1
|
Gorur-Shandilya S, Cronin EM, Schneider AC, Haddad SA, Rosenbaum P, Bucher D, Nadim F, Marder E. Mapping circuit dynamics during function and dysfunction. eLife 2022; 11:e76579. [PMID: 35302489 PMCID: PMC9000962 DOI: 10.7554/elife.76579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neural circuits can generate many spike patterns, but only some are functional. The study of how circuits generate and maintain functional dynamics is hindered by a poverty of description of circuit dynamics across functional and dysfunctional states. For example, although the regular oscillation of a central pattern generator is well characterized by its frequency and the phase relationships between its neurons, these metrics are ineffective descriptors of the irregular and aperiodic dynamics that circuits can generate under perturbation or in disease states. By recording the circuit dynamics of the well-studied pyloric circuit in Cancer borealis, we used statistical features of spike times from neurons in the circuit to visualize the spike patterns generated by this circuit under a variety of conditions. This approach captures both the variability of functional rhythms and the diversity of atypical dynamics in a single map. Clusters in the map identify qualitatively different spike patterns hinting at different dynamic states in the circuit. State probability and the statistics of the transitions between states varied with environmental perturbations, removal of descending neuromodulatory inputs, and the addition of exogenous neuromodulators. This analysis reveals strong mechanistically interpretable links between complex changes in the collective behavior of a neural circuit and specific experimental manipulations, and can constrain hypotheses of how circuits generate functional dynamics despite variability in circuit architecture and environmental perturbations.
Collapse
Affiliation(s)
| | - Elizabeth M Cronin
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Anna C Schneider
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Sara Ann Haddad
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| | - Philipp Rosenbaum
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| | - Dirk Bucher
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Farzan Nadim
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers UniversityNewarkUnited States
| | - Eve Marder
- Volen Center and Biology Department, Brandeis UniversityWalthamUnited States
| |
Collapse
|
2
|
Cook AP, Nusbaum MP. Feeding state-dependent modulation of feeding-related motor patterns. J Neurophysiol 2021; 126:1903-1924. [PMID: 34669505 PMCID: PMC8715047 DOI: 10.1152/jn.00387.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022] Open
Abstract
Studies elucidating modulation of microcircuit activity in isolated nervous systems have revealed numerous insights regarding neural circuit flexibility, but this approach limits the link between experimental results and behavioral context. To bridge this gap, we studied feeding behavior-linked modulation of microcircuit activity in the isolated stomatogastric nervous system (STNS) of male Cancer borealis crabs. Specifically, we removed hemolymph from a crab that was unfed for ≥24 h ("unfed" hemolymph) or fed 15 min to 2 h before hemolymph removal ("fed" hemolymph). After feeding, the first significant foregut emptying occurred >1 h later and complete emptying required ≥6 h. We applied the unfed or fed hemolymph to the stomatogastric ganglion (STG) in an isolated STNS preparation from a separate, unfed crab to determine its influence on the VCN (ventral cardiac neuron)-triggered gastric mill (chewing) and pyloric (filtering of chewed food) rhythms. Unfed hemolymph had little influence on these rhythms, but fed hemolymph from each examined time-point (15 min, 1 h, or 2 h after feeding) slowed one or both rhythms without weakening circuit neuron activity. There were also distinct parameter changes associated with each time-point. One change unique to the 1-h time-point (i.e., reduced activity of one circuit neuron during the transition from the gastric mill retraction to protraction phase) suggested that the fed hemolymph also enhanced the influence of a projection neuron that innervates the STG from a ganglion isolated from the applied hemolymph. Hemolymph thus provides a feeding state-dependent modulation of the two feeding-related motor patterns in the C. borealis STG.NEW & NOTEWORTHY Little is known about behavior-linked modulation of microcircuit activity. We show that the VCN-triggered gastric mill (chewing) and pyloric (food filtering) rhythms in the isolated crab Cancer borealis stomatogastric nervous system were changed by applying hemolymph from recently fed but not unfed crabs. This included some distinct parameter changes during each examined post-fed hemolymph time-point. These results suggest the presence of feeding-related changes in circulating hormones that regulate consummatory microcircuit activity.
Collapse
Affiliation(s)
- Aaron P Cook
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
3
|
DeLaney K, Hu M, Hellenbrand T, Dickinson PS, Nusbaum MP, Li L. Mass Spectrometry Quantification, Localization, and Discovery of Feeding-Related Neuropeptides in Cancer borealis. ACS Chem Neurosci 2021; 12:782-798. [PMID: 33522802 DOI: 10.1021/acschemneuro.1c00007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The crab Cancer borealis nervous system is an important model for understanding neural circuit dynamics and modulation, but the identity of neuromodulatory substances and their influence on circuit dynamics in this system remains incomplete, particularly with respect to behavioral state-dependent modulation. Therefore, we used a multifaceted mass spectrometry (MS) method to identify neuropeptides that differentiate the unfed and fed states. Duplex stable isotope labeling revealed that the abundance of 80 of 278 identified neuropeptides was distinct in ganglia and/or neurohemal tissue from fed vs unfed animals. MS imaging revealed that an additional 7 and 11 neuropeptides exhibited altered spatial distributions in the brain and the neuroendocrine pericardial organs (POs), respectively, during these two feeding states. Furthermore, de novo sequencing yielded 69 newly identified putative neuropeptides that may influence feeding state-related neuromodulation. Two of these latter neuropeptides were determined to be upregulated in PO tissue from fed crabs, and one of these two peptides influenced heartbeat in ex vivo preparations. Overall, the results presented here identify a cohort of neuropeptides that are poised to influence feeding-related behaviors, providing valuable opportunities for future functional studies.
Collapse
Affiliation(s)
- Kellen DeLaney
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Mengzhou Hu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| | - Tessa Hellenbrand
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
| | - Patsy S. Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, Maine 04011, United States
| | - Michael P. Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 211 Clinical Research Building, 415 Curie Boulevard, Philadelphia, Pennsylvania 19104, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706-1322, United States
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222, United States
| |
Collapse
|
4
|
Sook Chung J, Christie A, Flynn E. Molecular cloning of crustacean hyperglycemic hormone (CHH) family members (CHH, molt-inhibiting hormone and mandibular organ-inhibiting hormone) and their expression levels in the Jonah crab, Cancer borealis. Gen Comp Endocrinol 2020; 295:113522. [PMID: 32492383 DOI: 10.1016/j.ygcen.2020.113522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 11/15/2022]
Abstract
The crustacean hyperglycemic hormone (CHH) neuropeptide family has multiple functions in the regulation of hemolymph glucose levels, molting, ion, and water balance and reproduction. In crab species, three neuroendocrine tissues: the eyestalk ganglia (medulla terminalis X-organ and -sinus gland = ES), the pericardial organ (PO), and guts synthesize a tissue-specific isoforms of CHH neuropeptides. Recently the presence of the mandibular organ-inhibiting hormone (MOIH) was reported in the stomatogastric nervous system (STNS) that regulates the rhythmic muscle movements in esophagus, cardiac sac, gastric and pyloric ports of the foregut. In this study, we aimed to determine the presence of a tissue-specific CHH isoform in the Jonah crab, Cancer borealis using PCR with degenerate primers and 5', 3' rapid amplification of cDNA ends (RACE) in the ES. PO, and STNS. The analysis of CHH sequences shows that C. borealis has one type of CHH isoform, unlike other crab species. We also isolated the cDNA sequence of molt-inhibiting hormone (MIH) in the ES and MOIH in the ES and STNS. The presence of CHH, MOIH and MIH in the sinus gland of adult females and males is confirmed by using a dot-blot assay with the putative peaks collected from RP-HPLC and anti-Cancer sera for CHH, MIH, and MOIH. The present of crustacean female sex hormone (CFSH) in the sinus gland of adult females was examined with a dot-blot assay with anti-Callinectes CFSH serum. Levels of CHH, MOIH, and MIH in the sinus gland and their expressions in the eyestalk ganglia are estimated in the adult males, where CHH is the predominant form among these neuropeptides.
Collapse
Affiliation(s)
- J Sook Chung
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, 701 East Pratt Street, Columbus Center, Baltimore, MD 21202, USA.
| | - A Christie
- Pacific Biosciences Research Center, 1993 East-West Rd, Honolulu, HI 96822, USA.
| | - E Flynn
- George Washington University of School of Medicine, 2300 I St NW, Washington, DC 20052, USA
| |
Collapse
|
5
|
To what extent may peptide receptor gene diversity/complement contribute to functional flexibility in a simple pattern-generating neural network? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:262-282. [PMID: 30974344 DOI: 10.1016/j.cbd.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/11/2022]
Abstract
Peptides are known to contribute to central pattern generator (CPG) flexibility throughout the animal kingdom. However, the role played by receptor diversity/complement in determining this functional flexibility is not clear. The stomatogastric ganglion (STG) of the crab, Cancer borealis, contains CPGs that are models for investigating peptidergic control of rhythmic behavior. Although many Cancer peptides have been identified, their peptide receptors are largely unknown. Thus, the extent to which receptor diversity/complement contributes to modulatory flexibility in this system remains unresolved. Here, a Cancer mixed nervous system transcriptome was used to determine the peptide receptor complement for the crab nervous system as a whole. Receptors for 27 peptide families, including multiple receptors for some groups, were identified. To increase confidence in the predicted sequences, receptors for allatostatin-A, allatostatin-B, and allatostatin-C were cloned, sequenced, and expressed in an insect cell line; as expected, all three receptors trafficked to the cell membrane. RT-PCR was used to determine whether each receptor was expressed in the Cancer STG. Transcripts for 36 of the 46 identified receptors were amplified; these included at least one for each peptide family except RYamide. Finally, two peptides untested on the crab STG were assessed for their influence on its motor outputs. Myosuppressin, for which STG receptors were identified, exhibited clear modulatory effects on the motor patterns of the ganglion, while a native RYamide, for which no STG receptors were found, elicited no consistent modulatory effects. These data support receptor diversity/complement as a major contributor to the functional flexibility of CPGs.
