1
|
Kim SH, Kim H, Lee SU, Park E, Cho BH, Cho KH, Kim GJ, Yu S, Kim JS. Bilaterally positive head-impulse tests can differentiate AICA infarction from labyrinthitis. Front Neurol 2024; 15:1448989. [PMID: 39268064 PMCID: PMC11390645 DOI: 10.3389/fneur.2024.1448989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Video head-impulse tests (video-HITs) often fail to detect anterior inferior cerebellar artery (AICA) infarction due to peripheral and central vestibular system involvement. Anecdotal studies suggest that video-HITs may reveal bilateral impairment in AICA infarction. However, the diagnostic utility of video-HITs has not been established, particularly when compared to labyrinthitis, which accounts for the majority of acute audiovestibular syndrome (AAVS) cases. Methods We reviewed the medical records of consecutive patients presenting with new-onset acute hearing loss and spontaneous vertigo (i.e., AAVS) between March 2018 and July 2023 at a tertiary hospital in South Korea. Video-HIT patterns were categorized as follows: (1) ipsilaterally positive, (2) contralaterally positive, (3) bilaterally normal, and (4) bilaterally positive. Results Twenty-eight patients with AICA infarction (mean age ± standard deviation = 67 ± 15 years; 14 men) and 51 with labyrinthitis (63 ± 17 years, 26 men) were included in the analyses. Among the 28 patients with AICA infarction, 15 presented with AAVS in isolation, without other co-morbid neurologic deficits (15/28, 54%). The vestibulo-ocular reflex (VOR) gains of ipsilesional horizontal canals (HCs) ranged from 0.21 to 1.22 (median = 0.81, interquartile range [IQR] = 0.50-0.89). However, those for contralateral HC gain ranged from 0.57 to 1.19 (median = 0.89 [IQR = 0.73-0.97]). Collectively, HITs were bilaterally positive in 13 patients (including 12 patients with bilaterally positive HITs for the horizontal canal), normal in eight, ipsilesionally positive in six, and contralesionally positive in one patient with AICA infarction. The VOR gains were typically decreased ipsilaterally in 28 (28/51, 55%), normal in 17 (17/51, 33%), and decreased bilaterally in six patients with labyrinthitis (6/51, 12%). Logistic regression analysis revealed that bilaterally positive HITs (p = 0.004) and multiple vascular risk factors (p = 0.043) were more frequently associated with AICA infarction than labyrinthitis. Discussion Among patients presenting with AAVS, bilaterally positive HITs can be indicative of AICA infarction in patients with multiple vascular risk factors.
Collapse
Affiliation(s)
- Sung-Hwan Kim
- Department of Neurology, Korea University Medical Center, Seoul, Republic of Korea
| | - Hanseob Kim
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sun-Uk Lee
- Department of Neurology, Korea University Medical Center, Seoul, Republic of Korea
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, Republic of Korea
| | - Euyhyun Park
- Neurotology and Neuro-ophthalmology Laboratory, Korea University Medical Center, Seoul, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Bang-Hoon Cho
- Department of Neurology, Korea University Medical Center, Seoul, Republic of Korea
| | - Kyung-Hee Cho
- Department of Neurology, Korea University Medical Center, Seoul, Republic of Korea
| | - Gerard J Kim
- Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea
| | - Sungwook Yu
- Department of Neurology, Korea University Medical Center, Seoul, Republic of Korea
| | - Ji-Soo Kim
- Dizziness Center, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Marcelli V, Giannoni B, Volpe G, Faralli M, Fetoni AR, Pettorossi VE. Downbeat nystagmus: a clinical and pathophysiological review. Front Neurol 2024; 15:1394859. [PMID: 38854962 PMCID: PMC11157062 DOI: 10.3389/fneur.2024.1394859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Downbeat nystagmus (DBN) is a neuro-otological finding frequently encountered by clinicians dealing with patients with vertigo. Since DBN is a finding that should be understood because of central vestibular dysfunction, it is necessary to know how to frame it promptly to suggest the correct diagnostic-therapeutic pathway to the patient. As knowledge of its pathophysiology has progressed, the importance of this clinical sign has been increasingly understood. At the same time, clinical diagnostic knowledge has increased, and it has been recognized that this sign may occur sporadically or in association with others within defined clinical syndromes. Thus, in many cases, different therapeutic solutions have become possible. In our work, we have attempted to systematize current knowledge about the origin of this finding, the clinical presentation and current treatment options, to provide an overview that can be used at different levels, from the general practitioner to the specialist neurologist or neurotologist.
Collapse
Affiliation(s)
- Vincenzo Marcelli
- Audiology and Vestibology Unit, Department of ENT, Ospedale del Mare, ASL Napoli 1 Centro, Napoli, Italy
- Department of Neuroscience, Reproductive Science and Dentistry, Section of Audiology, University of Naples ‘’Federico II’’, Napoli, Italy
| | - Beatrice Giannoni
- Department of Neuroscience, Psychology, Drug’s Area and Child’s Health, University of Florence, Florence, Italy
| | - Giampiero Volpe
- Department of Neurology, Ospedale San Luca di Vallo della Lucania, ASL Salerno, Salerno, Italy
| | - Mario Faralli
- Department of ENT, University of Perugia, Perugia, Italy
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Anna Rita Fetoni
- Department of Neuroscience, Reproductive Science and Dentistry, Section of Audiology, University of Naples ‘’Federico II’’, Napoli, Italy
| | - Vito E. Pettorossi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Takahashi M, Veale R. Pathways for Naturalistic Looking Behavior in Primate I: Behavioral Characteristics and Brainstem Circuits. Neuroscience 2023; 532:133-163. [PMID: 37776945 DOI: 10.1016/j.neuroscience.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Organisms control their visual worlds by moving their eyes, heads, and bodies. This control of "gaze" or "looking" is key to survival and intelligence, but our investigation of the underlying neural mechanisms in natural conditions is hindered by technical limitations. Recent advances have enabled measurement of both brain and behavior in freely moving animals in complex environments, expanding on historical head-fixed laboratory investigations. We juxtapose looking behavior as traditionally measured in the laboratory against looking behavior in naturalistic conditions, finding that behavior changes when animals are free to move or when stimuli have depth or sound. We specifically focus on the brainstem circuits driving gaze shifts and gaze stabilization. The overarching goal of this review is to reconcile historical understanding of the differential neural circuits for different "classes" of gaze shift with two inconvenient truths. (1) "classes" of gaze behavior are artificial. (2) The neural circuits historically identified to control each "class" of behavior do not operate in isolation during natural behavior. Instead, multiple pathways combine adaptively and non-linearly depending on individual experience. While the neural circuits for reflexive and voluntary gaze behaviors traverse somewhat independent brainstem and spinal cord circuits, both can be modulated by feedback, meaning that most gaze behaviors are learned rather than hardcoded. Despite this flexibility, there are broadly enumerable neural pathways commonly adopted among primate gaze systems. Parallel pathways which carry simultaneous evolutionary and homeostatic drives converge in superior colliculus, a layered midbrain structure which integrates and relays these volitional signals to brainstem gaze-control circuits.
Collapse
Affiliation(s)
- Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental, Sciences, Tokyo Medical and Dental University, Japan.
| | - Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
5
|
Lisberger SG. The Rules of Cerebellar Learning: Around the Ito Hypothesis. Neuroscience 2021; 462:175-190. [PMID: 32866603 PMCID: PMC7914257 DOI: 10.1016/j.neuroscience.2020.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022]
Abstract
As a tribute to Masao Ito, we propose a model of cerebellar learning that incorporates and extends his original model. We suggest four principles that align well with conclusions from multiple cerebellar learning systems. (1) Climbing fiber inputs to the cerebellum drive early, fast, poorly-retained learning in the parallel fiber to Purkinje cell synapse. (2) Learned Purkinje cell outputs drive late, slow, well-retained learning in non-Purkinje cell inputs to neurons in the cerebellar nucleus, transferring learning from the cortex to the nucleus. (3) Recurrent feedback from Purkinje cells to the inferior olive, through interneurons in the cerebellar nucleus, limits the magnitude of fast, early learning in the cerebellar cortex. (4) Functionally different inputs are subjected to plasticity in the cerebellar cortex versus the cerebellar nucleus. A computational neural circuit model that is based on these principles mimics a large amount of neural and behavioral data obtained from the smooth pursuit eye movements of monkeys.
