1
|
Von Bartheld CS, Altick AL. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol 2011; 93:313-40. [PMID: 21216273 DOI: 10.1016/j.pneurobio.2011.01.003] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 11/27/2022]
Abstract
Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of "geometrically simpler" cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer's, Huntington's, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons.
Collapse
Affiliation(s)
- Christopher S Von Bartheld
- Department of Physiology and Cell Biology, Mailstop 352, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
2
|
Altick AL, Baryshnikova LM, Vu TQ, von Bartheld CS. Quantitative analysis of multivesicular bodies (MVBs) in the hypoglossal nerve: evidence that neurotrophic factors do not use MVBs for retrograde axonal transport. J Comp Neurol 2009; 514:641-57. [PMID: 19363811 DOI: 10.1002/cne.22047] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multivesicular bodies (MVBs) are defined by multiple internal vesicles enclosed within an outer, limiting membrane. MVBs have previously been quantified in neuronal cell bodies and in dendrites, but their frequencies and significance in axons are controversial. Despite lack of conclusive evidence, it is widely believed that MVBs are the primary organelle that carries neurotrophic factors in axons. Reliable information about axonal MVBs under physiological and pathological conditions is needed for a realistic assessment of their functional roles in neurons. We provide a quantitative ultrastructural analysis of MVBs in the normal postnatal rat hypoglossal nerve and under a variety of experimental conditions. MVBs were about 50 times less frequent in axons than in neuronal cell bodies or dendrites. Five distinct types of MVBs were distinguished in axons, based on MVB size, electron density, and size of internal vesicles. Although target manipulations did not significantly change MVBs in axons, dystrophic conditions such as delayed fixation substantially increased the number of axonal MVBs. Radiolabeled brain- and glial-cell derived neurotrophic factors (BDNF and GDNF) injected into the tongue did not accumulate during retrograde axonal transport in MVBs, as determined by quantitative ultrastructural autoradiography, and confirmed by analysis of quantum dot-labeled BDNF. We conclude that for axonal transport, neurotrophic factors utilize small vesicles or endosomes that can be inconspicuous at transmission electron microscopic resolution, rather than MVBs. Previous reports of axonal MVBs may be based, in part, on artificial generation of such organelles in axons due to dystrophic conditions.
Collapse
Affiliation(s)
- Amy L Altick
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | |
Collapse
|
3
|
Weible MW, Hendry IA. What is the importance of multivesicular bodies in retrograde axonal transport in vivo? ACTA ACUST UNITED AC 2004; 58:230-43. [PMID: 14704955 DOI: 10.1002/neu.10318] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neurons with long axons have a unique problem in generating signaling cascades that are able to reach the nucleus after receptor activation by neurotrophins at the nerve terminal. The straightforward concept of receptor binding and local generation of 2nd second messenger cascades is too simplistic. In this review we will outline a mechanism that would enable the complex signals generated at the nerve terminal to be conveyed intact to the cell body. There are three different sites in the neuron where 2nd messenger proteins can interact with the signaling complex and be activated. Signaling cascades are initiated both at the nerve terminal and at the cell body when 2nd messengers are recruited to the plasma membrane by activated receptors. After receptor-mediated endocytosis, 2nd messenger molecules continue to be recruited to the internalized vesicle; however, the mix of proteins differs in the nerve terminal and in the cell body. At the nerve terminal the activated pathways result in the formation of the neurotrophin signaling endosome, which includes molecules to be retrogradely transported to the cell body. When the retrograde neurotrophin signaling endosome reaches the cell body, it can recruit additional 2nd messenger molecules to finally generate the unique signal derived from the nerve terminal. We propose that the multivesicular body observed in vivo functions as an endosome carrier vehicle or retrosome. This retrosome enables the mix of signaling molecules recruited at the terminal to be transported intact to the cell body. This will allow the cell body to receive a snapshot of the events occurring at the nerve terminal at the time the retrosome is formed.
