1
|
Pedersen TR, Berendt M, Rusbridge C. Neuroanatomy of spinal nociception and pain in dogs and cats: a practical review for the veterinary clinician. Front Vet Sci 2025; 12:1534685. [PMID: 40051980 PMCID: PMC11884323 DOI: 10.3389/fvets.2025.1534685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 03/09/2025] Open
Abstract
Chronic pain is a prevalent condition in companion animals and poses significant welfare challenges. To address these concerns effectively, veterinary clinicians must have a comprehensive understanding of the neuroanatomy of nociception and the intricate processes underlying pain perception. This knowledge is essential for planning and implementing targeted treatment strategies. However, much of the existing information on pain mechanisms is derived from studies on rodents or humans, highlighting the need for further translational research to bridge this gap for veterinary applications. This review aims to provide veterinary clinicians with an in-depth overview of the spinal nociceptive pathways in the dog and cat, tracing the journey from nociceptor activation to cortical processing in the brain. Additionally, the review explores factors influencing nociceptive signaling and pain perception. By enhancing the understanding of these fundamental physiological processes, this work seeks to lay the groundwork for developing effective therapies to manage the complexities of chronic pain in companion animals.
Collapse
Affiliation(s)
- Tenna Remler Pedersen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mette Berendt
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Clare Rusbridge
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
2
|
Saghafi M, Danesh E, Askari R, Mousavi Z, Haghparast A. Differential Roles of the D1- and D2-Like Dopamine Receptors Within the Ventral Tegmental Area in Modulating the Antinociception Induced by Forced Swim Stress in the Rat. Neurochem Res 2024; 49:143-156. [PMID: 37642894 DOI: 10.1007/s11064-023-04017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Several preclinical and clinical studies indicate that exposure to acute stress may decrease pain perception and increases pain tolerance. This phenomenon is called stress-induced analgesia (SIA). A variety of neurotransmitters, including dopamine, is involved in the SIA. Dopaminergic neurons in the mesolimbic circuits, originating from the ventral tegmental area (VTA), play a crucial role in various motivational, rewarding, and pain events. The present study aimed to investigate the modulatory role of VTA dopaminergic receptors in the antinociceptive responses evoked by forced swim stress (FSS) in a model of acute pain. One hundred-five adult male albino Wistar rats were subjected to stereotaxic surgery for implanting a unilateral cannula into the VTA. After one week of recovery, separate groups of animals were given different doses of SCH23390 and Sulpiride (0.25, 1, and 4 µg/0.3 µl) as D1- and D2-like receptor antagonists into the VTA, respectively. Then, the animals were exposed to FSS for a 6-min period, and the pain threshold was measured using the tail-flick test over a 60-min time set intervals. Results indicated that exposure to FSS produces a prominent antinociceptive response, diminishing by blocking both dopamine receptors in the VTA. Nonetheless, the effect of a D1-like dopamine receptor antagonist on FSS-induced analgesia was more prominent than that of a D2-like dopamine receptor antagonist. The results demonstrated that VTA dopaminergic receptors contribute to the pain process in stressful situations, and it might be provided a practical approach to designing new therapeutic agents for pain management.
Collapse
Affiliation(s)
- Mohammad Saghafi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Danesh
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran
| | - Reyhaneh Askari
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran
| | - Zahra Mousavi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.Box: 19615-1178, Tehran, Iran.
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran.
- Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Merighi A. The histology, physiology, neurochemistry and circuitry of the substantia gelatinosa Rolandi (lamina II) in mammalian spinal cord. Prog Neurobiol 2018; 169:91-134. [PMID: 29981393 DOI: 10.1016/j.pneurobio.2018.06.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/07/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023]
Abstract
The substantia gelatinosa Rolandi (SGR) was first described about two centuries ago. In the following decades an enormous amount of information has permitted us to understand - at least in part - its role in the initial processing of pain and itch. Here, I will first provide a comprehensive picture of the histology, physiology, and neurochemistry of the normal SGR. Then, I will analytically discuss the SGR circuits that have been directly demonstrated or deductively envisaged in the course of the intensive research on this area of the spinal cord, with particular emphasis on the pathways connecting the primary afferent fibers and the intrinsic neurons. The perspective existence of neurochemically-defined sets of primary afferent neurons giving rise to these circuits will be also discussed, with the proposition that a cross-talk between different subsets of peptidergic fibers may be the structural and functional substrate of additional gating mechanisms in SGR. Finally, I highlight the role played by slow acting high molecular weight modulators in these gating mechanisms.
Collapse
Affiliation(s)
- Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095 Grugliasco (TO), Italy.
| |
Collapse
|
4
|
Plasticity of Signaling by Spinal Estrogen Receptor α, κ-Opioid Receptor, and Metabotropic Glutamate Receptors over the Rat Reproductive Cycle Regulates Spinal Endomorphin 2 Antinociception: Relevance of Endogenous-Biased Agonism. J Neurosci 2017; 37:11181-11191. [PMID: 29025923 DOI: 10.1523/jneurosci.1927-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/06/2017] [Accepted: 10/02/2017] [Indexed: 01/22/2023] Open
Abstract
We previously showed that intrathecal application of endomorphin 2 [EM2; the highly specific endogenous μ-opioid receptor (MOR) ligand] induces antinociception that varies with stage of the rat estrous cycle: minimal during diestrus and prominent during proestrus. Earlier studies, however, did not identify proestrus-activated signaling strategies that enable spinal EM2 antinociception. We now report that in female rats, increased spinal dynorphin release and κ-opioid receptor (KOR) signaling, as well as the emergence of glutamate-activated metabotropic glutamate receptor 1 (mGluR1) signaling, are critical to the transition from an EM2 nonresponsive state (during diestrus) to an analgesically responsive state (during proestrus). Differential signaling by mGluR1, depending on its activation by membrane estrogen receptor α (mERα; during diestrus) versus glutamate (during proestrus), concomitant with the ebb and flow of spinal dynorphin/KOR signaling, functions as a switch, preventing or promoting, respectively, spinal EM2 antinociception. Importantly, EM2 and glutamate-containing varicosities appose spinal neurons that express MOR along with mGluRs and mERα, suggesting that signaling mechanisms regulating analgesic effectiveness of intrathecally applied EM2 also pertain to endogenous EM2. Regulation of spinal EM2 antinociception by both the nature of the endogenous mGluR1 activator (i.e., endogenous biased agonism at mGluR1) and changes in spinal dynorphin/KOR signaling represent a novel mechanism for modulating analgesic responsiveness to endogenous EM2 (and perhaps other opioids). This points the way for developing noncanonical pharmacological approaches to pain management by harnessing endogenous opioids for pain relief.SIGNIFICANCE STATEMENT The current prescription opioid abuse epidemic underscores the urgency to develop alternative pharmacotherapies for managing pain. We find that the magnitude of spinal endomorphin 2 (EM2) antinociception not only varies with stage of reproductive cycle, but is also differentially regulated during diestrus and proestrus. This finding highlights the need for sex-specific and cycle-specific approaches to pain management. Additionally, our finding that spinal EM2 antinociception in female rats is regulated by both the ebb and flow of spinal dynorphin/κ-opioid receptor signaling over the estrous cycle, as well as the nature of the endogenous mGluR1 activator, could encourage noncanonical pharmacological approaches to pain management, such as harnessing endogenous opioids for pain relief.
Collapse
|
5
|
Fichna J, Lapointe T, Chapman K, Janecka A, Vergnolle N, Altier C, Storr MA. New neostigmine-based behavioral mouse model of abdominal pain. Pharmacol Rep 2013; 64:1146-54. [PMID: 23238471 DOI: 10.1016/s1734-1140(12)70911-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 05/11/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Animal models of visceral pain have gained much attention as an important tool to elucidate the possible mechanisms underlying functional gastrointestinal (GI) disorders. Here we report the development of a new, minimally invasive behavioral model of abdominal pain induced by ip administration of neostigmine in mice. METHODS Spontaneous behavioral responses evoked by ip injection of neostigmine were compared to pain-related behaviors induced by acetic acid solution (ip), mustard oil (MO) and capsaicin (both ic). Pain behaviors were quantified by assessment of defined postures (licking of the abdomen, stretching, squashing of the abdomen and abdominal contractions). Neuronal activation of spinal cord was measured by determining the number of c-Fos-positive cells. RESULTS Neostigmine (2.5 μg/kg, ip), acetic acid solution (ip), MO and capsaicin (both ic) induced spontaneous behavioral responses in mice, which were blocked by morphine (3 mg/kg, ip), suggesting the involvement of pain signaling pathways. Injection of neostigmine enhanced c-Fos expression in spinal cord neurons. CONCLUSION The neostigmine model represents a new minimally invasive mouse model to study visceral pain. Based on the neuronal activation pattern in the spinal cord we suggest that this model may be used to study abdominal pain signaling pathways in the GI tract.