Collapse
Affiliation(s)
- Stephen G Lisberger
- Department of Neurobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
6
|
Histochemical Characterization of the Vestibular Y-Group in Monkey. THE CEREBELLUM 2020; 20:701-716. [PMID: 33083961 PMCID: PMC8629908 DOI: 10.1007/s12311-020-01200-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 12/18/2022]
Abstract
The Y-group plays an important role in the generation of upward smooth pursuit eye movements and contributes to the adaptive properties of the vertical vestibulo-ocular reflex. Malfunction of this circuitry may cause eye movement disorders, such as downbeat nystagmus. To characterize the neuron populations in the Y-group, we performed immunostainings for cellular proteins related to firing characteristics and transmitters (calretinin, GABA-related proteins and ion channels) in brainstem sections of macaque monkeys that had received tracer injections into the oculomotor nucleus. Two histochemically different populations of premotor neurons were identified: The calretinin-positive population represents the excitatory projection to contralateral upgaze motoneurons, whereas the GABAergic population represents the inhibitory projection to ipsilateral downgaze motoneurons. Both populations receive a strong supply by GABAergic nerve endings most likely originating from floccular Purkinje cells. All premotor neurons express nonphosphorylated neurofilaments and are ensheathed by strong perineuronal nets. In addition, they contain the voltage-gated potassium channels Kv1.1 and Kv3.1b which suggests biophysical similarities to high-activity premotor neurons of vestibular and oculomotor systems. The premotor neurons of Y-group form a homogenous population with histochemical characteristics compatible with fast-firing projection neurons that can also undergo plasticity and contribute to motor learning as found for the adaptation of the vestibulo-ocular reflex in response to visual-vestibular mismatch stimulation. The histochemical characterization of premotor neurons in the Y-group allows the identification of the homologue cell groups in human, including their transmitter inputs and will serve as basis for correlated anatomical-neuropathological studies of clinical cases with downbeat nystagmus.
Collapse
|
7
|
Lixenberg A, Yarkoni M, Botschko Y, Joshua M. Encoding of eye movements explains reward-related activity in cerebellar simple spikes. J Neurophysiol 2020; 123:786-799. [PMID: 31940216 PMCID: PMC7052631 DOI: 10.1152/jn.00363.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 11/22/2022] Open
Abstract
The cerebellum exhibits both motor and reward-related signals. However, it remains unclear whether reward is processed independently from the motor command or might reflect the motor consequences of the reward drive. To test how reward-related signals interact with sensorimotor processing in the cerebellum, we recorded Purkinje cell simple spike activity in the cerebellar floccular complex while monkeys were engaged in smooth pursuit eye movement tasks. The color of the target signaled the size of the reward the monkeys would receive at the end of the target motion. When the tracking task presented a single target, both pursuit and neural activity were only slightly modulated by the reward size. The reward modulations in single cells were rarely large enough to be detected. These modulations were only significant in the population analysis when we averaged across many neurons. In two-target tasks where the monkey learned to select based on the size of the reward outcome, both behavior and neural activity adapted rapidly. In both the single- and two-target tasks, the size of the reward-related modulation matched the size of the effect of reward on behavior. Thus, unlike cortical activity in eye movement structures, the reward-related signals could not be dissociated from the motor command. These results suggest that reward information is integrated with the eye movement command upstream of the Purkinje cells in the floccular complex. Thus reward-related modulations of the simple spikes are akin to modulations found in motor behavior and not to the central processing of the reward value.NEW & NOTEWORTHY Disentangling sensorimotor and reward signals is only possible if these signals do not completely overlap. We recorded activity in the floccular complex of the cerebellum while monkeys performed tasks designed to separate representations of reward from those of movement. Activity modulation by reward could be accounted for by the coding of eye movement parameters, suggesting that reward information is already integrated into motor commands upstream of the floccular complex.
Collapse
Affiliation(s)
- Adi Lixenberg
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Yarkoni
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehudit Botschko
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mati Joshua
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Sven Ingvar (1889-1947) of Lund University and the Centennial of His Landmark Dissertation on Cerebellar Phylo-Ontogeny. THE CEREBELLUM 2020; 18:676-687. [PMID: 31054022 DOI: 10.1007/s12311-019-01034-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In January 1919, Sven Ingvar (1889-1947) defended his doctoral dissertation (required for the M.D. degree) on cerebellar phylogeny, development, and function at Lund University, Sweden. The work was supervised by Cornelius U. Ariëns Kappers (1877-1946) in Amsterdam and by Karl Petrén (1868-1927) in Lund. A physician of many interests, Ingvar became professor of Practical Medicine in his alma mater. His cerebellar papers, spanning over a decade, are the contributions that gained him international recognition in the neurological sciences. A key discovery was the demonstration, with the Marchi method, of the primary vestibulocerebellar afferent fibers. The merits of his work rest with the use of connections to compare lobes and lobules in different species, and the introduction of the idea of vestibular, spinal, and corticopontine storeys; on the other hand, based on current knowledge, one might take a more critical stance toward the proposition of a posterior lobe as a phylogenetically old structure, and the homolog of the human tonsil. Nonetheless, Ingvar was an early pioneer of the "evo-devo" synthesis (or the field of Evolutionary Developmental Biology, which aims at understanding how developmental processes evolve across species). He studied the comparative anatomy of the cerebellum in over 50 species of reptiles, birds, and mammals and theorized about the spatial relations of phylogenetically older and more recent acquisitions in both the cerebellar and the thalamocortical systems.
Collapse
|
9
|
Abstract
Essential infantile esotropia (EIE) is often attributed to a primary disturbance within the visual cortex based upon the findings of monocular horizontal optokinetic asymmetry and correlative horizontal motion detection asymmetry. However, these physiologic aberrations conform to what would be observed if the visual cortex secondarily reconfigured itself to the preexisting subcortical optokinetic motion template. This analysis examines the perspective that the measured cortical aberrations can be explained by prolonged subcortical neuroplasticity, leading to a secondary rewiring of cortical motion pathways. Evolutionary evidence indicates that EIE is generated by subcortical ocular motor centers that subserve nasalward optokinesis. These phylogenetically older subcortical visuo-vestibular pathways include the nucleus of the optic tract, accessory optic system, inferior olive, cerebellar flocculus, and vestibular nucleus. In normal humans, the subcortical visual system becomes inactivated after the first few months of infancy. Mutations or other perturbations that prolong subcortical neuroplasticity may create a persistent simultaneous nasalward optokinetic bias in both eyes to generate infantile esotropia.
Collapse
|
10
|
Ugolini G, Prevosto V, Graf W. Ascending vestibular pathways to parietal areas MIP and LIPv and efference copy inputs from the medial reticular formation: Functional frameworks for body representations updating and online movement guidance. Eur J Neurosci 2019; 50:2988-3013. [DOI: 10.1111/ejn.14426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/25/2019] [Accepted: 04/04/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Gabriella Ugolini
- Paris‐Saclay Institute of Neuroscience (UMR9197) CNRS ‐ Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
| | - Vincent Prevosto
- Paris‐Saclay Institute of Neuroscience (UMR9197) CNRS ‐ Université Paris‐Sud Université Paris‐Saclay Gif‐sur‐Yvette France
- Department of Biomedical Engineering Pratt School of Engineering Durham North Carolina
- Department of Neurobiology Duke School of Medicine Duke University Durham North Carolina
| | - Werner Graf
- Department of Physiology and Biophysics Howard University Washington District of Columbia
| |
Collapse
|
11
|
Kim G, Laurens J, Yakusheva TA, Blazquez PM. The Macaque Cerebellar Flocculus Outputs a Forward Model of Eye Movement. Front Integr Neurosci 2019; 13:12. [PMID: 31024268 PMCID: PMC6460257 DOI: 10.3389/fnint.2019.00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/14/2019] [Indexed: 11/26/2022] Open
Abstract
The central nervous system (CNS) achieves fine motor control by generating predictions of the consequences of the motor command, often called forward models of the movement. These predictions are used centrally to detect not-self generated sensations, to modify ongoing movements, and to induce motor learning. However, finding a neuronal correlate of forward models has proven difficult. In the oculomotor system, we can identify neuronal correlates of forward models vs. neuronal correlates of motor commands by examining neuronal responses during smooth pursuit at eccentric eye positions. During pursuit, torsional eye movement information is not present in the motor command, but it is generated by the mechanic of the orbit. Importantly, the directionality and approximate magnitude of torsional eye movement follow the half angle rule. We use this rule to investigate the role of the cerebellar flocculus complex (FL, flocculus and ventral paraflocculus) in the generation of forward models of the eye. We found that mossy fibers (input elements to the FL) did not change their response to pursuit with eccentricity. Thus, they do not carry torsional eye movement information. However, vertical Purkinje cells (PCs; output elements of the FL) showed a preference for counter-clockwise (CCW) eye velocity [corresponding to extorsion (outward rotation) of the ipsilateral eye]. We hypothesize that FL computes an estimate of torsional eye movement since torsion is present in PCs but not in mossy fibers. Overall, our results add to those of other laboratories in supporting the existence in the CNS of a predictive signal constructed from motor command information.
Collapse
Affiliation(s)
- Gyutae Kim
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jean Laurens
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Tatyana A Yakusheva
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Pablo M Blazquez
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
12
|
Anastasio TJ, Barreiro AK, Bronski JC. A geometric method for eigenvalue problems with low-rank perturbations. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170390. [PMID: 28989749 PMCID: PMC5627089 DOI: 10.1098/rsos.170390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/30/2017] [Indexed: 05/20/2023]
Abstract
We consider the problem of finding the spectrum of an operator taking the form of a low-rank (rank one or two) non-normal perturbation of a well-understood operator, motivated by a number of problems of applied interest which take this form. We use the fact that the system is a low-rank perturbation of a solved problem, together with a simple idea of classical differential geometry (the envelope of a family of curves) to completely analyse the spectrum. We use these techniques to analyse three problems of this form: a model of the oculomotor integrator due to Anastasio & Gad (2007 J. Comput. Neurosci.22, 239-254. (doi:10.1007/s10827-006-0010-x)), a continuum integrator model, and a non-local model of phase separation due to Rubinstein & Sternberg (1992 IMA J. Appl. Math.48, 249-264. (doi:10.1093/imamat/48.3.249)).