Collapse
Affiliation(s)
- M W Weible
- Developmental Neurobiology Group, Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|
4
|
Wrenn CC, Lappi DA, Wiley RG. Threshold relationship between lesion extent of the cholinergic basal forebrain in the rat and working memory impairment in the radial maze. Brain Res 1999; 847:284-98. [PMID: 10575099 DOI: 10.1016/s0006-8993(99)02099-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The cholinergic basal forebrain (CBF) degenerates in Alzheimer's Disease (AD), and the degree of this degeneration correlates with the degree of dementia. In the present study we have modeled this degeneration in the rat by injecting various doses of the highly selective immunotoxin 192 IgG-saporin (192-sap) into the ventricular system. The ability of 192-sap-treated rats to perform in a previously learned radial maze working memory task was then tested. We report here that 192-sap created lesions of the CBF and, to a lesser extent, cerebellar Purkinje cells in a dose-dependent fashion. Furthermore, we found that rats harboring lesions of the entire CBF greater than 75% had impaired spatial working memory in the radial maze. Correlational analysis of working memory impairment and lesion extent of the component parts of the CBF revealed that high-grade lesions of the hippocampal-projecting neurons of the CBF were not sufficient to impair working memory. Only rats with high-grade lesions of the hippocampal and cortical projecting neurons of the CBF had impaired working memory. These data are consistent with other 192-sap reports that found behavioral deficits only with high-grade CBF lesions and indicate that the relationship between CBF lesion extent and working memory impairment is a threshold relationship in which a high degree of neuronal loss can be tolerated without detectable consequences. Additionally, the data suggest that the CBF modulates spatial working memory via its connections to both the hippocampus and cortex.
Collapse
Affiliation(s)
- C C Wrenn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
5
|
Wrenn CC, Wiley RG. The behavioral functions of the cholinergic basal forebrain: lessons from 192 IgG-saporin. Int J Dev Neurosci 1998; 16:595-602. [PMID: 10198809 DOI: 10.1016/s0736-5748(98)00071-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Until recently our understanding of the functional neuroanatomy of the cholinergic basal forebrain (CBF) has been hindered by the lack of a lesioning technique that is truly selective. The development of the immunotoxin 192 IgG-saporin (192-sap) has greatly improved our ability to create specific lesions of the CBF. Rats with such lesions have been studied in a wide variety of behavioral paradigms of learning, memory, and attention. Complete or near-complete destruction of the CBF results in deficits in a variety of behavior paradigms including passive avoidance, spatial tasks (water and radial mazes), delayed matching to position/sample, and attentional tasks. However, interpretation of many experiments is hampered by incomplete lesions and/or concomitant damage to cerebellar Purkinje neurons. Future studies will need to address these issues. Recent development of a similar immunotoxin that is effective in primates should permit more sophisticated behavioral analysis of CBF function. Additionally, immunotoxins selective for other types of neurons, such as the noradrenergic selective anti-DBH-saporin, will permit analysis of the behavioral functions of other diffusely projecting systems and how these other systems may interact with the CBF.
Collapse
Affiliation(s)
- C C Wrenn
- Laboratory of Experimental Neurology, Department of Veterans Affairs, Nashville, TN 37212, USA
| | | |
Collapse
|
6
|
Wiley RG. Findings about the cholinergic basal forebrain using immunotoxin to the nerve growth factor receptor. Ann N Y Acad Sci 1997; 835:20-9. [PMID: 9616759 DOI: 10.1111/j.1749-6632.1997.tb48615.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R G Wiley
- Department of Neurology, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
7
|
Dohrman DP, West JR, Pantazis NJ. Ethanol Reduces Expression of the Nerve Growth Factor Receptor, But Not Nerve Growth Factor Protein Levels in the Neonatal Rat Cerebellum. Alcohol Clin Exp Res 1997. [DOI: 10.1111/j.1530-0277.1997.tb03853.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
|
9
|