Collapse
Affiliation(s)
- Jakub Fichna
- Snyder Institute for Chronic Diseases, Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Projection neurons in lamina III of the rat spinal cord are selectively innervated by local dynorphin-containing excitatory neurons. J Neurosci 2012; 32:11854-63. [PMID: 22915126 DOI: 10.1523/jneurosci.2707-12.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Large projection neurons in lamina III of the rat spinal cord that express the neurokinin 1 receptor are densely innervated by peptidergic primary afferent nociceptors and more sparsely by low-threshold myelinated afferents. However, we know little about their input from other glutamatergic neurons. Here we show that these cells receive numerous contacts from nonprimary boutons that express the vesicular glutamate transporter 2 (VGLUT2), and form asymmetrical synapses on their dendrites and cell bodies. These synapses are significantly smaller than those formed by peptidergic afferents, but provide a substantial proportion of the glutamatergic synapses that the cells receive (over a third of those in laminae I-II and half of those in deeper laminae). Surprisingly, although the dynorphin precursor preprodynorphin (PPD) was only present in 4-7% of VGLUT2 boutons in laminae I-IV, it was found in 58% of the VGLUT2 boutons that contacted these cells. This indicates a highly selective targeting of the lamina III projection cells by glutamatergic neurons that express PPD, and these are likely to correspond to local neurons (interneurons and possibly projection cells). Since many PPD-expressing dorsal horn neurons respond to noxious stimulation, this suggests that the lamina III projection cells receive powerful monosynaptic and polysynaptic nociceptive input. Excitatory interneurons in the dorsal horn have been shown to possess I(A) currents, which limit their excitability and can underlie a form of activity-dependent intrinsic plasticity. It is therefore likely that polysynaptic inputs to the lamina III projection neurons are recruited during the development of chronic pain states.
Collapse
|
7
|
Sardella TCP, Polgár E, Garzillo F, Furuta T, Kaneko T, Watanabe M, Todd AJ. Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn. Mol Pain 2011; 7:76. [PMID: 21958458 PMCID: PMC3192681 DOI: 10.1186/1744-8069-7-76] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/29/2011] [Indexed: 01/09/2023] Open
Abstract
Background The opioid peptide dynorphin is expressed by certain neurons in the superficial dorsal horn of the spinal cord, but little is known about the types of cell that contain dynorphin. In this study, we have used an antibody against the dynorphin precursor preprodynorphin (PPD), to reveal the cell bodies and axons of dynorphin-expressing neurons in the rat spinal cord. The main aims were to estimate the proportion of neurons in each of laminae I-III that express dynorphin and to determine whether they are excitatory or inhibitory neurons. Results PPD-immunoreactive cells were concentrated in lamina I and the outer part of lamina II (IIo), where they constituted 17% and 8%, respectively, of all neurons. Around half of those in lamina I and 80% of those in lamina II were GABA-immunoreactive. We have previously identified four non-overlapping neurochemical populations of inhibitory interneurons in this region, defined by the presence of neuropeptide Y, galanin, parvalbumin and neuronal nitric oxide synthase. PPD co-localised extensively with galanin in both cell bodies and axons, but rarely or not at all with the other three markers. PPD was present in around 4% of GABAergic boutons (identified by the presence of the vesicular GABA transporter) in laminae I-II. Conclusions These results show that most dynorphin-expressing cells in the superficial dorsal horn are inhibitory interneurons, and that they largely correspond to the population that is defined by the presence of galanin. We estimate that dynorphin is present in ~32% of inhibitory interneurons in lamina I and 11% of those in lamina II. Since the proportion of GABAergic boutons that contain PPD in these laminae was considerably lower than this, our findings suggest that these neurons may generate relatively small axonal arborisations.
Collapse
Affiliation(s)
- Thomas C P Sardella
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ UK
| | | | | | | | | | | | | |
Collapse
|
8
|
Panneton WM, Gan Q, Livergood RS. A trigeminoreticular pathway: implications in pain. PLoS One 2011; 6:e24499. [PMID: 21957454 PMCID: PMC3177822 DOI: 10.1371/journal.pone.0024499] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 08/11/2011] [Indexed: 01/18/2023] Open
Abstract
Neurons in the caudalmost ventrolateral medulla (cmVLM) respond to noxious stimulation. We previously have shown most efferent projections from this locus project to areas implicated either in the processing or modulation of pain. Here we show the cmVLM of the rat receives projections from superficial laminae of the medullary dorsal horn (MDH) and has neurons activated with capsaicin injections into the temporalis muscle. Injections of either biotinylated dextran amine (BDA) into the MDH or fluorogold (FG)/fluorescent microbeads into the cmVLM showed projections from lamina I and II of the MDH to the cmVLM. Morphometric analysis showed the retrogradely-labeled neurons were small (area 88.7 µm(2)±3.4) and mostly fusiform in shape. Injections (20-50 µl) of 0.5% capsaicin into the temporalis muscle and subsequent immunohistochemistry for c-Fos showed nuclei labeled in the dorsomedial trigeminocervical complex (TCC), the cmVLM, the lateral medulla, and the internal lateral subnucleus of the parabrachial complex (PBil). Additional labeling with c-Fos was seen in the subnucleus interpolaris of the spinal trigeminal nucleus, the rostral ventrolateral medulla, the superior salivatory nucleus, the rostral ventromedial medulla, and the A1, A5, A7 and subcoeruleus catecholamine areas. Injections of FG into the PBil produced robust label in the lateral medulla and cmVLM while injections of BDA into the lateral medulla showed projections to the PBil. Immunohistochemical experiments to antibodies against substance P, the substance P receptor (NK1), calcitonin gene regulating peptide, leucine enkephalin, VRL1 (TPRV2) receptors and neuropeptide Y showed that these peptides/receptors densely stained the cmVLM. We suggest the MDH- cmVLM projection is important for pain from head and neck areas. We offer a potential new pathway for regulating deep pain via the neurons of the TCC, the cmVLM, the lateral medulla, and the PBil and propose these areas compose a trigeminoreticular pathway, possibly the trigeminal homologue of the spinoreticulothalamic pathway.
Collapse
Affiliation(s)
- W Michael Panneton
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri, United States of America.
| | | | | |
Collapse
|
9
|
Wu SX, Wang W, Li H, Wang YY, Feng YP, Li YQ. The synaptic connectivity that underlies the noxious transmission and modulation within the superficial dorsal horn of the spinal cord. Prog Neurobiol 2010; 91:38-54. [DOI: 10.1016/j.pneurobio.2010.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 12/10/2009] [Accepted: 01/14/2010] [Indexed: 01/27/2023]
|
10
|
Marvizón JCG, Chen W, Murphy N. Enkephalins, dynorphins, and beta-endorphin in the rat dorsal horn: an immunofluorescence colocalization study. J Comp Neurol 2009; 517:51-68. [PMID: 19711397 DOI: 10.1002/cne.22130] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To characterize neuronal pathways that release opioid peptides in the rat dorsal horn, multiple-label immunohistochemistry, confocal microscopy, and computerized co-localization measures were used to characterize opioid-containing terminals and cells. An antibody that selectively recognized beta-endorphin labeled fibers and neurons in the ventral horn as well as fibers in the lateral funiculus and lamina X, but practically no fibers in the dorsal horn. An anti-enkephalin antibody, which recognized Leu-, Met-, and Phe-Arg-Met-enkephalin, labeled the dorsolateral funiculus and numerous puncta in laminae I-III and V of the dorsal horn. An antibody against Phe-Arg-Met-enkephalin, which did not recognize Leu- and Met-enkephalin, labeled the same puncta. Antibodies against dynorphin and prodynorphin labeled puncta and fibers in laminae I, II, and V, as well as some fibers in the rest of the dorsal horn. Dynorphin and prodynorphin immunoreactivities colocalized in some puncta and fibers, but the prodynorphin antibody additionally labeled cell bodies. There was no co-localization of dynorphin (or prodynorphin) with enkephalin (or Phe-Arg-Met-enkephalin). Enkephalin immunoreactivity did not colocalize with the C-fiber markers calcitonin gene-related peptide (CGRP), substance P, and isolectin B4. In contrast, there was some colocalization of dynorphin and prodynorphin with CGRP and substance P, but not with isolectin B4. Both enkephalin and dynorphin partly colocalized with vesicular glutamate transporter 2, a marker of glutamatergic terminals. The prodynorphin-positive neurons in the dorsal horn were distinct from neurons expressing mu-opioid receptors, neurokinin 1 receptors, and protein kinase C-gamma. These results show that enkephalins and dynorphins are present in different populations of dorsal horn neurons. In addition, dynorphin is present in some C-fibers.
Collapse
Affiliation(s)
- Juan Carlos G Marvizón
- Center for the Neurobiology of Stress, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|
11
|
Butler RK, Finn DP. Stress-induced analgesia. Prog Neurobiol 2009; 88:184-202. [PMID: 19393288 DOI: 10.1016/j.pneurobio.2009.04.003] [Citation(s) in RCA: 464] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 03/15/2009] [Accepted: 04/15/2009] [Indexed: 12/21/2022]
Abstract
For over 30 years, scientists have been investigating the phenomenon of pain suppression upon exposure to unconditioned or conditioned stressful stimuli, commonly known as stress-induced analgesia. These studies have revealed that individual sensitivity to stress-induced analgesia can vary greatly and that this sensitivity is coupled to many different phenotypes including the degree of opioid sensitivity and startle response. Furthermore, stress-induced analgesia is influenced by age, gender, and prior experience to stressful, painful, or other environmental stimuli. Stress-induced analgesia is mediated by activation of the descending inhibitory pain pathway. Pharmacological and neurochemical studies have demonstrated involvement of a large number of neurotransmitters and neuropeptides. In particular, there are key roles for the endogenous opioid, monoamine, cannabinoid, gamma-aminobutyric acid and glutamate systems. The study of stress-induced analgesia has enhanced our understanding of the fundamental physiology of pain and stress and can be a useful approach for uncovering new therapeutic targets for the treatment of pain and stress-related disorders.
