1
|
Hedreen JC, Berretta S, White III CL. Postmortem neuropathology in early Huntington disease. J Neuropathol Exp Neurol 2024; 83:294-306. [PMID: 38553027 PMCID: PMC11029463 DOI: 10.1093/jnen/nlae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Two aspects of the neuropathology of early Huntington disease (HD) are examined. Neurons of the neostriatum are counted to determine relative loss in striosomes versus matrix at early stages, including for the first time in preclinical cases. An immunohistochemical procedure is described that tentatively distinguishes early HD from HD mimic disorders in postmortem brains. Counts of striatal projection neurons (SPNs) in striosomes defined by calbindin immunohistochemistry versus counts in the surrounding matrix are reported for 8 Vonsattel grade 0 (including 5 premanifest), 8 grade 1, 2 grade 2 HD, and for 8 control postmortem brains. Mean counts of striosome and matrix SPNs were significantly lower in premanifest grade 0 versus controls, with striosome counts significantly lower than matrix. In 8 grade 1 and 2 grade 2 brains, no striosomes with higher SPN counts than in the surrounding matrix were observed. Comparing dorsal versus ventral neostriatum, SPNs in dorsal striosomes and matrix declined more than ventral, making clear the importance of the dorsoventral site of tissue selection for research studies. A characteristic pattern of expanded polyglutamine-immunopositive inclusions was seen in all HD cases. Inclusions were always present in some SPNs and some pontine nucleus neurons and were absent in Purkinje cells, which showed no obvious cell loss.
Collapse
Affiliation(s)
- John C Hedreen
- Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, Massachusetts, USA
| | - Sabina Berretta
- McLean Hospital, Belmont, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Charles L White III
- Neuropathology Section, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
2
|
Zhong M, Wang Y, Lin G, Liao FF, Zhou FM. Dopamine-independent development and maintenance of mouse striatal medium spiny neuron dendritic spines. Neurobiol Dis 2023; 181:106096. [PMID: 37001611 PMCID: PMC10864017 DOI: 10.1016/j.nbd.2023.106096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Striatal medium spiny neurons (MSNs) and striatal dopamine (DA) innervation are profoundly important for brain function such as motor control and cognition. A widely accepted theory posits that striatal DA loss causes (or leads to) MSN dendritic atrophy. However, examination of the literature indicates that the data from Parkinson's disease (PD) patients and animal PD models were contradictory among studies and hard to interpret. Here we have re-examined the potential effects of DA activity on MSN morphology or lack thereof. We found that in 15-day, 4- and 12-month old Pitx3 null mutant mice that have severe DA denervation in the dorsal striatum while having substantial residual DA innervation in the ventral striatum, MSN dendrites and spine numbers were similar in dorsal and ventral striatum, and also similar to those in normal mice. In 15-day, 4- and 12-month old tyrosine hydroxylase knockout mice that cannot synthesize L-dopa and thus have no endogenous DA in the entire brain, MSN dendrites and spine numbers were also indistinguishable from age-matched wild-type (WT) mice. Furthermore, in adult WT mice, unilateral 6-OHDA lesion at 12 months of age caused an almost complete striatal DA denervation in the lesioned side, but MSN dendrites and spine numbers were similar in the lesioned and control sides. Taken together, our data indicate that in mice, the development and maintenance of MSN dendrites and spines are DA-independent such that DA depletion does not trigger MSN dendritic atrophy; our data also suggest that the reported MSN dendritic atrophy in PD may be a component of neurodegeneration in PD rather than a consequence of DA denervation.