Martínez-Murillo R, Bentura ML, Fernandez AM, Nieto-Sampedro M, Rodrigo J. Chemical heterogeneity in adult rat cerebellar Purkinje cells as revealed by zebrin I and low-affinity nerve growth factor receptor immunocytochemical expression following injury. JOURNAL OF NEUROCYTOLOGY 1995; 24:807-17. [PMID: 8576710 DOI: 10.1007/bf01179980] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cerebellar Purkinje cells in rat express low-affinity nerve growth factor receptor during development, but rarely in normal adult animals. However, after either mechanical injury or colchicine treatment during adulthood, these cells re-express low-affinity nerve growth factor receptor-immunoreactive protein. Two Purkinje cell subpopulations were defined in normal adult cerebellum by the presence or the absence of zebrin I antigen. Nevertheless, it remains an open question as to whether low-affinity nerve growth factor receptor-immunoreactive protein can be expressed by all damaged Purkinje cells, independent of their location and their staining with antibodies against intrinsic molecular markers that reveal Purkinje cell heterogeneity, such as zebrin I. In this study, a serial-section immunocytochemical mapping of the expression zebrin I and low-affinity nerve growth factor receptor, using specific monoclonal antibodies, we carried out in colchicine-treated rats. After mechanical damage of the cerebellar cortex, co-localization of these antigens at the cellular level was also analysed in thin adjacent sections, and by using a combined immunocytochemical staining method in individual sections. The findings revealed the existence of three sub-sets of Purkinje cells: (1) two complementary groups distinctly immunoreactive to one antibody, but not to the other and (2) a third group that contained double-labelled cells. In contrast, co-expression of both antigens was never observed following mechanical lesions. The seemingly independent response to mechanical injury of Purkinje cells located in different zebrin-defined compartments, indicates that particular subpopulations of Purkinje cells may respond differentially to traumatic injury.
Collapse
|
10
|
Cadete-Leite A, Andrade JP, Sousa N, Ma W, Ribeiro-da-Silva A. Effects of chronic alcohol consumption on the cholinergic innervation of the rat hippocampal formation as revealed by choline acetyltransferase immunocytochemistry. Neuroscience 1995; 64:357-74. [PMID: 7700526 DOI: 10.1016/0306-4522(94)00330-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The specific aim of this study was to evaluate whether the cholingeric innervation of the hippocampal formation is affected by chronic alcohol consumption in the rat. Choline acetyltransferase-immunoreactive fibres and neurons were analysed in both alcohol-fed and control rats using a monoclonal antibody against choline acetyltransferase and quantitative methods. We found a global reduction in the cholinergic plexus, which was more pronounced in the hippocampus proper than in the dentate gyrus. The areal density of choline acetyltransferase immunoreactive neurons was also reduced. Differences from controls in neuronal number were particularly striking in the stratum lacunosum moleculare of the regio superior, which is precisely the zone of the hippocampal formation where choline acetyltransferase immunoreactive neurons are more abundant in controls. In conclusion, our results show that prolonged ethanol consumption leads to a substantial reduction in the cholinergic innervation of the hippocampal formation, as there was a loss of cholinergic fibres and also an apparent loss of hippocampal cholingeric neurons. These findings may help to explain the cognitive dysfunctions observed after chronic alcohol consumption.
Collapse
|
11
|
van Eden CG, Rinkens A. Lesion induced expression of low-affinity NGF-binding protein (p75) immunoreactivity after neonatal and adult aspiration lesions of the rat dorsomedial prefrontal cortex. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1994; 82:167-74. [PMID: 7842504 DOI: 10.1016/0165-3806(94)90159-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study was performed in order to examine whether or not NGF-mediated processes could be involved in the sparing of function observed after neonatal prefrontal cortex lesions. After unilateral neonatal aspiration lesions of the dorsomedial prefrontal cortex, fibers immunoreactive for the low-affinity NGF-binding protein (p75) with a deviant morphology were observed in the severed hemisphere only. The morphology of these fibers was characterized by their large caliber, their large, often bulbous varicosities, and their curly appearance. These fibers were present as soon as 24 h after the operation. Between 3 and 5 days after the operation, the greatest abundance of these fibers was found in the ventrorostral areas of the forebrain and along the pathways of cortical projections of the cholinergic cell groups. After 7 days, such fibers were no longer observed. After comparable lesions in adult animals, a similar type of fiber was observed in the lesioned hemisphere. However, in these cases a response comparable to that observed in the neonatal animals was not observed until 5 days after the operation, with fewer fibers. Furthermore, in contrast to what was observed after neonatal lesions, in adult animals no indications of retrograde transport of p75 immunoreactive material towards the cholinergic cells of the basal forebrain nuclei were found. From these findings it was concluded that the prompt upregulation of p75 expression in neonatal animals may contribute to the survival of the cholinergic cells of the basal forebrain, and may therefore be involved in the restoration of function of the medial prefrontal cortex.