Collapse
|
6
|
Blitz DM, Christie AE, Cook AP, Dickinson PS, Nusbaum MP. Similarities and differences in circuit responses to applied Gly 1-SIFamide and peptidergic (Gly 1-SIFamide) neuron stimulation. J Neurophysiol 2019; 121:950-972. [PMID: 30649961 PMCID: PMC6520624 DOI: 10.1152/jn.00567.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
Microcircuit modulation by peptides is well established, but the cellular/synaptic mechanisms whereby identified neurons with identified peptide transmitters modulate microcircuits remain unknown for most systems. Here, we describe the distribution of GYRKPPFNGSIFamide (Gly1-SIFamide) immunoreactivity (Gly1-SIFamide-IR) in the stomatogastric nervous system (STNS) of the crab Cancer borealis and the Gly1-SIFamide actions on the two feeding-related circuits in the stomatogastric ganglion (STG). Gly1-SIFamide-IR localized to somata in the paired commissural ganglia (CoGs), two axons in the nerves connecting each CoG with the STG, and the CoG and STG neuropil. We identified one Gly1-SIFamide-IR projection neuron innervating the STG as the previously identified modulatory commissural neuron 5 (MCN5). Brief (~10 s) MCN5 stimulation excites some pyloric circuit neurons. We now find that bath applying Gly1-SIFamide to the isolated STG also enhanced pyloric rhythm activity and activated an imperfectly coordinated gastric mill rhythm that included unusually prolonged bursts in two circuit neurons [inferior cardiac (IC), lateral posterior gastric (LPG)]. Furthermore, longer duration (>30 s) MCN5 stimulation activated a Gly1-SIFamide-like gastric mill rhythm, including prolonged IC and LPG bursting. The prolonged LPG bursting decreased the coincidence of its activity with neurons to which it is electrically coupled. We also identified local circuit feedback onto the MCN5 axon terminals, which may contribute to some distinctions between the responses to MCN5 stimulation and Gly1-SIFamide application. Thus, MCN5 adds to the few identified projection neurons that modulate a well-defined circuit at least partly via an identified neuropeptide transmitter and provides an opportunity to study peptide regulation of electrical coupled neurons in a functional context. NEW & NOTEWORTHY Limited insight exists regarding how identified peptidergic neurons modulate microcircuits. We show that the modulatory projection neuron modulatory commissural neuron 5 (MCN5) is peptidergic, containing Gly1-SIFamide. MCN5 and Gly1-SIFamide elicit similar output from two well-defined motor circuits. Their distinct actions may result partly from circuit feedback onto the MCN5 axon terminals. Their similar actions include eliciting divergent activity patterns in normally coactive, electrically coupled neurons, providing an opportunity to examine peptide modulation of electrically coupled neurons in a functional context.
Collapse
Affiliation(s)
- Dawn M Blitz
- Department of Biology, Miami University , Oxford, Ohio
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean & Earth Science & Technology, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Aaron P Cook
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Svensson E, Apergis-Schoute J, Burnstock G, Nusbaum MP, Parker D, Schiöth HB. General Principles of Neuronal Co-transmission: Insights From Multiple Model Systems. Front Neural Circuits 2019; 12:117. [PMID: 30728768 PMCID: PMC6352749 DOI: 10.3389/fncir.2018.00117] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/14/2018] [Indexed: 12/22/2022] Open
Abstract
It is now accepted that neurons contain and release multiple transmitter substances. However, we still have only limited insight into the regulation and functional effects of this co-transmission. Given that there are 200 or more neurotransmitters, the chemical complexity of the nervous system is daunting. This is made more-so by the fact that their interacting effects can generate diverse non-linear and novel consequences. The relatively poor history of pharmacological approaches likely reflects the fact that manipulating a transmitter system will not necessarily mimic its roles within the normal chemical environment of the nervous system (e.g., when it acts in parallel with co-transmitters). In this article, co-transmission is discussed in a range of systems [from invertebrate and lower vertebrate models, up to the mammalian peripheral and central nervous system (CNS)] to highlight approaches used, degree of understanding, and open questions and future directions. Finally, we offer some outlines of what we consider to be the general principles of co-transmission, as well as what we think are the most pressing general aspects that need to be addressed to move forward in our understanding of co-transmission.
Collapse
Affiliation(s)
- Erik Svensson
- BMC, Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden
| | - John Apergis-Schoute
- Department of Neurosciences, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| | - Geoffrey Burnstock
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David Parker
- Department of Physiology, Development and Neuroscience, Faculty of Biology, University of Cambridge, Cambridge, United Kingdom
| | - Helgi B Schiöth
- BMC, Department of Neuroscience, Functional Pharmacology, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
8
|
Ormerod KG, Jung J, Mercier AJ. Modulation of neuromuscular synapses and contraction in Drosophila 3rd instar larvae. J Neurogenet 2018; 32:183-194. [PMID: 30303434 DOI: 10.1080/01677063.2018.1502761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Over the past four decades, Drosophila melanogaster has become an increasingly important model system for studying the modulation of chemical synapses and muscle contraction by cotransmitters and neurohormones. This review describes how advantages provided by Drosophila have been utilized to investigate synaptic modulation, and it discusses key findings from investigations of cotransmitters and neurohormones that act on body wall muscles of 3rd instar Drosophila larvae. These studies have contributed much to our understanding of how neuromuscular systems are modulated by neuropeptides and biogenic amines, but there are still gaps in relating these peripheral modulatory effects to behavior.
Collapse
Affiliation(s)
- Kiel G Ormerod
- a Department of Biology , Massachusetts Institute of Technology , Cambridge , MA , USA
| | - JaeHwan Jung
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| | - A Joffre Mercier
- b Department of Biological Sciences , Brock University , St. Catharines , Canada
| |
Collapse
|
9
|
Graded Transmission without Action Potentials Sustains Rhythmic Activity in Some But Not All Modulators That Activate the Same Current. J Neurosci 2018; 38:8976-8988. [PMID: 30185461 DOI: 10.1523/jneurosci.2632-17.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/21/2022] Open
Abstract
Neurons in the central pattern-generating circuits in the crustacean stomatogastric ganglion (STG) release neurotransmitter both as a graded function of presynaptic membrane potential that persists in TTX and in response to action potentials. In the STG of the male crab Cancer borealis, the modulators oxotremorine, C. borealis tachykinin-related peptide Ia (CabTRP1a), red pigment concentrating hormone (RPCH), proctolin, TNRNFLRFamide, and crustacean cardioactive peptide (CCAP) produce and sustain robust pyloric rhythms by activating the same modulatory current (I MI), albeit on different subsets of pyloric network targets. The muscarinic agonist oxotremorine, and the peptides CabTRP1a and RPCH elicited rhythmic triphasic intracellular alternating fluctuations of activity in the presence of TTX. Intracellular waveforms of pyloric neurons in oxotremorine and CabTRP1a in TTX were similar to those in the intact rhythm, and phase relationships among neurons were conserved. Although cycle frequency was conserved in oxotremorine and TTX, it was altered in CabTRP1a in the presence of TTX. Both rhythms were primarily driven by the pacemaker kernel consisting of the Anterior Burster and Pyloric Dilator neurons. In contrast, in TTX the circuit remained silent in proctolin, TNRNFLRFamide, and CCAP. These experiments show that graded synaptic transmission in the absence of voltage-gated Na+ current is sufficient to sustain rhythmic motor activity in some, but not other, modulatory conditions, even when each modulator activates the same ionic current. This further demonstrates that similar rhythmic motor patterns can be produced by qualitatively different mechanisms, one that depends on the activity of voltage-gated Na+ channels, and one that can persist in their absence.SIGNIFICANCE STATEMENT The pyloric rhythm of the crab stomatogastric ganglion depends both on spike-mediated and graded synaptic transmission. We activate the pyloric rhythm with a wide variety of different neuromodulators, all of which converge on the same voltage-dependent inward current. Interestingly, when action potentials and spike-mediated transmission are blocked using TTX, we find that the muscarinic agonist oxotremorine and the neuropeptide CabTRP1a sustain rhythmic alternations and appropriate phases of activity in the absence of action potentials. In contrast, TTX blocks rhythmic activity in the presence of other modulators. This demonstrates fundamental differences in the burst-generation mechanisms in different modulators that would not be suspected on the basis of their cellular actions at the level of the targeted current.
Collapse
|
10
|
Abstract
Colocalization of small-molecule and neuropeptide transmitters is common throughout the nervous system of all animals. The resulting co-transmission, which provides conjoint ionotropic ('classical') and metabotropic ('modulatory') actions, includes neuropeptide- specific aspects that are qualitatively different from those that result from metabotropic actions of small-molecule transmitter release. Here, we focus on the flexibility afforded to microcircuits by such co-transmission, using examples from various nervous systems. Insights from such studies indicate that co-transmission mediated even by a single neuron can configure microcircuit activity via an array of contributing mechanisms, operating on multiple timescales, to enhance both behavioural flexibility and robustness.
Collapse
|
11
|
Otopalik AG, Goeritz ML, Sutton AC, Brookings T, Guerini C, Marder E. Sloppy morphological tuning in identified neurons of the crustacean stomatogastric ganglion. eLife 2017; 6. [PMID: 28177286 PMCID: PMC5323045 DOI: 10.7554/elife.22352] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/27/2017] [Indexed: 02/04/2023] Open
Abstract
Neuronal physiology depends on a neuron’s ion channel composition and unique morphology. Variable ion channel compositions can produce similar neuronal physiologies across animals. Less is known regarding the morphological precision required to produce reliable neuronal physiology. Theoretical studies suggest that moraphology is tightly tuned to minimize wiring and conduction delay of synaptic events. We utilize high-resolution confocal microscopy and custom computational tools to characterize the morphologies of four neuron types in the stomatogastric ganglion (STG) of the crab Cancer borealis. Macroscopic branching patterns and fine cable properties are variable within and across neuron types. We compare these neuronal structures to synthetic minimal spanning neurite trees constrained by a wiring cost equation and find that STG neurons do not adhere to prevailing hypotheses regarding wiring optimization principles. In this highly modulated and oscillating circuit, neuronal structures appear to be governed by a space-filling mechanism that outweighs the cost of inefficient wiring. DOI:http://dx.doi.org/10.7554/eLife.22352.001
Collapse
Affiliation(s)
- Adriane G Otopalik
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | - Marie L Goeritz
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | - Alexander C Sutton
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | - Ted Brookings
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | - Cosmo Guerini
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, United States
| |
Collapse
|
12
|
Christie AE, Pascual MG. Peptidergic signaling in the crab Cancer borealis: Tapping the power of transcriptomics for neuropeptidome expansion. Gen Comp Endocrinol 2016; 237:53-67. [PMID: 27497705 DOI: 10.1016/j.ygcen.2016.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 11/21/2022]
Abstract
The crab Cancer borealis has long been used as a model for understanding neural control of rhythmic behavior. One significant discovery made through its use is that even numerically simple neural circuits are capable of producing an essentially infinite array of distinct motor outputs via the actions of locally released and circulating neuromodulators, the largest class being peptides. While much work has focused on elucidating the peptidome of C. borealis, no investigation has used in silico transcriptome mining for peptide discovery in this species, a strategy proven highly effective for identifying neuropeptides in other crustaceans. Here, we mined a C. borealis neural transcriptome for putative peptide-encoding transcripts, and predicted 200 distinct mature neuropeptides from the proteins deduced from these sequences. The identified peptides include isoforms of allatostatin A, allatostatin B, allatostatin C, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone, diuretic hormone 31 (DH31), diuretic hormone 44 (DH44), FMRFamide-like peptide, GSEFLamide, HIGSLYRamide, insulin-like peptide (ILP), intocin, leucokinin, neuroparsin, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, short neuropeptide F and SIFamide. While some of the predicted peptides were known previously from C. borealis, most (159) are new discoveries for the species, e.g., the isoforms of CCHamide, DH31, DH44, GSEFLamide, ILP, intocin and neuroparsin, which are the first members of these peptide families identified from C. borealis. Collectively, the peptides predicted here approximately double the peptidome known for C. borealis, and in so doing provide an expanded platform from which to launch new investigations of peptidergic neuromodulation in this species.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA.