Collapse
Affiliation(s)
- Ryan K Butler
- Department of Pharmacology and Therapeutics, NCBES Neuroscience Cluster and Centre for Pain Research, National University of Ireland, Galway, University Road, Galway, Ireland
| | | |
Collapse
|
12
|
Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by mu-opioid receptor internalization. Neuroscience 2009; 161:157-72. [PMID: 19298846 DOI: 10.1016/j.neuroscience.2009.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/28/2009] [Accepted: 03/04/2009] [Indexed: 01/25/2023]
Abstract
The objective of this study was to measure opioid release in the spinal cord during acute and long-term inflammation using mu-opioid receptor (MOR) internalization. In particular, we determined whether opioid release occurs in the segments receiving the noxious signals or in the entire spinal cord, and whether it involves supraspinal signals. Internalization of neurokinin 1 receptors (NK1Rs) was measured to track the intensity of the noxious stimulus. Rats received peptidase inhibitors intrathecally to protect opioids from degradation. Acute inflammation of the hind paw with formalin induced moderate MOR internalization in the L5 segment bilaterally, whereas NK1R internalization occurred only ipsilaterally. MOR internalization was restricted to the lumbar spinal cord, regardless of whether the peptidase inhibitors were injected in a lumbar or thoracic site. Formalin-induced MOR internalization was substantially reduced by isoflurane anesthesia. It was also markedly reduced by a lidocaine block of the cervical-thoracic spinal cord (which did not affect the evoked NK1R internalization) indicating that spinal opioid release is mediated supraspinally. In the absence of peptidase inhibitors, formalin and hind paw clamp induced a small amount of MOR internalization, which was significantly higher than in controls. To study spinal opioid release during chronic inflammation, we injected complete Freund's adjuvant (CFA) in the hind paw and peptidase inhibitors intrathecally. Two days later, no MOR or NK1R internalization was detected. Furthermore, CFA inflammation decreased MOR internalization induced by clamping the inflamed hind paw. These results show that acute inflammation, but not chronic inflammation, induces segmental opioid release in the spinal cord that involves supraspinal signals.
Collapse
|
13
|
Rosenow JM. Physiology and Pathophysiology of Chronic Pain. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Huang M, Huang T, Xiang Y, Xie Z, Chen Y, Yan R, Xu J, Cheng L. Ptf1a, Lbx1 and Pax2 coordinate glycinergic and peptidergic transmitter phenotypes in dorsal spinal inhibitory neurons. Dev Biol 2008; 322:394-405. [PMID: 18634777 DOI: 10.1016/j.ydbio.2008.06.031] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/20/2008] [Accepted: 06/24/2008] [Indexed: 10/21/2022]
Abstract
Inhibitory neurons in the dorsal horn synthesize a variety of neurotransmitters, including GABA, glycine and a set of peptides. Here we show that three transcription factors, Ptf1a, Pax2, and Lbx1, which have been reported to promote a GABAergic cell fate, also specify glycinergic and peptidergic transmitter phenotypes. First, Ptf1a appears to be a master regulator, as indicated by a requirement of Ptf1a for the expression of glycinergic marker GlyT2 and a set of peptides, including neuropeptide Y (NPY), nociceptin/orphanin FQ (N/OFQ), somatostatin (SOM), enkephalin (ENK), dynorphin (DYN) and galanin (GAL). Second, Pax2 is a downstream target of Ptf1a and controls subsets of transmitter phenotypes, including the expression of GlyT2, NPY, N/OFQ, DYN, and GAL, but is dispensable for SOM or ENK expression. Third, for Lbx1, due to neuronal cell loss at late stages, our analyses focused on early embryonic stages, and we found that Lbx1 is required for the expression of GlyT2, NPY, N/OFQ and is partially responsible for SOM expression. Our studies therefore suggest a coordinated and hierarchical specification of a variety of neurotransmitters in dorsal spinal inhibitory neurons.
Collapse
Affiliation(s)
- Menggui Huang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen W, Song B, Marvizón JCG. Inhibition of opioid release in the rat spinal cord by alpha2C adrenergic receptors. Neuropharmacology 2008; 54:944-53. [PMID: 18343461 DOI: 10.1016/j.neuropharm.2008.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 02/01/2008] [Accepted: 02/03/2008] [Indexed: 10/22/2022]
Abstract
Neurotransmitter receptors that control the release of opioid peptides in the spinal cord may play an important role in pain modulation. Norepinephrine, released by a descending pathway originating in the brainstem, is a powerful inducer of analgesia in the spinal cord. Adrenergic alpha2C receptors are present in opioid-containing terminals in the dorsal horn, where they could modulate opioid release. The goal of this study was to investigate this possibility. Opioid release was evoked from rat spinal cord slices by incubating them with the sodium channel opener veratridine in the presence of peptidase inhibitors (actinonin, captopril and thiorphan), and was measured in situ through the internalization of mu-opioid receptors in dorsal horn neurons. Veratridine produced internalization in 70% of these neurons. The alpha2 receptor agonists clonidine, guanfacine, medetomidine and UK-14304 inhibited the evoked mu-opioid receptor internalization with IC50s of 1.7 microM, 248 nM, 0.3 nM and 22 nM, respectively. However, inhibition by medetomidine was only partial, and inhibition by UK-14304 reversed itself at concentrations higher than 50 nM. None of these agonists inhibited mu-opioid receptor internalization produced by endomorphin-2, showing that they inhibited opioid release and not the internalization itself. The inhibitions produced by clonidine, guanfacine or UK-14304 were completely reversed by the selective alpha2C antagonist JP-1203. In contrast, inhibition by guanfacine was not prevented by the alpha2A antagonist BRL-44408. These results show that alpha2C receptors inhibit the release of opioids in the dorsal horn. This action may serve to shut down the opioid system when the adrenergic system is active.
Collapse
Affiliation(s)
- Wenling Chen
- Center for the Neurobiology of Stress and CURE: Digestive Diseases Research Center, Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
16
|
Schneider SP, Walker TM. Morphology and electrophysiological properties of hamster spinal dorsal horn neurons that express VGLUT2 and enkephalin. J Comp Neurol 2007; 501:790-809. [PMID: 17299755 DOI: 10.1002/cne.21292] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The excitatory amino acid glutamate mediates transmission at spinal synapses, including those formed by sensory afferent fibers and by intrinsic interneurons. The identity and physiological properties of glutamatergic dorsal horn neurons are poorly characterized despite their importance in spinal sensory circuits. Moreover, many intrinsic spinal glutamatergic synapses colocalize the opioid peptide enkephalin (ENK), but the neurons to which they belong are yet to be identified. Therefore, we used immunohistochemistry and confocal microscopy to investigate expression of the VGLUT2 vesicular glutamate transporter, an isoform reported in nonprimary afferent spinal synapses, and ENK in electrophysiologically identified neurons of hamster spinal dorsal horn. VGLUT2 immunoreactivity was localized in restricted fashion to axon varicosities of neurons recorded from laminae II-V, although the occurrence of immunolabeling in individual varicosities varied widely between cells (39 +/- 36%, n = 31 neurons). ENK colocalized with VGLUT2 in up to 77% of varicosities (17 +/- 21%, n = 21 neurons). The majority of neurons expressing VGLUT2 and/or ENK had axons with dense local terminations or projections consistent with propriospinal functions. VGLUT2 and ENK labeling were not correlated with cellular morphology, intrinsic membrane properties, firing patterns, or synaptic responses to sensory afferent stimulation. However, VGLUT2 expression was significantly higher in neurons with depolarized resting membrane potential. The results are new evidence for a population of dual-function dorsal horn interneurons that might provide another mechanism for limiting excitation within dorsal horn circuits during periods of strong sensory activation.
Collapse
Affiliation(s)
- Stephen P Schneider
- Department of Physiology and Neuroscience Program, Michigan State University, E. Lansing, Michigan 48824-3320, USA.
| | | |
Collapse
|
17
|
Shimoyama M, Tatsuoka H, Ohtori S, Tanaka K, Shimoyama N. Change of dorsal horn neurochemistry in a mouse model of neuropathic cancer pain. Pain 2005; 114:221-30. [PMID: 15733648 DOI: 10.1016/j.pain.2004.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 11/09/2004] [Accepted: 12/13/2004] [Indexed: 11/18/2022]
Abstract
We investigated some neurochemical changes that take place in the spinal cord dorsal horn in a mouse model of neuropathic cancer pain. The model was produced by inoculation of Meth-A sarcoma cells to the vicinity of the sciatic nerve, which resulted in growth of a tumor mass embedding the nerve. Hind paw-lifting, a behavioral sign of spontaneous pain, was at maximum on Day 18, but decreased thereafter. The decrease was likely caused by progression of motor paralysis. On Day 18, thermal and mechanical pain thresholds of the affected paw were significantly increased. Histologically, the sciatic nerve presented damages to both unmyelinated and myelinated fibers on Day 18, which were more pronounced on Day 25. In the spinal cord, c-Fos-positive cells were significantly increased in the superficial and deep layers on Day 18. The number of c-Fos-positive cells in the superficial layer correlated with the duration of paw-lifting. The increase in c-Fos-positive cells was still present on Day 25 despite decreased paw-lifting. Substance P and calcitonin gene-related peptide were up-regulated on Day 18 but down-regulated on Day 25. A marked up-regulation of dynorphin A (DynA) was present on Day 18 and persisted through Day 25. Our model caused progressive damage to the sciatic nerve and presented spontaneous pain-behavior while the paw became hyposensitive to mechanical and thermal stimuli. Since the up-regulation of DynA in the dorsal horn persisted and paralleled the increase in c-Fos-positive cells, the release of DynA may be associated with spontaneous pain in our model.
