1
|
Masilamoni GJ, Kelly H, Swain AJ, Pare JF, Villalba RM, Smith Y. Structural Plasticity of GABAergic Pallidothalamic Terminals in MPTP-Treated Parkinsonian Monkeys: A 3D Electron Microscopic Analysis. eNeuro 2024; 11:ENEURO.0241-23.2024. [PMID: 38514185 PMCID: PMC10957232 DOI: 10.1523/eneuro.0241-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
The internal globus pallidus (GPi) is a major source of tonic GABAergic inhibition to the motor thalamus. In parkinsonism, the firing rate of GPi neurons is increased, and their pattern switches from a tonic to a burst mode, two pathophysiological changes associated with increased GABAergic pallidothalamic activity. In this study, we used high-resolution 3D electron microscopy to demonstrate that GPi terminals in the parvocellular ventral anterior nucleus (VApc) and the centromedian nucleus (CM), the two main GPi-recipient motor thalamic nuclei in monkeys, undergo significant morphometric changes in parkinsonian monkeys including (1) increased terminal volume in both nuclei; (2) increased surface area of synapses in both nuclei; (3) increased number of synapses/GPi terminals in the CM, but not VApc; and (4) increased total volume, but not number, of mitochondria/terminals in both nuclei. In contrast to GPi terminals, the ultrastructure of putative GABAergic nonpallidal terminals was not affected. Our results also revealed striking morphological differences in terminal volume, number/area of synapses, and volume/number of mitochondria between GPi terminals in VApc and CM of control monkeys. In conclusion, GABAergic pallidothalamic terminals are endowed with a high level of structural plasticity that may contribute to the development and maintenance of the abnormal increase in pallidal GABAergic outflow to the thalamus in the parkinsonian state. Furthermore, the evidence for ultrastructural differences between GPi terminals in VApc and CM suggests that morphologically distinct pallidothalamic terminals from single pallidal neurons may underlie specific physiological properties of pallidal inputs to VApc and CM in normal and diseased states.
Collapse
Affiliation(s)
- G J Masilamoni
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - H Kelly
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - A J Swain
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - J F Pare
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - R M Villalba
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
| | - Y Smith
- Emory National Primate Research Center, Atlanta, Georgia 30322
- Udall Center of Excellence for Parkinson's Disease, Emory University, Atlanta, Georgia 30322
- Department of Neurology, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
2
|
Pritz MB. Evolution of Local Circuit Neurons in Two Sensory Thalamic Nuclei in Amniotes. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:183-193. [PMID: 36972575 DOI: 10.1159/000530316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Local circuit neurons are present in the thalamus of all vertebrates where they are considered inhibitory. They play an important role in computation and influence the transmission of information from the thalamus to the telencephalon. In mammals, the percentage of local circuit neurons in the dorsal lateral geniculate nucleus remains relatively constant across a variety of species. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body in mammals vary significantly depending on the species examined. To explain these observations, the numbers of local circuit neurons were investigated by reviewing the literature on this subject in these two nuclei in mammals and their respective homologs in sauropsids and by providing additional data on a crocodilian. Local circuit neurons are present in the dorsal geniculate nucleus of sauropsids just as is the case for this nucleus in mammals. However, sauropsids lack local circuits neurons in the auditory thalamic nuclei homologous to the ventral division of the medial geniculate body. A cladistic analysis of these results suggests that differences in the numbers of local circuit neurons in the dorsal lateral geniculate nucleus of amniotes reflect an elaboration of these local circuit neurons as a result of evolution from a common ancestor. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body changed independently in several mammalian lineages.
Collapse
Affiliation(s)
- Michael B Pritz
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA
- DENLABS, Draper, Utah, USA
| |
Collapse
|
3
|
Maher EE, Briegel AC, Imtiaz S, Fox MA, Golino H, Erisir A. 3D electron microscopy and volume-based bouton sorting reveal the selectivity of inputs onto geniculate relay cell and interneuron dendrite segments. Front Neuroanat 2023; 17:1150747. [PMID: 37007643 PMCID: PMC10064015 DOI: 10.3389/fnana.2023.1150747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction The visual signals evoked at the retinal ganglion cells are modified and modulated by various synaptic inputs that impinge on lateral geniculate nucleus cells before they are sent to the cortex. The selectivity of geniculate inputs for clustering or forming microcircuits on discrete dendritic segments of geniculate cell types may provide the structural basis for network properties of the geniculate circuitry and differential signal processing through the parallel pathways of vision. In our study, we aimed to reveal the patterns of input selectivity on morphologically discernable relay cell types and interneurons in the mouse lateral geniculate nucleus. Methods We used two sets of Scanning Blockface Electron Microscopy (SBEM) image stacks and Reconstruct software to manually reconstruct of terminal boutons and dendrite segments. First, using an unbiased terminal sampling (UTS) approach and statistical modeling, we identified the criteria for volume-based sorting of geniculate boutons into their putative origins. Geniculate terminal boutons that were sorted in retinal and non-retinal categories based on previously described mitochondrial morphology, could further be sorted into multiple subpopulations based on their bouton volume distributions. Terminals deemed non-retinal based on the morphological criteria consisted of five distinct subpopulations, including small-sized putative corticothalamic and cholinergic boutons, two medium-sized putative GABAergic inputs, and a large-sized bouton type that contains dark mitochondria. Retinal terminals also consisted of four distinct subpopulations. The cutoff criteria for these subpopulations were then applied to datasets of terminals that synapse on reconstructed dendrite segments of relay cells or interneurons. Results Using a network analysis approach, we found an almost complete segregation of retinal and cortical terminals on putative X-type cell dendrite segments characterized by grape-like appendages and triads. On these cells, interneuron appendages intermingle with retinal and other medium size terminals to form triads within glomeruli. In contrast, a second, presumed Y-type cell displayed dendrodendritic puncta adherentia and received all terminal types without a selectivity for synapse location; these were not engaged in triads. Furthermore, the contribution of retinal and cortical synapses received by X-, Y- and interneuron dendrites differed such that over 60% of inputs to interneuron dendrites were from the retina, as opposed to 20% and 7% to X- and Y-type cells, respectively. Conclusion The results underlie differences in network properties of synaptic inputs from distinct origins on geniculate cell types.
Collapse
Affiliation(s)
- Erin E Maher
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Alex C Briegel
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Shahrozia Imtiaz
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Michael A Fox
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
- Fralin Biomedical Research Institute, Roanoke, VA, United States
| | - Hudson Golino
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
4
|
Maher EE, Prillaman ME, Keskinoz EN, Petry HM, Erisir A. Immunocytochemical and ultrastructural organization of the taste thalamus of the tree shrew (Tupaia belangeri). J Comp Neurol 2021; 529:2558-2575. [PMID: 33458823 DOI: 10.1002/cne.25109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 12/16/2022]
Abstract
Ventroposterior medialis parvocellularis (VPMP) nucleus of the primate thalamus receives direct input from the nucleus of the solitary tract, whereas the homologous thalamic structure in the rodent does not. To reveal whether the synaptic circuitries in these nuclei lend evidence for conservation of design principles in the taste thalamus across species or across sensory thalamus in general, we characterized the ultrastructural and molecular properties of the VPMP in a close relative of primates, the tree shrew (Tupaia belangeri), and compared these to known properties of the taste thalamus in rodent, and the visual thalamus in mammals. Electron microscopy analysis to categorize the synaptic inputs in the VPMP revealed that the largest-size terminals contained many vesicles and formed large synaptic zones with thick postsynaptic density on multiple, medium-caliber dendrite segments. Some formed triads within glomerular arrangements. Smaller-sized terminals contained dark mitochondria; most formed a single asymmetric or symmetric synapse on small-diameter dendrites. Immuno-EM experiments revealed that the large-size terminals contained VGLUT2, whereas the small-size terminal populations contained VGLUT1 or ChAT. These findings provide evidence that the morphological and molecular characteristics of synaptic circuitry in the tree shrew VPMP are similar to that in nonchemical sensory thalamic nuclei. Furthermore, the results indicate that all primary sensory nuclei of the thalamus in higher mammals share a structural template for processing thalamocortical sensory information. In contrast, substantial morphological and molecular differences in rodent versus tree shrew taste nuclei suggest a fundamental divergence in cellular processing mechanisms of taste input in these two species.
Collapse
Affiliation(s)
- Erin E Maher
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - McKenzie E Prillaman
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| | - Elif N Keskinoz
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA.,Department of Anatomy, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Heywood M Petry
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, Kentucky, USA
| | - Alev Erisir
- Department of Psychology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Bickford ME. Synaptic organization of the dorsal lateral geniculate nucleus. Eur J Neurosci 2018; 49:938-947. [PMID: 29575193 DOI: 10.1111/ejn.13917] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 01/01/2023]
Abstract
A half century after Ray Guillery's classic descriptions of cell types, axon types, and synaptic architecture of the dorsal lateral geniculate nucleus, the functional organization of this nucleus, as well as all other thalamic nuclei, is still of enormous interest. This review will focus on two classic papers written by Ray Guillery: 'A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat', and 'The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat', as well as the studies that most directly followed from the insights these landmark manuscripts provided. It is hoped that this review will honor Ray Guillery by encouraging further investigations of the synaptic organization of the dorsal thalamus.