| | - Micah G Pascual
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA
| |
Collapse
|
13
|
McGrath LL, Vollmer SV, Kaluziak ST, Ayers J. De novo transcriptome assembly for the lobster Homarus americanus and characterization of differential gene expression across nervous system tissues. BMC Genomics 2016; 17:63. [PMID: 26772543 PMCID: PMC4715275 DOI: 10.1186/s12864-016-2373-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/06/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The American lobster, Homarus americanus, is an important species as an economically valuable fishery, a key member in marine ecosystems, and a well-studied model for central pattern generation, the neural networks that control rhythmic motor patterns. Despite multi-faceted scientific interest in this species, currently our genetic resources for the lobster are limited. In this study, we de novo assemble a transcriptome for Homarus americanus using central nervous system (CNS), muscle, and hybrid neurosecretory tissues and compare gene expression across these tissue types. In particular, we focus our analysis on genes relevant to central pattern generation and the identity of the neurons in a neural network, which is defined by combinations of genes distinguishing the neuronal behavior and phenotype, including ion channels, neurotransmitters, neuromodulators, receptors, transcription factors, and other gene products. RESULTS Using samples from the central nervous system (brain, abdominal ganglia), abdominal muscle, and heart (cardiac ganglia, pericardial organs, muscle), we used RNA-Seq to characterize gene expression patterns across tissues types. We also compared control tissues with those challenged with the neuropeptide proctolin in vivo. Our transcriptome generated 34,813 transcripts with known protein annotations. Of these, 5,000-10,000 of annotated transcripts were significantly differentially expressed (DE) across tissue types. We found 421 transcripts for ion channels and identified receptors and/or proteins for over 20 different neurotransmitters and neuromodulators. Results indicated tissue-specific expression of select neuromodulator (allostatin, myomodulin, octopamine, nitric oxide) and neurotransmitter (glutamate, acetylcholine) pathways. We also identify differential expression of ion channel families, including kainite family glutamate receptors, inward-rectifying K(+) (IRK) channels, and transient receptor potential (TRP) A family channels, across central pattern generating tissues. CONCLUSIONS Our transcriptome-wide profiles of the rhythmic pattern generating abdominal and cardiac nervous systems in Homarus americanus reveal candidates for neuronal features that drive the production of motor output in these systems.
Collapse
Affiliation(s)
- Lara Lewis McGrath
- Northeastern University Marine Science Center, 430 Nahant Rd, Nahant, MA, 01908, USA. .,Current address: AstraZeneca, 35 Gatehouse Dr, Waltham, MA, 02451, USA.
| | - Steven V Vollmer
- Northeastern University Marine Science Center, 430 Nahant Rd, Nahant, MA, 01908, USA.
| | - Stefan T Kaluziak
- Northeastern University Marine Science Center, 430 Nahant Rd, Nahant, MA, 01908, USA.
| | - Joseph Ayers
- Northeastern University Marine Science Center, 430 Nahant Rd, Nahant, MA, 01908, USA.
| |
Collapse
|
14
|
Ponzoni S. Tyrosine hydroxylase protein expression in ventral nerve cord of Neotropical freshwater crab. Tissue Cell 2014; 46:482-9. [DOI: 10.1016/j.tice.2014.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 08/20/2014] [Indexed: 11/29/2022]
|
15
|
Abstract
Although neuromodulation of synapses is extensively documented, its consequences in the context of network oscillations are not well known. We examine the modulation of synaptic strength and short-term dynamics in the crab pyloric network by the neuropeptide proctolin. Pyloric oscillations are driven by a pacemaker group which receives feedback through the inhibitory synapse from the lateral pyloric (LP) to pyloric dilator (PD) neurons. We show that proctolin modulates the spike-mediated and graded components of the LP to PD synapse. Proctolin enhances the graded component and unmasks a surprising heterogeneity in its dynamics where there is depression or facilitation depending on the amplitude of the voltage waveform of the presynaptic LP neuron. The spike-mediated component is influenced by the baseline membrane potential and is also enhanced by proctolin at all baseline potentials. In addition to direct modulation of this synapse, proctolin also changes the shape and amplitude of the presynaptic voltage waveform which additionally enhances synaptic output during ongoing activity. During ongoing oscillations, proctolin reduces the variability of cycle period but only when the LP to PD synapse is functionally intact. Using the dynamic clamp technique we find that the reduction in variability is a direct consequence of modulation of the LP to PD synapse. These results demonstrate that neuromodulation of synapses involves complex and interacting influences that target different synaptic components and dynamics as well as the presynaptic voltage waveform. At the network level, modulation of feedback inhibition can result in reduction of variability and enhancement of stable oscillatory output.
Collapse
|
16
|
Szabo TM, Chen R, Goeritz ML, Maloney RT, Tang LS, Li L, Marder E. Distribution and physiological effects of B-type allatostatins (myoinhibitory peptides, MIPs) in the stomatogastric nervous system of the crab Cancer borealis. J Comp Neurol 2011; 519:2658-76. [PMID: 21491432 DOI: 10.1002/cne.22654] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The crustacean stomatogastric ganglion (STG) is modulated by a large number of amines and neuropeptides that are found in descending pathways from anterior ganglia or reach the STG via the hemolymph. Among these are the allatostatin (AST) B types, also known as myoinhibitory peptides (MIPs). We used mass spectrometry to determine the sequences of nine members of the AST-B family of peptides that were found in the stomatogastric nervous system of the crab Cancer borealis. We raised an antibody against Cancer borealis allatostatin-B1 (CbAST-B1; VPNDWAHFRGSWa) and used it to map the distribution of CbAST-B1-like immunoreactivity (-LI) in the stomatogastric nervous system. CbAST-B1-LI was found in neurons and neuropil in the commissural ganglia (CoGs), in somata in the esophageal ganglion (OG), in fibers in the stomatogastric nerve (stn), and in neuropilar processes in the STG. CbAST-B1-LI was blocked by preincubation with 10(-6) M CbAST-B1 and was partially blocked by lower concentrations. Electrophysiological recordings of the effects of CbAST-B1, CbAST-B2, and CbAST-B3 on the pyloric rhythm of the STG showed that all three peptides inhibited the pyloric rhythm in a state-dependent manner. Specifically, all three peptides at 10(-8) M significantly decreased the frequency of the pyloric rhythm when the initial frequency of the pyloric rhythm was below 0.6 Hz. These data suggest important neuromodulatory roles for the CbAST-B family in the stomatogastric nervous system.
Collapse
Affiliation(s)
- Theresa M Szabo
- Volen Center and Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Christie AE, Stemmler EA, Dickinson PS. Crustacean neuropeptides. Cell Mol Life Sci 2010; 67:4135-69. [PMID: 20725764 PMCID: PMC11115526 DOI: 10.1007/s00018-010-0482-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 07/09/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
Crustaceans have long been used for peptide research. For example, the process of neurosecretion was first formally demonstrated in the crustacean X-organ-sinus gland system, and the first fully characterized invertebrate neuropeptide was from a shrimp. Moreover, the crustacean stomatogastric and cardiac nervous systems have long served as models for understanding the general principles governing neural circuit functioning, including modulation by peptides. Here, we review the basic biology of crustacean neuropeptides, discuss methodologies currently driving their discovery, provide an overview of the known families, and summarize recent data on their control of physiology and behavior.
Collapse
Affiliation(s)
- Andrew E Christie
- Program in Neuroscience, John W. and Jean C. Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, P.O. Box 35, Salisbury Cove, ME 04672, USA.
| | | | | |
Collapse
|
18
|
Immunohistochemical mapping of histamine, dopamine, and serotonin in the central nervous system of the copepod Calanus finmarchicus (Crustacea; Maxillopoda; Copepoda). Cell Tissue Res 2010; 341:49-71. [PMID: 20532915 DOI: 10.1007/s00441-010-0974-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/30/2010] [Indexed: 01/08/2023]
Abstract
Calanoid copepods constitute an important group of marine planktonic crustaceans that often dominate the metazoan biomass of the world's oceans. In proportion to their ecological importance, little is known about their nervous systems. We have used immunohistochemical techniques in a common North Atlantic calanoid to localize re-identifiable neurons that putatively contain the biogenic amines histamine, dopamine, and serotonin. We have found low numbers of such cells and cell groups (approximately 37 histamine pairs, 22 dopamine pairs, and 12 serotonin pairs) compared with those in previously described crustaceans. These cells are concentrated in the anterior part of the central nervous system, the majority for each amine being located in the three neuromeres that constitute the brain (protocerebrum, deutocerebrum, and tritocerebrum). Extensive histamine labeling occurs in several small compact protocerebral neuropils, three pairs of larger, more posterior, paired, dense neuropils, and one paired diffuse tritocerebral neuropil. The most concentrated neuropil showing dopamine labeling lies in the putative deutocerebrum, associated with heavily labeled commissural connections between the two sides of the brain. The most prominent serotonin neuropil is present in the anterior medial part of the brain. Tracts of immunoreactive fibers of all three amines are prominent in the cephalic region of the nervous system, but some projections into the most posterior thoracic regions have also been noted.