Collapse
Affiliation(s)
- Manli Zhong
- College of Life and Health Sciences, Northeastern University, No.195, Chuangxin Road, Hunnan District, Shenyang 110169, China; Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA.
| | - Yuhan Wang
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Geng Lin
- Teaching Center for Basic Medical Experiments, China Medical University, Shenyang 110122, China; Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Francesca-Fang Liao
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA
| | - Fu-Ming Zhou
- Department of Pharmacology, Addiction Science and Toxicology, College of Medicine, University of Tennessee, Memphis, TN 38103, USA.
| |
Collapse
|
3
|
Krstonošić B, Milošević NT, Gudović R. Quantitative analysis of the Golgi impregnated human (neo)striatal neurons: Observation of the morphological characteristics followed by an emphasis on the functional diversity of cells. Ann Anat 2023; 246:152040. [PMID: 36460203 DOI: 10.1016/j.aanat.2022.152040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND The (neo)striatum is the major input structure of the basal nuclei, which is involved in the execution of voluntary movements, but also in controlling the processes that lead to the movement, such as motivation and cognition. The striatum provides its function through an interaction between projection neurons and interneurons. The aim of this study was to quantify the morphological properties of neurons in the precommissural putamen and precommissural caudate nucleus head and to evaluate whether there is a difference in cell morphology between different cell groups within one part and between the same cell groups within different parts of the striatum. METHODS A total of 652 neuronal images of human striatum were observed. The features of the neuronal morphology (soma size, dendritic field size, shape of neuronal image, dendritic curviness, dendritic branching complexity) were observed by determining appropriate parameters of digital images of neurons. RESULTS According to the presence of spines on the soma and/or dendrites, neurons were qualitatively classified into 446 spiny and 206 aspiny cells. The analysis of the distribution of the dendritic field area shows that spiny and aspiny neurons from both parts of the neostriatum can be decomposed into two distributions, which means that they can be classified into subgroups. A quantitative analysis of the spiny/aspiny neurons in the human putamen or caudate nucleus head has shown that there is a statistically significant difference between them. By comparing the morphology of neurons of the same group between different parts of the human neostriatum (putamen and caudate nucleus), it was also determined that there is a statistically significant difference. CONCLUSION Since the morphology and function of neurons are in close correlation, it can be assumed that different groups of neurons in the human striatum might support functional diversity of the studied area.
Collapse
Affiliation(s)
- Bojana Krstonošić
- Faculty of Medicine University of Novi Sad, Department of Anatomy, Hajduk Veljkova3, Novi Sad 21000, Serbia.
| | - Nebojša T Milošević
- Faculty of Medicine University of Belgrade, Department of Biophysics, Dr Subotića 8, Belgrade 11000, Serbia.
| | - Radmila Gudović
- Faculty of Medicine University of Novi Sad, Department of Anatomy, Hajduk Veljkova3, Novi Sad 21000, Serbia.
| |
Collapse
|
4
|
Del Rey NLG, García-Cabezas MÁ. Cytology, architecture, development, and connections of the primate striatum: Hints for human pathology. Neurobiol Dis 2023; 176:105945. [PMID: 36481436 DOI: 10.1016/j.nbd.2022.105945] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/19/2022] [Accepted: 12/03/2022] [Indexed: 12/10/2022] Open
Abstract
Degeneration of neurons and circuits across the striatum shows stereotyped time-course and spatial topography patterns that are distinct for Huntington's disease, Parkinson's disease, or the Tauopathies. These patterns of neurodegeneration in humans have not yet been systematically related to developmental, connectional, cellular, and chemical factors studied in human and non-human primates, that may underlie potential differences in selective vulnerability across striatal sectors. Relating primate anatomy to human pathology could provide new venues for identifying molecular, cellular, and connectional factors linked to the degeneration of striatal neurons and circuits. This review describes and summarizes several developmental, cellular, structural, and connectional features of the primate striatum in relation to patterns of neurodegeneration in the striatum of humans and of non-human primate models. We review (1) the types of neurons in the primate striatum, (2) the cyto-, myelo-, and chemoarchitecture of the primate striatum, (3) the developmental origin of the striatum in light of modern patterning studies, (4) the organization of corticostriatal projections in relation to cortical types, and (5) the topography and time-course of neuron loss, glial reaction, and protein aggregation induced by neurodegenerative diseases in humans and in non-human primate models across striatal sectors and their corresponding cortical areas. We summarize current knowledge about key aspects of primate striatal anatomy and human pathology and indicate knowledge gaps that should be addressed in future studies. We aim to identify factors for selective vulnerability to neurodegeneration of striatal neurons and circuits and obtain hints that could help elucidate striatal pathology in humans.