Collapse
Affiliation(s)
- Martha E Bickford
- Department of Anatomical Sciences & Neurobiology, School of Medicine, University of Louisville, 511 South Floyd, Room 111, Louisville, KY, 40202, USA
| |
Collapse
|
6
|
Yang S, Govindaiah G, Lee SH, Yang S, Cox CL. Distinct kinetics of inhibitory currents in thalamocortical neurons that arise from dendritic or axonal origin. PLoS One 2017; 12:e0189690. [PMID: 29252999 PMCID: PMC5734688 DOI: 10.1371/journal.pone.0189690] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/30/2017] [Indexed: 11/19/2022] Open
Abstract
Thalamocortical neurons in the dorsal lateral geniculate nucleus (dLGN) transfer visual information from retina to primary visual cortex. This information is modulated by inhibitory input arising from local interneurons and thalamic reticular nucleus (TRN) neurons, leading to alterations of receptive field properties of thalamocortical neurons. Local GABAergic interneurons provide two distinct synaptic outputs: axonal (F1 terminals) and dendritic (F2 terminals) onto dLGN thalamocortical neurons. By contrast, TRN neurons provide only axonal output (F1 terminals) onto dLGN thalamocortical neurons. It is unclear if GABAA receptor-mediated currents originating from F1 and F2 terminals have different characteristics. In the present study, we examined multiple characteristics (rise time, slope, halfwidth and decay τ) of GABAA receptor-mediated miniature inhibitory postsynaptic synaptic currents (mIPSCs) originating from F1 and F2 terminals. The mIPSCs arising from F2 terminals showed slower kinetics relative to those from F1 terminals. Such differential kinetics of GABAAR-mediated responses could be an important role in temporal coding of visual signals.
Collapse
Affiliation(s)
- Sunggu Yang
- Department of Nano-bioengineering, Incheon National University, Incheon, Korea
- Department of Molecular & Integrative Physiology, University of Illinois, Urbana, Illinois, United States of America
- * E-mail: (CLC); (SY)
| | - Gubbi Govindaiah
- Department of Molecular & Integrative Physiology, University of Illinois, Urbana, Illinois, United States of America
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Sang-Hun Lee
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Sungchil Yang
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Charles L. Cox
- Department of Physiology, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail: (CLC); (SY)
| |
Collapse
|
7
|
The multifaceted role of inhibitory interneurons in the dorsal lateral geniculate nucleus. Vis Neurosci 2017; 34:E017. [DOI: 10.1017/s0952523817000141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractIntrinsic interneurons within the dorsal lateral geniculate nucleus (dLGN) provide a feed-forward inhibitory pathway for afferent visual information originating from the retina. These interneurons are unique because in addition to traditional axodendritic output onto thalamocortical neurons, these interneurons have presynaptic dendrites that form dendrodendritic synapses onto thalamocortical neurons as well. These presynaptic dendrites, termed F2 terminals, are tightly coupled to the retinogeniculate afferents that synapse onto thalamocortical relay neurons. Retinogeniculate stimulation of F2 terminals can occur through the activation of ionotropic and/or metabotropic glutamate receptors. The stimulation of ionotropic glutamate receptors can occur with single stimuli and produces a short-lasting inhibition of the thalamocortical neuron. By contrast, activation of metabotropic glutamate receptors requires tetanic activation and results in longer-lasting inhibition in the thalamocortical neuron. The F2 terminals are predominantly localized to the distal dendrites of interneurons, and the excitation and output of F2 terminals can occur independent of somatic activity within the interneuron thereby allowing these F2 terminals to serve as independent processors, giving rise to focal inhibition. By contrast, strong transient depolarizations at the soma can initiate a backpropagating calcium-mediated potential that invades the dendritic arbor activating F2 terminals and leading to a global form of inhibition. These distinct types of output, focal versus global, could play an important role in the temporal and spatial roles of inhibition that in turn impacts thalamocortical information processing.
Collapse
|
8
|
Abstract
Inhibitory neurons dominate the intrinsic circuits in the visual thalamus. Interneurons in the lateral geniculate nucleus innervate relay cells and each other densely to provide powerful inhibition. The visual sector of the overlying thalamic reticular nucleus receives input from relay cells and supplies feedback inhibition to them in return. Together, these two inhibitory circuits influence all information transmitted from the retina to the primary visual cortex. By contrast, relay cells make few local connections. This review explores the role of thalamic inhibition from the dual perspectives of feature detection and information theory. For example, we describe how inhibition sharpens tuning for spatial and temporal features of the stimulus and how it might enhance image perception. We also discuss how inhibitory circuits help to reduce redundancy in signals sent downstream and, at the same time, are adapted to maximize the amount of information conveyed to the cortex.
Collapse
Affiliation(s)
- Judith A Hirsch
- Department of Biological Sciences/Neurobiology, University of Southern California, Los Angeles, California 90089-2520;
| | | | | | | |
Collapse
|
9
|
Cox CL. Complex regulation of dendritic transmitter release from thalamic interneurons. Curr Opin Neurobiol 2014; 29:126-32. [PMID: 25062503 DOI: 10.1016/j.conb.2014.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 11/29/2022]
Abstract
Neuronal output typically involves neurotransmitter release via axonal terminals; however, a subpopulation of neurons can also release neurotransmitters through vesicle-containing presynaptic dendrites. In the thalamus, local circuit inhibitory interneurons are a class of cells that can release γ-aminobutyric acid (GABA) via both axon terminals (termed F1 terminals) as well as presynaptic, vesicle-containing dendrites (termed F2 terminals). For example, in the visual thalamus, these F2 terminals are tightly coupled to the primary sensory afferents (axons of retinogeniculate neurons) that synapse onto thalamocortical relay neurons. The F2 terminals are primarily localized to distal dendrites of the interneurons, and in certain situations the excitation/output of F2 terminals can occur independent of somatic activity within the interneuron thereby allowing these F2 terminals to serve as independent input/output components giving rise to focal inhibition. On the other hand, somatically evoked Na+-dependent action potentials can backpropagate throughout the dendritic arbor of the interneuron. The transient depolarizations, or stronger somatically initiated events (e.g. activation of low threshold calcium transients) can initiate a backpropagating Ca(2+)-mediated potential that invades the dendritic arbor activating F2 terminals and leading to a global form of inhibition. These distinct types of output (focal versus global) could play an important role in the temporal as well as spatial roles of inhibition that in turn impacts thalamocortical information processing.
Collapse
Affiliation(s)
- Charles L Cox
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
10
|
Chausson P, Leresche N, Lambert RC. Dynamics of intrinsic dendritic calcium signaling during tonic firing of thalamic reticular neurons. PLoS One 2013; 8:e72275. [PMID: 23991078 PMCID: PMC3749121 DOI: 10.1371/journal.pone.0072275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/16/2013] [Indexed: 11/30/2022] Open
Abstract
The GABAergic neurons of the nucleus reticularis thalami that control the communication between thalamus and cortex are interconnected not only through axo-dendritic synapses but also through gap junctions and dendro-dendritic synapses. It is still unknown whether these dendritic communication processes may be triggered both by the tonic and the T-type Ca2+ channel-dependent high frequency burst firing of action potentials displayed by nucleus reticularis neurons during wakefulness and sleep, respectively. Indeed, while it is known that activation of T-type Ca2+ channels actively propagates throughout the dendritic tree, it is still unclear whether tonic action potential firing can also invade the dendritic arborization. Here, using two-photon microscopy, we demonstrated that dendritic Ca2+ responses following somatically evoked action potentials that mimic wake-related tonic firing are detected throughout the dendritic arborization. Calcium influx temporally summates to produce dendritic Ca2+ accumulations that are linearly related to the duration of the action potential trains. Increasing the firing frequency facilitates Ca2+ influx in the proximal but not in the distal dendritic compartments suggesting that the dendritic arborization acts as a low-pass filter in respect to the back-propagating action potentials. In the more distal compartment of the dendritic tree, T-type Ca2+ channels play a crucial role in the action potential triggered Ca2+ influx suggesting that this Ca2+ influx may be controlled by slight changes in the local dendritic membrane potential that determine the T-type channels’ availability. We conclude that by mediating Ca2+ dynamic in the whole dendritic arborization, both tonic and burst firing of the nucleus reticularis thalami neurons might control their dendro-dendritic and electrical communications.
Collapse
Affiliation(s)
- Patrick Chausson
- UMR 7102 CNRS, Paris, France
- UPMC, Université Paris 6, Paris, France
| | | | - Régis C. Lambert
- UMR 7102 CNRS, Paris, France
- UPMC, Université Paris 6, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Crandall SR, Cox CL. Thalamic microcircuits: presynaptic dendrites form two feedforward inhibitory pathways in thalamus. J Neurophysiol 2013; 110:470-80. [PMID: 23615551 DOI: 10.1152/jn.00559.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the visual thalamus, retinal afferents activate both local interneurons and excitatory thalamocortical relay neurons, leading to robust feedforward inhibition that regulates the transmission of sensory information from retina to neocortex. Peculiarly, this feedforward inhibitory pathway is dominated by presynaptic dendrites. Previous work has shown that the output of dendritic terminals of interneurons, also known as F2 terminals, are regulated by both ionotropic and metabotropic glutamate receptors. However, it is unclear whether both classes of glutamate receptors regulate output from the same or distinct dendritic terminals. Here, we used focal glutamate uncaging and whole cell recordings to reveal two types of F2 responses in rat visual thalamus. The first response, which we are calling a Type-A response, was mediated exclusively by ionotropic glutamate receptors (i.e., AMPA and NMDA). In contrast, the second response, which we are calling a Type-B response, was mediated by a combination of ionotropic and type 5 metabotropic glutamate receptors (i.e., mGluR(5)). In addition, we demonstrate that both F2 responses are evoked in the same postsynaptic neurons, which are morphologically distinct from neurons in which no F2 responses are observed. Since photostimulation was relatively focal and small in magnitude, these results suggest distinct F2 terminals, or small clusters of terminals, could be responsible for generating the two inhibitory responses observed. Because of the nature of ionotropic and metabotropic glutamate receptors, we predict the efficacy by which the retina communicates with the thalamus would be strongly regulated by 1) the activity level of a given retinogeniculate axon, and 2) the specific type of F2 terminals activated.