Collapse
|
19
|
Suljak SW, Rose CM, Sabatier C, Le T, Trieu Q, Verley DR, Lewis AM, Birmingham JT. Enhancement of muscle contraction in the stomach of the crab Cancer borealis: a possible hormonal role for GABA. THE BIOLOGICAL BULLETIN 2010; 218:293-302. [PMID: 20570852 DOI: 10.1086/bblv218n3p293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Gamma-aminobutyric acid (GABA) is best known as an inhibitory neurotransmitter in the mammalian central nervous system. Here we show, however, that GABA has an excitatory effect on nerve-evoked contractions and on excitatory junctional potentials (EJPs) of the gastric mill 4 (gm4) muscle from the stomach of the crab Cancer borealis. The threshold concentration for these effects was between 1 and 10 micromol l(-1). Using immunohistochemical techniques, we found that GABA is colocalized with the vesicle-associated protein synapsin in nearby nerves and hence is presumably released there. However, since these nerves do not innervate the muscle directly, we conclude that these release sites are not the likely source of the GABA responsible for muscle modulation. We also extracted hemolymph from the crab pericardial cavity, which contains the pericardial organs, a major neurosecretory structure. Through reversed-phase liquid chromatography-mass spectrometry analysis we determined the concentration of GABA in the hemolymph to be 3.3 +/- 0.7 micromol l(-1), high enough to modulate the muscle. These findings suggest that the gm4 muscle could be modulated by GABA produced by and released from a distant neurohemal organ.
Collapse
Affiliation(s)
- Steven W Suljak
- Department of Chemistry and Biochemistry; Santa Clara University, Santa Clara, California 95053, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Modulation of stomatogastric rhythms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:989-1009. [PMID: 19823843 DOI: 10.1007/s00359-009-0483-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/15/2009] [Accepted: 09/20/2009] [Indexed: 12/15/2022]
Abstract
Neuromodulation by peptides and amines is a primary source of plasticity in the nervous system as it adapts the animal to an ever-changing environment. The crustacean stomatogastric nervous system is one of the premier systems to study neuromodulation and its effects on motor pattern generation at the cellular level. It contains the extensively modulated central pattern generators that drive the gastric mill (chewing) and pyloric (food filtering) rhythms. Neuromodulators affect all stages of neuronal processing in this system, from membrane currents and synaptic transmission in network neurons to the properties of the effector muscles. The ease with which distinct neurons are identified and their activity is recorded in this system has provided considerable insight into the mechanisms by which neuromodulators affect their target cells and modulatory neuron function. Recent evidence suggests that neuromodulators are involved in homeostatic processes and that the modulatory system itself is under modulatory control, a fascinating topic whose surface has been barely scratched. Future challenges include exploring the behavioral conditions under which these systems are activated and how their effects are regulated.
Collapse
|
21
|
Ma M, Wang J, Chen R, Li L. Expanding the Crustacean neuropeptidome using a multifaceted mass spectrometric approach. J Proteome Res 2009; 8:2426-37. [PMID: 19222238 DOI: 10.1021/pr801047v] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Jonah crab Cancer borealis is an excellent, long-served model organism for many areas of physiology, including the study of endocrinology and neurobiology. Characterizing the neuropeptides present in its nervous system provides the first critical step toward understanding the physiological roles of these complex molecules. Multiple mass spectral techniques were used to comprehensively characterize the neuropeptidome in C. borealis, including matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS), MALDI time-of-flight (TOF)/TOF MS and nanoflow liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoLC-ESI-Q-TOF MS/MS). To enhance the detection signals and expand the dynamic range, direct tissue analysis, tissue extraction, capillary electrophoresis (CE) and off-line HPLC separation have also been employed. In total, 142 peptides were identified, including 85 previously known C. borealis peptides, 22 peptides characterized previously from other decapods, but new to this species, and 35 new peptides de novo sequenced for the first time in this study. Seventeen neuropeptide families were revealed including FMRFamide-related peptide (FaRP), allatostatin (A and B type), RYamide, orcokinin, orcomyotropin, proctolin, crustacean cardioactive peptide (CCAP), crustacean hyperglycemic hormone precursor-related peptide (CPRP), crustacean hyperglycemic hormone (CHH), corazonin, pigment-dispersing hormone (PDH), tachykinin, pyrokinin, SIFamide, red pigment concentrating hormone (RPCH) and HISGLYRamide. Collectively, our results greatly increase the number and expand the coverage of known C. borealis neuropeptides, and thus provide a stronger framework for future studies on the physiological roles played by these molecules in this important model organism.
Collapse
Affiliation(s)
- Mingming Ma
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | | | | | | |
Collapse
|
22
|
Dickinson PS, Stemmler EA, Christie AE. The pyloric neural circuit of the herbivorous crab Pugettia producta shows limited sensitivity to several neuromodulators that elicit robust effects in more opportunistically feeding decapods. ACTA ACUST UNITED AC 2008; 211:1434-47. [PMID: 18424677 DOI: 10.1242/jeb.016998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Modulation of neural circuits in the crustacean stomatogastric nervous system (STNS) allows flexibility in the movements of the foregut musculature. The extensive repertoire of such resulting motor patterns in dietary generalists is hypothesized to permit these animals to process varied foods. The foregut and STNS of Pugettia producta are similar to those of other decapods, but its diet is more uniform, consisting primarily of kelp. We investigated the distribution of highly conserved neuromodulators in the stomatogastric ganglion (STG) and neuroendocrine organs of Pugettia, and documented their effects on its pyloric rhythm. Using immunohistochemistry, we found that the distributions of Cancer borealis tachykinin-related peptide I (CabTRP I), crustacean cardioactive peptide (CCAP), proctolin, red pigment concentrating hormone (RPCH) and tyrosine hydroxylase (dopamine) were similar to those of other decapods. For all peptides except proctolin, the isoforms responsible for the immunoreactivity were confirmed by mass spectrometry to be the authentic peptides. Only two modulators had physiological effects on the pyloric circuit similar to those seen in other species. In non-rhythmic preparations, proctolin and the muscarinic acetylcholine agonist oxotremorine consistently initiated a full pyloric rhythm. Dopamine usually activated a pyloric rhythm, but this pattern was highly variable. In only about 25% of preparations, RPCH activated a pyloric rhythm similar to that seen in other species. CCAP and CabTRP I had no effect on the pyloric rhythm. Thus, whereas Pugettia possesses all the neuromodulators investigated, its pyloric rhythm, when compared with other decapods, appears less sensitive to many of them, perhaps because of its limited diet.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | | | | |
Collapse
|
23
|
Ma M, Chen R, Sousa GL, Bors EK, Kwiatkowski M, Goiney CC, Goy MF, Christie AE, Li L. Mass spectral characterization of peptide transmitters/hormones in the nervous system and neuroendocrine organs of the American lobster Homarus americanus. Gen Comp Endocrinol 2008; 156:395-409. [PMID: 18304551 PMCID: PMC2293973 DOI: 10.1016/j.ygcen.2008.01.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/08/2007] [Accepted: 01/04/2008] [Indexed: 10/22/2022]
Abstract
The American lobster Homarus americanus is a decapod crustacean with both high economic and scientific importance. To facilitate physiological investigations of peptide transmitter/hormone function in this species, we have used matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nanoscale liquid chromatography coupled to electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoLC-ESI-Q-TOF MS/MS) to elucidate the peptidome present in its nervous system and neuroendocrine organs. In total, 84 peptides were identified, including 27 previously known H. americanus peptides (e.g., VYRKPPFNGSIFamide [Val(1)-SIFamide]), 23 peptides characterized previously from other decapods, but new to the American lobster (e.g., pQTFQYSRGWTNamide [Arg(7)-corazonin]), and 34 new peptides de novo sequenced/detected for the first time in this study. Of particular note are a novel B-type allatostatin (TNWNKFQGSWamide) and several novel FMRFamide-related peptides, including an unsulfated analog of sulfakinin (GGGEYDDYGHLRFamide), two myosuppressins (QDLDHVFLRFamide and pQDLDHVFLRFamide), and a collection of short neuropeptide F isoforms (e.g., DTSTPALRLRFamide and FEPSLRLRFamide). Our data also include the first detection of multiple tachykinin-related peptides in a non-brachyuran decapod, as well as the identification of potential individual-specific variants of orcokinin and orcomyotropin-related peptide. Taken collectively, our results not only expand greatly the number of known H. americanus neuropeptides, but also provide a framework for future studies on the physiological roles played by these molecules in this commercially and scientifically important species.
Collapse
Affiliation(s)
- Mingming Ma
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222 USA
| | - Ruibing Chen
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396 USA
| | - Gregory L. Sousa
- Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672 USA
| | - Eleanor K. Bors
- Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672 USA
| | - Molly Kwiatkowski
- Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672 USA
| | - Christopher C. Goiney
- Department of Biology, University of Washington, Box 351800, Seattle, Washington 98195-1800 USA
| | - Michael F. Goy
- Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA
| | - Andrew E. Christie
- Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672 USA
- Department of Biology, University of Washington, Box 351800, Seattle, Washington 98195-1800 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222 USA
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396 USA
- Correspondence to: Dr. Lingjun Li, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222 USA; Phone: 608-265-8491; Fax: 608-262-5345;
| |
Collapse
|
24
|
Cape SS, Rehm KJ, Ma M, Marder E, Li L. Mass spectral comparison of the neuropeptide complement of the stomatogastric ganglion and brain in the adult and embryonic lobster, Homarus americanus. J Neurochem 2007; 105:690-702. [PMID: 18088365 DOI: 10.1111/j.1471-4159.2007.05154.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuropeptides in the stomatogastric ganglion (STG) and the brain of adult and late embryonic Homarus americanus were compared using a multi-faceted mass spectral strategy. Overall, 29 neuropeptides from 10 families were identified in the brain and/or the STG of the lobster. Many of these neuropeptides are reported for the first time in the embryonic lobster. Neuropeptide extraction followed by liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry enabled confident identification of 24 previously characterized peptides in the adult brain and 13 peptides in the embryonic brain. Two novel peptides (QDLDHVFLRFa and GPPSLRLRFa) were de novo sequenced. In addition, a comparison of adult to embryonic brains revealed the presence of an incompletely processed form of Cancer borealis tachykinin-related peptide 1a (CabTRP 1a, APSGFLGMRG) only in the embryonic brain. A comparison of adult to embryonic STGs revealed that QDLDHVFLRFa was present in the embryonic STG but absent in the adult STG, and CabTRP 1a exhibited the opposite trend. Relative quantification of neuropeptides in the STG revealed that three orcokinin family peptides (NFDEIDRSGFGF, NFDEIDRSGFGFV, and NFDEIDRSGFGFN), a B-type allatostatin (STNWSSLRSAWa), and an orcomyotropin-related peptide (FDAFTTGFGHS) exhibited higher signal intensities in the adult relative to the embryonic STG. RFamide (Arg-Phe-amide) family peptide (DTSTPALRLRFa), [Val(1)]SIFamide (VYRKPPFNGSIFa), and orcokinin-related peptide (VYGPRDIANLY) were more intense in the embryonic STG spectra than in the adult STG spectra. Collectively, this study expands our current knowledge of the H. americanus neuropeptidome and highlights some intriguing expression differences that occur during development.
