Olfactory Tubercle. Chem Senses 2016; 41:549-55. [PMID: 27340137 DOI: 10.1093/chemse/bjw069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Modern neuroscience often relies upon artistic renderings to illustrate key aspects of anatomy. These renderings can be in 2 or even 3 dimensions. Three-dimensional renderings are especially helpful in conceptualizing highly complex aspects of neuroanatomy which otherwise are not visually apparent in 2 dimensions or even intact biological samples themselves. Here, we provide 3 dimensional renderings of the gross- and cellular-anatomy of the rodent olfactory tubercle. Based upon standing literature and detailed investigations into rat brain specimens, we created biologically inspired illustrations of the olfactory tubercle in 3 dimensions as well as its connectivity with olfactory bulb projection neurons, the piriform cortex association fiber system, and ventral pallidum medium spiny neurons. Together, we intend for these illustrations to serve as a resource to the neuroscience community in conceptualizing and discussing this highly complex and interconnected brain system with established roles in sensory processing and motivated behaviors.
Collapse
Affiliation(s)
- Angeline Xiong
- Department of Neuroscience, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - Daniel W Wesson
- Department of Neuroscience, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA
| |
Collapse
|
40
|
McDole B, Isgor C, Pare C, Guthrie K. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo. Neuroscience 2015. [PMID: 26211445 DOI: 10.1016/j.neuroscience.2015.07.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Olfactory bulb granule cells (GCs) are axon-less, inhibitory interneurons that regulate the activity of the excitatory output neurons, the mitral and tufted cells, through reciprocal dendrodendritic synapses located on GC spines. These contacts are established in the distal apical dendritic compartment, while GC basal dendrites and more proximal apical segments bear spines that receive glutamatergic inputs from the olfactory cortices. This synaptic connectivity is vital to olfactory circuit function and is remodeled during development, and in response to changes in sensory activity and lifelong GC neurogenesis. Manipulations that alter levels of the neurotrophin brain-derived neurotrophic factor (BDNF) in vivo have significant effects on dendritic spine morphology, maintenance and activity-dependent plasticity for a variety of CNS neurons, yet little is known regarding BDNF effects on bulb GC spine maturation or maintenance. Here we show that, in vivo, sustained bulbar over-expression of BDNF in transgenic mice produces a marked increase in GC spine density that includes an increase in mature spines on their apical dendrites. Morphometric analysis demonstrated that changes in spine density were most notable in the distal and proximal apical domains, indicating that multiple excitatory inputs are potentially modified by BDNF. Our results indicate that increased levels of endogenous BDNF can promote the maturation and/or maintenance of dendritic spines on GCs, suggesting a role for this factor in modulating GC functional connectivity within adult olfactory circuitry.
Collapse
Affiliation(s)
- B McDole
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - C Isgor
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - C Pare
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States
| | - K Guthrie
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, United States.
| |
Collapse
|
41
|
Abstract
Sensory information acquires meaning to adaptively guide behaviors. Despite odors mediating a number of vital behaviors, the components of the olfactory system responsible for assigning meaning to odors remain unclear. The olfactory tubercle (OT), a ventral striatum structure that receives monosynaptic input from the olfactory bulb, is uniquely positioned to transform odor information into behaviorally relevant neural codes. No information is available, however, on the coding of odors among OT neurons in behaving animals. In recordings from mice engaged in an odor discrimination task, we report that the firing rate of OT neurons robustly and flexibly encodes the valence of conditioned odors over identity, with rewarded odors evoking greater firing rates. This coding of rewarded odors occurs before behavioral decisions and represents subsequent behavioral responses. We predict that the OT is an essential region whereby odor valence is encoded in the mammalian brain to guide goal-directed behaviors.