Collapse
Affiliation(s)
- Natalia López-González Del Rey
- PhD Program in Neuroscience UAM-Cajal; Madrid, Spain; HM CINAC (Centro Integral de Neurociencias Abarca Campal). Hospital Universitario HM Puerta del Sur. HM Hospitales. Madrid, Spain
| | - Miguel Ángel García-Cabezas
- PhD Program in Neuroscience UAM-Cajal; Madrid, Spain; Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid; Madrid, Spain.
| |
Collapse
|
5
|
Girard B, Lienard J, Gutierrez CE, Delord B, Doya K. A biologically constrained spiking neural network model of the primate basal ganglia with overlapping pathways exhibits action selection. Eur J Neurosci 2020; 53:2254-2277. [PMID: 32564449 PMCID: PMC8246891 DOI: 10.1111/ejn.14869] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022]
Abstract
Action selection has been hypothesized to be a key function of the basal ganglia, yet the nuclei involved, their interactions and the importance of the direct/indirect pathway segregation in such process remain debated. Here, we design a spiking computational model of the monkey basal ganglia derived from a previously published population model, initially parameterized to reproduce electrophysiological activity at rest and to embody as much quantitative anatomical data as possible. As a particular feature, both models exhibit the strong overlap between the direct and indirect pathways that has been documented in non-human primates. Here, we first show how the translation from a population to an individual neuron model was achieved, with the addition of a minimal number of parameters. We then show that our model performs action selection, even though it was built without any assumption on the activity carried out during behaviour. We investigate the mechanisms of this selection through circuit disruptions and found an instrumental role of the off-centre/on-surround structure of the MSN-STN-GPi circuit, as well as of the MSN-MSN and FSI-MSN projections. This validates their potency in enabling selection. We finally study the pervasive centromedian and parafascicular thalamic inputs that reach all basal ganglia nuclei and whose influence is therefore difficult to anticipate. Our model predicts that these inputs modulate the responsiveness of action selection, making them a candidate for the regulation of the speed-accuracy trade-off during decision-making.
Collapse
Affiliation(s)
- Benoît Girard
- Institut des Systèmes Intelligent et de Robotique (ISIR), Sorbonne Université, CNRS, Paris, France
| | - Jean Lienard
- Neural Computation Unit, Okinawa Institute of Science and Technology, Kunigami-gun, Japan
| | | | - Bruno Delord
- Institut des Systèmes Intelligent et de Robotique (ISIR), Sorbonne Université, CNRS, Paris, France
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology, Kunigami-gun, Japan
| |
Collapse
|
6
|
Regulation and control roles of the basal ganglia in the development of absence epileptiform activities. Cogn Neurodyn 2019; 14:137-154. [PMID: 32015772 DOI: 10.1007/s11571-019-09559-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/02/2019] [Accepted: 09/30/2019] [Indexed: 10/25/2022] Open
Abstract
Absence epileptiform activities are traditionally considered to be primarily induced by abnormal interactions between the cortical and thalamic neurons, which form the thalamocortical circuit in the brain. The basal ganglia, as an organizational unit in the brain, has close input and output relationships with the thalamocortical circuit. Although several studies report that the basal ganglia may participate in controlling and regulating absence epileptiform activities, to date, there have been no studies regarding whether the basal ganglia directly cause absence epileptiform activities. In this paper, we built a basal ganglia-corticothalamic network model to determine the role of basal ganglia in this disease. We determined that absence epileptiform activities might be directly induced by abnormal coupling strengths on certain pivotal pathways in the basal ganglia. These epileptiform activities can be well controlled by the coupling strengths of three major pathways that project from the thalamocortical network to the basal ganglia. The results implied that the substantia nigra pars compacta (SNc) can be considered to be the effective treatment target area for inhibiting epileptiform activities, which supports the observations of previous studies. Particularly, as a major contribution of this paper, we determined that the final presentation position of the epileptic slow spike waves is not limited to the cerebral cortex; these waves may additionally appear in the thalamus, striatal medium spiny neurons, striatal fast spiking interneuron, the SNc, subthalamic nucleus, substantia nigra pars reticulata and globus pallidus pars externa. In addition, consistent with several previous studies, the delay in the network was observed to be a critical factor for inducing transitions between different types of absence epileptiform activities. Our new model not only explains the onset and control mechanism but also provides a unified framework to study similar problems in neuron systems.