Collapse
Affiliation(s)
- Shane R Crandall
- Department of Pharmacology, University of Illinois, Urbana, IL, USA
| | | |
Collapse
|
12
|
Local dendrodendritic inhibition regulates fast synaptic transmission in visual thalamus. J Neurosci 2012; 32:2513-22. [PMID: 22396424 DOI: 10.1523/jneurosci.4402-11.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibition from thalamic interneurons plays a critical role in modulating information transfer between thalamus and neocortex. Interestingly, these neurons yield inhibition via two distinct outputs: presynaptic dendrites that innervate thalamocortical relay neurons and axonal outputs. Since the dendrites of thalamic interneurons are the primary targets of incoming synaptic information, it has been hypothesized that local synaptic input could produce highly focused dendritic output. To gain additional insight into the computational power of these presynaptic dendrites, we have combined two-photon laser scanning microscopy, glutamate uncaging, and whole-cell electrophysiological recordings to locally activate dendritic terminals and study their inhibitory contribution to rat thalamocortical relay neurons. Our findings demonstrate that local dendritic release from thalamic interneurons is controlled locally by AMPA/NMDA receptor-mediated recruitment of L-type calcium channels. Moreover, by mapping these connections with single dendrite resolution we not only found that presynaptic dendrites preferentially target proximal regions, but such actions differ significantly across branches. Furthermore, local stimulation of interneuron dendrites did not result in global excitation, supporting the notion that these interneurons can operate as multiplexors, containing numerous independently operating input-output devices.
Collapse
|
13
|
Active action potential propagation but not initiation in thalamic interneuron dendrites. J Neurosci 2012; 31:18289-302. [PMID: 22171033 DOI: 10.1523/jneurosci.4417-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K-based action potentials can evoke calcium transients in dendrites via local active conductances, making the backpropagating action potential a candidate for dendritic neurotransmitter release. In this study, we used high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation rapidly and actively backpropagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid backpropagation into the dendritic arbor depended upon voltage-gated sodium and tetraethylammonium chloride-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then backpropagate with high fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments.
Collapse
|
14
|
Govindaiah G, Venkitaramani DV, Chaki S, Cox CL. Spatially distinct actions of metabotropic glutamate receptor activation in dorsal lateral geniculate nucleus. J Neurophysiol 2011; 107:1157-63. [PMID: 22170963 DOI: 10.1152/jn.00401.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thalamocortical neurons in the dorsal lateral geniculate nucleus (dLGN) dynamically communicate visual information from the retina to the neocortex, and this process can be modulated via activation of metabotropic glutamate receptors (mGluRs). Neurons within dLGN express different mGluR subtypes associated with distinct afferent synaptic pathways; however, the physiological function of this organization is unclear. We report that the activation of mGluR(5), which are located on presynaptic dendrites of local interneurons, increases GABA output that in turn produces an increased inhibitory activity on proximal but not distal dendrites of dLGN thalamocortical neurons. In contrast, mGluR(1) activation produces strong membrane depolarization in thalamocortical neurons regardless of distal or proximal dendritic locations. These findings provide physiological evidence that mGluR(1) appear to be distributed along the thalamocortical neuron dendrites, whereas mGluR(5)-dependent action occurs on the proximal dendrites/soma of thalamocortical neurons. The differential distribution and activation of mGluR subtypes on interneurons and thalamocortical neurons may serve to shape excitatory synaptic integration and thereby regulate information gating through the thalamus.
Collapse
Affiliation(s)
- Gubbi Govindaiah
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
15
|
Wang X, Sommer FT, Hirsch JA. Inhibitory circuits for visual processing in thalamus. Curr Opin Neurobiol 2011; 21:726-33. [PMID: 21752634 DOI: 10.1016/j.conb.2011.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 05/31/2011] [Accepted: 06/07/2011] [Indexed: 11/24/2022]
Abstract
Synapses made by local interneurons dominate the intrinsic circuitry of the mammalian visual thalamus and influence all signals traveling from the eye to cortex. Here we draw on physiological and computational analyses of receptive fields in the cat's lateral geniculate nucleus to describe how inhibition helps to enhance selectivity for stimulus features in space and time and to improve the efficiency of the neural code. Further, we explore specialized synaptic attributes of relay cells and interneurons and discuss how these might be adapted to preserve the temporal precision of retinal spike trains and thereby maximize the rate of information transmitted downstream.
Collapse
Affiliation(s)
- Xin Wang
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla California, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
16
|
Augustinaite S, Yanagawa Y, Heggelund P. Cortical feedback regulation of input to visual cortex: role of intrageniculate interneurons. J Physiol 2011; 589:2963-77. [PMID: 21502287 DOI: 10.1113/jphysiol.2011.205542] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neurons in the dorsal lateral geniculate nucleus (dLGN) process and transmit visual signals from retina to visual cortex. The processing is dynamically regulated by cortical excitatory feedback to neurons in dLGN, and synaptic short-term plasticity (STP) has an important role in this regulation. It is known that corticogeniculate synapses on thalamocortical (TC) projection-neurons are facilitating, but type and characteristics of STP of synapses on inhibitory interneurons in dLGN are unknown. We studied STP at corticogeniculate synapses on interneurons and compared the results with STP-characteristics of corticogeniculate synapses on TC neurons to gain insights into the dynamics of cortical regulation of processing in dLGN. We studied neurons in thalamic slices from glutamate decarboxylase 67 (GAD67)–green fluorescent protein (GFP) knock-in mice and made whole-cell recordings of responses evoked by electrical paired-pulse and pulse train stimulation of cortical afferents. We found that cortical excitations of interneurons and TC neurons have distinctly different properties. A single pulse evoked larger EPSCs in interneurons than in TC neurons. However, repetitive stimulation induced frequency-dependent depression of interneurons in contrast to the facilitation of TC neurons. Thus, through these differences of STP mechanisms, the balance of cortical excitation of the two types of neurons could change during stimulation from strongest excitation of interneurons to strongest excitation of TC neurons depending on stimulus frequency and duration, and thereby contribute to activity-dependent cortical regulation of thalamocortical transmission between net depression and net facilitation. Studies of postsynaptic response patterns of interneurons to train stimulation demonstrated that cortical input can activate different types of neuronal integration mechanisms that in addition to the STP mechanisms may change the output from dLGN. Lower stimulus intensity, presumably activating few cortical afferents, or moderate frequencies, elicited summation of graded EPSPs reflecting synaptic depression. However, strong activation through higher intensity or frequency, elicited complex response patterns in interneurons caused at least partly by activation of calcium conductances.
Collapse
Affiliation(s)
- Sigita Augustinaite
- University of Oslo, Institute of Basic Medical Sciences, Department of Physiology, POB 1104 Blindern, N-0317 Oslo, Norway
| | | | | |
Collapse
|
17
|
Thalamic interneurons and relay cells use complementary synaptic mechanisms for visual processing. Nat Neurosci 2010; 14:224-31. [PMID: 21170053 PMCID: PMC3767474 DOI: 10.1038/nn.2707] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/21/2010] [Indexed: 11/08/2022]
Abstract
Synapses made by local interneurons dominate the thalamic circuits that process signals traveling from the eye downstream. The anatomical and physiological differences between interneurons and the (relay) cells that project to cortex are vast. To explore how these differences might influence visual processing, we made intracellular recordings from both classes of cells in vivo. Macroscopically, all receptive fields were similar, made of two concentrically arranged subregions in which dark and bright stimuli elicited responses of the reverse sign. Microscopically, however, the responses of the two types of cells had opposite profiles. Excitatory stimuli drove trains of single EPSPs in relay cells but graded depolarizations in interneurons. By contrast, suppressive stimuli evoked smooth hyperpolarizations in relay cells but unitary IPSPs in interneurons. Computational analyses suggested that these complementary patterns of response help preserve information encoded within the fine timing of retinal spikes and increase the amount of information transmitted to cortex.