Collapse
Affiliation(s)
- Megumi Shimoyama
- Department of Autonomic Physiology, Chiba University Graduate School of Medicine, Chuo-ku, Chiba-ken 260-8670, Japan.
| | | | | | | | | |
Collapse
|
18
|
Abstract
The reverse transcriptase-polymerase chain reaction (RT-PCR) was used to clone a cDNA fragment of a putative G-protein-coupled receptor from rat brain total RNA. Nucleotide sequencing of this cDNA fragment showed it to be homologous to that of the mu-opioid receptor splice variant MOR(1C) from mice. We used the cDNA to make an RNA probe for a ribonuclease protection assay (RPA). The results from the RPA showed a protected fragment of the size expected for MOR(1C) mRNA, as well as other RNase-protected fragments that may indicate the existence of other MOR1 transcripts. We then used the RNA probe for in situ hybridization (ISH) experiments. We detected strong autoradiographic labeling over much of the rat telencephalon, diencephalon, mesencephalon, cerebellum, spinal cord, and dorsal root ganglia. These findings suggest that MOR(1C), and possibly other MOR1 splice variants, are important components of the system by which the actions of opioids are transduced.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Brain/metabolism
- Cloning, Molecular/methods
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Male
- Molecular Sequence Data
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/isolation & purification
Collapse
Affiliation(s)
- Stephen A Schnell
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55405, USA.
| | | |
Collapse
|
19
|
Coveñas R, Martín F, Salinas P, Rivada E, Smith V, Aguilar LA, Díaz-Cabiale Z, Narváez JA, Tramu G. An immunocytochemical mapping of methionine-enkephalin-arg6-gly7-leu8 in the human brainstem. Neuroscience 2004; 128:843-59. [PMID: 15464291 DOI: 10.1016/j.neuroscience.2004.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2004] [Indexed: 11/16/2022]
Abstract
Using an indirect immunoperoxidase technique, we studied the distribution of immunoreactive fibers and cell bodies containing methionine-enkephalin-Arg(6)-Gly(7)-Leu(8) in the adult human brainstem. Immunoreactive cell bodies were found in the reticular formation of the medulla oblongata (in which we observed the highest density of immunoreactive cell bodies) and the pons, the solitary nucleus, the hypoglossal nucleus, the medial and spinal vestibular nuclei, the lateral cuneate nucleus, the nucleus prepositus, the central gray of the pons and mesencephalon, the central and pericentral nuclei of the inferior colliculus, the superior colliculus, ventral to the superior olive and in the midline region of the pons and mesencephalon. The highest density of immunoreactive fibers containing methionine-enkephalin-Arg(6)-Gly(7)-Leu(8) was found in the spinal trigeminal nucleus, the central gray and the reticular formation of the medulla oblongata, pons and mesencephalon, the solitary nucleus, the spinal vestibular nucleus, the dorsal accessory olivary nucleus, the raphe obscurus, the substantia nigra and in the interpeduncular nucleus. The widespread distribution of immunoreactive structures containing methionine-enkephalin-Arg(6)-Gly(7)-Leu(8) in the human brainstem indicates that this neuropeptide might be involved in several physiological mechanisms, acting as a neurotransmitter and/or neuromodulator.
Collapse
Affiliation(s)
- R Coveñas
- Institute of Neurosciences of Castilla y León, Laboratory of Neuroanatomy of the Peptidergic Systems, Facultad de Medicina, Campus Unamuno, c/ Alfonso X El Sabio s/n, 37007 Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Although much has been accomplished in the past several decades, treatment of chronic pain remains imperfect. This article presents the anatomy and physiology of the pain system along with the neurobiologic changes that occur in the establishment and maintenance of chronic pain states.
Collapse
Affiliation(s)
- Joshua M Rosenow
- Section of Functional and Stereotactic Neurosurgery, S31, Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
21
|
Pesini P, Pego-Reigosa R, Tramu G, Coveñas R. Distribution of alpha-neoendorphin immunoreactivity in the diencephalon and the brainstem of the dog. J Chem Neuroanat 2001; 22:251-62. [PMID: 11719022 DOI: 10.1016/s0891-0618(01)00136-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Alpha-neoendorphin (alpha-NE) is an opiate decapeptide derived from the prodynorphin protein. Its anatomical distribution in the brain of mammals other than the rat, particularly in carnivores, is less well known than for other opiate peptides. In the present work, we have charted the distribution of alpha-NE immunoreactive fibers and perikarya in the diencephalon and the brainstem of the dog. The highest densities of labeled fibers were found in the substantia nigra and in patches within the nucleus of the solitary tract. Moderate densities appeared in the arcuate nucleus (Ar), median eminence, entopeduncular nucleus, ventral tegmental area, retrorubral area, periaqueductal central gray, interpeduncular nucleus and lateral parabrachial nucleus. Groups of numerous labeled perikarya were localized in the magnocellular hypothalamic nuclei, Ar and in the central superior and incertus nuclei in the metencephalon. Moreover, less densely packed fibers and cells appeared widely distributed throughout many nuclei in the region studied. These results are discussed with regard to the pattern described in other species. In addition, the present results were compared with the distribution of met-enkephalin immunoreactivity in the diencephalon and the brainstem of the dog that we have recently described. Although the distributions of these two peptides overlap in many areas, the existence of numerous differences suggest that they form separate opiate systems in the dog.
Collapse
Affiliation(s)
- P Pesini
- Departamento de Anatomía, Facultad de Veterinaria, Universidad de Santiago, 27002 Lugo, Spain.
| | | | | | | |
Collapse
|
22
|
|
23
|
Kohno T, Kumamoto E, Higashi H, Shimoji K, Yoshimura M. Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. J Physiol 1999; 518 ( Pt 3):803-13. [PMID: 10420016 PMCID: PMC2269468 DOI: 10.1111/j.1469-7793.1999.0803p.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The actions of opioid receptor agonists on synaptic transmission in substantia gelatinosa (SG) neurones in adult (6- to 10-week-old) rat spinal cord slices were examined by use of the blind whole-cell patch-clamp technique. 2. Both the mu-receptor agonist DAMGO (1 microM) and the delta-receptor agonist DPDPE (1 microM) reduced the amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) which were monosynaptically evoked by stimulating Adelta afferent fibres. Both also decreased the frequency of miniature EPSCs without affecting their amplitude. 3. In contrast, the kappa-receptor agonist U-69593 (1 microM) had little effect on the evoked and miniature EPSCs. 4. The effects of DAMGO and DPDPE were not seen in the presence of the mu-receptor antagonist CTAP (1 microM) and the delta-receptor antagonist naltrindole (1 microM), respectively. 5. Neither DAMGO nor DPDPE at 1 microM affected the responses of SG neurones to bath-applied AMPA (10 microM). 6. Evoked and miniature inhibitory postsynaptic currents (IPSCs), mediated by either the GABAA or the glycine receptor, were unaffected by the mu-, delta- and kappa-receptor agonists. Similar results were also obtained in SG neurones in young adult (3- to 4-week-old) rat spinal cord slices. 7. These results indicate that opioids suppress excitatory but not inhibitory synaptic transmission, possibly through the activation of mu- and delta- but not kappa-receptors in adult rat spinal cord SG neurones; these actions are presynaptic in origin. Such an action of opioids may be a possible mechanism for the antinociception produced by their intrathecal administration.
Collapse
MESH Headings
- Animals
- Benzeneacetamides
- Electric Stimulation
- Electrophysiology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalin, D-Penicillamine (2,5)-
- Enkephalins/pharmacology
- Evoked Potentials/drug effects
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Opioid Peptides/pharmacology
- Patch-Clamp Techniques
- Pyrrolidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/agonists
- Spinal Cord/drug effects
- Spinal Cord/physiology
- Substantia Gelatinosa/drug effects
- Substantia Gelatinosa/physiology
- Synaptic Transmission/drug effects
Collapse
Affiliation(s)
- T Kohno
- Department of Physiology, Saga Medical School, Saga 849-8501, Japan
| | | | | | | | | |
Collapse
|
24
|
Bhandari RN, Ogilvie J, Clarke RW. Differences in opioidergic inhibition of spinal reflexes and Fos expression evoked by mechanical and chemical noxious stimuli in the decerebrated rabbit. Neuroscience 1999; 90:177-89. [PMID: 10188944 DOI: 10.1016/s0306-4522(98)00426-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Noxious mechanical and chemical stimuli were applied to the toes of the left hind limb of decerebrated, spinalized rabbits and their effects on a hind limb spinal withdrawal reflex and expression of Fos-like immunoreactivity in the spinal cord were measured. The animals were prepared so as to minimize nociceptive inputs arising from surgery. A single crush stimulus applied with a pair of haemostatic forceps caused long-lasting (c. 20 min) inhibition of reflexes evoked in medial gastrocnemius motoneurons by electrical stimulation of the skin at the heel. Naloxone (0.25 mg/kg i.v.) increased reflexes to more than 1000% of pre-drug controls and reversed crush-evoked inhibition. Mustard oil applied to the toes had no consistent effects on the heel-gastrocnemius reflex before or after naloxone. Both crush and mustard oil stimuli gave rise to unilateral increases in the number of Fos-immunopositive profiles in the superficial dorsal horn of spinal segments L7 and S1. There were significantly more Fos-immunoreactive elements in the central and lateral parts of lamina I of both segments in animals receiving the crush stimulus than there were in animals receiving the mustard oil stimulus. Immunochemical localization of enkephalins in rabbit spinal cord showed a dense network of fibres and terminals in laminae I and II, accompanied by infrequent but distinctly stained neuronal cell bodies. The same pattern, with increased numbers of visible cell bodies, was seen after treatment with colchicine. The present data show that tonic and stimulus-evoked opioidergic inhibition of the heel-gastrocnemius reflex of the rabbit are not epiphenomena of surgical preparation of the hindlimb. Opioid-mediated inhibition of the heel-gastrocnemius withdrawal reflex of the rabbit was evoked by noxious mechanical but not by chemical stimulation of the toes. Of these stimuli, the former gave rise to greater activation of neurons in central and lateral lamina I of segments L7 and S1, the region of termination of afferent fibres from the heel and the location of some enkephalin-positive neuronal cell bodies. Thus, noxious mechanical stimulation of the toes elicits inhibition of the heel-gastrocnemius withdrawal reflex, probably via activation of enkephalinergic neurons in the lateral half of lamina I in the L7 and S1 segments.