Collapse
Affiliation(s)
- Thomas J. Anastasio
- Department of Molecular and Integrative Physiology and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, IL 61820, USA
- Author for correspondence: Andrea K. Barreiro e-mail:
| | - Andrea K. Barreiro
- Department of Mathematics, Southern Methodist University, PO Box 750156, Dallas, TX 75275, USA
| | - Jared C. Bronski
- Department of Mathematics, University of Illinois Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801, USA
| |
Collapse
|
13
|
McCall AA, Miller DM, Yates BJ. Descending Influences on Vestibulospinal and Vestibulosympathetic Reflexes. Front Neurol 2017; 8:112. [PMID: 28396651 PMCID: PMC5366978 DOI: 10.3389/fneur.2017.00112] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
This review considers the integration of vestibular and other signals by the central nervous system pathways that participate in balance control and blood pressure regulation, with an emphasis on how this integration may modify posture-related responses in accordance with behavioral context. Two pathways convey vestibular signals to limb motoneurons: the lateral vestibulospinal tract and reticulospinal projections. Both pathways receive direct inputs from the cerebral cortex and cerebellum, and also integrate vestibular, spinal, and other inputs. Decerebration in animals or strokes that interrupt corticobulbar projections in humans alter the gain of vestibulospinal reflexes and the responses of vestibular nucleus neurons to particular stimuli. This evidence shows that supratentorial regions modify the activity of the vestibular system, but the functional importance of descending influences on vestibulospinal reflexes acting on the limbs is currently unknown. It is often overlooked that the vestibulospinal and reticulospinal systems mainly terminate on spinal interneurons, and not directly on motoneurons, yet little is known about the transformation of vestibular signals that occurs in the spinal cord. Unexpected changes in body position that elicit vestibulospinal reflexes can also produce vestibulosympathetic responses that serve to maintain stable blood pressure. Vestibulosympathetic reflexes are mediated, at least in part, through a specialized group of reticulospinal neurons in the rostral ventrolateral medulla that project to sympathetic preganglionic neurons in the spinal cord. However, other pathways may also contribute to these responses, including those that dually participate in motor control and regulation of sympathetic nervous system activity. Vestibulosympathetic reflexes differ in conscious and decerebrate animals, indicating that supratentorial regions alter these responses. However, as with vestibular reflexes acting on the limbs, little is known about the physiological significance of descending control of vestibulosympathetic pathways.
Collapse
Affiliation(s)
- Andrew A McCall
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Derek M Miller
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Bill J Yates
- Department of Otolaryngology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| |
Collapse
|
14
|
Matsuno H, Kudoh M, Watakabe A, Yamamori T, Shigemoto R, Nagao S. Distribution and Structure of Synapses on Medial Vestibular Nuclear Neurons Targeted by Cerebellar Flocculus Purkinje Cells and Vestibular Nerve in Mice: Light and Electron Microscopy Studies. PLoS One 2016; 11:e0164037. [PMID: 27711146 PMCID: PMC5053601 DOI: 10.1371/journal.pone.0164037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/19/2016] [Indexed: 01/28/2023] Open
Abstract
Adaptations of vestibulo-ocular and optokinetic response eye movements have been studied as an experimental model of cerebellum-dependent motor learning. Several previous physiological and pharmacological studies have consistently suggested that the cerebellar flocculus (FL) Purkinje cells (P-cells) and the medial vestibular nucleus (MVN) neurons targeted by FL (FL-targeted MVN neurons) may respectively maintain the memory traces of short- and long-term adaptation. To study the basic structures of the FL-MVN synapses by light microscopy (LM) and electron microscopy (EM), we injected green florescence protein (GFP)-expressing lentivirus into FL to anterogradely label the FL P-cell axons in C57BL/6J mice. The FL P-cell axonal boutons were distributed in the magnocellular MVN and in the border region of parvocellular MVN and prepositus hypoglossi (PrH). In the magnocellular MVN, the FL-P cell axons mainly terminated on somata and proximal dendrites. On the other hand, in the parvocellular MVN/PrH, the FL P-cell axonal synaptic boutons mainly terminated on the relatively small-diameter (< 1 μm) distal dendrites of MVN neurons, forming symmetrical synapses. The majority of such parvocellular MVN/PrH neurons were determined to be glutamatergic by immunocytochemistry and in-situ hybridization of GFP expressing transgenic mice. To further examine the spatial relationship between the synapses of FL P-cells and those of vestibular nerve on the neurons of the parvocellular MVN/PrH, we added injections of biotinylated dextran amine into the semicircular canal and anterogradely labeled vestibular nerve axons in some mice. The MVN dendrites receiving the FL P-cell axonal synaptic boutons often closely apposed vestibular nerve synaptic boutons in both LM and EM studies. Such a partial overlap of synaptic boutons of FL P-cell axons with those of vestibular nerve axons in the distal dendrites of MVN neurons suggests that inhibitory synapses of FL P-cells may influence the function of neighboring excitatory synapses of vestibular nerve in the parvocellular MVN/PrH neurons.
Collapse
Affiliation(s)
- Hitomi Matsuno
- Laboratory for Motor Learning Control, Riken Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
- * E-mail: (HM); (SN)
| | - Moeko Kudoh
- Laboratory for Motor Learning Control, Riken Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
| | - Ryuichi Shigemoto
- Division of Cerebral Structure, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Soichi Nagao
- Laboratory for Motor Learning Control, Riken Brain Science Institute, Hirosawa 2-1, Wako, Saitama, 351-0198, Japan
- * E-mail: (HM); (SN)
| |
Collapse
|
15
|
Blazquez PM, Yakusheva TA. GABA-A Inhibition Shapes the Spatial and Temporal Response Properties of Purkinje Cells in the Macaque Cerebellum. Cell Rep 2015; 11:1043-53. [PMID: 25959822 DOI: 10.1016/j.celrep.2015.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/27/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022] Open
Abstract
Data from in vitro and anesthetized preparations indicate that inhibition plays a major role in cerebellar cortex function. We investigated the role of GABA-A inhibition in the macaque cerebellar ventral-paraflocculus while animals performed oculomotor behaviors that are known to engage the circuit. We recorded Purkinje cell responses to these behaviors with and without application of gabazine, a GABA-A receptor antagonist, near the recorded neuron. Gabazine increased the neuronal responsiveness to saccades in all directions and the neuronal gain to VOR cancellation and pursuit, most significantly the eye and head velocity sensitivity. L-glutamate application indicated that these changes were not the consequence of increases in baseline firing rate. Importantly, gabazine did not affect behavior or efference copy, suggesting that only local computations were disrupted. Our data, collected while the cerebellum performs behaviorally relevant computations, indicate that inhibition is a potent regulatory mechanism for the control of input-output gain and spatial tuning in the cerebellar cortex.
Collapse
Affiliation(s)
- Pablo M Blazquez
- Department of Otolaryngology, Washington University School of Medicine, 4566 Scott Avenue, St. Louis, MO 63110, USA.
| | - Tatyana A Yakusheva
- Department of Otolaryngology, Washington University School of Medicine, 4566 Scott Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
|
17
|
Baizer JS. Unique features of the human brainstem and cerebellum. Front Hum Neurosci 2014; 8:202. [PMID: 24778611 PMCID: PMC3985031 DOI: 10.3389/fnhum.2014.00202] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/21/2014] [Indexed: 12/28/2022] Open
Abstract
The cerebral cortex is greatly expanded in the human brain. There is a parallel expansion of the cerebellum, which is interconnected with the cerebral cortex. We have asked if there are accompanying changes in the organization of pre-cerebellar brainstem structures. We have examined the cytoarchitectonic and neurochemical organization of the human medulla and pons. We studied human cases from the Witelson Normal Brain Collection, analyzing Nissl sections and sections processed for immunohistochemistry for multiple markers including the calcium-binding proteins calbindin, calretinin, and parvalbumin, non-phosphorylated neurofilament protein, and the synthetic enzyme for nitric oxide, nitric oxide synthase. We have also compared the neurochemical organization of the human brainstem to that of several other species including the chimpanzee, macaque and squirrel monkey, cat, and rodent, again using Nissl staining and immunohistochemistry. We found that there are major differences in the human brainstem, ranging from relatively subtle differences in the neurochemical organization of structures found in each of the species studied to the emergence of altogether new structures in the human brainstem. Two aspects of human cortical organization, individual differences and left–right asymmetry, are also seen in the brainstem (principal nucleus of the inferior olive) and the cerebellum (the dentate nucleus). We suggest that uniquely human motor and cognitive abilities derive from changes at all levels of the central nervous system, including the cerebellum and brainstem, and not just the cerebral cortex.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, NY , USA
| |
Collapse
|
18
|
Dash S, Thier P. Cerebellum-dependent motor learning: lessons from adaptation of eye movements in primates. PROGRESS IN BRAIN RESEARCH 2014; 210:121-55. [PMID: 24916292 DOI: 10.1016/b978-0-444-63356-9.00006-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In order to ameliorate the consequences of ego motion for vision, human and nonhuman observers generate reflexive, compensatory eye movements based on visual as well as vestibular information, helping to stabilize the images of visual scenes on the retina despite ego motion. And in order to fully exploit the advantages of foveal vision, they make saccades to shift the image of an object onto the fovea and smooth pursuit eye movements to stabilize it there despite continuing object movement relative to the observer. With the exception of slow visually driven eye movements, which can be understood as manifestations of relatively straightforward feedback systems, most eye movements require a direct conversion of sensory input into appropriate motor responses in the absence of immediate sensory feedback. Hence, in order to generate appropriate oculomotor responses, the parameters linking input and output must be chosen suitably. Moreover, as the parameters may change from one manifestation of a movement to the next, for instance because of oculomotor fatigue, the choices should also be quickly modifiable. This chapter will present evidence showing that this fast parametric optimization, understood as a functionally distinct example of motor learning, is an accomplishment of specific parts of the cerebellum devoted to the control of eye movements. It will also discuss recent electrophysiological results suggesting how this specific form of motor learning may emerge from information processing in cerebellar circuits.