Collapse
|
18
|
Govindaiah G, Cox CL. Distinct roles of metabotropic glutamate receptor activation on inhibitory signaling in the ventral lateral geniculate nucleus. J Neurophysiol 2009; 101:1761-73. [PMID: 19176605 DOI: 10.1152/jn.91107.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ventral lateral geniculate nucleus (vLGN) has been implicated in numerous functions including circadian rhythms, brightness discrimination, pupillary light reflex, and other visuomotor functions. The contribution of inhibitory mechanisms in the regulation of vLGN neuron excitability remains unexplored. We examined the actions of metabotropic glutamate receptor (mGluR) activation on the intrinsic excitability and inhibitory synaptic transmission in different lamina of vLGN. Activation of mGluRs exerts distinct pre- and postsynaptic actions in vLGN neurons. In the lateral magnocellular subdivision of vLGN (vLGNl), the general mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) enhanced the frequency of GABA(A) receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSC) that persisted in the presence of sodium channel blocker tetrodotoxin (TTX) in a subpopulation of neurons (TTX insensitive). This increase is attributed to the increased output of dendritic GABA release from vLGN interneurons. In contrast, in the medial subdivision of vLGN (vLGNm), the mGluR agonist-mediated increase in sIPSC frequency was completely blocked by TTX. The selective Group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) increased sIPSC frequency, whereas the selective Group II mGluR agonist (2R, 4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) significantly decreased sIPSC frequency in vLGNl neurons. Optic tract stimulation also produced an mGluR-dependent increase in sIPSC frequency in vLGNl neurons. In contrast, we were unable to synaptically evoke alterations in sIPSC activity in vLGNm neurons. In addition to these presynaptic actions, DHPG depolarized both vLGNl and vLGNm neurons. In vLGN interneurons, mGluR activation produced opposing actions: APDC hyperpolarized the membrane potential, whereas DHPG produced a membrane depolarization. The present findings demonstrate diverse actions of mGluRs on vLGN neurons localized within different vLGN lamina. Considering these different lamina are coupled with distinct functional roles, thus these diverse actions may be involved in distinctive forms of visual and visuomotor information processing.
Collapse
Affiliation(s)
- G Govindaiah
- Dept. of Pharmacology and Physiology, University of Illinois, 2357 Beckman Institute, 405 N. Mathews Ave., Urbana, IL 61801, USA
| | | |
Collapse
|
19
|
Bickford ME, Wei H, Eisenback MA, Chomsung RD, Slusarczyk AS, Dankowsi AB. Synaptic organization of thalamocortical axon collaterals in the perigeniculate nucleus and dorsal lateral geniculate nucleus. J Comp Neurol 2008; 508:264-85. [PMID: 18314907 DOI: 10.1002/cne.21671] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examined the synaptic targets of large non-gamma-aminobutyric acid (GABA)-ergic profiles that contain round vesicles and dark mitochondria (RLD profiles) in the perigeniculate nucleus (PGN) and the dorsal lateral geniculate nucleus (dLGN). RLD profiles can provisionally be identified as the collaterals of thalamocortical axons, because their ultrastrucure is distinct from all other previously described dLGN inputs. We also found that RLD profiles are larger than cholinergic terminals and contain the type 2 vesicular glutamate transporter. RLD profiles are distributed throughout the PGN and are concentrated within the interlaminar zones (IZs) of the dLGN, regions distinguished by dense binding of Wisteria floribunda agglutinin (WFA). To determine the synaptic targets of thalamocortical axon collaterals, we examined RLD profiles in the PGN and dLGN in tissue stained for GABA. For the PGN, we found that all RLD profiles make synaptic contacts with GABAergic PGN somata, dendrites, and spines. In the dLGN, RLD profiles primarily synapse with GABAergic dendrites that contain vesicles (F2 profiles) and non-GABAergic dendrites in glomerular arrangements that include triads. Occasional synapses on GABAergic somata and proximal dendrites were also observed in the dLGN. These results suggest that correlated dLGN activity may be enhanced via direct synaptic contacts between thalamocortical cells, whereas noncorrelated activity (such as that occurring during binocular rivalry) could be suppressed via thalamocortical collateral input to PGN cells and dLGN interneurons.
Collapse
Affiliation(s)
- Martha E Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Acuna-Goycolea C, Brenowitz SD, Regehr WG. Active dendritic conductances dynamically regulate GABA release from thalamic interneurons. Neuron 2008; 57:420-31. [PMID: 18255034 DOI: 10.1016/j.neuron.2007.12.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 11/14/2007] [Accepted: 12/17/2007] [Indexed: 11/24/2022]
Abstract
Inhibitory interneurons in the dorsal lateral geniculate nucleus (dLGN) process visual information by precisely controlling spike timing and by refining the receptive fields of thalamocortical (TC) neurons. Previous studies indicate that dLGN interneurons inhibit TC neurons by releasing GABA from both axons and dendrites. However, the mechanisms controlling GABA release are poorly understood. Here, using simultaneous whole-cell recordings from interneurons and TC neurons and two-photon calcium imaging, we find that synchronous activation of multiple retinal ganglion cells (RGCs) triggers sodium spikes that propagate throughout interneuron axons and dendrites, and calcium spikes that invade dendrites but not axons. These distinct modes of interneuron firing can trigger both a rapid and a sustained component of inhibition onto TC neurons. Our studies suggest that active conductances make LGN interneurons flexible circuit-elements that can shift their spatial and temporal properties of GABA release in response to coincident activation of functionally related subsets of RGCs.
Collapse
|
21
|
Miceli D, Repérant J, Ward R, Rio JP, Jay B, Médina M, Kenigfest NB. Fine structure of the visual dorsolateral anterior thalamic nucleus of the pigeon (Columba livia): A hodological and GABA-immunocytochemical study. J Comp Neurol 2008; 507:1351-78. [DOI: 10.1002/cne.21635] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Abstract
The dorsal lateral geniculate nucleus (dLGN) is essential for the transfer of visual information from the retina to visual cortex, and inhibitory mechanisms can play a critical in regulating such information transfer. Nitric oxide (NO) is an atypical neuromodulator that is released in gaseous form and can alter neural activity without direct synaptic connections. Nitric oxide synthase (NOS), an essential enzyme for NO production, is localized in thalamic inhibitory neurons and cholinergic brain stem neurons that innervate the thalamus, although NO-mediated effects on thalamic inhibitory activity remain unknown. We investigated NO effects on inhibitory activity in dLGN using an in vitro slice preparation. The NO donor, SNAP, selectively potentiated the frequency, but not amplitude, of spontaneous inhibitory postsynaptic currents (sIPSCs) in thalamocortical relay neurons. This increase also persisted in tetrodotoxin (TTX), consistent with an increase in GABA release from presynaptic terminals. The SNAP-mediated actions were attenuated not only by the NO scavenger carboxy-PTIO but also by the guanylyl cyclase inhibitor ODQ. The endogenous NO precursor L-arginine produced actions similar to those of SNAP on sIPSC activity and these L-arginine-mediated actions were attenuated by the NOS inhibitor L-NMMA acetate. The SNAP-mediated increase in sIPSC activity was observed in both dLGN and ventrobasal thalamic nucleus (VB) neurons. Considering the lack of interneurons in rodent VB, the NO-mediated actions likely involve an increase in the output of axon terminals of thalamic reticular nucleus neurons. Our results indicate that NO upregulates thalamic inhibitory activity and thus these actions likely influence sensory information transfer through thalamocortical circuits.
Collapse
Affiliation(s)
- Sunggu Yang
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
23
|
Govindaiah G, Cox CL. Metabotropic glutamate receptors differentially regulate GABAergic inhibition in thalamus. J Neurosci 2007; 26:13443-53. [PMID: 17192427 PMCID: PMC6674712 DOI: 10.1523/jneurosci.3578-06.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Thalamic interneurons and thalamic reticular nucleus (TRN) neurons provide inhibitory innervation of thalamocortical cells that significantly influence thalamic gating. The local interneurons in the dorsal lateral geniculate nucleus (dLGN) give rise to two distinct synaptic outputs: classical axonal and dendrodendritic. Activation of metabotropic glutamate receptors (mGluRs) by agonists or optic tract stimulation increases the output of these presynaptic dendrites leading to increased inhibition of thalamocortical neurons. The present study was aimed to evaluate the actions of specific mGluRs on inhibitory GABA-mediated signaling. We found that the group I mGluR (mGluR(1,5)) agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) or optic tract stimulation produced a robust increase in spontaneous IPSCs (sIPSCs) in thalamocortical neurons that was attenuated by the selective mGluR(5) antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP). In contrast, the group II mGluR (mGluR(2,3)) agonists (2R, 4R)-4-aminopyrrolidine-2,4-dicarboxylate (APDC) or (2S,2'R,3'R)-2-(2'3'-dicarboxycyclopropyl)glycine (DCG-IV) suppressed the frequency of sIPSCs. In addition, mGluR(1,5) agonist DHPG produced depolarizations and mGluR(2/3) agonists APDC or L-CCG-I [(2S,1'S,2'S)-2-(carboxycyclopropyl)glycine] produced hyperpolarizations in dLGN interneurons. Furthermore, the enhanced sIPSC activity by optic tract stimulation was reduced when paired with corticothalamic fiber stimulation. The present data indicate that activation of specific mGluR subtypes differentially regulates inhibitory activity via different synaptic pathways. Our results suggest that activation of specific mGluR subtypes can upregulate or downregulate inhibitory activity in thalamic relay neurons, and these actions likely shape excitatory synaptic integration and thus regulate information transfer through thalamocortical circuits.