Collapse
Affiliation(s)
- Stephanie S Cape
- School of Pharmacy and Department of Chemistry, University of Wisconsin, Madison, WI 53705-2222, USA
| | | | | | | | | |
Collapse
|
25
|
Tobin AE, Calabrese RL. Endogenous and half-center bursting in morphologically inspired models of leech heart interneurons. J Neurophysiol 2006; 96:2089-106. [PMID: 16760353 PMCID: PMC2902779 DOI: 10.1152/jn.00025.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Based on a detailed morphology "Full Model" of a leech heart interneuron, we previously developed a computationally efficient, morphologically inspired "Reduced Model" to expedite tuning the model to produce endogenous bursting and alternating bursting when configured as a half-center oscillator (paired with reciprocally inhibitory synapses). To find conductance density distributions that produce endogenous bursting, we implemented a genetic algorithm automated parameter search. With multiple searches, we found eight parameter sets that produced endogenous bursting in the Reduced Model. When these parameter sets were applied to the Full Model, all produced endogenous bursting, although when the simulation time was extended from 80 to 300 s, only four parameter sets produced sustained bursting in the Reduced Models. All parameter sets produced alternating half-center bursting in the Reduced and Full Models throughout the entire 300 s. When conductance amplitudes were systematically varied for each of the four sustained burster sets, the effects on bursting activity differed, both for the same parameter set in the Reduced and Full Models and for different parameter sets with the same level of morphological detail. This implies that morphological detail can affect burst activity and that these parameter sets may represent different mechanisms for burst generation and/or regulation. We also tested the models with parameter variations that correspond to experimental manipulations. We conclude that, whereas similar output can be achieved with multiple different parameter sets, perturbations such as conductance variations can highlight differences. Additionally, this work demonstrates both the utility and limitations of using simplified models to represent more morphologically accurate models.
Collapse
|
26
|
Bucher D, Taylor AL, Marder E. Central Pattern Generating Neurons Simultaneously Express Fast and Slow Rhythmic Activities in the Stomatogastric Ganglion. J Neurophysiol 2006; 95:3617-32. [PMID: 16495367 DOI: 10.1152/jn.00004.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronal firing patterns can contain different temporal information. It has long been known that the fast pyloric and the slower gastric motor patterns in the stomatogastric ganglion of decapod crustaceans interact. However, the bidirectional influences between the pyloric rhythm and the gastric mill rhythm have not been quantified in detail from preparations that spontaneously express both patterns in vitro. We found regular and stable spontaneous gastric and pyloric activity in 71% of preparations of the isolated stomatogastric nervous system of the lobster, Homarus americanus. The gastric [cycle period: 10.96 ± 2.67 (SD) s] and pyloric (cycle period: 1.35 ± 0.18 s) patterns showed bidirectional interactions and coordination. Gastric neuron firing showed preferred phases within the reference frame of the pyloric cycle. The relative timing and burst parameters of the pyloric neurons systematically changed within the reference frame of the gastric cycle. The gastric rhythm showed a tendency to run at cycle periods that were integer multiples of the pyloric periods, but coupling and coordination between the two rhythms were variable. We used power spectra to quantify the gastric and pyloric contributions to the firing pattern of each individual neuron. This provided us with a way to analyze the firing pattern of each gastric and pyloric neuron type individually without reference to either gastric or pyloric phase. Possible functional consequences of these network interactions for motor output are discussed.
Collapse
Affiliation(s)
- Dirk Bucher
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts, USA.
| | | | | |
Collapse
|
27
|
Le T, Verley DR, Goaillard JM, Messinger DI, Christie AE, Birmingham JT. Bistable Behavior Originating in the Axon of a Crustacean Motor Neuron. J Neurophysiol 2006; 95:1356-68. [PMID: 16291803 DOI: 10.1152/jn.00893.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both vertebrate and invertebrate motor neurons can display bistable behavior in which self-sustained tonic firing results from a brief excitatory stimulus. Induction of the bistability is usually dependent on activation of intrinsic conductances located in the somatodendritic area and is commonly sensitive to action of neuromodulators. We have observed bistable behavior in a neuromuscular preparation from the foregut of the crab Cancer borealis that consists of the gastric mill 4 (gm4) muscle and the nerve that innervates it, the dorsal gastric nerve ( dgn). Nerve-evoked contractions of enhanced amplitude and long duration (>30 s) were induced by extracellular stimulation when the stimulus voltage was above a certain threshold. Intracellular and extracellular recordings showed that the large contractions were accompanied by persistent firing of the dorsal gastric (DG) motor neuron that innervates gm4. The persistent firing could be induced only by stimulating a specific region of the axon and could not be triggered by depolarizing the soma, even at current amplitudes that induced high-frequency firing of the neuron. The bistable behavior was abolished in low-Ca2+saline or when nicardipine or flufenamic acid, blockers of L-type Ca2+and Ca2+-activated nonselective cation currents, respectively, was applied to the axonal stimulation region of the dgn. Negative immunostaining for synapsin and synaptotagmin argued against the presence of synaptic/modulatory neuropil in the dgn. Collectively, our results suggest that bistable behavior in a motor neuron can originate in the axon and may not require the action of a locally released neuromodulator.
Collapse
Affiliation(s)
- Thuc Le
- Department of Physics, Santa Clara University, Santa Clara, CA 95053-0315, USA
| | | | | | | | | | | |
Collapse
|
28
|
Fu Q, Goy MF, Li L. Identification of neuropeptides from the decapod crustacean sinus glands using nanoscale liquid chromatography tandem mass spectrometry. Biochem Biophys Res Commun 2005; 337:765-78. [PMID: 16214114 DOI: 10.1016/j.bbrc.2005.09.111] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 09/18/2005] [Indexed: 11/18/2022]
Abstract
Neurosecretory systems are known to synthesize and secrete a diverse class of peptide hormones which regulate many physiological processes. The crustacean sinus gland (SG) is a well-defined neuroendocrine site that produces numerous hemolymph-borne agents including the most complex class of endocrine signaling molecules--neuropeptides. As an ongoing effort to define the peptidome of the crustacean SG, we determine the neuropeptide complements of the SG of the Jonah crab, Cancer borealis, and the Maine lobster, Homarus americanus, using nanoflow liquid chromatography electrospray ionization quadrupole time-of-flight (ESI-QTOF) MS/MS. Numerous neuropeptides were identified, including orcokinins, orcomyotropin, crustacean hyperglycemic hormone (CHH), CHH precursor-related peptides (CPRPs), red pigment concentrating hormone (RPCH), beta-pigment dispersing hormone (beta-PDH), proctolin and HL/IGSL/IYRamide. Among them, two novel orcokinins were de novo sequenced from the SG of H. americanus. Three CPRPs including a novel isoform were sequenced in H. americanus. Four new CPRPs were sequenced from the SG of C. borealis. Our results show that structural polymorphisms in CPRPs (and thus the CHH precursors) are common in Dendrobranchiata as well as in Pleocyemata. The evolutionary relationship between the CPRPs is also discussed.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI 53706, USA
| | | | | |
Collapse
|
29
|
Billimoria CP, Li L, Marder E. Profiling of neuropeptides released at the stomatogastric ganglion of the crab, Cancer borealis with mass spectrometry. J Neurochem 2005; 95:191-9. [PMID: 16181423 DOI: 10.1111/j.1471-4159.2005.03355.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studies of release under physiological conditions provide more direct data about the identity of neuromodulatory signaling molecules than studies of tissue localization that cannot distinguish between processing precursors and biologically active neuropeptides. We have identified neuropeptides released by electrical stimulation of nerves that contain the axons of the modulatory projection neurons to the stomatogastric ganglion of the crab, Cancer borealis. Preparations were bathed in saline containing a cocktail of peptidase inhibitors to minimize peptide degradation. Both electrical stimulation of projection nerves and depolarization with high K+ saline were used to evoke release. Releasates were desalted and then identified by mass using MALDI-TOF (matrix-assisted laser desorption/ionization-time-of-flight) mass spectrometry. Both previously known and novel peptides were detected. Subsequent to electrical stimulation proctolin, Cancer borealis tachykinin-related peptide (CabTRP), FVNSRYa, carcinustatin-8, allatostatin-3 (AST-3), red pigment concentrating hormone, NRNFLRFa, AST-5, SGFYANRYa, TNRNFLRFa, AST-9, orcomyotropin-related peptide, corazonin, Ala13-orcokinin, and Ser9-Val13-orcokinin were detected. Some of these were also detected after high K+ depolarization. Release was calcium dependent. In summary, we have shown release of the neuropeptides thought to play an important neuromodulatory role in the stomatogastric ganglion, as well as numerous other candidate neuromodulators that remain to be identified.
Collapse
Affiliation(s)
- Cyrus P Billimoria
- Department of Biology, Volen Center, Brandeis University, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
30
|
Soto-Treviño C, Rabbah P, Marder E, Nadim F. Computational model of electrically coupled, intrinsically distinct pacemaker neurons. J Neurophysiol 2005; 94:590-604. [PMID: 15728775 PMCID: PMC1941697 DOI: 10.1152/jn.00013.2005] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Electrical coupling between neurons with similar properties is often studied. Nonetheless, the role of electrical coupling between neurons with widely different intrinsic properties also occurs, but is less well understood. Inspired by the pacemaker group of the crustacean pyloric network, we developed a multicompartment, conductance-based model of a small network of intrinsically distinct, electrically coupled neurons. In the pyloric network, a small intrinsically bursting neuron, through gap junctions, drives 2 larger, tonically spiking neurons to reliably burst in-phase with it. Each model neuron has 2 compartments, one responsible for spike generation and the other for producing a slow, large-amplitude oscillation. We illustrate how these compartments interact and determine the dynamics of the model neurons. Our model captures the dynamic oscillation range measured from the isolated and coupled biological neurons. At the network level, we explore the range of coupling strengths for which synchronous bursting oscillations are possible. The spatial segregation of ionic currents significantly enhances the ability of the 2 neurons to burst synchronously, and the oscillation range of the model pacemaker network depends not only on the strength of the electrical synapse but also on the identity of the neuron receiving inputs. We also compare the activity of the electrically coupled, distinct neurons with that of a network of coupled identical bursting neurons. For small to moderate coupling strengths, the network of identical elements, when receiving asymmetrical inputs, can have a smaller dynamic range of oscillation than that of its constituent neurons in isolation.