Collapse
Affiliation(s)
- Suryadeep Dash
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Peter Thier
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
19
|
Diversity of neural responses in the brainstem during smooth pursuit eye movements constrains the circuit mechanisms of neural integration. J Neurosci 2013; 33:6633-47. [PMID: 23575860 DOI: 10.1523/jneurosci.3732-12.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Neural integration converts transient events into sustained neural activity. In the smooth pursuit eye movement system, neural integration is required to convert cerebellar output into the sustained discharge of extraocular motoneurons. We recorded the expression of integration in the time-varying firing rates of cerebellar and brainstem neurons in the monkey during pursuit of step-ramp target motion. Electrical stimulation with single shocks in the cerebellum identified brainstem neurons that are monosynaptic targets of inhibition from the cerebellar floccular complex. They discharge in relation to eye acceleration, eye velocity, and eye position, with a stronger acceleration signal than found in most other brainstem neurons. The acceleration and velocity signals can be accounted for by opponent contributions from the two sides of the cerebellum, without integration; the position signal implies participation in the integrator. Other neurons in the vestibular nucleus show a wide range of blends of signals related to eye velocity and eye position, reflecting different stages of integration. Neurons in the abducens nucleus discharge homogeneously in relation mainly to eye position, and reflect almost perfect integration of the cerebellar outputs. Average responses of neural populations and the diverse individual responses of large samples of individual neurons are reproduced by a hierarchical neural circuit based on a model suggested the anatomy and physiology of the larval zebrafish brainstem. The model uses a combination of feedforward and feedback connections to support a neural circuit basis for integration in monkeys and other species.
Collapse
|
20
|
Nakamagoe K, Fujizuka N, Koganezawa T, Yamaguchi T, Tamaoka A. Downbeat nystagmus associated with damage to the medial longitudinal fasciculus of the pons: a vestibular balance control mechanism via the lower brainstem paramedian tract neurons. J Neurol Sci 2013; 328:98-101. [PMID: 23510567 DOI: 10.1016/j.jns.2013.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/20/2013] [Accepted: 02/20/2013] [Indexed: 11/24/2022]
Abstract
The paramedian tract (PMT) neurons, a group of neurons associated with eye movement that project into the cerebellar flocculus, are present in or near the medial longitudinal fasciculus (MLF) in the paramedian region of the lower brainstem. A 66-year-old man with multiple sclerosis in whom downbeat nystagmus appeared along with right MLF syndrome due to a unilateral pontomedullary lesion is described. In light of these findings, a possible schema for the vestibular balance control mechanism circuit of the PMT neurons via the flocculus is presented. Damage to the PMT neurons impaired the elective inhibitory control mechanism of the anterior semicircular canal neural pathway by the flocculus. This resulted in the appearance of anterior semicircular canal-dominant vestibular imbalance and the formation of downbeat nystagmus. From the pathogenesis of this vertical vestibular nystagmus, the action of the PMT neurons in the vestibular eye movement neuronal pathway to maintain vestibular balance was conjectured to be as follows. PMT neurons transmit vestibular information from the anterior semicircular canals to the cerebellum, forming a cerebellum/brainstem feedback loop. Vestibular information from that loop is integrated in the cerebellum, inhibiting only the anterior semicircular canal neuronal pathway via the flocculus and controlling vestibular balance.
Collapse
Affiliation(s)
- Kiyotaka Nakamagoe
- Department of Neurology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | | | | | | | | |
Collapse
|
21
|
4-aminopyridine does not enhance flocculus function in tottering, a mouse model of vestibulocerebellar dysfunction and ataxia. PLoS One 2013; 8:e57895. [PMID: 23451282 PMCID: PMC3581497 DOI: 10.1371/journal.pone.0057895] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/27/2013] [Indexed: 01/06/2023] Open
Abstract
The potassium channel antagonist 4-aminopyridine (4-AP) improves a variety of motor abnormalities associated with disorders of the cerebellum. The most rigorous quantitative data relate to 4-AP's ability to improve eye movement deficits in humans referable to dysfunction of the cerebellar flocculus. Largely based on work in the ataxic mouse mutant tottering (which carries a mutation of the Cacna1a gene of the P/Q voltage-activated calcium channel), 4-AP is hypothesized to function by enhancing excitability or rhythmicity of floccular Purkinje cells. We tested this hypothesis by determining whether systemic or intrafloccular administration of 4-AP would ameliorate the eye movement deficits in tottering that are attributable to flocculus dysfunction, including the reductions in amplitude of the yaw-axis vestibulo-ocular reflex (VOR) and vision-enhanced vestibulo-ocular reflex (VVOR), and the optokinetic reflex (OKR) about yaw and roll axes. Because tottering's deficits increase with age, both young and elderly mutants were tested to detect any age-dependent 4-AP effects. 4-AP failed to improve VOR, VVOR, and OKR gains during sinusoidal stimuli, although it may have reduced the tendency of the mutants' responses to VOR and VVOR to decline over the course of a one-hour recording session. For constant-velocity optokinetic stimuli, 4-AP generated some enhancement of yaw OKR and upward-directed roll OKR, but the effects were also seen in normal C57BL/6 controls, and thus do not represent a specific reversal of the electrophysiological consequences of the tottering mutation. Data support a possible extra-floccular locus for the effects of 4-AP on habituation and roll OKR. Unilateral intrafloccular 4-AP injections did not affect ocular motility, except to generate mild eye elevations, consistent with reduced floccular output. Because 4-AP did not produce the effects expected if it normalized outputs of floccular Purkinje cells, there is a need for further studies to elucidate the drug's mechanism of action on cerebellar motor dysfunction.
Collapse
|
22
|
King WM. Getting ahead of oneself: anticipation and the vestibulo-ocular reflex. Neuroscience 2013; 236:210-9. [PMID: 23370320 DOI: 10.1016/j.neuroscience.2012.12.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/12/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
Abstract
Compensatory counter-rotations of the eyes provoked by head turns are commonly attributed to the vestibulo-ocular reflex (VOR). A recent study in guinea pigs demonstrates, however, that this assumption is not always valid. During voluntary head turns, guinea pigs make highly accurate compensatory eye movements that occur with zero or even negative latencies with respect to the onset of the provoking head movements. Furthermore, the anticipatory eye movements occur in animals with bilateral peripheral vestibular lesions, thus confirming that they have an extra vestibular origin. This discovery suggests the possibility that anticipatory responses might also occur in other species including humans and non-human primates, but have been overlooked and mistakenly identified as being produced by the VOR. This review will compare primate and guinea pig vestibular physiology in light of these new findings. A unified model of vestibular and cerebellar pathways will be presented that is consistent with current data in primates and guinea pigs. The model is capable of accurately simulating compensatory eye movements to active head turns (anticipatory responses) and to passive head perturbations (VOR induced eye movements) in guinea pigs and in human subjects who use coordinated eye and head movements to shift gaze direction in space. Anticipatory responses provide new evidence and opportunities to study the role of extra vestibular signals in motor control and sensory-motor transformations. Exercises that employ voluntary head turns are frequently used to improve visual stability in patients with vestibular hypofunction. Thus, a deeper understanding of the origin and physiology of anticipatory responses could suggest new translational approaches to rehabilitative training of patients with bilateral vestibular loss.