Collapse
Affiliation(s)
- R N Bhandari
- Division of Animal Physiology, School of Biological Sciences, University of Nottingham, Loughborough, UK
| | | | | |
Collapse
|
25
|
Arcaya JL, Cano G, Gómez G, Maixner W, Suárez-Roca H. Dynorphin A increases substance P release from trigeminal primary afferent C-fibers. Eur J Pharmacol 1999; 366:27-34. [PMID: 10064148 DOI: 10.1016/s0014-2999(98)00897-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dynorphin A-(1-17) has been found to produce spinal antianalgesia and allodynia. Thus, we studied whether dynorphin A-(1-17) modulates substance P release evoked by the C-fiber-selective stimulant capsaicin (1 microM) from trigeminal nucleus caudalis slices. Very low concentrations of dynorphin A-(1-17) (0.01-0.1 nM) strongly facilitated capsaicin-evoked substance P release. This dynorphin A-(1-17) effect was not blocked by the opioid receptor antagonists naloxone (100 nM), beta-funaltrexamine (20 nM), naloxonazine (1 nM), nor-binaltorphimine (3 nM) and ICI 174,864 (N,N-dialyl-Tyr-Aib-Phe-Leu; 0.3 microM). Yet, the effect of dynorphin A-(1-17) was blocked by the NMDA receptor antagonist MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5-10-imine maleate; 0.3 microM). Neonatal treatment with capsaicin (50 mg/kg s.c.), which destroys substance P-containing primary afferents, abolished the excitatory effect of dynorphin A-(1-17) on K+-evoked substance P release. In conclusion, dynorphin A-(1-17) increases substance P release from C-fibers by the activation of NMDA receptors which supports the involvement of presynaptic mechanisms in dynorphin-induced antianalgesia and allodynia.
Collapse
Affiliation(s)
- J L Arcaya
- Instituto de Investigaciones Clínicas, School of Medicine, University of Zulia, Maracaibo, Venezuela
| | | | | | | | | |
Collapse
|
26
|
Zhang X, Bao L, Arvidsson U, Elde R, Hökfelt T. Localization and regulation of the delta-opioid receptor in dorsal root ganglia and spinal cord of the rat and monkey: evidence for association with the membrane of large dense-core vesicles. Neuroscience 1998; 82:1225-42. [PMID: 9466442 DOI: 10.1016/s0306-4522(97)00341-2] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Using immunohistochemistry and immunoelectron microscopy, the localization and regulation of delta-opioid receptor-like immunoreactivity were studied in dorsal root ganglia and spinal cord of normal rat and monkey, and after peripheral axotomy. Delta-opioid receptor-like immunoreactivity was observed in many small dorsal root ganglion neurons, and in the rat most of them contained substance P and calcitonin gene-related peptide. At the ultrastructural level, delta-opioid receptor-like immunoreactivity was localized in the Golgi complex, on the membrane of the large dense-core vesicles and on the membrane of and/or inside a type of large vesicle with an interior of low electron density. The latter vesicles were often in contact with multivesicular bodies. In the superficial dorsal horn of the spinal cord, most delta-opioid receptor-positive nerve fibers contain substance P and/or calcitonin gene-related peptide, both in rat and monkey. Also, in these nerve endings delta-opioid receptor-like immunoreactivity was found on the membrane of large dense-core vesicles and on the membrane of, or in, the lucent vesicles. Occasionally, delta-opioid receptor-like immunoreactivity was observed on the plasmalemma of the terminals, particularly when the vesicles were in exocytotic contact with the plasmalemma. Peripheral axotomy induced a decrease in delta-opioid receptor-like immunoreactivity both in cell bodies in the dorsal root ganglia and in terminals in the dorsal horn. These data suggest that the delta-opioid receptor may be a constituent of the membrane of large dense-core vesicles storing and releasing neuropeptides. It is suggested that upon exocytotic release of substance P and calcitonin gene-related peptide from large dense-core vesicles, there is a transient modification of the surface of the primary afferent terminals which leads to exposure of the receptor protein so that enkephalin released from adjacent terminals can activate the receptor. The decrease in delta-opioid receptors after axotomy indicates that delta-opioid receptor-mediated inhibitory effects are attenuated at the spinal level both in the rat and monkey.
Collapse
Affiliation(s)
- X Zhang
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
27
|
Baker DG, West SA, Orth DN, Hill KK, Nicholson WE, Ekhator NN, Bruce AB, Wortman MD, Keck PE, Geracioti TD. Cerebrospinal fluid and plasma beta-endorphin in combat veterans with post-traumatic stress disorder. Psychoneuroendocrinology 1997; 22:517-29. [PMID: 9373885 DOI: 10.1016/s0306-4530(97)00053-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Opioid-mediated analgesia develops in experimental animals following traumatic stress and increased opioid-mediated analgesia has been observed in combat veterans with post-traumatic stress disorder (PTSD). These observations have led to the hypothesis that increased central nervous system (CNS) opioidergic activity exists in patients with PTSD. However, direct CNS data on opioid peptide concentrations and dynamics in patients with PTSD are lacking. We withdrew cerebrospinal fluid (CSF) via a flexible, indwelling subarachnoid catheter over a 6-h period and determined hourly CSF concentrations of immunoreactive beta-endorphin (ir beta END) in 10 well-characterized combat veterans with PTSD and nine matched normal volunteers. Blood was simultaneously withdrawn to obtain plasma for ir beta END. PTSD symptom clusters, as measured by the CAPS, were correlated with neuroendocrine data. Mean CSF ir beta END was significantly greater in patients with PTSD compared with normals and there was a negative correlation between the ir beta END and PTSD intrusive and avoidant symptoms of PTSD. No intergroup difference between plasma ir beta END was found, nor was there a significant correlation between CSF and plasma ir beta END. Immunoreactive beta-lipotropin (ir beta LPH) and pro-opiomelanocortin (irPOMC), both precursors of beta END, were much more plentiful in human CSF than was beta-endorphin itself, as has been previously reported. It remains to be determined whether the increased CNS opioid concentrations predate traumatic stress, thereby conferring a vulnerability to dissociative states and PTSD itself, or result from the trauma. The negative correlation between CSF ir beta END and avoidant and intrusive symptoms suggests that CNS hypersecretion of opioids might constitute an adaptive response to traumatic experience. Poor correlation between CSF and plasma ir beta END limits use of plasma measures to assess CNS opioid activity.
Collapse
Affiliation(s)
- D G Baker
- Psychiatry Service, Cincinnati Veterans Affairs Medical Center, OH 15220, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang L, Peoples RW, Oz M, Harvey-White J, Weight FF, Brauneis U. Potentiation of NMDA receptor-mediated responses by dynorphin at low extracellular glycine concentrations. J Neurophysiol 1997; 78:582-90. [PMID: 9307096 DOI: 10.1152/jn.1997.78.2.582] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The effect of dynorphin A(1-13) on N-methyl-D-aspartate (NMDA)-activated currents was investigated in the presence of low extracellular glycine concentrations in Xenopus oocytes expressing recombinant heteromeric NMDA receptors and in cultured hippocampal neurons with the use of voltage-clamp techniques. At an extracellular added glycine concentration of 100 nM, dynorphin A(1-13) (10 microM) greatly increased the amplitude of NMDA-activated currents for all heteromeric subunit combinations tested; on average, the potentiation was: epsilon1/zeta1, 3,377 +/- 1,416% (mean +/- SE); epsilon2/zeta1, 1,897 +/- 893%; epsilon3/zeta1, 4,356 +/- 846%; and epsilon4/zeta1, 1,783 +/- 503%. Potentiation of NMDA-activated current by dynorphin A(1-13) was concentration dependent between 0.1 and 10 microM dynorphin A(1-13), with a half-maximal concentration value of 2.77 microM and an apparent Hill coefficient of 2.53, for epsilon2/zeta1 subunits at 100 nM added extracellular glycine. Percentage potentiation by dynorphin A(1-13) was maximal at the lowest glycine concentrations tested (0.01 and 0.1 microM), and decreased with increasing glycine concentration. No significant potentiation was observed at glycine concentrations > 0.1 microM for epsilon1/zeta1, epsilon2/zeta1, and epsilon4/zeta1 subunits, or at > 1 microM for epsilon3/zeta1 subunits. Potentiation of NMDA-activated currents by dynorphin A(1-13) was not inhibited by 1 microM of the kappa-opioid receptor antagonist nor-binaltorphimine, and potentiation was not observed with 10 microM of the kappa-opioid receptor agonist trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzene-acetamide. Potentiation of NMDA-activated current by dynorphin A(1-13) was inhibited by the glycine antagonist kynurenic acid (50 microM). NMDA-activated current was also potentiated at low glycine concentrations by 10 microM dynorphin A(2-13) or (3-13), both of which have a glycine as the first amino acid, but not by 10 microM dynorphin A(4-13), which does not have glycine as an amino acid. In hippocampal neurons, 10 microM dynorphin A(1-13) or (2-13) potentiated steady-state NMDA-activated current in the absence of added extracellular glycine. The extracellular free glycine concentration, determined by high-performance liquid chromatography, was between 26 and 36 nM for the bathing solution in presence or absence of 10 microM dynorphin A(1-13), (2-13), (3-13), or (4-13), and did not differ significantly among these solutions. The observations are consistent with the potentiation of NMDA-activated current at low extracellular glycine concentrations resulting from an interaction of the glycine amino acids in dynorphin A(1-13) with the glycine coagonist site on the NMDA receptor. Because dynorphin A is an endogenous peptide that can be coreleased with glutamate at glutamatergic synapses, the potentiation of NMDA receptor-mediated responses could be an important physiological regulator of NMDA receptor function at these synapses.