Collapse
|
42
|
Xia CZ, Adjei S, Wesson DW. Coding of odor stimulus features among secondary olfactory structures. J Neurophysiol 2015; 114:736-45. [PMID: 26041832 DOI: 10.1152/jn.00902.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 05/18/2015] [Indexed: 11/22/2022] Open
Abstract
Sensory systems must represent stimuli in manners dependent upon a wealth of factors, including stimulus intensity and duration. One way the brain might handle these complex functions is to assign the tasks throughout distributed nodes, each contributing to information processing. We sought to explore this important aspect of sensory network function in the mammalian olfactory system, wherein the intensity and duration of odor exposure are critical contributors to odor perception. This is a quintessential model for exploring processing schemes given the distribution of odor information by olfactory bulb mitral and tufted cells into several anatomically distinct secondary processing stages, including the piriform cortex (PCX) and olfactory tubercle (OT), whose unique contributions to odor coding are unresolved. We explored the coding of PCX and OT neuron responses to odor intensity and duration. We found that both structures similarly partake in representing descending intensities of odors by reduced recruitment and modulation of neurons. Additionally, while neurons in the OT adapt to odor exposure, they display reduced capacity to adapt to either repeated presentations of odor or a single prolonged odor presentation compared with neurons in the PCX. These results provide insights into manners whereby secondary olfactory structures may, at least in some cases, uniquely represent stimulus features.
Collapse
Affiliation(s)
- Christina Z Xia
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio; and
| | - Stacey Adjei
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio; and
| | - Daniel W Wesson
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio; and Department of Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
43
|
Laminar and spatial localization of the islands of Calleja in mice. Neuroscience 2014; 287:137-43. [PMID: 25536047 DOI: 10.1016/j.neuroscience.2014.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 02/02/2023]
Abstract
The islands of Calleja (IC) are dense clusters of cells localized within the ventral striatum. The IC have been described as variable in both number and localization from animal-to-animal, however, a quantitative investigation of this variability is unavailable. Further, it is presently unknown whether the IC occupy select areas of the olfactory tubercle (OT), the ventral striatum structure which possesses the IC in mice. To address these questions, we examined the IC of adult C57bl/6 mice. As previously noted, we found substantial inter-hemispheric and inter-mouse variations in the total number of IC. While the IC were observed in all three cell layers of the OT, the bulk of IC occupied layer iii. The span of the IC along the anterior-posterior and medial-lateral axes of the OT was variant. Further, localizations of the IC within the OT also differed across animals. Notably, the probability of observing an IC in the medial OT was greater than that of observing one in the lateral. These data provide a fundamental characterization of both differences and similarities regarding the IC in mice and will be informative for future in vivo studies seeking to perturb and possibly record from the IC. Further, we predict that inter-animal diversity in the IC may be a mechanism for inter-animal differences in behavior, especially reward-related and motivational behaviors.
Collapse
|
44
|
Simões-de-Souza FM, Antunes G, Roque AC. Electrical responses of three classes of granule cells of the olfactory bulb to synaptic inputs in different dendritic locations. Front Comput Neurosci 2014; 8:128. [PMID: 25360108 PMCID: PMC4197772 DOI: 10.3389/fncom.2014.00128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/25/2014] [Indexed: 11/13/2022] Open
Abstract
This work consists of a computational study of the electrical responses of three classes of granule cells of the olfactory bulb to synaptic activation in different dendritic locations. The constructed models were based on morphologically detailed compartmental reconstructions of three granule cell classes of the olfactory bulb with active dendrites described by Bhalla and Bower (1993, pp. 1948-1965) and dendritic spine distributions described by Woolf et al. (1991, pp. 1837-1854). The computational studies with the model neurons showed that different quantities of spines have to be activated in each dendritic region to induce an action potential, which always was originated in the active terminal dendrites, independently of the location of the stimuli, and the morphology of the dendritic tree. These model predictions might have important computational implications in the context of olfactory bulb circuits.