Collapse
Affiliation(s)
- G. Govindaiah
- Department of Molecular and Integrative Physiology, Department of Pharmacology, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801
| | - Charles L. Cox
- Department of Molecular and Integrative Physiology, Department of Pharmacology, Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
24
|
HUPPÉ-GOURGUES F, BICKFORD ME, BOIRE D, PTITO M, CASANOVA C. Distribution, morphology, and synaptic targets of corticothalamic terminals in the cat lateral posterior-pulvinar complex that originate from the posteromedial lateral suprasylvian cortex. J Comp Neurol 2006; 497:847-63. [PMID: 16802329 PMCID: PMC2561298 DOI: 10.1002/cne.21024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The lateral posterior (LP) nucleus is a higher order thalamic nucleus that is believed to play a key role in the transmission of visual information between cortical areas. Two types of cortical terminals have been identified in higher order nuclei, large (type II) and smaller (type I), which have been proposed to drive and modulate, respectively, the response properties of thalamic cells (Sherman and Guillery [1998] Proc. Natl. Acad. Sci. U. S. A. 95:7121-7126). The aim of this study was to assess and compare the relative contribution of driver and modulator inputs to the LP nucleus that originate from the posteromedial part of the lateral suprasylvian cortex (PMLS) and area 17. To achieve this goal, the anterograde tracers biotinylated dextran amine (BDA) or Phaseolus vulgaris leucoagglutinin (PHAL) were injected into area 17 or PMLS. Results indicate that area 17 injections preferentially labelled large terminals, whereas PMLS injections preferentially labelled small terminals. A detailed analysis of PMLS terminal morphology revealed at least four categories of terminals: small type I terminals (57%), medium-sized to large singletons (30%), large terminals in arrangements of intermediate complexity (8%), and large terminals that form arrangements resembling rosettes (5%). Ultrastructural analysis and postembedding immunocytochemical staining for gamma-aminobutyric acid (GABA) distinguished two types of labelled PMLS terminals: small profiles with round vesicles (RS profiles) that contacted mostly non-GABAergic dendrites outside of glomeruli and large profiles with round vesicles (RL profiles) that contacted non-GABAergic dendrites (55%) and GABAergic dendritic terminals (45%) in glomeruli. RL profiles likely include singleton, intermediate, and rosette terminals, although future studies are needed to establish definitively the relationship between light microscopic morphology and ultrastructural features. All terminals types appeared to be involved in reciprocal corticothalamocortical connections as a result of an intermingling of terminals labelled by anterograde transport and cells labelled by retrograde transport. In conclusion, our results indicate that the origin of the driver inputs reaching the LP nucleus is not restricted to the primary visual cortex and that extrastriate visual areas might also contribute to the basic organization of visual receptive fields of neurons in this higher order nucleus.
Collapse
Affiliation(s)
- F. HUPPÉ-GOURGUES
- Laboratoire des Neurosciences de la Vision, École d’Optométrie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
- Département de Physiologie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - M. E. BICKFORD
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40292
| | - D. BOIRE
- Laboratoire des Neurosciences de la Vision, École d’Optométrie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - M. PTITO
- Laboratoire des Neurosciences de la Vision, École d’Optométrie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | - C. CASANOVA
- Laboratoire des Neurosciences de la Vision, École d’Optométrie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
- Correspondence to: Christian Casanova, Laboratoire des Neurosciences de la Vision, École d’Optométrie, Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, Québec, Canada H3C 3J7. E-mail:
| |
Collapse
|
25
|
Cox CL. Synaptic Activation of Metabotropic Glutamate Receptors Regulates Dendritic Outputs of Thalamic Interneurons. Neuron 2004; 41:611-23. [PMID: 14980209 DOI: 10.1016/s0896-6273(04)00013-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 11/26/2003] [Accepted: 01/06/2004] [Indexed: 10/26/2022]
Abstract
Information gating through the thalamus is dependent on the output of thalamic relay neurons. These relay neurons receive convergent innervation from a number of sources, including GABA-containing interneurons that provide feed-forward inhibition. These interneurons are unique in that they have two distinct outputs: axonal and dendritic. In addition to conventional axonal outputs, these interneurons have presynaptic dendrites that may provide localized inhibitory influences. Our study indicates that synaptic activation of metabotropic glutamate receptors (mGluRs) increases inhibitory activity in relay neurons by increasing output of presynaptic dendrites of interneurons. Optic tract stimulation increases inhibitory activity in thalamic relay neurons in a frequency- and intensity-dependent manner and is attenuated by mGluR antagonists. Our data suggest that synaptic activation of mGluRs selectively alters dendritic output but not axonal output of thalamic interneurons. This mechanism could serve an important role in focal, feed-forward information processing in addition to dynamic information processing in thalamocortical circuits.
Collapse
|
26
|
Wang S, Eisenback MA, Bickford ME. Relative distribution of synapses in the pulvinar nucleus of the cat: implications regarding the "driver/modulator" theory of thalamic function. J Comp Neurol 2002; 454:482-94. [PMID: 12455011 DOI: 10.1002/cne.10453] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To provide a quantitative comparison of the synaptic organization of "first-order" and "higher-order" thalamic nuclei, we followed bias-corrected sampling methods identical to a previous study of the cat dorsal lateral geniculate nucleus (dLGN; Van Horn et al. [2000] J. Comp. Neurol. 416:509-520) to examine the distribution of terminal types within the cat pulvinar nucleus. We observed the following distribution of synaptic contacts: large terminals that contain loosely packed round vesicles (RL profiles), 3.5%; presynaptic profiles that contain densely packed pleomorphic vesicles (F1 profiles), 7.3%; profiles that could be both presynaptic and postsynaptic that contain loosely packed pleomorphic vesicles (F2 profiles), 5.0%; and small terminals that contain densely packed round vesicles (RS profiles), 84.2%. Postembedding immunocytochemistry for gamma-aminobutyric acid (GABA) was used to distinguish the postsynaptic targets as thalamocortical cells or interneurons. The distribution of synaptic contacts on thalamocortical cells was as follows: RL profiles, 2.1%; F1 profiles, 6.9%; F2 profiles, 5.4%; and RS profiles, 85.6%. The distribution of synaptic contacts on interneurons was as follows: RL profiles, 11.8%; F1 profiles, 9.7%; F2 profiles, 2.8%; and RS profiles, 75.6%. These distributions are similar to that found within the dLGN in that the RS inputs (the presumed "modulators") far outnumber the RL inputs (the presumed "drivers"). However, in comparison to the dLGN, the pulvinar nucleus receives significantly fewer numbers of RL, F1, and F2 contacts and significantly higher numbers of RS contacts. Thus, the RS/RL synapse ratio in the pulvinar nucleus is 24:1, in contrast to the 5:1 RS/RL synapse ratio in the dLGN (Van Horn et al., 2000). In first-order nuclei, the lower RS/RL synapse ratio may result in the transfer of visual information that is largely unmodified. In contrast, in higher-order nuclei, the higher RS/RL synapse ratio may allow for a finer modulation of driving inputs.
Collapse
Affiliation(s)
- Siting Wang
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
27
|
Coomes DL, Bickford ME, Schofield BR. GABAergic circuitry in the dorsal division of the cat medial geniculate nucleus. J Comp Neurol 2002; 453:45-56. [PMID: 12357431 DOI: 10.1002/cne.10387] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter of the thalamus. We used postembedding immunocytochemistry to examine the synaptic organization of GABA-positive profiles in the dorsal superficial subdivision of the cat medial geniculate nucleus (MGN). Three groups of GABA-positive profiles participate in synapses: axon terminals, dendrites, and presynaptic dendrites. The presynaptic GABA-positive terminals target mainly GABA-negative dendrites. The GABA-positive postsynaptic profiles receive input primarily from GABA-negative axons. The results indicate that the synaptic organization of GABA-positive profiles in the dorsal superficial subdivision of the MGN nucleus is very similar to that in other thalamic nuclei.
Collapse
Affiliation(s)
- Diana L Coomes
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | |
Collapse
|
28
|
Soltesz I, Roberts JD, Takagi H, Richards JG, Mohler H, Somogyi P. Synaptic and Nonsynaptic Localization of Benzodiazepine/GABAA Receptor/Cl- Channel Complex Using Monoclonal Antibodies in the Dorsal Lateral Geniculate Nucleus of the Cat. Eur J Neurosci 2002; 2:414-29. [PMID: 12106029 DOI: 10.1111/j.1460-9568.1990.tb00434.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The two monoclonal antibodies, bd-17 and bd-24, are specific for beta- and alpha-subunits of the GABAA/benzodiazepine receptor/chloride channel complex respectively. An abundance of both subunits has been revealed in the visual thalamus of the cat by light microscopic immunocytochemistry using these antibodies. The alpha-subunit specific antibody and electron microscopy were used to determine the subcellular distribution of immunoreactivity with respect to specific cell classes in the dorsal lateral geniculate nucleus. Immunoreactivity was always associated with membranes and the degree of immunoreactivity varied greatly between different types of cell as defined by: (i) immunoreactivity for GABA; (ii) soma area; (iii) presence or absence of cytoplasmic laminated bodies (CLB). GABA negative neurons with the smallest soma area showed the strongest immunoreactivity, mainly in the endoplasmic reticulum and also on the somatic plasma membrane. Cytoplasmic laminated bodies could be found in the majority of these neurons. Large GABA negative cells without CLBs were strongly immunoreactive on the plasma membrane of the soma and dendrites, but showed scant if any intracellular immunoreactivity. GABA-positive cells showed weak intracellular immunoreactivity but negligible if any immunoreactivity at the somatic and proximal dendritic plasma membrane. A similar reaction pattern was found in GABA negative cells which contained no CLBs and which constituted a medium sized cell population. It is suggested that the degree of intracellular receptor immunoreactivity is positively correlated with receptor turnover. The dendrites of projection cells, particularly outside the glomeruli, showed strong immunoreactivity on the plasma membrane. The synaptic junctions formed by many boutons (F terminals) establishing symmetrical synapses with dendrites of relay cells were immunopositive, but no immunoreactivity could be detected at the synapses established by the presynaptic dendrites of the local interneurons. Many axo-somatic F1 junctions were also immunoreactive. However, immunoreactivity for the receptor/channel complex was also widely distribution on nonsynaptic plasma membranes of somata and dendrites. Thus GABA may act at both synaptic and non-synaptic sites. Furthermore, the correlation of immunoreactivity for the GABAA receptor complex with previously published properties of physiologically identified cells suggests that the strongly immunoreactive, small, GABA negative cells with CLBs might correspond to the 'lagged' X-type cells, and the large GABA negative receptor outlined cells without CLBs might correspond to some of the Y-type neurons.