Collapse
Affiliation(s)
- C G van Eden
- Netherlands Institute for Brain Research, Graduate School Neurosciences Amsterdam
| | | |
Collapse
|
12
|
Lärkfors L, Lindsay RM, Alderson RF. Ciliary neurotrophic factor enhances the survival of Purkinje cells in vitro. Eur J Neurosci 1994; 6:1015-25. [PMID: 7952272 DOI: 10.1111/j.1460-9568.1994.tb00596.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have examined the effects of ciliary neurotrophic factor (CNTF) on the development of rat Purkinje cells in vitro. Cerebellar cells, derived from embryonic day 16 rat fetuses, were found to respond rapidly to CNTF treatment by induction of c-Fos protein, such that 40% of the cells were immunopositive after 60 min. Treatment with low doses of CNTF (10-100 pg/ml) for 8 days resulted in an approximately 1.6-fold increase in the number of Purkinje cells, identified by immunohistochemical staining for calbindin. Immunohistochemical staining for other Purkinje cell markers--cyclic-GMP-dependent protein kinase and the low-affinity nerve growth factor receptor--verified increased Purkinje cell survival following CNTF treatment. In addition, CNTF increased specific high-affinity GABA uptake by 45%, and the number of GABAergic neurons by 70%. A maximal increase in the number of Purkinje cells and GABA-uptake was only achieved if CNTF was added within 48 h of plating the cells, further suggesting that CNTF enhances Purkinje cell survival in vitro. These results taken together strongly support a direct effect of CNTF in promoting the survival of Purkinje cells and possibly other GABAergic cerebellar neurons.
Collapse
Affiliation(s)
- L Lärkfors
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591
| | | | | |
Collapse
|
13
|
Figueiredo BC, Otten U, Strauss S, Volk B, Maysinger D. Effects of perinatal hypo- and hyperthyroidism on the levels of nerve growth factor and its low-affinity receptor in cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 72:237-44. [PMID: 8485846 DOI: 10.1016/0165-3806(93)90188-g] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Deficits or excesses of thyroid hormones during critical periods of mammalian cerebellar development can lead to profound biochemical and morphological abnormalities in this system. The goal of this study was to investigate the effects of perinatal hypo- and hyperthyroidism on the ontogeny of nerve growth factor (NGF) and its low-affinity receptor (p75NGFR) in the rat cerebellum. The concentration of NGF and of p75NGFR immunoreactivity (IR) were measured, several days after birth, in cerebella of rats which had received propylthiouracil (PTU) or thyroxine. NGF concentration was markedly enhanced only on postnatal day 2 (P2) in hyperthyroid rats, whereas in hypothyroid (PTU-treated) rats NGF values were similar to age-matched controls. These observations suggest that thyroid hormone affects NGF synthesis during early periods of cerebellar development. In Purkinje cells of control animals, p75NGFR IR peaked at P10. In hypothyroid rats, the expression of p75NGFR was retarded, peaking at P15, whereas in hyperthyroid rats it was advanced, peaking at P8. The increased p75NGFR IR found in Purkinje cell bodies and the delayed disappearance of p75NGFR IR from the external granular layer of hypothyroid rats suggest different roles for thyroid hormone in the developing cerebellum. We conclude that p75NGFR and NGF are independently regulated by thyroid hormone during critical periods of cerebellar development. The effect of thyroid hormone deficiency on p75NGFR content in Purkinje cells may involve complex mechanisms such as impaired efficiency of axonal transport.