Collapse
Affiliation(s)
- W M King
- Department of Otolaryngology and the Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
23
|
Baizer JS, Paolone NA, Sherwood CC, Hof PR. Neurochemical organization of the vestibular brainstem in the common chimpanzee (Pan troglodytes). Brain Struct Funct 2012. [PMID: 23179862 DOI: 10.1007/s00429-012-0470-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chimpanzees are one of the closest living relatives of humans. However, the cognitive and motor abilities of chimpanzees and humans are quite different. The fact that humans are habitually bipedal and chimpanzees are not implies different uses of vestibular information in the control of posture and balance. Furthermore, bipedal locomotion permits the development of fine motor skills of the hand and tool use in humans, suggesting differences between species in the structures and circuitry for manual control. Much motor behavior is mediated via cerebro-cerebellar circuits that depend on brainstem relays. In this study, we investigated the organization of the vestibular brainstem in chimpanzees to gain insight into whether these structures differ in their anatomy from humans. We identified the four nuclei of vestibular nuclear complex in the chimpanzee and also looked at several other precerebellar structures. The size and arrangement of some of these nuclei differed between chimpanzees and humans, and also displayed considerable inter-individual variation. We identified regions within the cytoarchitectonically defined medial vestibular nucleus visualized by immunoreactivity to the calcium-binding proteins calretinin and calbindin as previously shown in other species including human. We have found that the nucleus paramedianus dorsalis, which is identified in the human but not in macaque monkeys, is present in the chimpanzee brainstem. However, the arcuate nucleus, which is present in humans, was not found in chimpanzees. The present study reveals major differences in the organization of the vestibular brainstem among Old World anthropoid primate species. Furthermore, in chimpanzees, as well as humans, there is individual variability in the organization of brainstem nuclei.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, 14214, USA,
| | | | | | | |
Collapse
|
24
|
Voogd J, Schraa-Tam CKL, van der Geest JN, De Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. CEREBELLUM (LONDON, ENGLAND) 2012; 11:392-410. [PMID: 20809106 PMCID: PMC3359447 DOI: 10.1007/s12311-010-0204-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula-nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
| | | | | | | |
Collapse
|
25
|
Huh YE, Kim JS. Patterns of spontaneous and head-shaking nystagmus in cerebellar infarction: imaging correlations. ACTA ACUST UNITED AC 2011; 134:3662-71. [PMID: 22036958 DOI: 10.1093/brain/awr269] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Horizontal head-shaking may induce nystagmus in peripheral as well as central vestibular lesions. While the patterns and mechanism of head-shaking nystagmus are well established in peripheral vestibulopathy, they require further exploration in central vestibular disorders. To define the characteristics and mechanism of head-shaking nystagmus in central vestibulopathies, we investigated spontaneous nystagmus and head-shaking nystagmus in 72 patients with isolated cerebellar infarction. Spontaneous nystagmus was observed in 28 (39%) patients, and was mostly ipsilesional when observed in unilateral infarction (15/18, 83%). Head-shaking nystagmus developed in 37 (51%) patients, and the horizontal component of head-shaking nystagmus was uniformly ipsilesional when induced in patients with unilateral infarction. Perverted head-shaking nystagmus occurred in 23 (23/37, 62%) patients and was mostly downbeat (22/23, 96%). Lesion subtraction analyses revealed that damage to the uvula, nodulus and inferior tonsil was mostly responsible for generation of head-shaking nystagmus in patients with unilateral posterior inferior cerebellar artery infarction. Ipsilesional head-shaking nystagmus in patients with unilateral cerebellar infarction may be explained by unilateral disruption of uvulonodular inhibition over the velocity storage. Perverted (downbeat) head-shaking nystagmus may be ascribed to impaired control over the spatial orientation of the angular vestibulo-ocular reflex due to uvulonodular lesions or a build-up of vertical vestibular asymmetry favouring upward bias due to lesions involving the inferior tonsil.
Collapse
Affiliation(s)
- Young Eun Huh
- Department of Neurology, College of Medicine, Seoul National University, Seoul National University Bundang Hospital 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Korea
| | | |
Collapse
|
26
|
Ahlfeld J, Mustari M, Horn AKE. Sources of calretinin inputs to motoneurons of extraocular muscles involved in upgaze. Ann N Y Acad Sci 2011; 1233:91-9. [PMID: 21950981 PMCID: PMC4666500 DOI: 10.1111/j.1749-6632.2011.06168.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent monkey studies showed that motoneurons of the oculomotor nucleus involved in upward eye movements receive a selective input from afferents containing calretinin (CR). Here, we investigated the sources of these CR-positive afferents. After injections of tract-tracers into the oculomotor nucleus (nIII) of two monkeys, the retrograde labeling was combined with CR-immunofluorescence in frozen brainstem sections. Three sources of CR inputs to nIII were found: the rostral interstitial nucleus of the medial longitudinal fascicle (RIMLF), the interstitial nucleus of Cajal, and the y-group. CR is not present in all premotor upward-moving pathways. The excitatory secondary vestibulo-ocular neurons in the magnocellular part of the medial vestibular nuclei contained nonphosphorylated neurofilaments, but no CR, and they received a strong supply of large CR-positive boutons. In conclusion, the present study presents evidence that only specific premotor pathways for upward eye movements--excitatory upgaze pathways--contain CR, but not the up vestibulo-ocular reflex pathways. This property may help to differentiate between premotor up- and downgaze pathways in correlative clinico-anatomical studies in humans.
Collapse
Affiliation(s)
- Julia Ahlfeld
- Institute of Anatomy I, Ludwig-Maximilians University of Munich, Munich, Germany
| | | | | |
Collapse
|
27
|
Abstract
Accurate diagnosis of abnormal eye movements depends upon knowledge of the purpose, properties, and neural substrate of distinct functional classes of eye movement. Here, we summarize current concepts of the anatomy of eye movement control. Our approach is bottom-up, starting with the extraocular muscles and their innervation by the cranial nerves. Second, we summarize the neural circuits in the pons underlying horizontal gaze control, and the midbrain connections that coordinate vertical and torsional movements. Third, the role of the cerebellum in governing and optimizing eye movements is presented. Fourth, each area of cerebral cortex contributing to eye movements is discussed. Last, descending projections from cerebral cortex, including basal ganglionic circuits that govern different components of gaze, and the superior colliculus, are summarized. At each stage of this review, the anatomical scheme is used to predict the effects of lesions on the control of eye movements, providing clinical-anatomical correlation.
Collapse
|
28
|
Samuels ER, Szabadi E. Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organisation. Curr Neuropharmacol 2010; 6:235-53. [PMID: 19506723 PMCID: PMC2687936 DOI: 10.2174/157015908785777229] [Citation(s) in RCA: 489] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/25/2008] [Accepted: 06/06/2008] [Indexed: 01/09/2023] Open
Abstract
The locus coeruleus (LC) is the major noradrenergic nucleus of the brain, giving rise to fibres innervating extensive areas throughout the neuraxis. Recent advances in neuroscience have resulted in the unravelling of the neuronal circuits controlling a number of physiological functions in which the LC plays a central role. Two such functions are the regulation of arousal and autonomic activity, which are inseparably linked largely via the involvement of the LC. The LC is a major wakefulness-promoting nucleus, resulting from dense excitatory projections to the majority of the cerebral cortex, cholinergic neurones of the basal forebrain, cortically-projecting neurones of the thalamus, serotoninergic neurones of the dorsal raphe and cholinergic neurones of the pedunculopontine and laterodorsal tegmental nucleus, and substantial inhibitory projections to sleep-promoting GABAergic neurones of the basal forebrain and ventrolateral preoptic area. Activation of the LC thus results in the enhancement of alertness through the innervation of these varied nuclei. The importance of the LC in controlling autonomic function results from both direct projections to the spinal cord and projections to autonomic nuclei including the dorsal motor nucleus of the vagus, the nucleus ambiguus, the rostroventrolateral medulla, the Edinger-Westphal nucleus, the caudal raphe, the salivatory nuclei, the paraventricular nucleus, and the amygdala. LC activation produces an increase in sympathetic activity and a decrease in parasympathetic activity via these projections. Alterations in LC activity therefore result in complex patterns of neuronal activity throughout the brain, observed as changes in measures of arousal and autonomic function.
Collapse
Affiliation(s)
- E R Samuels
- Psychopharmacology Section, University of Nottingham, Division of Psychiatry, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | |
Collapse
|
29
|
Baizer JS, Broussard DM. Expression of calcium-binding proteins and nNOS in the human vestibular and precerebellar brainstem. J Comp Neurol 2010; 518:872-95. [PMID: 20058225 DOI: 10.1002/cne.22250] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Information about the position and movement of the head in space is coded by vestibular receptors and relayed to four nuclei that comprise the vestibular nuclear complex (VNC). Many additional brainstem nuclei are involved in the processing of vestibular information, receiving signals either directly from the eighth nerve or indirectly via projections from the VNC. In cats, squirrel monkeys, and macaque monkeys, we found neurochemically defined subdivisions within the medial vestibular nucleus (MVe) and within the functionally related nucleus prepositus hypoglossi (PrH). In humans, different studies disagree about the borders, sizes, and possible subdivisions of the vestibular brainstem. In an attempt to clarify this organization, we have begun an analysis of the neurochemical characteristics of the human using brains from the Witelson Normal Brain Collection and standard techniques for antigen retrieval and immunohistochemistry. Using antibodies to calbindin, calretinin, parvalbumin, and nitric oxide synthase, we find neurochemically defined subdivisions within the MVe similar to the subdivisions described in cats and monkeys. The neurochemical organization of PrH is different. We also find unique neurochemical profiles for several structures that suggest reclassification of nuclei. These data suggest both quantitative and qualitative differences among cats, monkeys, and humans in the organization of the vestibular brainstem. These results have important implications for the analysis of changes in that organization subsequent to aging, disease, or loss of input.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, University at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, New York 14214-3078, USA.
| | | |
Collapse
|
30
|
Green AM, Angelaki DE. Internal models and neural computation in the vestibular system. Exp Brain Res 2010; 200:197-222. [PMID: 19937232 PMCID: PMC2853943 DOI: 10.1007/s00221-009-2054-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
Abstract
The vestibular system is vital for motor control and spatial self-motion perception. Afferents from the otolith organs and the semicircular canals converge with optokinetic, somatosensory and motor-related signals in the vestibular nuclei, which are reciprocally interconnected with the vestibulocerebellar cortex and deep cerebellar nuclei. Here, we review the properties of the many cell types in the vestibular nuclei, as well as some fundamental computations implemented within this brainstem-cerebellar circuitry. These include the sensorimotor transformations for reflex generation, the neural computations for inertial motion estimation, the distinction between active and passive head movements, as well as the integration of vestibular and proprioceptive information for body motion estimation. A common theme in the solution to such computational problems is the concept of internal models and their neural implementation. Recent studies have shed new insights into important organizational principles that closely resemble those proposed for other sensorimotor systems, where their neural basis has often been more difficult to identify. As such, the vestibular system provides an excellent model to explore common neural processing strategies relevant both for reflexive and for goal-directed, voluntary movement as well as perception.