Collapse
Affiliation(s)
- I Soltesz
- MRC Anatomical Neuropharmacology Unit, South Parks Road, Oxford OX1 3QT, UK
| | | | | | | | | | | |
Collapse
|
29
|
Completing the corticofugal loop: a visual role for the corticogeniculate type 1 metabotropic glutamate receptor. J Neurosci 2002. [PMID: 11923460 DOI: 10.1523/jneurosci.22-07-02956.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The way in which the brain deals with sensory information relies not only on feedforward processing of signals from the periphery but also on feedback inputs. This is the case of the massive projection back from layer 6 in the visual cortex to the thalamus, for which, despite being the greatest single source of synaptic contacts, the functional role still remains unclear. In the cat lateral geniculate nucleus, part of this cortical feedback is mediated by type 1 metabotropic glutamate receptors (mGluR1s), which are exclusively located on distal segments of the relay-cell dendrites. Here we show that in adult cats the cortex uses a synaptic drive mediated by these receptors (mGluR1) specifically to enhance the excitatory center of the thalamic receptive field. Moreover the effect is maximum in response to those stimuli that effectively drive cortical cells, and importantly, it does not affect the spatiotemporal structure of the thalamic receptive field. Therefore, cortex, by closing this corticofugal "loop," is able to increase the gain of its thalamic input within a focal spatial window, selecting key features of the incoming signal.
Collapse
|
30
|
Montero VM, Wright LS, Siegel F. Increased glutamate, GABA and glutamine in lateral geniculate nucleus but not in medial geniculate nucleus caused by visual attention to novelty. Brain Res 2001; 916:152-8. [PMID: 11597602 DOI: 10.1016/s0006-8993(01)02886-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study is concerned with cortico-thalamic neural mechanisms underlying attentional phenomena. Previous results from this laboratory demonstrated that the visual sector of the GABAergic thalamic reticular nucleus is selectively c-fos activated in rats that are naturally paying attention to features of a novel-complex environment, and that this activation is dependent on top-down glutamatergic inputs from the primary visual cortex. By contrast, the acoustic sector of the thalamic reticular nucleus is not activated despite noise generated by exploration and c-fos activation of brainstem acoustic centers (e.g. dorsal cochlear nucleus, inferior colliculus). A prediction of these results is that the levels of the neurotransmitters glutamate and GABA, and the glutamate-related amino acid glutamine, will be increased in the lateral geniculate nucleus (LGN), but not in the medial geniculate nucleus (MGN) of rats that explore a novel-complex environment in comparison to levels of these amino acids in control rats. By means of neurochemical analysis of these amino acids (HPLC) the results of this study confirmed this prediction. The results are consistent with the previously proposed 'focal attention' hypothesis postulating that a focus of attention in the primary visual cortex generates top-down center-surround facilitatory-inhibitory effects on geniculocortical transmission via corticoreticulogeniculate pathways. The results also supports the notion that a main function of corticothalamic pathways to relay thalamic nuclei is attention-dependent modulation of thalamocortical transmission.
Collapse
Affiliation(s)
- V M Montero
- Department of Physiology, University of Wisconsin, 1300 University Ave., Madison, WI 53706, USA.
| | | | | |
Collapse
|
31
|
Abstract
One of the largest influences on dorsal lateral geniculate nucleus (dLGN) activity comes from interneurons, which use the neurotransmitter gamma-aminobutyric acid (GABA). It is well established that X retinogeniculate terminals contact interneurons and thalamocortical cells in complex synaptic arrangements known as glomeruli. However, there is little anatomical evidence for the involvement of dLGN interneurons in the Y pathway. To determine whether Y retinogeniculate axons contact interneurons, we injected the superior colliculus (SC) with biotinylated dextran amine (BDA) to backfill retinal axons, which also project to the SC. Within the A lamina of the dLGN, this BDA labeling allowed us to distinguish Y retinogeniculate axons from X retinogeniculate axons, which do not project to the SC. In BDA-labeled tissue prepared for electron microscopic analysis, we subsequently used postembedding immunocytochemical staining for GABA to distinguish interneurons from thalamocortical cells. We found that the majority of profiles postsynaptic to Y retinal axons were GABA-negative dendrites of thalamocortical cells (117/200 or 58.5%). The remainder (83/200 or 41.5%) were GABA-positive dendrites, many of which contained vesicles (59/200 or 29.5%). Thus, Y retinogeniculate axons do contact interneurons. However, these contacts differed from X retinogeniculate axons, in that triadic arrangements were rare. This indicates that the X and Y pathways participate in unique circuitries but that interneurons are involved in the modulation of both pathways.
Collapse
Affiliation(s)
- A Datskovskaia
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
32
|
Cox CL, Sherman SM. Control of dendritic outputs of inhibitory interneurons in the lateral geniculate nucleus. Neuron 2000; 27:597-610. [PMID: 11055441 DOI: 10.1016/s0896-6273(00)00069-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The thalamic relay to neocortex is dynamically gated. The inhibitory interneuron, which we have studied in the lateral geniculate nucleus, is important to this process. In addition to axonal outputs, these cells have dendritic terminals that are both presynaptic and postsynaptic. Even with action potentials blocked, activation of ionotropic and metabotropic glutamate receptors on these terminals increases their output, whereas activation of metabotropic (M2 muscarinic) but not nicotinic cholinergic receptors decreases their output. These actions can strongly affect retinogeniculate transmission.
Collapse
Affiliation(s)
- C L Cox
- Department of Neurobiology, State University of New York at Stony Brook, 11794, USA
| | | |
Collapse
|
33
|
Bickford ME, Carden WB, Patel NC. Two types of interneurons in the cat visual thalamus are distinguished by morphology, synaptic connections, and nitric oxide synthase content. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991011)413:1<83::aid-cne6>3.0.co;2-e] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Zhou J, Ribak CE, Yan XX, Giolli RA. Synaptic and neurochemical features of calcitonin gene-related peptide containing neurons in the rat accessory optic nuclei. Brain Res 1999; 838:119-30. [PMID: 10446324 DOI: 10.1016/s0006-8993(99)01642-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Within the rodent visual system, calcitonin gene-related peptide (CGRP) is selectively expressed in neurons in the accessory optic nuclei (AON), including the dorsal terminal nucleus (DTN), lateral terminal nucleus (LTN) and medial terminal nucleus (MTN). To determine whether CGRP-immunoreactive neurons are involved in visual circuitry, electron microscopic preparations were analyzed from normal rats and rats with optic nerve transections. A co-localization analysis was also made because CGRP-labeled neurons had features of GABAergic neurons. Thus, sections were prepared for light microscopy to determine whether CGRP-containing neurons also had glutamate decarboxylase (GAD) and other markers for GABAergic neurons, such as calcium binding proteins: calbindin (CB), calretinin (CR) and parvalbumin (PV). Electron microscopy of the DTN and LTN showed CGRP-labeled somata and dendrites that were postsynaptic to axon terminals forming asymmetric synapses. Many of these axon terminals degenerated following optic nerve transection indicating that retinal ganglion cells form synapses with CGRP-labeled neurons in the AON. In the DTN, LTN and MTN, CGRP-labeled axon terminals formed symmetric synapses with unlabeled somata as well as dendritic shafts and spines. Consistent with this type of synapse being GABAergic were the co-localization data showing that about 90% of the CGRP-labeled neurons co-localized GAD in the AON. Many CGRP-labeled neurons showed immunostaining for CR (40%) whereas only a few had labeling for CB (5%). No CGRP-labeled neurons had PV. These data show that CGRP-containing neurons receive direct retinal input and represent a subpopulation of GABAergic neurons which differentially co-express calcium-binding proteins.