Collapse
|
7
|
Structural organization, GABAergic and tyrosine hydroxylase expression in the striatum and globus pallidus of the South American plains vizcacha, Lagostomus maximus (Rodentia, Caviomorpha). J Mol Histol 2019; 50:515-531. [PMID: 31515635 DOI: 10.1007/s10735-019-09845-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022]
Abstract
The striatum is an essential component of the basal ganglia that regulatessensory processing, motor, cognition, and behavior. Depending on the species, the striatum shows a unique structure called caudate-putamen as in mice, or its separation into two regions called caudate and lenticular nuclei, the latter formed by putamen and globus pallidus areas, as in primates. These structures have two compartments, striosome and matrix. We investigated the structural organization, GABAergic and tyrosine hydroxylase (TH) expression in the striatum and globus pallidus of the South American plains vizcacha, Lagostomus maximus. Its striatum showed regionalization arising from the presence of an internal capsule, and a similar organization to a striosome-matrix compartmentalization. GABAergic neurons in the matrix of caudate exhibited parvalbumin, calretinin, calbindin, GAD65, and NADPH-d-immunoreactivity. These were also expressed in cells of the putamen with the exception of calretinin showing neurofibers localization. Globus pallidus showed parvalbumin- and GAD65-immunoreactive cells, and calretinin- and calbindin-immunoreactive neuropil, plus GABA-A-immunoreactive neurofibers. NADPH-d-, GAD65- and GABA-A-immunoreactive neurons were larger than parvalbumin-, calretinin-, and calbindin-immunoreactive cells, whereas calbindin-immunoreactive cells were the most abundant. In addition, TH-immunoreactive neuropil was observed in the matrix of the striatum. A significant larger TH-immunoreactive area and neuron number was found in females compared to males. The presence of an internal capsule suggests an adaptive advantage concerning motor and cognitive abilities favoring reaction time in response to predators. In an anatomy-evolutive perspective, the striatum of vizcacha seems to be closer to that of humans than to that of laboratory traditional models such as mouse.