Collapse
Affiliation(s)
- Andrea M Green
- Dépt. de Physiologie, Université de Montréal, 2960 Chemin de la Tour, Rm. 4141, Montreal, QC H3T 1J4, Canada.
| | | |
Collapse
|
31
|
Waespe W, Martin P. Pursuit eye movements in a patient with a lesion involving the vestibular nuclear complex. Neuroophthalmology 2009. [DOI: 10.3109/01658108709007452] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
|
33
|
Abstract
Smooth pursuit impairment is recognized clinically by the presence of saccadic tracking of a small object and quantified by reduction in pursuit gain, the ratio of smooth eye movement velocity to the velocity of a foveal target. Correlation of the site of brain lesions, identified by imaging or neuropathological examination, with defective smooth pursuit determines brain structures that are necessary for smooth pursuit. Paretic, low gain, pursuit occurs toward the side of lesions at the junction of the parietal, occipital and temporal lobes (area V5), the frontal eye field and their subcortical projections, including the posterior limb of the internal capsule, the midbrain and the basal pontine nuclei. Paresis of ipsiversive pursuit also results from damage to the ventral paraflocculus and caudal vermis of the cerebellum. Paresis of contraversive pursuit is a feature of damage to the lateral medulla. Retinotopic pursuit paresis consists of low gain pursuit in the visual hemifield contralateral to damage to the optic radiation, striate cortex or area V5. Craniotopic paresis of smooth pursuit consists of impaired smooth eye movement generation contralateral to the orbital midposition after acute unilateral frontal or parietal lobe damage. Omnidirectional saccadic pursuit is a most sensitive sign of bilateral or diffuse cerebral, cerebellar or brainstem disease. The anatomical and physiological bases of defective smooth pursuit are discussed here in the context of the effects of lesion in the human brain.
Collapse
Affiliation(s)
- James A Sharpe
- Division of Neurology, University Health Network WW5-440 TWH, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8.
| |
Collapse
|
34
|
Walker MF, Tian J, Shan X, Tamargo RJ, Ying H, Zee DS. Lesions of the cerebellar nodulus and uvula impair downward pursuit. J Neurophysiol 2008; 100:1813-23. [PMID: 18650313 DOI: 10.1152/jn.01193.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We studied sinusoidal (SIN) and step-ramp (SR) pursuit in two rhesus monkeys, before and after surgical lesions of the cerebellar nodulus and uvula (Nod/Uv). Eye movements were recorded using the magnetic field scleral search coil method. Pursuit targets were generated by an LCD projector and back-projected onto a tangent screen in an otherwise dark room. After the Nod/Uv lesions, both monkeys showed a reduced eye velocity during downward pursuit (SIN: 42% decrease in M1, 91% decrease in M2; SR: 37% decrease in M1, 85% decrease in M2). For SR, the decrease was seen only for the closed-loop response; initial eye acceleration did not change (P>0.05). Upward pursuit gains increased for SIN (M1: 9%, M2: 11%); they decreased for SR (M1: 27%, M2: 18%), but to a lesser degree than for downward pursuit. Horizontal pursuit was little changed in M1 but was reduced in one direction in M2, the animal with the larger lesion. The deficit in downward tracking was limited to foveal pursuit; ocular following of random-dot stimuli was retained, even when the target subtended only several degrees. Our findings support a critical role for the Nod/Uv in vertical pursuit, particularly for sustained downward pursuit. Finally, in both monkeys, the lesion increased spontaneous upward ocular drift in the dark (mean prelesion, 1.43 degrees/s; postlesion, 5.92 degrees/s), suggesting a role for the Nod/Uv in holding the eyes still and in the genesis of downbeat nystagmus.
Collapse
Affiliation(s)
- Mark F Walker
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
To construct an appropriate motor command from signals that provide a representation of desired action, the nervous system must take into account the dynamic characteristics of the motor plant to be controlled. In the oculomotor system, signals specifying desired eye velocity are thought to be transformed into motor commands by an inverse dynamic model of the eye plant that is shared for all types of eye movements and implemented by a weighted combination of eye velocity and position signals. Neurons in the prepositus hypoglossi and adjacent medial vestibular nuclei (PH-BT neurons) were traditionally thought to encode the "eye position" component of this inverse model. However, not only are PH-BT responses inconsistent with this theoretical role, but compensatory eye movement responses to translation do not show evidence for processing by a common inverse dynamic model. Prompted by these discrepancies between theoretical notions and experimental observations, we reevaluated these concepts using multiple-frequency rotational and translational head movements. Compatible with the notion of a common inverse model, we show that PH-BT responses are unique among all premotor cell types in bearing a consistent relationship to the motor output during eye movements driven by different sensory stimuli. However, because their responses are dynamically identical to those of motoneurons, PH-BT neurons do not simply represent an internal component of the inverse model, but rather its output. They encode and distribute an estimate of the motor command, a signal critical for accurate motor execution and learning.
Collapse
Affiliation(s)
- Andrea M Green
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada H3T 1J4.
| | | | | |
Collapse
|
36
|
Blazquez PM, Davis-Lopez de Carrizosa MA, Heiney SA, Highstein SM. Neuronal Substrates of Motor Learning in the Velocity Storage Generated During Optokinetic Stimulation in the Squirrel Monkey. J Neurophysiol 2007; 97:1114-26. [PMID: 17093114 DOI: 10.1152/jn.00983.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic motor learning in the vestibuloocular reflex (VOR) results in changes in the gain of this reflex and in other eye movements intimately associated with VOR behavior, e.g., the velocity storage generated by optokinetic stimulation (OKN velocity storage). The aim of the present study was to identify the plastic sites responsible for the change in OKN velocity storage after chronic VOR motor learning. We studied the neuronal responses of vertical eye movement flocculus target neurons (FTNs) during the optokinetic afternystagmus (OKAN) phase of the optokinetic response (OKR) before and after VOR motor learning. Our findings can be summarized as follows. 1) Chronic VOR motor learning changes the horizontal OKN velocity storage in parallel with changes in VOR gain, whereas the vertical OKN velocity storage is more complex, increasing with VOR gain increases, but not changing following VOR gain decreases. 2) FTNs contain an OKAN signal having opposite directional preferences after chronic high versus low gain learning, suggesting a change in the OKN velocity storage representation of FTNs. 3) Changes in the eye-velocity sensitivity of FTNs during OKAN are correlated with changes in the brain stem head-velocity sensitivity of the same neurons. And 4) these changes in eye-velocity sensitivity of FTNs during OKAN support the new behavior after high gain but not low gain learning. Thus we hypothesize that the changes observed in the OKN velocity storage behavior after chronic learning result from changes in brain stem pathways carrying head velocity and OKN velocity storage information, and that a parallel pathway to vertical FTNs changes its OKN velocity storage representation following low, but not high, gain VOR motor learning.
Collapse
Affiliation(s)
- Pablo M Blazquez
- Department of Otolaryngology, Washington University School of Medicine, 4566 Scott Ave., St. Louis, MO 63110, USA.
| | | | | | | |
Collapse
|
37
|
Anastasio TJ, Gad YP. Sparse cerebellar innervation can morph the dynamics of a model oculomotor neural integrator. J Comput Neurosci 2006; 22:239-54. [PMID: 17086435 DOI: 10.1007/s10827-006-0010-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 10/02/2006] [Accepted: 10/06/2006] [Indexed: 12/19/2022]
Abstract
The oculomotor integrator is a brainstem neural network that converts velocity signals into the position commands necessary for eye-movement control. The cerebellum can independently adjust the amplitude of eye-movement commands and the temporal characteristics of neural integration, but the percentage of integrator neurons that receive cerebellar input is very small. Adaptive dynamic systems models, configured using the genetic algorithm, show how sparse cerebellar inputs could morph the dynamics of the oculomotor integrator and independently adjust its overall response amplitude and time course. Dynamic morphing involves an interplay of opposites, in which some model Purkinje cells exert positive feedback on the network, while others exert negative feedback. Positive feedback can be increased to prolong the integrator time course at virtually any level of negative feedback. The more these two influences oppose each other, the larger become the response amplitudes of the individual units and of the overall integrator network.