Collapse
Affiliation(s)
- J Zhou
- Department of Anatomy and Neurobiology, College of Medicine, University of California, Irvine, CA 92697-1275, USA
| | | | | | | |
Collapse
|
35
|
Cox CL, Zhou Q, Sherman SM. Glutamate locally activates dendritic outputs of thalamic interneurons. Nature 1998; 394:478-82. [PMID: 9697770 DOI: 10.1038/28855] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The relay of information through thalamus to cortex is dynamically gated, as illustrated by the retinogeniculocortical pathway. Important to this is the inhibitory interneuron in the lateral geniculate nucleus (LGN). For the typical neuron, synaptic information arrives through postsynaptic dendrites and is transmitted by axon terminals. However, the typical thalamic interneuron, in addition to conventional axonal outputs, has distal dendrites that serve both pre- and postsynaptic roles. These dendritic terminals participate in curious and enigmatic triadic arrangements, in which each contacts a relay cell dendrite and is contacted by a glutamatergic retinal terminal that innervates the same relay cell dendrite. Here we show that agonists of the metabotropic glutamate receptor (mGluR) activate dendritic terminals of interneurons in the absence of action potentials, thereby inhibiting the postsynaptic relay neuron. Somatic recordings from LGN interneurons reveal that there is no response to mGluR agonists, suggesting that their dendritic terminals are electrically isolated from their somata and axons, consistent with anatomical modelling of these cells. Our results offer insight into the functioning of triadic circuitry and indicate that thalamic interneurons can perform independent computations expressed through axonal as opposed to dendritic outputs.
Collapse
Affiliation(s)
- C L Cox
- Department of Neurobiology, State University of New York, Stony Brook 11794-5230, USA
| | | | | |
Collapse
|
36
|
|
37
|
|
38
|
Pape HC, McCormick DA. Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus. Neuroscience 1995; 68:1105-25. [PMID: 8544986 DOI: 10.1016/0306-4522(95)00205-w] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We investigated the electrophysiological and pharmacological properties of morphologically identified and putative interneurons within laminae A and A1 of the cat dorsal lateral geniculate nucleus maintained in vitro. These intralaminar interneurons possess unique electrophysiological characteristics, including (1) action potentials of a short duration (average width at half amplitude of 0.34 ms). (2) the ability to generate high-frequency trains of action potentials exceeding 500 Hz, without strong spike frequency adaptation, and (3) a low-threshold regenerative response with variable magnitude of expression, ranging from a subthreshold depolarization towards the generation of one to several action potentials in different cells. The low-threshold regenerative depolarization following a hyperpolarizing current pulse was increased in size by application of 4-aminopyridine, was reduced by nickel, and was not influenced by extracellular cesium. These findings indicate that this event is mediated by an underlying Ca(2+)-dependent mechanism, such as a low-threshold Ca(2+) current, that is regulated by the activation of opposing transient K+ currents. Every interneuron tested responded to glutamate, kainate, quisqualate, or N-methyl-D-aspartate with depolarization and action potential discharge. In contrast, we did not observe a postsynaptic response to activation of the metabotropic receptors with 1S,3R-(+/-)-1-amino-cyclopentane-1,3-dicarboxylate. Application of gamma-amino-butyric acid (GABA) strongly inhibited spike firing through a biphasic hyperpolarization and increase in membrane conductance, a response that reversed close to the presumed chloride equilibrium potential and was imitated by the GABAA receptor agonist muscimol. The GABAB receptor agonist baclofen evoked only a weak membrane hyperpolarization from rest and suppression of spontaneous spike activity. Application of acetylcholine, or the muscarinic agonist acetyl-beta-methylcholine, inhibited spontaneous action potential activity through hyperpolarization of the membrane potential, presumably resulting from an increase in membrane potassium conductance. In contrast, application of serotonin only slightly facilitated tonic activity in a subpopulation of interneurons, histamine induced a small slow depolarization apparently through activation of presynaptic excitatory pathways, and noradrenaline and adenosine had no detectable effect on the spontaneous firing or resting potential of interneurons. We suggest that intralaminar interneurons may function in a relatively linear manner to transform retinal and cortical inputs into a local field of inhibition in the dorsal lateral geniculate and that the excitability of these neurons is largely controlled by retinal, cortical, GABAergic, and cholinergic (brainstem) afferents.
Collapse
Affiliation(s)
- H C Pape
- Institut für Physiologie, Otto-von-Guericke-Universitaet, Magdeburg, Germany
| | | |
Collapse
|
39
|
Günlük AE, Bickford ME, Sherman SM. Rearing with monocular lid suture induces abnormal NADPH-diaphorase staining in the lateral geniculate nucleus of cats. J Comp Neurol 1994; 350:215-28. [PMID: 7884039 DOI: 10.1002/cne.903500206] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We investigated the changes in NADPH-diaphorase staining that occur in the lateral geniculate nucleus of cats following rearing with monocular lid suture. This staining allows visualization of the synthesizing enzyme of nitric oxide, a neuromodulator associated with plasticity. In the lateral geniculate nucleus of normally reared cats, NADPH-diaphorase exclusively labels the axons and terminals of an input from the parabrachial region of the brainstem; no geniculate cells in the A-laminae are labeled. Early monocular lid suture has no obvious effect on the NADPH-diaphorase staining of parabrachial axons. However, this lid suture results in the abnormal appearance of NADPH-diaphorase staining for geniculate somata. These cells are located primarily in the nondeprived laminae. Double-labeling experiments indicate that these cells with abnormal NADPH-diaphorase reactivity are Y relay cells: NADPH-diaphorase staining is found in cells retrogradely labeled from visual cortex; it is found in cells labeled with a monoclonal antibody for CAT-301, which selectively targets Y cells; it is not found in cells labeled with an anti-GABA antibody, which targets interneurons. Also, NADPH-diaphorase labeled cells are among the largest cells in the nondeprived laminae, again suggesting that they are Y relay cells. We cannot suggest a specific mechanism for this induction of NADPH-diaphorase labeling, but it does not seem to be due to abnormal binocular competition induced by the monocular lid suture.
Collapse
Affiliation(s)
- A E Günlük
- Department of Neurobiology, State University of New York, Stony Brook 11794-5230
| | | | | |
Collapse
|
40
|
Vidnyánszky Z, Hámori J. Quantitative electron microscopic analysis of synaptic input from cortical areas 17 and 18 to the dorsal lateral geniculate nucleus in cats. J Comp Neurol 1994; 349:259-68. [PMID: 7860782 DOI: 10.1002/cne.903490208] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cortical feedback is the largest extraretinal projection to the lateral geniculate nucleus. This input is thought to modulate the transfer of visual information in a state-dependent manner. The quantitative distribution and synaptology of axon terminals arising from different cortical areas is still an unsolved question. To address this problem, the synaptic termination pattern of corticogeniculate axons from cortical areas 17 and 18 entering the lateral geniculate nucleus of the cat was examined. The Phaseolus vulgaris leucoagglutinin anterograde tract tracing method was used for the labeling of corticogeniculate terminals. Postsynaptic targets were characterized by postembedding gamma-aminobutyric acid (GABA) immunocytochemistry. In both laminae A and A1, labeled corticogeniculate axons from area 17 established synaptic contacts with GABA-immunopositive, interneuronal dendritic profiles more frequently (17.5% of all axons) than did labeled axon terminals from area 18 (7% of axons). Conversely, 76% of labeled corticogeniculate axons from area 17, as opposed to 87% of labeled axons from area 18, terminated on GABA-immunonegative relay cell dendrites. Furthermore, the mean diameter of GABA-negative relay cell dendrites postsynaptic to labeled axons from area 17 was significantly smaller than the diameter of relay cell dendrites synapsing with labeled terminals from area 18. These results indicate that the corticogeniculate axons from cortical areas 17 and 18 exhibit different synaptic termination patterns in the dorsal lateral geniculate nucleus of the cat, suggesting that these two projections may subserve different functions in visual information processing.
Collapse
Affiliation(s)
- Z Vidnyánszky
- First Department of Anatomy, Semmelweis University Medical School, Budapest, Hungary
| | | |
Collapse
|
41
|
Asanuma C. GABAergic and pallidal terminals in the thalamic reticular nucleus of squirrel monkeys. Exp Brain Res 1994; 101:439-51. [PMID: 7531651 DOI: 10.1007/bf00227337] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ultrastructure of synaptic terminals from the external segment of the globus pallidus and of other synaptic terminals positive for gamma-aminobutyric acid (GABA) was examined in the thalamic reticular nucleus (TRN) of squirrel monkeys. Two GABA-positive terminals types were commonly encountered within the TRN neuropil. The most common type of GABAergic terminals (F terminals) are filled with dispersed pleomorphic synaptic vesicles and clusters of mitochondria. These terminals establish multiple symmetric synapses upon the somata and dendrites of TRN neurons. The external pallidal terminals, labeled with WGA-HRP, arise from thinly myelinated axons and correspond to the medium to large F terminals. A less prevalent population of smaller GABAergic synaptic profiles was also identified. The synaptic profiles in this second group contain considerably fewer pleomorphic synaptic vesicles in small irregular clusters and fewer mitochondria, establish symmetric synapses, are postsynaptic to other axonal terminals, are presynaptic to dendrites and soma, and are unlabeled following pallidal injections of WGA-HRP.