Collapse
Affiliation(s)
- Fábio M Simões-de-Souza
- Laboratory of Neural Systems (SisNE), Department of Psychology, Faculdade de Filosofia Ciencias e Letras de Ribeirão Preto, Universidade de São Paulo Ribeirão Preto, Brazil ; Center for Mathematics, Computation and Cognition, Federal University of ABC São Bernardo do Campo, Brazil
| | - Gabriela Antunes
- Laboratory of Neural Systems (SisNE), Department of Psychology, Faculdade de Filosofia Ciencias e Letras de Ribeirão Preto, Universidade de São Paulo Ribeirão Preto, Brazil
| | - Antonio C Roque
- Laboratory of Neural Systems (SisNE), Department of Physics, Faculdade de Filosofia Ciencias e Letras de Ribeirão Preto, Universidade de São Paulo Ribeirão Preto, Brazil
| |
Collapse
|
45
|
Nagayama S, Homma R, Imamura F. Neuronal organization of olfactory bulb circuits. Front Neural Circuits 2014; 8:98. [PMID: 25232305 PMCID: PMC4153298 DOI: 10.3389/fncir.2014.00098] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/29/2014] [Indexed: 12/31/2022] Open
Abstract
Olfactory sensory neurons extend their axons solely to the olfactory bulb, which is dedicated to odor information processing. The olfactory bulb is divided into multiple layers, with different types of neurons found in each of the layers. Therefore, neurons in the olfactory bulb have conventionally been categorized based on the layers in which their cell bodies are found; namely, juxtaglomerular cells in the glomerular layer, tufted cells in the external plexiform layer, mitral cells in the mitral cell layer, and granule cells in the granule cell layer. More recently, numerous studies have revealed the heterogeneous nature of each of these cell types, allowing them to be further divided into subclasses based on differences in morphological, molecular, and electrophysiological properties. In addition, technical developments and advances have resulted in an increasing number of studies regarding cell types other than the conventionally categorized ones described above, including short-axon cells and adult-generated interneurons. Thus, the expanding diversity of cells in the olfactory bulb is now being acknowledged. However, our current understanding of olfactory bulb neuronal circuits is mostly based on the conventional and simplest classification of cell types. Few studies have taken neuronal diversity into account for understanding the function of the neuronal circuits in this region of the brain. This oversight may contribute to the roadblocks in developing more precise and accurate models of olfactory neuronal networks. The purpose of this review is therefore to discuss the expanse of existing work on neuronal diversity in the olfactory bulb up to this point, so as to provide an overall picture of the olfactory bulb circuit.
Collapse
Affiliation(s)
- Shin Nagayama
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston Houston, TX, USA
| | - Ryota Homma
- Department of Neurobiology and Anatomy, The University of Texas Medical School at Houston Houston, TX, USA
| | - Fumiaki Imamura
- Department of Pharmacology, Pennsylvania State University College of Medicine Hershey, PA, USA
| |
Collapse
|
46
|
Olude AM, Olopade JO, Ihunwo AO. Adult neurogenesis in the African giant rat (Cricetomysgambianus, waterhouse). Metab Brain Dis 2014; 29:857-66. [PMID: 24577632 DOI: 10.1007/s11011-014-9512-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/13/2014] [Indexed: 12/17/2022]
Abstract
African giant rats (AGR) are large nocturnal rodents with well-developed olfactory abilities uniquely linked to cognition. The post natal proliferation of neurons (adult neurogenesis), is thought to play an important role in spatial memory and learning. Eighteen brains of the African giant rats (Cricetomys gambianus, Waterhouse) belonging to three age groups (neonates n = 6, juveniles n = 6 and adults n = 6) were examined by immunohistochemistry, using antibodies for proliferating cells (Ki-67), and immature neurons (Doublecortin, DCX). Mean brain weights were 0.40 ± 0.00 g; 4.48 ± 0.43 g and 5.48 ± 0.56 g for neonate, juvenile and adult brains respectively. Our results show positive cell proliferation in the subventricular (SVZ) zone of the lateral ventricle and in the dentate gyrus (DG) of the hippocampus but at low levels in adults compared to juveniles. Estimate of the mean total proliferative Ki-67 positive cells in the SVZ and DG in the neonates was 21145 ± 8395, and 11800 ± 1230; brains from juvenile AGRs, 45530 ± 13950 and 12480 ± 7860 and from adult brains, (6880 ± 340 and 1130 ± 150) respectively. Juvenile AGR in particular, stained positively in potential sites such as the piriform and somatosensory cortices, striatum and cerebellum. This intensity of the proliferating cells within the dentate gyrus in the juvenile and adult brains could be associated with a role in the cognitive functions of landmine detection and tuberculosis diagnosis after olfactory training of the African giant rat. The juvenile rats are proposed as the most suited for experimental research and olfactory training.