Collapse
Affiliation(s)
- Thomas J Anastasio
- Department of Molecular and Integrative Physiology, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
38
|
Steffen H. [Diagnosis of supranuclear eye movement disorders. Part II: Vertical and torsional oculomotoricity]. Ophthalmologe 2006; 103:977-88; quiz 989.. [PMID: 17024443 DOI: 10.1007/s00347-006-1423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The hallmark of a supranuclear eye movement disorder is functional impairment of one or several types of different eye movements while other types of eye movement remain unchanged. All eye movement information is conveyed via the nuclei of the eye muscle nerves. However, the information for a specific type of eye movement is generated in prenuclear cortical and subcortical areas which are activated depending on the type of eye movement performed. The structures responsible for vertical and torsional oculomotoricity are described as well as the functional relationship between them. A summary of the development of saccades and movements arising from them is also given and the influence of the cerebellum on oculomotor processes is dealt with. In many neurological conditions knowledge about the areas of the brain relevant for eye movement enables a clinical diagnosis to be made or the pathological process to be localized to a specific anatomical area. Examination of eye movements is thus a valuable clinical tool in many neurological and neuro-ophthalmological diseases.
Collapse
Affiliation(s)
- H Steffen
- Universitätsaugenklinik, Julius-Maximilians-Universität, Josef-Schneider-Strasse 11, 87080 Würzburg, Germany.
| |
Collapse
|
39
|
Schonewille M, Luo C, Ruigrok TJH, Voogd J, Schmolesky MT, Rutteman M, Hoebeek FE, De Jeu MTG, De Zeeuw CI. Zonal organization of the mouse flocculus: physiology, input, and output. J Comp Neurol 2006; 497:670-82. [PMID: 16739198 DOI: 10.1002/cne.21036] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The zones of the flocculus have been mapped in many species with a noticeable exception, the mouse. Here, the functional map of the mouse was constructed via extracellular recordings followed by tracer injections of biotinylated-dextran-amine and immunohistochemistry for heat-shock protein-25. Zones were identified based on the Purkinje cell complex spike modulation occurring in response to optokinetic stimulation. In zones 1 and 3 Purkinje cells responded best to rotation about a horizontal axis oriented at 135 degrees ipsilateral azimuth, whereas in zones 2 and 4 they responded best to rotation about the vertical axis. The tracing experiments showed that Purkinje cells of zone 1 projected to the parvicellular part of lateral cerebellar nucleus and superior vestibular nucleus, while Purkinje cells of zone 3 projected to group Y and the superior vestibular nucleus. Purkinje cells of zones 2 and 4 projected to the magnocellular and parvicellular parts of the medial vestibular nucleus, while some also innervated the lateral vestibular nucleus or nucleus prepositus hypoglossi. The climbing fiber inputs to Purkinje cells in zones 1 and 3 were derived from neurons in the ventrolateral outgrowth of the contralateral inferior olive, whereas those in zones 2 and 4 were derived from the contralateral caudal dorsal cap. Purkinje cells in zones 1 and 2, but not in zones 3 and 4, were positively labeled for heat-shock protein-25. The present study illustrates that Purkinje cells in the murine flocculus are organized in discrete zones with specific functions, specific input - output relations, and a specific histochemical signature.
Collapse
|
40
|
Abstract
Three subnuclei within the inferior olive are implicated in the control of eye movement; the dorsal cap (DC), the beta-nucleus and the dorsomedial cell column (DMCC). Each of these subnuclei can be further divided into clusters of cells that encode specific parameters of optokinetic and vestibular stimulation. DC neurons respond to optokinetic stimulation in one of three planes, corresponding to the anatomical planes of the semicircular canals. Neurons in the beta-nucleus and DMCC respond to vestibular stimulation in the planes of the vertical semicircular canals and otoliths. Each these olivary nuclei receives excitatory and inhibitory signals from pre-olivary structures. The DC receives excitatory signals from the ipsilateral nucleus of the optic tract (NOT) and inhibitory signals from the contralateral nucleus prepositus hypoglossi (NPH). The beta-nucleus and DMCC receive inhibitory signals from the ipsilateral nucleus parasolitarius (Psol) and excitatory signals from the contralateral dorsal Y group. Consequently, the olivary projection to the cerebellum, although totally crossed, still represents bilateral sensory stimulation. Inputs to the inferior olive from the NOT, NPH, Psol or Y-group discharge at frequencies of 10-100 imp/s. CFRs discharge at 1-5 imp/s; a frequency reduction of an order of magnitude. Inferior olivary projections to the contralateral cerebellum are sagittally arrayed onto multiple cerebellar folia. These arrays establish coordinate systems in the flocculus and nodulus, representing head-body movement. These climbing fiber-defined spatial coordinate systems align Purkinje cell discharge onto subjacent cerebellar and vestibular nuclei. In the oculomotor system, olivo-cerebellar circuitry enhances and modifies eye movements based on movement of the head-body in space.
Collapse
Affiliation(s)
- Neal H Barmack
- Neurological Sciences Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA.
| |
Collapse
|
41
|
Büttner U, Büttner-Ennever JA. Present concepts of oculomotor organization. PROGRESS IN BRAIN RESEARCH 2006; 151:1-42. [PMID: 16221584 DOI: 10.1016/s0079-6123(05)51001-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This chapter gives an introduction to the oculomotor system, thus providing a framework for the subsequent chapters. This chapter describes the characteristics, and outlines the structures involved, of the five basic types of eye movements, for gaze holding ("neural integrator") and eye movements in three dimensions (Listing's law, pulleys).
Collapse
Affiliation(s)
- U Büttner
- Department of Neurology, Institute of Anatomy, Ludwig-Maximilians University, Marchioninistr. 15, D-81377 Munich, Germany.
| | | |
Collapse
|
42
|
Abstract
The vestibular portion of the eighth cranial nerve informs the brain about the linear and angular movements of the head in space and the position of the head with respect to gravity. The termination sites of these eighth nerve afferents define the territory of the vestibular nuclei in the brainstem. (There is also a subset of afferents that project directly to the cerebellum.) This chapter reviews the anatomical organization of the vestibular nuclei, and the anatomy of the pathways from the nuclei to various target areas in the brain. The cytoarchitectonics of the vestibular brainstem are discussed, since these features have been used to distinguish the individual nuclei. The neurochemical phenotype of vestibular neurons and pathways are also summarized because the chemical anatomy of the system contributes to its signal-processing capabilities. Similarly, the morphologic features of short-axon local circuit neurons and long-axon cells with extrinsic projections are described in detail, since these structural attributes of the neurons are critical to their functional potential. Finally, the composition and hodology of the afferent and efferent pathways of the vestibular nuclei are discussed. In sum, this chapter reviews the morphology, chemoanatomy, connectivity, and synaptology of the vestibular nuclei.
Collapse
Affiliation(s)
- Stephen M Highstein
- Washington University School of Medicine, Box 8115, 4566 Scott Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
43
|
Abstract
The reticular formation of the brainstem contains functional cell groups that are important for the control of eye, head, or lid movements. The mesencephalic reticular formation is primarily involved in the control of vertical gaze, the paramedian pontine reticular formation in horizontal gaze, and the medullary pontine reticular formation in head movements and gaze holding. In this chapter, the locations, connections, and histochemical properties of the functional cell groups are reviewed and correlated with specific subdivisions of the reticular formation.
Collapse
Affiliation(s)
- Anja K E Horn
- Institute of Anatomy, Ludwig-Maximilian University of Munich, Pettenkoferstrasse 11, 80336 Munich, Germany.
| |
Collapse
|
44
|
Abstract
The anatomical, physiological, and behavioral evidence for the involvement of three regions of the cerebellum in oculomotor behavior is reviewed here: (1) the oculomotor vermis and paravermis of lobules V, IV, and VII; (2) the uvula and nodulus; (3) flocculus and ventral paraflocculus. No region of the cerebellum controls eye movements exclusively, but each receives sensory information relevant for the control of multiple systems. An analysis of the microcircuitry suggests how sagittal climbing fiber zones bring visual information to the oculomotor vermis; convey vestibular information to the uvula and nodulus, while optokinetic space is represented in the flocculus. The mossy fiber projections are more heterogeneous. The importance of the inferior olive in modulating Purkinje cell responses is discussed.