Collapse
Affiliation(s)
- Cristina Soto-Treviño
- Volen Center, Brandeis University, Waltham, Massachusetts and
Department of Mathematical Sciences, New Jersey Institute of Technology
| | - Pascale Rabbah
- Department of Biological Sciences, Rutgers University, Newark, New
Jersey
| | - Eve Marder
- Volen Center and Biology Department, Brandeis University, Waltham,
Massachusetts; and
| | - Farzan Nadim
- Department of Mathematical Sciences, New Jersey Institute of
Technology and Department of Biological Sciences, Rutgers University, Newark, New
Jersey
| |
Collapse
|
31
|
Goaillard JM, Schulz DJ, Kilman VL, Marder E. Octopamine modulates the axons of modulatory projection neurons. J Neurosci 2005; 24:7063-73. [PMID: 15306640 PMCID: PMC6729165 DOI: 10.1523/jneurosci.2078-04.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Octopamine increases the cycle frequency of the pyloric rhythm in the crab Cancer borealis by acting at multiple sites within the stomatogastric nervous system. The junction between the stomatogastric nerve (stn) and the superior esophageal nerve (son) shows synaptic structures. When applied only to the stn-son junction, octopamine induced action potentials in the axons of the modulatory commissural neuron 5 (MCN5) that project from the commissural ganglia to the stomatogastric ganglion (STG). The activation of the MCN5 neurons was correlated with an increase in the pyloric rhythm frequency. Additionally, octopamine had direct effects on the STG, including the activation of the pyloric dilator and pyloric neurons, an increase in the pyloric frequency, and a change in the phase relationships of the pyloric neurons. Thus, the same modulator can influence the pyloric rhythm by acting at multiple sites, including the axons of identified modulatory neurons that project to the STG. These data demonstrate that axonal propagation may be influenced locally by neuromodulators acting on axonal receptors, therefore altering the conduction of information from different command and integrating centers.
Collapse
Affiliation(s)
- Jean-Marc Goaillard
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | |
Collapse
|
32
|
Isaac RE, Taylor CA, Hamasaka Y, Nässel DR, Shirras AD. Proctolin in the post-genomic era: new insights and challenges. INVERTEBRATE NEUROSCIENCE 2004; 5:51-64. [PMID: 15378391 DOI: 10.1007/s10158-004-0029-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2004] [Indexed: 12/27/2022]
Abstract
Complete understanding of how neuropeptides operate as neuromodulators and neurohormones requires integration of knowledge obtained at different levels of biology, including molecular, biochemical, physiological and whole organism studies. Major advances have recently been made in the understanding of the molecular basis of neuropeptide action in invertebrates by analysis of data generated from sequencing the genomes of several insect species, especially that of Drosophila melanogaster. This approach has quickly led to the identification of genes encoding: (1) novel neuropeptide sequences, (2) neuropeptide receptors and (3) peptidases that might be responsible for the processing and inactivation of neuropeptides. In this article, we review our current knowledge of the biosynthesis, receptor interaction and metabolic inactivation of the arthropod neuropeptide, proctolin, and how the analysis and exploitation of genome sequencing projects has provided new insights.
Collapse
Affiliation(s)
- R Elwyn Isaac
- Molecular and Cellular Biology Research Group, Faculty of Biological Sciences, L.C. Miall Building, University of Leeds, LS2 9JT, Leeds, UK.
| | | | | | | | | |
Collapse
|
33
|
Fort TJ, Brezina V, Miller MW. Modulation of an integrated central pattern generator-effector system: dopaminergic regulation of cardiac activity in the blue crab Callinectes sapidus. J Neurophysiol 2004; 92:3455-70. [PMID: 15295014 DOI: 10.1152/jn.00550.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Theoretical studies have suggested that the output of a central pattern generator (CPG) must be matched to the properties of its peripheral effector system to ensure production of functional behavior. One way that such matching could be achieved is through coordinated central and peripheral modulation. In this study, morphological and physiological methods were used to examine the sources and actions of dopaminergic modulation in the cardiac system of the blue crab, Callinectes sapidus. Immunohistochemical localization of tyrosine hydroxylase (TH) revealed a prominent neuron in the commissural ganglion, the L-cell, that projected a large-diameter axon to the pericardial organ (PO) by an indirect and circuitous route. Within the PO, the L-cell axon gave rise to fine varicose fibers, suggesting that it releases dopamine in a neurohormonal fashion onto the heart musculature. In addition, one branch of the axon continued beyond the PO to the heart, where it innervated the anterior motor neurons and the posterior pacemaker region of the cardiac ganglion (CG). In physiological experiments, exogenous dopamine produced multiple effects on contraction and motor neuron burst parameters that corresponded to the dual central-peripheral modulation suggested by the L-cell morphology. Interestingly, parameters of the ganglionic motor output were modulated differently in the isolated CG and in a novel semi-intact system where the CG remained embedded within the heart musculature. These observations suggest a critical role of feedback from the periphery to the CG and underscore the requirement for integration of peripheral (neurohormonal) actions and direct ganglionic modulation in the regulation of this exceptionally simple system.
Collapse
Affiliation(s)
- Timothy J Fort
- Institute of Neurobiology and Department of Anatomy, University of Puerto Rico Medical Services Campus, San Juan, Puerto Rico 00901
| | | | | |
Collapse
|
34
|
Christie AE, Cain SD, Edwards JM, Clason TA, Cherny E, Lin M, Manhas AS, Sellereit KL, Cowan NG, Nold KA, Strassburg HP, Graubard K. The anterior cardiac plexus: an intrinsic neurosecretory site within the stomatogastric nervous system of the crab Cancer productus. ACTA ACUST UNITED AC 2004; 207:1163-82. [PMID: 14978058 DOI: 10.1242/jeb.00856] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The stomatogastric nervous system (STNS) of decapod crustaceans is modulated by both locally released and circulating substances. In some species, including chelate lobsters and freshwater crayfish, the release zones for hormones are located both intrinsically to and at some distance from the STNS. In other crustaceans, including Brachyuran crabs, the existence of extrinsic sites is well documented. Little, however, is known about the presence of intrinsic neuroendocrine structures in these animals. Putative intrinsic sites have been identified within the STNS of several crab species, though ultrastructural confirmation that these structures are in fact neuroendocrine in nature remains lacking. Using a combination of anatomical techniques, we demonstrate the existence of a pair of neurosecretory sites within the STNS of the crab Cancer productus. These structures, which we have named the anterior cardiac plexi (ACPs), are located on the anterior cardiac nerves (acns), which overlie the cardiac sac region of the foregut. Each ACP starts several hundred micro m from the origin of the acn and extends distally for up to several mm. Transmission electron microscopy done on these structures shows that nerve terminals are present in the peripheral portion of each acn, just below a well defined epineurium. These terminals contain dense-core and, occasionally, electron-lucent vesicles. In many terminals, morphological correlates of hormone secretion are evident. Immunocytochemistry shows that the ACPs are immunopositive for FLRFamide-related peptide. All FLRFamide labeling in the ACPs originates from four axons, which descend to these sites through the superior oesophageal and stomatogastric nerves. Moreover, these FLRFamide-immunopositive axons are the sole source of innervation to the ACPs. Collectively, our results suggest that the STNS of C. productus is not only a potential target site for circulating hormones, but also serves as a neuroendocrine release center itself.
Collapse
Affiliation(s)
- Andrew E Christie
- Department of Biology, University of Washington, Box 351800, Seattle, Washington 98195-1800 USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li L, Kelley WP, Billimoria CP, Christie AE, Pulver SR, Sweedler JV, Marder E. Mass spectrometric investigation of the neuropeptide complement and release in the pericardial organs of the crab, Cancer borealis. J Neurochem 2003; 87:642-56. [PMID: 14535947 DOI: 10.1046/j.1471-4159.2003.02031.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The crustacean stomatogastric ganglion (STG) is modulated by both locally released neuroactive compounds and circulating hormones. This study presents mass spectrometric characterization of the complement of peptide hormones present in one of the major neurosecretory structures, the pericardial organs (POs), and the detection of neurohormones released from the POs. Direct peptide profiling of Cancer borealis PO tissues using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) revealed many previously identified peptides, including proctolin, red pigment concentrating hormone (RPCH), crustacean cardioactive peptide (CCAP), several orcokinins, and SDRNFLRFamide. This technique also detected corazonin, a well-known insect hormone, in the POs for the first time. However, most mass spectral peaks did not correspond to previously known peptides. To characterize and identify these novel peptides, we performed MALDI postsource decay (PSD) and electrospray ionization (ESI) MS/MS de novo sequencing of peptides fractionated from PO extracts. We characterized a truncated form of previously identified TNRNFLRFamide, NRNFLRFamide. In addition, we sequenced five other novel peptides sharing a common C-terminus of RYamide from the PO tissue extracts. High K+ depolarization of isolated POs released many peptides present in this tissue, including several of the novel peptides sequenced in the current study.
Collapse
Affiliation(s)
- Lingjun Li
- School of Pharmacy & Department of Chemistry, University of Wisconsin, Madison 53705-2222, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Tierney AJ, Kim T, Abrams R. Dopamine in crayfish and other crustaceans: distribution in the central nervous system and physiological functions. Microsc Res Tech 2003; 60:325-35. [PMID: 12539162 DOI: 10.1002/jemt.10271] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Dopamine is widely distributed in the crustacean nervous system and has a diverse array of physiological effects. Immunocytochemical studies of several species have shown that dopamine- and/or tyrosine hydroxylase-containing cells occur in all ganglia of the central nervous system and that processes from some of these cells link ganglia of the ventral nerve cord. This study describes the distribution of tyrosine hydroxylase-containing cells in the central nervous system of a crayfish (Orconectes rusticus) and compares this information to available data from other species. The distribution of tyrosine hydroxylase (an enzyme in the synthetic pathway between tyrosine and dopamine) in O. rusticus is similar to that reported for marine species. However, differences were observed in the number of neurons in some ganglia and in the axonal projections of the L cell, which were more extensive in O. rusticus than in other species studied thus far. We also review the physiological effects of dopamine in crayfish and other crustaceans, focusing on the amine's actions in the endocrine, cardiovascular, and nervous systems, and on behavior when injected into freely-moving animals.