Collapse
Affiliation(s)
- L Zhang
- Laboratory of Molecular and Cellular Neurobiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
29
|
Bon K, Lantéri-Minet M, Menétrey D. Involvement of the dorsal paratrigeminal nucleus in visceral pain-related phenomena. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1997; 320:607-13. [PMID: 9337996 DOI: 10.1016/s0764-4469(97)85693-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cyclophosphamide is an antitumor agent that generates evolving cystitis through the release of toxic urinary by-products, mostly acrolein, that attack the bladder walls. Using c-fos expression, which permits quantitative analysis of neural activity, we demonstrated that the paratrigeminal nucleus is involved in processing the inputs that this disease generates. c-Fos staining in the paratrigeminal nucleus increases regularly reaching a plateau over the 4 h postinjection period during which the disease develops. The degree of staining is directly correlated with that of the subnucleus medialis of the nucleus of the solitary tract, which is one of the main structures that processes cystitis-related inputs at the supraspinal level.
Collapse
Affiliation(s)
- K Bon
- Unité 161, Institut national de la santé et de la recherche médicale, 2, Paris, France
| | | | | |
Collapse
|
30
|
Bon K, Lantéri-Minet M, Menétrey D. Involvement of the dorsal paratrigeminal nucleus in visceral pain-related phenomena. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1997; 320:533-9. [PMID: 9309254 DOI: 10.1016/s0764-4469(97)84708-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cyclophosphamide is an antitumor agent that generates evolving cystitis through the release of toxic urinary by-products, mostly acrolein, that attack the bladder walls. Using c-fos expression, which permits quantitative analysis of neural activity, we demonstrated that the paratrigeminal nucleus is involved in processing the inputs that this disease generates. c-Fos staining in the paratrigeminal nucleus increases regularly reaching a plateau over the 4 h postinjection period during which the disease develops. The degree of staining is directly correlated with that of the subnucleus medialis of the nucleus of the solitary tract, which is one of the main structures that processes cystitis-related inputs at the supraspinal level.
Collapse
Affiliation(s)
- K Bon
- Unit 161, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | | |
Collapse
|
31
|
Abdelmagid ME, Gajewski JB. Modulation of feline bladder and distal urethral responses to dorsal sacral root stimulation by intrathecal administration of a kappa 1-opioid agonist. Urology 1997; 49:802-7. [PMID: 9145996 DOI: 10.1016/s0090-4295(97)00086-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES We examined bladder and distal urethral responses to sacral dorsal root (SDR) electrostimulation with simultaneous intrathecal administration of a kappa 1-opiate agonist. METHODS Experiments were conducted on 14 spinally intact and 6 chronic spinally transected decerebrated mongrel cats. In the chronically spinalized cats, midthoracic complete spinal cord transection was performed 6 to 8 weeks before the electrostimulation experiments. Sympathetic denervation was carried out by cutting the sympathetic chain and the hypogastric nerve bilaterally. Proximal ends of the cut S1-3DR were stimulated, and bladder pressure and urethral perfusion pressure changes were recorded before and after drug administration. RESULTS The S2DR electrostimulation in spinally intact cats produced the best vesical contraction, but with dyssynergic urethral response. The magnitude and the pattern of the response changed with the different stimulation parameters. U-50,488H, a selective kappa 1-opiate receptor agonist, decreased significantly the bladder and the urethral responses to S2DR stimulation in spinally intact but not in chronic spinally transected cats. Nor-BNI, a kappa antagonist, reversed these responses in spinally intact cats. CONCLUSIONS Our results showed that it is feasible to produce bladder contraction with SDR stimulation and suggest that kappa 1 receptors may have a role in bladder and distal urethral reflexes at the suprasacral level.
Collapse
Affiliation(s)
- M E Abdelmagid
- Department of Urology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
32
|
Pohl M, Ballet S, Collin E, Mauborgne A, Bourgoin S, Benoliel JJ, Hamon M, Cesselin F. Enkephalinergic and dynorphinergic neurons in the spinal cord and dorsal root ganglia of the polyarthritic rat - in vivo release and cDNA hybridization studies. Brain Res 1997; 749:18-28. [PMID: 9070623 DOI: 10.1016/s0006-8993(96)01161-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Complex and contradictory data have been reported regarding the changes in spinal opioidergic systems associated with chronic inflammatory pain in the rat. In an attempt to solve these discrepancies, the in vivo release of met-enkephalin and dynorphin and the expression of the corresponding propeptide genes were investigated at the spinal level in arthritic rats and paired controls. A dramatic increase in the concentration of prodynorphin mRNA (+300-550%) and a less pronounced elevation of that of dynorphin-like material (+40-50%) were found in the dorsal part of cervical and lumbar segments of the spinal cord in rats rendered arthritic by an intradermal injection of Freund's adjuvant four weeks prior to these measurements. In addition, the spinal release of dynorphin-like material (assessed through an intrathecal perfusion procedure in halothane-anaesthetized animals) was approximately twice as high in arthritic rats as in controls. In spite of significant elevations in the levels of both met-enkephalin (+30-70%) and proenkephalin A mRNA (+40-50%) in the dorsal part of cervical and lumbar segments, the spinal release of met-enkephalin-like material was decreased (-50%) in arthritic rats as compared to paired controls. Proenkephalin A mRNA (but not prodynorphin mRNA) could be measured in dorsal root ganglia, and its levels were dramatically reduced in ganglia at the lumbar segments in arthritic rats. Such parallel reductions in the spinal release of met-enkephalin-like material and the levels of proenkephalin A mRNA in dorsal root ganglia of arthritic rats support the idea that the activity of primary afferent enkephalinergic fibres decreases markedly during chronic inflammatory pain.
Collapse
Affiliation(s)
- M Pohl
- INSERM U 288, Neurobiologie Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Saltpêtrière, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sora I, Takahashi N, Funada M, Ujike H, Revay RS, Donovan DM, Miner LL, Uhl GR. Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci U S A 1997; 94:1544-9. [PMID: 9037090 PMCID: PMC19828 DOI: 10.1073/pnas.94.4.1544] [Citation(s) in RCA: 404] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Morphine produces analgesia at opiate receptors expressed in nociceptive circuits. mu, delta, and kappa opiate receptor subtypes are expressed in circuits that can modulate nociception and receive inputs from endogenous opioid neuropeptide ligands. The roles played by each receptor subtype in nociceptive processing in drug-free and morphine-treated states have not been clear, however. We produced homologous, recombinant mu, opiate receptor, heterozygous and homozygous knockout animals that displayed approximately 54% and 0% of wild-type levels of mu receptor expression, respectively. These mice expressed kappa receptors and delta receptors at near wild-type levels. Untreated knockout mice displayed shorter latencies on tail flick and hot plate tests for spinal and supraspinal nociceptive responses than wild-type mice. These findings support a significant role for endogenous opioid-peptide interactions with mu opiate receptors in normal nociceptive processing. Morphine failed to significantly reduce nociceptive responses in hot plate or tail flick tests of homozygous mu receptor knockout mice, and heterozygote mice displayed right and downward shifts in morphine analgesia dose-effect relationships. These results implicate endogenous opioid-peptide actions at mu opiate receptors in several tests of nociceptive responsiveness and support mu receptor mediation of morphine-induced analgesia in tests of spinal and supraspinal analgesia.
Collapse
Affiliation(s)
- I Sora
- Molecular Neurobiology Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Riley RC, Zhao ZQ, Duggan AW. Spinal release of immunoreactive dynorphin A(1-8) with the development of peripheral inflammation in the rat. Brain Res 1996; 710:131-42. [PMID: 8963652 DOI: 10.1016/0006-8993(95)01394-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Microprobes bearing immobilised antibodies to dynorphin A(1-8) were used to study the basal and evoked release of this prodynorphin derived peptide in the spinal cord of urethane anaesthetised normal rats and those with a peripheral inflammation. In the absence of any active peripheral stimulus the antibody microprobes detected immunoreactive (ir)-dynorphin A(1-8) in two areas (lamina I and laminae IV-V) in the dorsal horn of the spinal cord of normal rats. With the development of unilateral ankle inflammation over 3 to 5 days following subcutaneous injections of Freund's complete adjuvant, a basal presence of ir-dynorphin A(1-8) was found in both the dorsal and ventral horn regions of both sides of the spinal cord. Lateral compression of the ankles of the normal animals did not release ir-dynorphin A(1-8) during the period of stimulation, but this neuropeptide was detected in increased amounts in the ventral horn following the stimulus. By contrast, compression of inflamed ankles produced elevated levels of ir-dynorphin A(1-8) during the period of stimulus application at three major sites in the ipsilateral spinal grey matter. The largest peak was in the deep dorsal horn/upper ventral horn (laminae VI-VII), with further sites of significant release in the mid dorsal horn (laminae II-V) and the lower ventral horn. The observation that ir-dynorphin A(1-8) is physiologically released in the ventral and deep dorsal in addition to the superficial dorsal horn of the rat suggests an involvement of dynorphins in several aspects of spinal function.
Collapse
Affiliation(s)
- R C Riley
- Department of Preclinical Veterinary Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, UK
| | | | | |
Collapse
|
35
|
Abstract
This review presents an overview of the neurotransmitters and neuromodulators involved in acute and chronic pain. Although there is little evidence that the neuronal pathways differ in the two types of pain, it is clear that different transmitters or receptor types are involved in hyperalgesia and chronic pain. While most attention has been focussed on spinal processes, it is apparent that some types of chronic pain have both a peripheral and a supraspinal component. The presently available drugs are probably adequate for acute pain, but the treatment of chronic pain may need to be tailored to the individual patient.