Collapse
Affiliation(s)
- Jan Voogd
- Department of Neuroscience, Erasmus Medical Center Rotterdam, Box 1738, 3000 DR Rotterdam, The Netherlands.
| | | |
Collapse
|
45
|
Baizer JS, Baker JF. Immunoreactivity for calretinin and calbindin in the vestibular nuclear complex of the monkey. Exp Brain Res 2005; 172:103-13. [PMID: 16369782 DOI: 10.1007/s00221-005-0318-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Immunoreactivity to calcium-binding proteins has been a useful extension to cytoarchitectonics in defining the organization of many central nervous system regions. Previously we found subdivisions of the cat medial vestibular nucleus (MVe) defined by immunoreactivity to the calcium-binding proteins, calretinin and calbindin. Here we report similar subdivisions in both the squirrel and the macaque monkey. Calretinin immunoreactivity reveals a small area of cells and processes located dorsally in the MVe. In the anterior-posterior direction these cells extend over less than half of the nucleus. This area is not distinct in Nissl-stained sections. Elsewhere in the vestibular nuclear complex (VNC) and in the nucleus prepositus hypoglossi (PrH) there are scattered labeled cells. Immunoreactivity for calbindin shows a small patch of dense fiber label at the border of MVe and PrH, and a patchy distribution in the rest of the VNC that changes at different anterior-posterior levels. There are also calbindin-labeled cells in the underlying reticular formation over a very restricted anterior-posterior extent in both squirrel and macaque monkey. The dendrites of some of these cells can be followed into PrH, and data from other studies suggests that they may contribute to vestibular-oculomotor function. Scattered cells in the VNC are densely outlined by calbindin-labeled terminals, suggesting a major drive from the calbindin-labeled fiber input. These findings, along with observations from rodents and cats, suggest that there are subdivisions of the MVe defined by calcium-binding proteins that are homologous across rodents, cats, and New World and Old World monkeys.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, 123 Sherman Hall, University at Buffalo, Buffalo, NY 14214-3078, USA.
| | | |
Collapse
|
46
|
Blazquez PM, Hirata Y, Highstein SM. Chronic changes in inputs to dorsal Y neurons accompany VOR motor learning. J Neurophysiol 2005; 95:1812-25. [PMID: 16319196 DOI: 10.1152/jn.01061.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gain changes in the vestibuloocular reflex (VOR) during visual-vestibular mismatch stimulation serve as a model system for motor learning. The cerebellar flocculus and its target neurons in the brain stem (FTN) are candidates for the storage of these novel VOR gains. We have recently studied the changes in vertical flocculus Purkinje cells after chronic VOR motor learning. Recently we recorded Y neurons (a vertical type of FTNs) after chronic VOR motor learning and compared these records with vertical floccular Purkinje cells to document any changes in inputs to FTNs and understand how Y neurons and the vertical Purkinje cells fit into a general model for the vertical VOR. Analysis illustrates that the changes observed in Purkinje cells are not transferred to Y neurons, suggesting that the gain of their synaptic interconnection was modified. We quantified changes in both populations and employed simulations to study changes in parallel pathways to FTNs and to extract the role of the flocculus in VOR adaptation. Low-gain adaptation results in more drastic changes than its high-gain counterpart, causing increases in head velocity sensitivity in parallel pathways. Simulations suggest that cerebellar and brain stem plasticity both participate in novel VOR gain storage and that results obtained following floccular lesion are the product of different mechanisms than those operating in the intact animal.
Collapse
Affiliation(s)
- Pablo M Blazquez
- Dept. of Otolaryngology, Washington University School of Medicine, 4566 Scott Ave., St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
47
|
Shinder ME, Perachio AA, Kaufman GD. Fos responses to short-term adaptation of the horizontal vestibuloocular reflex before and after vestibular compensation in the Mongolian gerbil. Brain Res 2005; 1050:79-93. [PMID: 15978560 DOI: 10.1016/j.brainres.2005.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 05/04/2005] [Accepted: 05/10/2005] [Indexed: 01/04/2023]
Abstract
Fos expression in vestibular brainstem and cerebellar regions was evaluated during vestibular adaptation in the Mongolian gerbil. In addition, vestibular adaptation was evaluated in both normal and compensated animals, as vestibular compensation reorganizes the vestibular pathway constraining adaptive processes. Behaviorally, discordant optokinetic and vestibular input induced appropriate high and low gain in horizontal angular vestibuloocular reflex responses. In normal animals, low gain adaptation was more complete than high gain. However, in compensated animals, only low gain adaptation produced adaptive responses both toward and away from the lesion with appropriate gain shifts. High gain adaptation in compensated animals failed to result in gain adaptation for head movements toward the side of the lesion. Fos expression during acute vestibular adaptation in normal animals was found in the flocculus/paraflocculus, the dorsal cap of the inferior olive (IOK), and the prepositus hypoglossi (PrH). Floccular Fos labeling was increased under both high and low gain conditions. IOK and PrH labeling was increased and correlated during low gain conditions, but was reduced and uncorrelated during high gain conditions. The pattern of Fos labeling in compensated animals was asymmetric-favoring the ipsilesional flocculus and contralesional vestibular brainstem. Both compensated high and low gain adaptation groups displayed increased floccular and IOK Fos labeling, but only compensated high gain adaptation produced increased Fos labeling in the medial vestibular nucleus. The behavioral and Fos labeling results are consistent with visual-vestibular adaptation requiring direct vestibular input.
Collapse
Affiliation(s)
- Michael E Shinder
- University of Texas Medical Branch, 7.102 Medical Research Building, 301 University Boulevard, Galveston, TX 77555-1063, USA
| | | | | |
Collapse
|
48
|
Affiliation(s)
- Ki Bum Sung
- Department of Neurology, College of Medicine, Soonchunhyang University, 1174 Jung-Dong, Wonmi-Gu, Bucheon, Gyeonggi 420-607, Korea.
| | | | | |
Collapse
|
49
|
Abstract
The pathophysiology of spontaneous upbeat (UBN) and downbeat (DBN) nystagmus is reviewed in the light of several instructive clinical findings and experimental data. UBN due to pontine lesions could result from damage to the ventral tegmental tract (VTT), originating in the superior vestibular nucleus (SVN), coursing through the ventral pons and transmitting excitatory upward vestibular signals to the third nerve nucleus. A VTT lesion probably leads to relative hypoactivity of the drive to the motoneurons of the elevator muscles with, consequently, an imbalance between the downward and upward systems, resulting in a downward slow phase. The results observed in internuclear ophthalmoplegia suggest that the medial longitudinal fasciculus (MLF) is involved in the transmission of both upward and downward vestibular signals. Since no clinical cases of DBN due to focal brainstem damage have been reported, it may be assumed that the transmission of downward vestibular signals depends only upon the MLF, whereas that of upward vestibular signals involves both the MLF and the VTT. The main focal lesions resulting in DBN affect the cerebellar flocculus and/or paraflocculus. Apparently, this structure tonically inhibits the SVN and its excitatory efferent tract (i.e. the VTT) but not the downward vestibular system. Therefore, a floccular lesion could result in a disinhibition of the SVN-VTT pathway with, consequently, relative hyperactivity of the drive to the motoneurons of the elevator muscles, resulting in an upward slow phase. UBN also results from lesions affecting the caudal medulla. An area in this region could form part of a feedback loop involved in upward gaze-holding, originating in a collateral branch of the VTT and comprising the caudal medulla, the flocculus and the SVN, successively. Therefore, it is suggested that the main types of spontaneous vertical nystagmus due to focal central lesions result from a primary dysfunction of the SVN-VTT pathway, which becomes hypoactive after pontine or caudal medullary lesions, thereby eliciting UBN, and hyperactive after floccular lesions, thereby eliciting DBN. Lastly, since gravity influences UBN and DBN and may facilitate the downward vestibular system and restrain the upward vestibular system, it is hypothesized that the excitatory SVN-VTT pathway, along with its specific floccular inhibition, has developed to counteract the gravity pull. This anatomical hyperdevelopment is apparently associated with a physiological upward velocity bias, since the gain of all upward slow eye movements is greater than that of downward slow eye movements in normal human subjects and in monkeys.
Collapse
Affiliation(s)
- C Pierrot-Deseilligny
- INSERM 679 and Service de Neurologie 1, Hôpital de la Salpêtrière (AP-HP), Paris, France.
| | | |
Collapse
|
50
|
Baizer JS, Baker JF. Immunoreactivity for calcium-binding proteins defines subregions of the vestibular nuclear complex of the cat. Exp Brain Res 2005; 164:78-91. [PMID: 15662522 PMCID: PMC1201542 DOI: 10.1007/s00221-004-2211-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 11/22/2004] [Indexed: 12/18/2022]
Abstract
The vestibular nuclear complex (VNC) is classically divided into four nuclei on the basis of cytoarchitectonics. However, anatomical data on the distribution of afferents to the VNC and the distribution of cells of origin of different efferent pathways suggest a more complex internal organization. Immunoreactivity for calcium-binding proteins has proven useful in many areas of the brain for revealing structure not visible with cell, fiber or Golgi stains. We have looked at the VNC of the cat using immunoreactivity for the calcium-binding proteins calbindin, calretinin and parvalbumin. Immunoreactivity for calretinin revealed a small, intensely stained region of cell bodies and processes just beneath the fourth ventricle in the medial vestibular nucleus. A presumably homologous region has been described in rodents. The calretinin-immunoreactive cells in this region were also immunoreactive for choline acetyltransferase. Evidence from other studies suggests that the calretinin region contributes to pathways involved in eye movement modulation but not generation. There were focal dense regions of fibers immunoreactive to calbindin in the medial and inferior nuclei, with an especially dense region of label at the border of the medial nucleus and the nucleus prepositus hypoglossi. There is anatomical evidence that suggests that the likely source of these calbindin-immunoreactive fibers is the flocculus of the cerebellum. The distribution of calbindin-immunoreactive fibers in the lateral and superior nuclei was much more uniform. Immunoreactivity to parvalbumin was widespread in fibers distributed throughout the VNC. The results suggest that neurochemical techniques may help to reveal the internal complexity in VNC organization.
Collapse
Affiliation(s)
- Joan S Baizer
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, 123 Sherman Hall, Buffalo, NY, 14214-3078, USA.
| | | |
Collapse
|