Collapse
Affiliation(s)
- Ann Jane Tierney
- Department of Psychology, Colgate University, Hamilton, New York 13346, USA.
| | | | | |
Collapse
|
37
|
Abstract
Neuropeptides are peptides with profound effects on the nervous system. The function of neuropeptides can be studied in detail in the stomatogastric nervous system (STNS). Neuropeptides are ubiquitously distributed in the STNS and it contains well-studied neural circuits that are strongly modulated by neuropeptides. The STNS controls the movements of the foregut in crustaceans and has been studied intensively in a variety of decapod crustaceans including crayfish. This article reviews our knowledge of neuropeptides in the crayfish STNS. Within crayfish, peptides reach the circuits of the STNS as neurohormones released by neurohaemal organs or by putative neurohemal zones located within the STNS. As transmitters, neuropeptides are present in identified motoneurons, interneurons, and sensory neurons (mainly shown by immunocytochemistry), indicating a multiple role of peptides in the plasticity of neural networks. Neuropeptides are not only present in varicosities within the neuropil of ganglia, but also in varicosities on muscles and within small neuropil patches along nerves. This suggests that the muscles of the stomach are under a more direct modulatory control than previously thought, and that information processing can also occur within nerves. In addition to anatomical studies, biochemical and electrophysiological methods were used. For example, MALDI-TOF MS (matrix-assisted laser desorption ionization time of flight mass spectrometry) revealed the presence of four different peptides of the orcokinin family within a single neuron, and electrophysiological experiments demonstrated that the networks of the STNS are not only under excitatory but also inhibitory peptidergic influence. Comparing the similarities and differences between the STNS of crayfish and that of other decapod crustaceans has already contributed to our knowledge about peptides and will further help to unravel peptide function in the plasticity of neural circuits. For example, the identified neurons in the STNS can be used to study co-transmission because neuropeptides are co-localized with classical transmitters, biogenic amines, or other peptides in these neurons.
Collapse
Affiliation(s)
- Petra Skiebe
- Freie Universität Berlin, D-14195 Berlin, Germany.
| |
Collapse
|
38
|
Skiebe P, Wollenschläger T. Putative neurohemal release zones in the stomatogastric nervous system of decapod crustaceans. J Comp Neurol 2002; 453:280-91. [PMID: 12378588 DOI: 10.1002/cne.10398] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The stomatogastric nervous system (STNS) of decapod crustaceans has long been used to study the modulation of small neural circuits. Profiles in the sheath of the nerves and ganglia of the STNS, which contain only dense-core vesicles, have been described in electron microscopical studies (Friend [1976] Cell Tissue Res. 175:369-380; Kilman and Marder [1997] Soc Neurosci Abstr. 23:477; Skiebe and Ganeshina [2000] J Comp Neurol 420:373-397). These profiles resemble those found in neurohemal organs and suggest the presence of neurohemal release zones in the STNS. To map these putative neurohemal release zones, a combination of two antibodies was used in the present study. A synapsin antibody recognizing vesicle proteins of clear vesicles was combined with a synaptotagmin antibody recognizing vesicle proteins of clear and dense-core vesicles. Exclusive synaptotagmin-like staining, therefore, indicated the regions with only dense-core vesicles. Such a staining was found in a mesh in the perineural sheath of nerves in the STNS of all three species investigated. In the crayfish Cherax destructor and the lobster Homarus americanus, the stained mesh was located in the sheath of nerves connecting all four ganglia of the STNS, whereas in the crab Cancer pagurus it was found on different nerves, which are more directly exposed to the hemolymph in this species. Exclusive synaptotagmin-like staining was also found in a putative neurohemal release zone in the sheath of the circumoesophageal connectives and the postoesophageal commissure in C. destructor. These data suggest that an important source of modulation of the networks and the muscles of the stomach is a compartmentalized release of neurohormones from zones in the STNS.
Collapse
Affiliation(s)
- Petra Skiebe
- Neurobiologie, Freie Universität Berlin, Berlin, Germany.
| | | |
Collapse
|
39
|
Pulver SR, Marder E. Neuromodulatory complement of the pericardial organs in the embryonic lobster, Homarus americanus. J Comp Neurol 2002; 451:79-90. [PMID: 12209843 DOI: 10.1002/cne.10331] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pericardial organs (POs) are a pair of neurosecretory organs that surround the crustacean heart and release neuromodulators into the hemolymph. In adult crustaceans, the POs are known to contain a wide array of peptide and amine modulators. However, little is known about the modulatory content of POs early in development. We characterize the morphology and modulatory content of pericardial organs in the embryonic lobster, Homarus americanus. The POs are well developed by midway through embryonic (E50) life and contain a wide array of neuromodulatory substances. Immunoreactivities to orcokinin, extended FLRFamide peptides, tyrosine hydroxylase, proctolin, allatostatin, serotonin, Cancer borealis tachykinin-related peptide, cholecystokinin, and crustacean cardioactive peptide are present in the POs by approximately midway through embryonic life. There are two classes of projection patterns to the POs. Immunoreactivities to orcokinin, extended FLRFamide peptides, and tyrosine hydroxylase project solely from the subesophageal ganglion (SEG), whereas the remaining modulators project from the SEG as well as from the thoracic ganglia. Double-labeling experiments with a subset of modulators did not reveal any colocalized peptides in the POs. These results suggest that the POs could be a major source of neuromodulators early in development.
Collapse
Affiliation(s)
- Stefan R Pulver
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454-9110, USA
| | | |
Collapse
|
40
|
Abstract
We are examining how extracellular peptidase activity sculpts the peptidergic actions of modulatory projection neurons on rhythmically active neuronal circuits, using the pyloric circuit in the stomatogastric ganglion (STG) of the crab Cancer borealis. Neurally released peptides can diffuse long distances to bind to their receptors. Hence, different neurons releasing the same neuropeptide into the same neuropil may reach the same receptor complement. However, extracellular peptidases can limit neuropeptide diffusion and terminate its actions. Distinct versions of the pyloric rhythm are elicited by selective activation of different projection neurons, including those with overlapping sets of cotransmitters. Two of these projection neurons, modulatory commissural neuron 1 (MCN1) and the modulatory proctolin neuron (MPN), contain the neuropeptide proctolin plus GABA. MCN1 also contains Cancer borealis tachykinin-related peptide Ia (CabTRP Ia). CabTRP Ia is not fully responsible for the distinct actions of MCN1 and MPN. Because there is aminopeptidase activity in the STG that terminates proctolin actions, we tested the hypothesis that the differences in the actions of MCN1 and MPN that are not mediated by CabTRP Ia result from the differential actions of aminopeptidase activity on proctolin released from these two projection neurons. We found that the pyloric circuit response to these two projection neurons becomes more similar when this aminopeptidase activity is blocked. This result supports the hypothesis that extracellular peptidase activity enables different projection neurons to use the same neuropeptide transmitter for eliciting distinct outputs from the same neuronal circuit.
Collapse
|
41
|
Li L, Pulver SR, Kelley WP, Thirumalai V, Sweedler JV, Marder E. Orcokinin peptides in developing and adult crustacean stomatogastric nervous systems and pericardial organs. J Comp Neurol 2002; 444:227-44. [PMID: 11840477 DOI: 10.1002/cne.10139] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The orcokinins are a family of neuropeptides recently isolated from several crustacean species. We found orcokinin-like immunoreactivity in the stomatogastric nervous systems and pericardial organs of three decapod crustacean species, Homarus americanus, Cancer borealis, and Panulirus interruptus. The neuropil of the stomatogastric ganglion was stained in adults of all three species as well as in embryonic and larval H. americanus. In H. americanus, the somata giving rise to this projection were found in the inferior ventricular nerve. Matrix-assisted laser desorption/ionization mass spectrometry mass profiling and sequencing with postsource decay led to the identification of six different orcokinin family peptides, including those previously described in other decapods and two novel shorter peptides. Application of exogenous [Ala(13)]orcokinin to the stomatogastric ganglion of H. americanus resulted in changes in the pyloric rhythm. Specifically, the number of lateral pyloric (LP) neuron spikes/burst decreased, and the phase of firing of the pyloric neurons was altered. Together, these data indicate that the orcokinins are likely to function as modulators of the crustacean stomatogastric ganglion.
Collapse
Affiliation(s)
- Lingjun Li
- Department of Chemistry and Beckman Institute, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Six neuromodulators [proctolin, Cancer borealis tachykinin-related peptide Ia, crustacean cardioactive peptide (CCAP), red pigment-concentrating hormone, TNRNFLRFamide, and pilocarpine] converge onto the same voltage-dependent inward current in stomatogastric ganglion (STG) neurons of the crab C. borealis. We show here that each of these modulators acts on a distinct subset of pyloric network neurons in the STG. To ask whether the differences in cell targets could account for their differential effects on the pyloric rhythm, we systematically compared the motor patterns produced by proctolin and CCAP. The motor patterns produced in proctolin and CCAP differed quantitatively in a number of ways. Proctolin and CCAP both act on the lateral pyloric neuron and the inferior cardiac neuron. Proctolin additionally acts on the pyloric dilator (PD) neurons, the pyloric (PY) neurons, and the ventricular dilator neuron. Using the dynamic clamp, we introduced an artificial peptide-elicited current into the PD and PY neurons, in the presence of CCAP, and converted the CCAP rhythm into a rhythm that was statistically similar to that seen in proctolin. This suggests that the differences in the network effects of these two modulators can primarily be attributed to the known differential distributions of their receptors onto distinct subsets of neurons, despite the fact that they activate the same current.