Collapse
Affiliation(s)
- B C Figueiredo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Que., Canada
| | | | | | | | | |
Collapse
|
14
|
Figueiredo BC, Almazan G, Ma Y, Tetzlaff W, Miller FD, Cuello AC. Gene expression in the developing cerebellum during perinatal hypo- and hyperthyroidism. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1993; 17:258-68. [PMID: 7685463 DOI: 10.1016/0169-328x(93)90010-m] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The intensity of p75NGFR receptor-like immunoreactivity and the mRNAs encoding p75NGFR, T alpha 1 alpha-tubulin, GAP-43 and the myelin proteins MBP and PLP were measured in the developing cerebellum to study the effects of perinatal thyroid hormone imbalance in rats. Results compared to age-matched controls provide in vivo evidence for differential gene regulation by thyroid hormone in the developing cerebellum. We found that p75NGFR immunoreactivity was strikingly elevated in hypothyroid rats, whereas p75NGFR mRNA content remained only twice as high as that of control levels on postnatal day 15 (P15). When p75NGFR immunoreactivity was still elevated in hypothyroid rats, Purkinje cells exhibited proximal axonal varicosities, axonal twisting and differences in axonal caliber. The mRNAs encoding proteins involved with neurite growth-promoting elements, T alpha 1 alpha-tubulin and GAP-43, were also increased in hypothyroidism, possibly reflecting a neuronal response to a deficiency in, or damage to, cerebellar neurons, or a general delay in their down regulation. Similar increases were not observed for the myelin specific genes. MBP and PLP mRNAs were first detected on P2 of hyperthyroid rats, and they increased with age. Hypo- or hyperthyroidism did not affect the initial onset of MBP and PLP expression, however, hyperthyroidism increased levels of PLP and MBP mRNAs between P2 and P10. By contrast, the most consistent decrease in MBP and PLP mRNAs in rats with thyroid hormone deficiency was observed only on P10. At later times (P15 and P30), the two mRNA levels were similar to controls in all groups. These results are consistent with a role for thyroid hormone in the earlier stages of cerebellar myelination. Hypothryoidism led to specific increases in T alpha 1 alpha-tubulin and GAP-43 mRNAs, and in the immunoreactivity and mRNA levels of p75NGFR receptor--all changes that may play a role in the observed abnormal neuronal outgrowth.
Collapse
Affiliation(s)
- B C Figueiredo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Que., Canada
| | | | | | | | | | | |
Collapse
|
15
|
Martínez-Murillo R, Caro L, Nieto-Sampedro M. Lesion-induced expression of low-affinity nerve growth factor receptor-immunoreactive protein in Purkinje cells of the adult rat. Neuroscience 1993; 52:587-93. [PMID: 8450960 DOI: 10.1016/0306-4522(93)90408-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Normal adult cerebellar Purkinje cells in the rat rarely express low-affinity nerve growth factor receptor immunoreactivity. However, intense anti-low-affinity nerve growth factor receptor immunostaining was observed as early as one day after a lesion of the cerebellar cortex. Low-affinity nerve growth factor receptor immunoreactivity was confined to a selected group of Purkinje cells, the number of which reached a maximum at three days postlesion, and, in some neurons, persisted up to 10 days after damage. The intensity of Purkinje cell immunolabeling decayed abruptly with distance from the lesion site. Reactive Purkinje cells exhibited deposition of immunoreaction product in the cell soma, dendrites and axons. Characteristically, most Purkinje cell axons exhibiting intense low-affinity nerve growth factor receptor immunoreactivity had beaded, varicose morphology. Varicose fibres with the appearance of recurrent collaterals of Purkinje cell axons were also low-affinity nerve growth factor receptor-positive. Our results indicate that adult rat Purkinje cells increase low-affinity nerve growth factor receptor-immunoreactive protein in response to injury, suggesting that, in the cerebellum, low-affinity nerve growth factor receptor or low-affinity nerve growth factor receptor-like molecules may be involved in regulating neuronal plasticity during adulthood.