Collapse
Affiliation(s)
- B J Pleuvry
- Department of Anaesthesia, University of Manchester, UK
| | | |
Collapse
|
36
|
Sommer C, Myers RR. Neurotransmitters in the spinal cord dorsal horn in a model of painful neuropathy and in nerve crush. Acta Neuropathol 1995; 90:478-85. [PMID: 8560981 DOI: 10.1007/bf00294809] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We tested the hypothesis that neurochemical changes in the spinal cord dorsal horn associated with neuropathic pain states differ from those seen in association with non-painful neuropathies. Immunohistochemistry was performed on spinal cord sections from rats with a chronic constriction injury (CCI), which develop hyperalgesia, and from animals with a nerve crush injury, which do not develop hyperalgesia or other signs of a painful syndrome. Immunohistochemistry was quantified by computer-assisted densitometry. Calcitonin gene-related peptide (CGRP) immunoreactivity and substance P (SP) immunoreactivity were decreased from 1 to 4 weeks after injury in CCI and from 2 to 6 weeks in crush. Gamma-aminobutyric acid immunoreactivity was unchanged in both conditions at all time points. Met-enkephalin (Met-enk) immunoreactivity was increased in CCI and unchanged in crush. Although SP and CGRP are involved in pain transmission, we conclude that their decrease in immunoreactivity is not specific for the CCI model, but rather a more general event in nerve de- and regeneration. The increase in immunoreactivity for the opioid peptide Met-ink, however, was only seen in the late phase of CCI, and may be specific for conditions associated with neuropathic pain and its resolution.
Collapse
Affiliation(s)
- C Sommer
- Department of Anesthesiology, University of California, San Diego, USA
| | | |
Collapse
|
37
|
Luo L, Ji RR, Zhang Q, Iadarola MJ, Hökfelt T, Wiesenfeld-Hallin Z. Effect of administration of high dose intrathecal clonidine or morphine prior to sciatic nerve section on c-Fos expression in rat lumbar spinal cord. Neuroscience 1995; 68:1219-27. [PMID: 8544995 DOI: 10.1016/0306-4522(95)00197-q] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of moderate and high intrathecal doses of clonidine, an alpha 2 adrenoceptor agonist, or a high dose of morphine on sciatic nerve section-induced expression of c-Fos-like immunoreactivity was studied in laminae I and II of the dorsal horn and laminae VIII and IX of the ventral horn of rat lumbar spinal cord. c-Fos-like immunoreactivity was examined by immunohistochemistry in normal rats (group 1), rats implanted with an intrathecal catheter with its tip on the lumbar spinal cord (group 2), injected with 10 micrograms (group 3) or 50 micrograms (group 4) clonidine intrathecally 3 h before being killed. In other groups, saline, 10 or 50 micrograms clonidine or 30 micrograms morphine was injected 1 h before unilateral nerve section, and the expression of c-Fos-like immunoreactivity was examined 2 h after axotomy. Few labeled neurons were found in normal controls. The intrathecal catheter itself caused a significant increase in bilateral c-Fos-like immunoreactivity in spinal dorsal and ventral horn compared to normals. The level of c-Fos-like immunoreactivity after 10 or 50 micrograms intrathecal clonidine was similar as in the intrathecal catheter group. Sciatic nerve section caused a significant ipsilateral increase in c-Fos-like immunoreactivity in the dorsal horn compared to the intact side in rats injected with saline. Pretreatment with 10 or 10 micrograms clonidine did not reduce sciatic nerve section-induced expression of c-Fos-like immunoreactivity, but instead caused a significant bilateral increase in c-Fos-like immunoreactivity.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Luo
- Department of Medical Laboratory Sciences and Technology, Huddinge University Hospital, Sweden
| | | | | | | | | | | |
Collapse
|
38
|
Ruda MA, Ren K, Besse D. Regulation of spinal neuropeptide genes in a rat model of peripheral inflammation and hyperalgesia. PROGRESS IN BRAIN RESEARCH 1995; 104:349-65. [PMID: 8552779 DOI: 10.1016/s0079-6123(08)61800-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M A Ruda
- Neurobiology and Anesthesiology Branch, National Institute of Dental Research, National Institutes of Health, Rockville Pike, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
39
|
Persson S, Le Grevés P, Thörnwall M, Eriksson U, Silberring J, Nyberg F. Neuropeptide converting and processing enzymes in the spinal cord and cerebrospinal fluid. PROGRESS IN BRAIN RESEARCH 1995; 104:111-30. [PMID: 8552764 DOI: 10.1016/s0079-6123(08)61787-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- S Persson
- Department of Pharmaceutical Biosciences, University of Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
40
|
Cullheim S, Arvidsson U. The peptidergic innervation of spinal motoneurons via the bulbospinal 5-hydroxytryptamine pathway. PROGRESS IN BRAIN RESEARCH 1995; 104:21-40. [PMID: 8552770 DOI: 10.1016/s0079-6123(08)61782-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- S Cullheim
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
41
|
Randić M, Kolaj M, Kojić L, Cerne R, Cheng G, Wang RA. Interaction of neuropeptides and excitatory amino acids in the rat superficial spinal dorsal horn. PROGRESS IN BRAIN RESEARCH 1995; 104:225-53. [PMID: 8552771 DOI: 10.1016/s0079-6123(08)61793-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- M Randić
- Department of Veterinary Physiology and Pharmacology, Iowa State University, Ames 50011, USA
| | | | | | | | | | | |
Collapse
|
42
|
Persson S, Schäfer MK, Nohr D, Ekström G, Post C, Nyberg F, Weihe E. Spinal prodynorphin gene expression in collagen-induced arthritis: influence of the glucocorticosteroid budesonide. Neuroscience 1994; 63:313-26. [PMID: 7898656 DOI: 10.1016/0306-4522(94)90026-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Changes in the spinal expression of the opioid precursor and prodynorphin, which has been implicated in the response to peripheral inflammation, were examined with semi-quantitative in situ hybridization histochemistry in rats subjected to collagen II-induced arthritis. The effects of glucocorticosteroid treatment on the basal and inflammation-induced prodynorphin expression were evaluated. Collagen II-induced arthritis caused a 16-fold increase in prodynorphin mRNA levels which comprised all neurons expressing low levels under normal conditions. In the superficial dorsal horn, one group of neurons of a large size reacted with a dramatic increase of prodynorphin mRNA, while another group of small neurons exhibited a moderate elevation of prodynorphin mRNA levels. In the deep dorsal horn of arthritic rats, most prodynorphin neurons were large and showed high prodynorphin mRNA levels. Systemic treatment with the glucocorticosteroid budesonide attenuated the arthritis-induced increase of prodynorphin mRNA expression in a topospecific manner. The budesonide-induced reduction of prodynorphin mRNA levels was more pronounced in the deep dorsal horn than in the superficial dorsal horn. Budesonide treatment of control animals caused a small, but significant increase in prodynorphin mRNA levels in the superficial laminae I/II without affecting prodynorphin mRNA levels in the deep dorsal horn. The degree of arthritis correlated closely with spinal prodynorphin mRNA levels. The tight correlation between severity of arthritis and prodynorphin mRNA levels in non-treated and corticosteroid-treated arthritic rats suggests that spinal prodynorphin expression is a good parameter for the evaluation of the influence of peripheral inflammation and of the efficacy of analgesic/anti-inflammatory drugs in its treatment. Opposite effects of budesonide on basal and inflammation-induced prodynorphin expression may involve a spinal site of action in addition to peripheral anti-inflammatory mechanisms. We suggest that the collagen II-induced arthritis in the rat is an excellent model for human rheumatoid arthritis allowing for the study of molecular plasticity of anti-inflammatory and anti-nociceptive drug action at different levels of the neuroaxis.
Collapse
Affiliation(s)
- S Persson
- Department of Pharmaceutical Bioscience, Biomedical Center, Uppsala University, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Broman J. Neurotransmitters in subcortical somatosensory pathways. ANATOMY AND EMBRYOLOGY 1994; 189:181-214. [PMID: 7913798 DOI: 10.1007/bf00239008] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Investigations during recent years indicate that many different neuroactive substances are involved in the transmission and modulation of somesthetic information in the central nervous system. This review surveys recent developments within the field of somatosensory neurotransmission, emphasizing immunocytochemical findings. Increasing evidence indicates a widespread role for glutamate as a fast-acting excitatory neurotransmitter at different levels in somatosensory pathways. Several studies have substantiated a role for glutamate as a neurotransmitter in primary afferent neurons and in corticofugal projections, and also indicate a neurotransmitter role for glutamate in ascending somatosensory pathways. Other substances likely to be involved in somatosensory neurotransmission include the neuropeptides. Many different peptides have been detected in primary afferent neurons with unmyelinated or thinly myelinated axons, and are thus likely to be directly involved in primary afferent neurotransmission. Some neurons giving rise to ascending somatosensory pathways, primarily those with cell bodies in the dorsal horn, are also immunoreactive for peptides. Recent investigations have shown that the expression of neuropeptides, both in primary afferent and ascending tract neurons, may change as a result of various kinds of peripheral manipulation. The occurrence of neurotransmitters in intrinsic neurons and neurons providing modulating inputs to somatosensory relay nuclei (the dorsal horn, the lateral cervical nucleus, the dorsal column nuclei and the ventrobasal thalamus) is also reviewed. Neurotransmitters and modulators in such neurons include acetylcholine, monoamines, GABA, glycine, glutamate, and various neuropeptides.