Collapse
Affiliation(s)
- Ayo Mathew Olude
- School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
47
|
Rothermel M, Wachowiak M. Functional imaging of cortical feedback projections to the olfactory bulb. Front Neural Circuits 2014; 8:73. [PMID: 25071454 PMCID: PMC4080262 DOI: 10.3389/fncir.2014.00073] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/12/2014] [Indexed: 11/16/2022] Open
Abstract
Processing of sensory information is substantially shaped by centrifugal, or feedback, projections from higher cortical areas, yet the functional properties of these projections are poorly characterized. Here, we used genetically-encoded calcium sensors (GCaMPs) to functionally image activation of centrifugal projections targeting the olfactory bulb (OB). The OB receives massive centrifugal input from cortical areas but there has been as yet no characterization of their activity in vivo. We focused on projections to the OB from the anterior olfactory nucleus (AON), a major source of cortical feedback to the OB. We expressed GCaMP selectively in AON projection neurons using a mouse line expressing Cre recombinase (Cre) in these neurons and Cre-dependent viral vectors injected into AON, allowing us to image GCaMP fluorescence signals from their axon terminals in the OB. Electrical stimulation of AON evoked large fluorescence signals that could be imaged from the dorsal OB surface in vivo. Surprisingly, odorants also evoked large signals that were transient and coupled to odorant inhalation both in the anesthetized and awake mouse, suggesting that feedback from AON to the OB is rapid and robust across different brain states. The strength of AON feedback signals increased during wakefulness, suggesting a state-dependent modulation of cortical feedback to the OB. Two-photon GCaMP imaging revealed that different odorants activated different subsets of centrifugal AON axons and could elicit both excitation and suppression in different axons, indicating a surprising richness in the representation of odor information by cortical feedback to the OB. Finally, we found that activating neuromodulatory centers such as basal forebrain drove AON inputs to the OB independent of odorant stimulation. Our results point to the AON as a multifunctional cortical area that provides ongoing feedback to the OB and also serves as a descending relay for other neuromodulatory systems.
Collapse
Affiliation(s)
- Markus Rothermel
- Brain Institute and Department of Neurobiology and Anatomy, University of Utah Salt Lake City, UT, USA
| | - Matt Wachowiak
- Brain Institute and Department of Neurobiology and Anatomy, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
48
|
Fitzgerald BJ, Richardson K, Wesson DW. Olfactory tubercle stimulation alters odor preference behavior and recruits forebrain reward and motivational centers. Front Behav Neurosci 2014; 8:81. [PMID: 24672445 PMCID: PMC3954079 DOI: 10.3389/fnbeh.2014.00081] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/24/2014] [Indexed: 11/17/2022] Open
Abstract
Rodents show robust behavioral responses to odors, including strong preferences or aversions for certain odors. The neural mechanisms underlying the effects of odors on these behaviors in animals are not well understood. Here, we provide an initial proof-of-concept study into the role of the olfactory tubercle (OT), a structure with known anatomical connectivity with both brain reward and olfactory structures, in regulating odor-motivated behaviors. We implanted c57bl/6 male mice with an ipsilateral bipolar electrode into the OT to administer electric current and thereby yield gross activation of the OT. We confirmed that electrical stimulation of the OT was rewarding, with mice frequently self-administering stimulation on a fixed ratio schedule. In a separate experiment, mice were presented with either fox urine or peanut odors in a three-chamber preference test. In absence of OT stimulation, significant preference for the peanut odor chamber was observed which was abolished in the presence of OT stimulation. Perhaps providing a foundation for this modulation in behavior, we found that OT stimulation significantly increased the number of c-Fos positive neurons in not only the OT, but also in forebrain structures essential to motivated behaviors, including the nucleus accumbens and lateral septum. The present results support the notion that the OT is integral to the display of motivated behavior and possesses the capacity to modulate odor hedonics either by directly altering odor processing or perhaps by indirect actions on brain reward and motivation structures.