Collapse
|
16
|
Spoerri PE, Romanello S, Petrelli L, Negro A, Dal Toso R, Leon A, Skaper SD. Nerve growth factor (NGF) receptors in a central nervous system glial cell line: upregulation by NGF and brain-derived neurotrophic factor. J Neurosci Res 1992; 33:82-90. [PMID: 1453486 DOI: 10.1002/jnr.490330111] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neurotrophic proteins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are related in their primary amino acid structures. In this study we investigated the extent to which the low-affinity NGF receptor (LNGFR) in C6 glioma cells can discriminate between the neurotrophins NGF and BDNF. LNGFR-immunoreactivity (IR) was studied in C6 cells treated for 16 hr with NGF (50 ng/ml) or BDNF (10 ng/ml), using immunogold labelling and electron microscopic morphometric analysis. The cells were exposed to the anti-NGFR antibody 192-IgG, followed by immunoglobulin conjugated with colloidal gold. Untreated C6 cells exhibited some surface gold label (positive LNGFR-IR). Cells treated with NGF or BDNF displayed significantly increased LNGFR-IR on all surfaces in terms of gold labeling, which was more pronounced in NGF-treated cells. LNGFR-IR was also localized in coated endocytotic vesicles, in smooth endoplasmic reticulum, and in secondary multivesicular lysosomes in neurotrophin-treated and untreated cells. The increase in LNGFR protein was further substantiated by a correspondingly higher content of LNGFR mRNA detected after 15 hr of either NGF or BDNF treatment. These results suggest that the LNGFR in glial cells can be upregulated by the structurally related neurotrophins NGF and BDNF.
Collapse
Affiliation(s)
- P E Spoerri
- Department of Cellular Biology, Fidia Research Laboratories, Abano Terme, Italy
| | | | | | | | | | | | | |
Collapse
|
17
|
von Bartheld CS, Heuer JG, Bothwell M. Expression of nerve growth factor (NGF) receptors in the brain and retina of chick embryos: comparison with cholinergic development. J Comp Neurol 1991; 310:103-29. [PMID: 1658088 DOI: 10.1002/cne.903100110] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The expression of nerve growth factor receptor (NGFR) transcripts was investigated with in situ hybridization techniques in the CNS of chick embryos from 3 days of incubation (E3) to 14 days posthatch (P14). The time course and distribution of NGFR expression was compared with the development of the cholinergic phenotype. Cholinergic properties were assessed by immunolabeling for choline acetyltransferase (ChAT) and histochemistry for acetylcholinesterase (AchE) activity. NGFR transcripts are expressed transiently in the inner plexiform layer and ganglion cell layer of the retina (E4-P1), neostriatum and hippocampus (E18), infundibular hypothalamus (E7-18), spiriform complex (E9-15), layers 2, 3 (E9-18), and 10 (E11-18) of the optic tectum, nucleus mesencephalicus profundus, pars ventralis (E9-18), parvicellular isthmic nucleus (E7-P1), magnocellular isthmic nucleus (E9-E18), nucleus semilunaris (E7-18), isthmo-optic nucleus (E7-P14), rostral motor nuclei (E5-18), developing cerebellum (E7-15), internal granule cell layer (E11-18) and Purkinje cell layer (E15-P14) of the cerebellar cortex, and the inferior olivary nucleus (E9-15). A small number of neuronal populations with embryonic expression of NGFR remain strongly NGFR-positive in the posthatch animal:habenular nuclei (labeled after E5), nucleus subrotundus (after E9), mesencephalic trigeminal nucleus (after E5), caudal parts of locus ceruleus and nucleus subceruleus (after E7), medullar reticular nuclei (after E11), and motor nuclei IX, X, and XII (after E9). The majority of neuronal populations with NGFR expression show cholinergic properties in development, and NGFR expression always precedes the onset of ChAT immunoreactivity. Postnatal expression of growth factor receptors is largely confined to neurons of the reticular type. NGFR expression in avian CNS nuclei differs from that in mammals. Early loss of NGFR expression in the cholinergic basal forebrain (which remains strongly NGFR positive in mammals) and persistent NGFR expression in parts of the avian locus ceruleus indicate changes of growth factor receptor expression and growth factor requirements in phylogeny. Knowledge of the time and distribution of NGFR expression in the chick embryo will facilitate the assessment of specific functions of NGF and NGF-like molecules in an embryonic model with easy access for experimental manipulations.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- C S von Bartheld
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195
| | | | | |
Collapse
|