Collapse
Affiliation(s)
- J Broman
- Department of Cell Biology, Faculty of Health Sciences, University of Linköping, Sweden
| |
Collapse
|
44
|
Wagner R, DeLeo JA, Coombs DW, Willenbring S, Fromm C. Spinal dynorphin immunoreactivity increases bilaterally in a neuropathic pain model. Brain Res 1993; 629:323-6. [PMID: 7906604 DOI: 10.1016/0006-8993(93)91339-t] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Increased spinal levels of dynorphin, an endogenous opioid kappa agonist, are seen in models of both chronic and acute hyperalgesia. This study determined the extent and localization of spinal immunoreactive dynorphin following sciatic cryoneurolysis (SCN), a neuropathic pain model produced by a peripheral nerve freeze lesion. SCN results in behaviors associated with neuropathic pain such as autotomy (the gnawing and scratching of the affected limb), touch-evoked and mechanical allodynia, and spontaneous nociceptive behavior. Following SCN, 4 rats that displayed autotomy and 3 rats that did not were randomly chosen for immunohistochemical staining of dynorphin-like immunoreactivity (DLIR). The area of DLIR above a standardized threshold level was quantified in both dorsal horns of each spinal cord section using a computer-assisted image analyzer to express DLIR in pixels. DLIR was observed both ipsilateral and contralateral to the injured peripheral nerve. In addition, the area of DLIR was significantly greater (P = 0.05) in rats that showed autotomy behavior (mean = 52.6 x 10(3) +/- 25.6) compared to rats with no autotomy (mean = 13.8 x 10(3) +/- 4.78). In sharp contrast to the ipsilateral dynorphin increases observed in other neuropathic pain models, we observe a bilateral increase at 21 days following SCN.
Collapse
Affiliation(s)
- R Wagner
- Department of Pharmacology and Toxicology, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756
| | | | | | | | | |
Collapse
|
45
|
Grudt TJ, Williams JT. kappa-Opioid receptors also increase potassium conductance. Proc Natl Acad Sci U S A 1993; 90:11429-32. [PMID: 7902584 PMCID: PMC47996 DOI: 10.1073/pnas.90.23.11429] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Decrease of calcium conductance induced by opioid agonists has been reported by others for mu-, delta-, and kappa-opioid receptors. On the other hand, only mu- and delta-opioid receptors have been reported to increase potassium conductance. Intracellular recordings were made from guinea pig substantia gelatinosa neurons in a brain slice. A subset of cells (29 of 83) were hyperpolarized by the kappa-opioid receptor agonist U69593 with an EC50 of 23 nM. The kappa-opioid receptor antagonist norbinaltorphimine (10 nM) blocked the hyperpolarization by U69593 but had no effect on the mu-opioid hyperpolarization present in these cells. Naloxone (300 nM) shifted the U69593 dose-response curve to the right, giving an estimated Kd for naloxone of 7.5 and 8.1 nM measured in two cells. The hyperpolarization caused by U69593 was mediated by a potassium conductance as determined with voltage clamp experiments. This demonstrates, depending on the cell type, that all three major opioid receptors (mu, delta, and kappa) can increase potassium conductance as well as decrease calcium conductance.
Collapse
Affiliation(s)
- T J Grudt
- Vollum Institute, Oregon Health Sciences University, Portland
| | | |
Collapse
|
46
|
Todd AJ, Spike RC. The localization of classical transmitters and neuropeptides within neurons in laminae I-III of the mammalian spinal dorsal horn. Prog Neurobiol 1993; 41:609-45. [PMID: 7904359 DOI: 10.1016/0301-0082(93)90045-t] [Citation(s) in RCA: 290] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- A J Todd
- Department of Anatomy, University of Glasgow, U.K
| | | |
Collapse
|
47
|
Mokha SS. Morphine differentially modulates nociceptive input in the superficial versus the deeper dorsal horn of the medulla (trigeminal nucleus caudalis) in the rat. Brain Res 1993; 626:318-21. [PMID: 8281443 DOI: 10.1016/0006-8993(93)90594-d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Morphine enhanced the noxious thermal stimulus-evoked responses in 4/13 (31%) selectively nocireceptive neurons in the superficial dorsal horn, inhibited the responses in 4/13 (31%) neurons and produced a biphasic effect in 2/13 (17%) neurons. Naloxone antagonized these effects in 7/7 neurons. In contrast, morphine produced a naloxone reversible reduction in the nociceptive responses of 4/4 (100%) multireceptive neurons in the deeper dorsal horn of the medulla. The data are interpreted to indicate that opiates may differentially modulate nociceptive input in the superficial versus the deeper dorsal horn.
Collapse
Affiliation(s)
- S S Mokha
- Department of Physiology, Meharry Medical College, Nashville, TN 37208
| |
Collapse
|
48
|
Boissonade FM, Sharkey KA, Lucier GE. Trigeminal nuclear complex of the ferret: anatomical and immunohistochemical studies. J Comp Neurol 1993; 329:291-312. [PMID: 7681453 DOI: 10.1002/cne.903290302] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to establish the ferret as an animal model for studies of trigeminal pain, we describe the cytoarchitecture and neurochemistry of the trigeminal nuclear complex in the ferret and compare them to those of the cat and rat. The complex was divided as previously described, but the ferret differed in the extent of the nuclear boundaries. The neuroanatomical istribution of substance P-, calcitonin gene-related peptide-, galanin-, enkephalin-, serotonin-, somatostatin-, neuropeptide Y-, and neurotensin-immunoreactivity was determined throughout the rostrocaudal extent of the complex. In subnucleus caudalis, substance P-, calcitonin gene-related peptide-, enkephalin-, serotonin-, somatostatin-, neuropeptide Y-, and galanin-immunoreactivity was densest in laminae I and II. In subnucleus interpolaris, immunoreactivity for all the above neurochemicals was most dense along the lateral border and the ventral third of the caudal part of the subnucleus. Enkephalin-immunoreactive cell bodies were present in subnucleus caudalis and interpolaris. In subnucleus oralis, labelling for substance P, calcitonin gene-related peptide, galanin, enkephalin, and serotonin was most prominent in the dorsomedial part of the subnucleus. Somatostatin-immunoreactive cell bodies were distributed throughout the spinal nucleus. Labelling of serotonin, substance P, calcitonin gene-related peptide, galanin, enkephalin, and somatostatin was present in the main sensory nucleus. The motor nucleus contained fibers immunoreactive for substance P, enkephalin, serotonin and neuropeptide Y, and cell bodies immunoreactive for calcitonin gene-related peptide. The majority of neurotensin-immunoreactivity was found at the level of subnucleus caudalis, where it was densest in the trigeminal extension of the lateral cervical nucleus. The distribution of peptides in this species throughout the spinal nucleus is consistent with the notion that all the subnuclei may be involved in the processing of nociceptive inputs.
Collapse
Affiliation(s)
- F M Boissonade
- Department of Medical Physiology, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
49
|
Mokha SS. Morphine alters the firing of cold-receptive neurons in the superficial dorsal horn of the medulla in the rat. Brain Res 1993; 602:205-14. [PMID: 8448667 DOI: 10.1016/0006-8993(93)90684-f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Effects of morphine (1-3 mg/kg, i.v.) were tested on the innocuous cold-receptive input in the superficial dorsal horn of the medulla. The static activity of most cold-receptive (cold-specific) neurons (12/16) was reduced, whereas an enhancement (4/16) was observed in the remaining neurons. Naloxone (200 micrograms/kg, i.v.) reversed, partially or completely, the effects of morphine in 9/12 cold-receptive neurons, and enhanced the static activity of some cold-receptive neurons. Static activity, at different adapting temperatures, during a warming (10 degrees C-->40 degrees C) and a cooling (40 degrees C-->10 degrees C) sequence at steps of 5 degrees C was reduced by morphine. The effects of morphine were also tested on the static as well as the dynamic responses of 9 cold-receptive neurons. The effects of morphine on the dynamic responses were not dependent on the static firing frequency. Morphine produced similar effects, excitatory or inhibitory, on the static as well as the dynamic responses of 7/9 neurons whether the static firing frequency was high (17-33 Hz) or low (< 12 Hz). However, morphine effects on static and dynamic responses were different in the remaining 2 neurons (high static firing frequency). We suggest that the predominantly inhibitory effect of morphine on the innocuous cold receptive input in the medullary dorsal horn may explain the inhibitory effect on the perception of cooling stimuli by systemic morphine in behavioral studies.
Collapse
Affiliation(s)
- S S Mokha
- Department of Physiology, Meharry Medical College, Nashville, TN 37208
| |
Collapse
|
50
|
Lima D, Avelino A, Coimbra A. Morphological characterization of marginal (lamina I) neurons immunoreactive for substance P, enkephalin, dynorphin and gamma-aminobutyric acid in the rat spinal cord. J Chem Neuroanat 1993; 6:43-52. [PMID: 7679910 DOI: 10.1016/0891-0618(93)90006-p] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neurons of the rat spinal cord were immunostained for substance P, enkephalin and dynorphin in colchicine-treated animals, and for gamma-aminobutyric acid (GABA). Lamina I stained cells were classified in the four neuronal groups of our previous morphological classification of marginal cells (See Lima and Coimbra, 1986), according to their configuration in the three main anatomical planes. Most lamina I cells exhibiting substance P-immunoreactivity belonged in the group of flattened neurons. Most enkephalinergic cells were pyramidal neurons, while GABA-immunoreactive cells included all multipolar stained neurons and some fusiform neurons. Dynorphin-immunoreactive cells could be fusiform, pyramidal or flattened. The different neurochemical nature and supraspinal projection patterns are suggestive of functional specificity for each group. It is likely that each immunocytochemical subset in each cell group includes tract cells acting at their projection target and intrinsic neurons with local functional roles.
Collapse
Affiliation(s)
- D Lima
- Institute of Histology and Embryology, Faculty of Medicine, University of Oporto, Porto, Portugal
| | | | | |
Collapse
|