Collapse
Affiliation(s)
- C Asanuma
- Laboratory of Neurophysiology, National Institute of Mental Health, NIH Animal Center, Poolesville, Md 20837
| |
Collapse
|
42
|
Montero VM. Quantitative immunogold evidence for enrichment of glutamate but not aspartate in synaptic terminals of retino-geniculate, geniculo-cortical, and cortico-geniculate axons in the cat. Vis Neurosci 1994; 11:675-81. [PMID: 7918218 DOI: 10.1017/s0952523800002984] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A postembedding immunogold procedure was used on thin sections of the dorsal lateral geniculate nucleus (LGN) and perigeniculate nucleus (PGN) of the cat to estimate qualitatively and quantitatively, at the electron-microscopic (EM) level, the intensity of glutamate or aspartate immunoreactivities on identifiable synaptic terminals and other profiles of the neuropil. On sections incubated with a glutamate antibody, terminals of retinal and cortical axons in the LGN, and of collaterals of geniculo-cortical axons in the PGN, contain significantly higher density of immunogold particles than GABAergic terminals, glial cells, dendrites, and cytoplasm of geniculate cells. By contrast, in sections incubated with an aspartate antibody, terminals of retino-geniculate, cortico-geniculate, and geniculo-cortical axons did not show a selective enrichment of immunoreactivity, but instead the density of immunogold particles was generally low in the different profiles of the neuropil, with the exception of nucleoli. These results suggest that glutamate, but not aspartate, is a neurotransmitter candidate in the retino-geniculo-cortical pathways.
Collapse
Affiliation(s)
- V M Montero
- Department of Neurophysiology, University of Wisconsin, Madison
| |
Collapse
|
43
|
Wahle P, Stuphorn V, Schmidt M, Hoffmann KP. LGN-projecting neurons of the cat's pretectum express glutamic acid decarboxylase mRNA. Eur J Neurosci 1994; 6:454-60. [PMID: 8019681 DOI: 10.1111/j.1460-9568.1994.tb00287.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
There have been conflicting reports on the chemical nature of the projection of the pretectal nuclei [nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract (NOT-DTN complex) and posterior pretectal nucleus] to the lateral geniculate nucleus and inferior olive. There is evidence that the pretecto-geniculate pathway is inhibitory. However, most attempts to verify the GABAergic nature of the projection neurons have failed. In order to answer this question, we employed a combination of retrograde transport and in situ hybridization. Rhodamine-labelled latex microspheres were injected into the electrophysiologically identified lateral geniculate nucleus. In addition, fluorescein-labelled latex microspheres were injected into the inferior olive. Retrograde axonal transport labelled large pretectal neurons. We then applied riboprobes specific for glutamic acid decarboxylase mRNA. We were able to demonstrate glutamic acid decarboxylase mRNA expression in up to 70% of lateral geniculate nucleus-projecting NOT-DTN and posterior pretectal nucleus neurons but in none of the pretecto-olivary projection neurons. The results suggest that the pretecto-geniculate projection is GABAergic in nature, which would confirm previous electrophysiological and morphological observations. The pretecto-olivary projection is not GABAergic.
Collapse
Affiliation(s)
- P Wahle
- Lehrstuhl für Allgemeine Zoologie und Neurobiologie, Fakultät für Biologie, Ruhr-Universität Bochum, Germany
| | | | | | | |
Collapse
|
44
|
Xing LC, Tieman SB. Relay cells, not interneurons, of cat's lateral geniculate nucleus contain N-acetylaspartylglutamate. J Comp Neurol 1993; 330:272-85. [PMID: 8098338 DOI: 10.1002/cne.903300208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
N-acetylaspartylglutamate (NAAG) is an endogenous brain dipeptide that satisfies many of the criteria for a neurotransmitter. We have previously identified NAAG immunoreactivity in neurons of the lateral geniculate nucleus (LGN) of the cat and monkey. To determine whether all LGN neurons contain NAAG, we treated sections of cat LGN with affinity-purified antibodies to NAAG and counterstained them with thionin. The larger neurons contained NAAG, but the smaller neurons did not. We treated other sections with antiserum to glutamic acid decarboxylase (GAD), the rate-limiting enzyme in the synthesis of gamma-aminobutyric acid (GABA), in order to label interneurons of the LGN. In these sections, the smaller cells were labeled; the larger neurons were not. We hypothesized that NAAG was present in relay cells, but not interneurons. We used two double-labeling paradigms to test this hypothesis. We combined immunocytochemistry for NAAG using a fluorescent secondary antibody with either (1) fluorescent retrograde tracers (true blue, granular blue, rhodamine beads, or propidium iodide) injected into areas 17 and/or 18 or (2) immunocytochemistry for GAD using a second fluorescent secondary antibody. In the LGN, over 99% of retrogradely labeled cells contained NAAG, but few GAD-positive neurons did. In contrast, neurons of the perigeniculate nucleus contained both NAAG and GAD, demonstrating that staining by one set of antisera did not inhibit staining by the other and that perigeniculate neurons are chemically distinct from the interneurons of the LGN. We conclude that in LGN, the relay cells, which project to visual cortex, contain NAAG, whereas most of the interneurons, which contain GABA, do not.
Collapse
Affiliation(s)
- L C Xing
- Neurobiology Research Center, State University of New York, Albany 12222
| | | |
Collapse
|
45
|
Roska T, Hamori J, Labos E, Lotz K, Orzo L, Takacs J, Venetianer P, Vidnyanszky Z, Zarandy A. The use of CNN models in the subcortical visual pathway. ACTA ACUST UNITED AC 1993. [DOI: 10.1109/81.222799] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
46
|
Sillito AM. The cholinergic neuromodulatory system: an evaluation of its functional roles. PROGRESS IN BRAIN RESEARCH 1993; 98:371-8. [PMID: 8248525 DOI: 10.1016/s0079-6123(08)62421-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- A M Sillito
- Department of Visual Sciences, Institute of Ophthalmology, London, UK
| |
Collapse
|
47
|
McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 1992; 39:337-88. [PMID: 1354387 DOI: 10.1016/0301-0082(92)90012-4] [Citation(s) in RCA: 828] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- D A McCormick
- Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
48
|
Conley M, Wilson KF. Dendritic organization of class II (inter)neurons in the dorsal lateral geniculate nucleus of the tree shrew: observations based on Golgi, immunocytochemical, and biocytin methods. J Comp Neurol 1992; 319:51-65. [PMID: 1592905 DOI: 10.1002/cne.903190107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this report we examine the dendritic organization of putative interneurons (class II cells) in different layers of the dorsal lateral geniculate nucleus of the tree shrew. The results show that there is considerable morphological diversity within this class, but that two broad groups can be identified: neurons whose dendrites remain within a layer or its adjacent interlaminar zones (intralaminar class II cells); and neurons whose dendrites cross into an adjacent layer(s) (interlaminar class II cells). The majority of class II cells in every layer have intralaminar dendrites, some of which are oriented along a particular axis, and others that are organized radially. The paired layers (1 and 2, 4 and 5) contain a particular group of intralaminar class II cells that have radially organized dendrites and elaborate claw-like appendages. The dendrites of interlaminar class II cells are organized along lines of projection and extend across as many as four layers. These cells often reside close to or within the interlaminar zones. Overall, the organization of class II cells seems to follow a pattern similar to the class I (relay) cells identified previously. Most have intralaminar dendrites, which presumably underlie the fidelity of signals transmitted from the retina to a particular layer. However, there are also a number of other cells whose processes cross laminar borders, presumably to affect integrative functions within the nucleus.
Collapse
Affiliation(s)
- M Conley
- Department of Psychology, Duke University, Durham, North Carolina 27706
| | | |
Collapse
|
49
|
Pearson HE, Stoffler DJ, Sonstein WJ. Response of retinal terminals to loss of postsynaptic target neurons in the dorsal lateral geniculate nucleus of the adult cat. J Comp Neurol 1992; 315:333-43. [PMID: 1740547 DOI: 10.1002/cne.903150308] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have used the neurotoxin kainic acid to produce rapid degeneration of neurons in the dorsal lateral geniculate nucleus (dLGN) of the adult cat. This degeneration mimics the rapid loss of geniculate neurons seen after visual cortex ablation in the neonate. Subsequent anterograde transport of horseradish peroxidase injected into the eye was used to reveal the projection patterns of retinal ganglion cell axons at different survival periods after the kainic acid injection. The density of retinal projections to the degenerated regions of the geniculate was reduced considerably at 4 and 6 months survival, but at 2 months was not significantly different from normal. The laminar pattern of projections to degenerated regions of the geniculate did not change in any animals studied, even when an adjacent lamina contained surviving cells. Electron microscopic examination of degenerated dLGN revealed intact retinal (RLP) and RSD terminals at all survival times, although the density of terminals appeared much reduced when compared to controls. Some RLP terminals exhibited the "dark reaction" of degeneration and these degenerating terminals were most numerous at 2 months survival. These findings demonstrate that, in response to degeneration of their usual target cells, mature retinal ganglion cells with withdraw their axon terminals from these regions of degeneration. We conclude that mature retinal ganglion cells continue to be dependent on target integrity for the maintenance of a normal axonal arborization.
Collapse
Affiliation(s)
- H E Pearson
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| | | | | |
Collapse
|
50
|
Sillito AM. GABA mediated inhibitory processes in the function of the geniculo-striate system. PROGRESS IN BRAIN RESEARCH 1992; 90:349-84. [PMID: 1631305 DOI: 10.1016/s0079-6123(08)63622-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A M Sillito
- Department of Visual Science, Institute of Ophthalmology, London, England, UK
| |
Collapse
|