Collapse
Affiliation(s)
- Brynn J Fitzgerald
- Department of Neurosciences, Case Western Reserve University Cleveland, OH, USA
| | - Kara Richardson
- Department of Neurosciences, Case Western Reserve University Cleveland, OH, USA
| | - Daniel W Wesson
- Department of Neurosciences, Case Western Reserve University Cleveland, OH, USA ; Department of Biology, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
49
|
Carlson KS, Dillione MR, Wesson DW. Odor- and state-dependent olfactory tubercle local field potential dynamics in awake rats. J Neurophysiol 2014; 111:2109-23. [PMID: 24598519 DOI: 10.1152/jn.00829.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The olfactory tubercle (OT), a trilaminar structure located in the basal forebrain of mammals, is thought to play an important role in olfaction. While evidence has accumulated regarding the contributions of the OT to odor information processing, studies exploring the role of the OT in olfaction in awake animals remain unavailable. In the present study, we begin to address this void through multiday recordings of local field potential (LFP) activity within the OT of awake, freely exploring Long-Evans rats. We observed spontaneous OT LFP activity consisting of theta- (2-12 Hz), beta- (15-35 Hz) and gamma- (40-80 Hz) band activity, characteristic of previous reports of LFPs in other principle olfactory structures. Beta- and gamma-band powers were enhanced upon odor presentation. Simultaneous recordings of OT and upstream olfactory bulb (OB) LFPs revealed odor-evoked LFP power at statistically similar levels in both structures. Strong spectral coherence was observed between the OT and OB during both spontaneous and odor-evoked states. Furthermore, the OB theta rhythm more strongly cohered with the respiratory rhythm, and respiratory-coupled theta cycles in the OT occurred following theta cycles in the OB. Finally, we found that the animal's internal state modulated LFP activity in the OT. Together, these data provide initial insights into the network activity of the OT in the awake rat, including spontaneous rhythmicity, odor-evoked modulation, connectivity with upstream sensory input, and state-dependent modulation.
Collapse
Affiliation(s)
- Kaitlin S Carlson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and
| | - Maggie R Dillione
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and
| | - Daniel W Wesson
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio; and Department of Biology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
50
|
Transgene expression in target-defined neuron populations mediated by retrograde infection with adeno-associated viral vectors. J Neurosci 2013; 33:15195-206. [PMID: 24048849 DOI: 10.1523/jneurosci.1618-13.2013] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tools enabling the manipulation of well defined neuronal subpopulations are critical for probing complex neuronal networks. Cre recombinase (Cre) mouse driver lines in combination with the Cre-dependent expression of proteins using viral vectors--in particular, recombinant adeno-associated viral vectors (rAAVs)--have emerged as a widely used platform for achieving transgene expression in specified neural populations. However, the ability of rAAVs to further specify neuronal subsets on the basis of their anatomical connectivity has been reported as limited or inconsistent. Here, we systematically tested a variety of widely used neurotropic rAAVs for their ability to mediate retrograde gene transduction in the mouse brain. We tested pseudotyped rAAVs of several common serotypes (rAAV 2/1, 2/5, and 2/9) as well as constructs both with and without Cre-dependent expression switches. Many of the rAAVs tested--in particular, though not exclusively, Cre-dependent vectors--showed a robust capacity for retrograde infection and transgene expression. Retrograde expression was successful over distances as large as 6 mm and in multiple neuron types, including olfactory projection neurons, neocortical pyramidal cells projecting to distinct targets, and corticofugal and modulatory projection neurons. Retrograde infection using transgenes such as ChR2 allowed for optical control or optically assisted electrophysiological identification of neurons defined genetically as well as by their projection target. These results establish a widely accessible tool for achieving combinatorial specificity and stable, long-term transgene expression to isolate precisely defined neuron populations in the intact animal.
Collapse
|