Collapse
|
43
|
Skiebe P. Neuropeptides are ubiquitous chemical mediators: Using the stomatogastric nervous system as a model system. J Exp Biol 2001; 204:2035-48. [PMID: 11441046 DOI: 10.1242/jeb.204.12.2035] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe stomatogastric nervous system (STNS) controls the movements of the foregut and the oesophagus of decapod crustaceans and is a good example for demonstrating that peptides are ubiquitously distributed chemical mediators in the nervous system. The stomatogastric ganglion (STG), one of the four ganglia of the STNS, contains the most intensively investigated neuronal circuits. The other ganglia, including the two commissural ganglia (CoGs) and the oesophageal ganglion (OG), are thought to be modulatory control centres. Peptides reach the STNS either as neurohormones or are released as transmitters. Peptide neurohormones can be released either from neurohaemal organs or from local neurohaemal release zones located on the surface of nerves and connectives. There were thought to be no peptidergic neurones with cell bodies in the STG itself. However, some have recently been described in adults of four species, in addition to a transient expression of peptides during development in two species. None of these peptidergic neurones has been investigated physiologically, in contrast to peptidergic neurones that project to the STG and have cell bodies in either the CoGs or the OG. It has been shown that neurones containing the same peptide elicit different motor patterns, that the peptide transmitter and the classical transmitter are not necessarily co-released and that the effect of a peptidergic neurone depends on its firing frequency and on which other modulatory neurones are co-active. The activity of modulatory projection neurones can be elicited by sensory neurones, and their activity can depend on the firing frequency of the sensory neurone. In addition to being found within the neuropile of ganglia, peptides are present in neuropile patches located within the nerves of the STNS, suggesting that these nerves can integrate as well as transfer information. Furthermore, sensory neurones and muscles exhibit peptide-like immunoreactivity and are modulated by peptides. Bath-applied peptides elicit peptide-specific motor patterns within the STG by targeting subsets of neurones. This divergence is contrasted by a convergence at the level of currents: five different peptides modulate a single current. Peptides not only induce motor patterns but can also switch the alliance of neurones from one network to another or are able to fuse different networks. In general, peptides are the most abundant group of modulators within the STNS; they are ubiquitously present, indicating that they play multiple roles in the plasticity of neural networks.
Collapse
Affiliation(s)
- P Skiebe
- Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Neurobiologie, Königin-Luise-Strasse 28-30, D-14195 Berlin, Germany.
| |
Collapse
|
44
|
Li L, Floyd PD, Rubakhin SS, Romanova EV, Jing J, Alexeeva VY, Dembrow NC, Weiss KR, Vilim FS, Sweedler JV. Cerebrin prohormone processing, distribution and action in Aplysia californica. J Neurochem 2001; 77:1569-80. [PMID: 11413240 DOI: 10.1046/j.1471-4159.2001.00360.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The isolation, characterization, and bioactivity in the feeding circuitry of a novel neuropeptide in the Aplysia californica central nervous system are reported. The 17-residue amidated peptide, NGGTADALYNLPDLEKIamide, has been termed cerebrin due to its primary location in the cerebral ganglion. Liquid chromatographic purification guided by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry allowed the isolation of the peptide with purity adequate for Edman sequencing. The cerebrin cDNA has been characterized and encodes an 86 amino acid prohormone that predicts cerebrin and one additional peptide. Mapping using in situ hybridization and immunocytochemistry showed that cerebrin containing neuronal somata are localized almost exclusively in the cerebral ganglion, mostly in the F- and C-clusters. Both immunostaining and mass spectrometry demonstrated the presence of cerebrin in the neurohemal region of the upper labial nerve. In addition, immunoreactive processes were detected in the neuropil of all of the ganglia, including the buccal ganglia, and in some interganglionic connectives, including the cerebral-buccal connective. This suggests that cerebrin may also function as a local signaling molecule. Cerebrin has a profound effect on the feeding motor pattern elicited by the command-like neuron CBI-2, dramatically shortening the duration of the radula protraction in a concentration-dependent manner, mimicking the motor-pattern alterations observed in food induced arousal states. These findings suggest that cerebrin may contribute to food-induced arousal in the animal. Cerebrin-like immunoreactivity is also present in Lymnaea stagnalis suggesting that cerebrin-like peptides may be widespread throughout gastropoda.
Collapse
Affiliation(s)
- L Li
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
The stomatogastric ganglion (STG) of the crab Cancer productus contains approximately 30 neurons arrayed into two different networks (gastric mill and pyloric), each of which produces a distinct motor pattern in vitro. Here we show that the functional division of the STG into these two networks requires intact NO-cGMP signaling. Multiple nitric oxide synthase (NOS)-like proteins are expressed in the stomatogastric nervous system, and NO appears to be released as an orthograde transmitter from descending inputs to the STG. The receptor of NO, a soluble guanylate cyclase (sGC), is expressed in a subset of neurons in both motor networks. When NO diffusion or sGC activation are blocked within the ganglion, the two networks combine into a single conjoint circuit. The gastric mill motor rhythm breaks down, and several gastric neurons pattern switch and begin firing in pyloric time. The functional reorganization of the STG is both rapid and reversible, and the gastric mill motor rhythm is restored when the ganglion is returned to normal saline. Finally, pharmacological manipulations of the NO-cGMP pathway are ineffective when descending modulatory inputs to the STG are blocked. This suggests that the NO-cGMP pathway may interact with other biochemical cascades to partition rhythmic motor output from the ganglion.
Collapse
|
46
|
Dickinson PS, Hauptman J, Hetling J, Mahadevan A. RCPH modulation of a multi-oscillator network: effects on the pyloric network of the spiny lobster. J Neurophysiol 2001; 85:1424-35. [PMID: 11287466 DOI: 10.1152/jn.2001.85.4.1424] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The neuropeptide red pigment concentrating hormone (RPCH), which we have previously shown to activate the cardiac sac motor pattern and lead to a conjoint gastric mill-cardiac sac pattern in the spiny lobster Panulirus, also activates and modulates the pyloric pattern. Like the activity of gastric mill neurons in RPCH, the pattern of activity in the pyloric neurons is considerably more complex than that seen in control saline. This reflects the influence of the cardiac sac motor pattern, and particularly the upstream inferior ventricular (IV) neurons, on many of the pyloric neurons. RPCH intensifies this interaction by increasing the strength of the synaptic connections between the IV neurons and their targets in the stomatogastric ganglion. At the same time, RPCH enhances postinhibitory rebound in the lateral pyloric (LP) neuron. Taken together, these factors largely explain the complex pyloric pattern recorded in RPCH in Panulirus.
Collapse
Affiliation(s)
- P S Dickinson
- Department of Biology, Bowdoin College, Brunswick, Maine 04011, USA.
| | | | | | | |
Collapse
|
47
|
Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. J Neurosci 2000. [PMID: 10995818 DOI: 10.1523/jneurosci.20-18-06752.2000] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The stomatogastric ganglion of the crab, Cancer borealis, is modulated by >20 different substances, including numerous neuropeptides. One of these peptides, proctolin, activates an inward current that shows strong outward rectification (Golowasch and Marder, 1992). Decreasing the extracellular Ca(2+) concentration linearizes the current-voltage curve of the proctolin-induced current. We used voltage clamp to study the currents evoked by proctolin and five additional modulators [C. borealis tachykinin-related peptide Ia (CabTRP Ia), crustacean cardioactive peptide, red pigment-concentrating hormone, TNRNFLRFamide, and the muscarinic agonist pilocarpine] in stomatogastric ganglion neurons, both in the intact ganglion and in dissociated cell culture. Subtraction currents yielded proctolin-like current-voltage relationships for all six substances, and the current-voltage curves of all six substances showed linearization in low external Ca(2+). The lateral pyloric neuron responded to all six modulators, but the ventricular dilator neuron only responded to a subset of them. Bath application of saturating concentrations of proctolin occluded the response to CabTRP and vice versa. N-(6-Aminohexyl)-5-chloro-1-napthalensulfonamide, a calmodulin inhibitor, increased the amplitude and altered the voltage dependence of the responses elicited by CabTRP and proctolin. Together, these data indicate that all six substances converge onto the same voltage-dependent current, although they activate different receptors. Therefore, differential network responses evoked by these substances may primarily depend on the receptor distribution on network neurons.
Collapse
|
48
|
Meyrand P, Faumont S, Simmers J, Christie AE, Nusbaum MP. Species-specific modulation of pattern-generating circuits. Eur J Neurosci 2000; 12:2585-96. [PMID: 10947833 DOI: 10.1046/j.1460-9568.2000.00121.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phylogenetic comparison can reveal general principles governing the organization and neuromodulation of neural networks. Suitable models for such an approach are the pyloric and gastric motor networks of the crustacean stomatogastric ganglion (STG). These networks, which have been well studied in several species, are extensively modulated by projection neurons originating in higher-order ganglia. Several of these have been identified in different decapod species, including the paired modulatory proctolin neuron (MPN) in the crab Cancer borealis [Nusbaum & Marder (1989) J. Neurosci., 9,1501-1599; Nusbaum & Marder (1989), J. Neurosci., 9, 1600-1607] and the apparently equivalent neuron pair, called GABA (gamma-aminobutyric acid) neurons 1 and 2 (GN1/2), in the lobster Homarus gammarus [Cournil et al. (1990) J. Neurocytol., 19, 478-493]. The morphologies of MPN and GN1/2 are similar, and both exhibit GABA-immunolabelling. However, unlike MPN, GN1/2 does not contain the peptide transmitter proctolin. Instead, GN1/2, but not MPN, is immunoreactive for the neuropeptides related to cholecystokinin (CCK) and FLRFamide. Nonetheless, GN1/2 excitation of the lobster pyloric rhythm is similar to the proctolin-mediated excitation of the crab pyloric rhythm by MPN. In contrast, GN1/2 and MPN both use GABA but produce opposite effects on the gastric mill rhythm. While MPN stimulation produces a GABA-mediated suppression of the gastric rhythm [Blitz & Nusbaum (1999) J. Neurosci., 19, 6774-6783], GN1/2 activates or enhances gastric rhythmicity. These results highlight the care needed when generalizing neuronal organization and function across related species. Here we show that the 'same' neuron in different species does not contain the same neurotransmitter complement, nor does it exert all of the same effects on its postsynaptic targets. Conversely, a different transmitter phenotype is not necessarily associated with a qualitative change in the way that a modulatory neuron influences target network activity.
Collapse
Affiliation(s)
- P Meyrand
- Laboratoire de Neurobiologie des Réseaux, Université de Bordeaux I & CNRS UMR 5816, Talence, France.
| | | | | | | | | |
Collapse
|
49
|
Skiebe P, Ganeshina O. Synaptic neuropil in nerves of the crustacean stomatogastric nervous system: An immunocytochemical and electron microscopical study. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000508)420:3<373::aid-cne8>3.0.co;2-t] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Skiebe P, Dietel C, Schmidt M. Immunocytochemical localization of FLRFamide-, proctolin-, and CCAP-like peptides in the stomatogastric nervous system and neurohemal structures of the crayfish,Cherax destructor. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991129)414:4<511::aid-cne7>3.0.co;2-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|