Collapse
|
8
|
Lavisse S, Williams S, Lecourtois S, van Camp N, Guillermier M, Gipchtein P, Jan C, Goutal S, Eymin L, Valette J, Delzescaux T, Perrier AL, Hantraye P, Aron Badin R. Longitudinal characterization of cognitive and motor deficits in an excitotoxic lesion model of striatal dysfunction in non-human primates. Neurobiol Dis 2019; 130:104484. [PMID: 31132407 DOI: 10.1016/j.nbd.2019.104484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
As research progresses in the understanding of the molecular and cellular mechanisms underlying neurodegenerative diseases like Huntington's disease (HD) and expands towards preclinical work for the development of new therapies, highly relevant animal models are increasingly needed to test new hypotheses and to validate new therapeutic approaches. In this light, we characterized an excitotoxic lesion model of striatal dysfunction in non-human primates (NHPs) using cognitive and motor behaviour assessment as well as functional imaging and post-mortem anatomical analyses. NHPs received intra-striatal stereotaxic injections of quinolinic acid bilaterally in the caudate nucleus and unilaterally in the left sensorimotor putamen. Post-operative MRI scans showed atrophy of the caudate nucleus and a large ventricular enlargement in all 6 NHPs that correlated with post-mortem measurements. Behavioral analysis showed deficits in 2 analogues of the Wisconsin card sorting test (perseverative behavior) and in an executive task, while no deficits were observed in a visual recognition or an episodic memory task at 6 months following surgery. Spontaneous locomotor activity was decreased after lesion and the incidence of apomorphine-induced dyskinesias was significantly increased at 3 and 6 months following lesion. Positron emission tomography scans obtained at end-point showed a major deficit in glucose metabolism and D2 receptor density limited to the lesioned striatum of all NHPs compared to controls. Post-mortem analyses revealed a significant loss of medium-sized spiny neurons in the striatum, a loss of neurons and fibers in the globus pallidus, a unilateral decrease in dopaminergic neurons of the substantia nigra and a loss of neurons in the motor and dorsolateral prefrontal cortex. Overall, we show that this robust NHP model presents specific behavioral (learning, execution and retention of cognitive tests) and metabolic functional deficits that, to the best of our knowledge, are currently not mimicked in any available large animal model of striatal dysfunction. Moreover, we used non-invasive, translational techniques like behavior and imaging to quantify such deficits and found that they correlate to a significant cell loss in the striatum and its main input and output structures. This model can thus significantly contribute to the pre-clinical longitudinal evaluation of the ability of new therapeutic cell, gene or pharmacotherapy approaches in restoring the functionality of the striatal circuitry.
Collapse
Affiliation(s)
- Sonia Lavisse
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Susannah Williams
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Sophie Lecourtois
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Nadja van Camp
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Martine Guillermier
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Pauline Gipchtein
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Caroline Jan
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Sébastien Goutal
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Leopold Eymin
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Julien Valette
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Thierry Delzescaux
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Anselme L Perrier
- Inserm U861, I-STEM, AFM, Corbeil-Essonnes 91100, cedex, France; UEVE U861, I-STEM, AFM, Corbeil-Essonnes 91100, cedex, France.
| | - Philippe Hantraye
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| | - Romina Aron Badin
- MIRCen, CEA/IBFJ/DRF/LMN, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France; UMR CEA CNRS 9199-Université Paris Saclay, 18 Route du Panorama, 92265 Fontenay-aux-Roses, France.
| |
Collapse
|
9
|
Sassone J, Valtorta F, Ciammola A. Early Dyskinesias in Parkinson's Disease Patients With Parkin Mutation: A Primary Corticostriatal Synaptopathy? Front Neurosci 2019; 13:273. [PMID: 30971883 PMCID: PMC6443894 DOI: 10.3389/fnins.2019.00273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/07/2019] [Indexed: 12/18/2022] Open
Abstract
Mutations in the PARKIN gene cause early-onset Parkinson’s disease (PD). Despite the high proportion of still missing phenotyping data in the literature devoted to early-onset PD, studies suggest that, as compared with late-onset PD, PARKIN patients show dystonia at onset and extremely dose-sensitive levodopa-induced dyskinesia (LID). What pathophysiological mechanisms underpin such early and atypical dyskinesia in patients with PARKIN mutations? Though the precise mechanisms underlying dystonia and LID are still unclear, evidence suggests that hyperkinetic disorders in PD are a behavioral expression of maladaptive functional and morphological changes at corticostriatal synapses induced by long-term dopamine (DA) depletion. However, since the dyskinesia in PARKIN patients can also be present at onset, other mechanisms beside the well-established DA depletion may play a role in the development of dyskinesia in these patients. Because cortical and striatal neurons express parkin protein, and parkin modulates the function of ionotropic glutamatergic receptors (iGluRs), an intriguing explanation may rest on the potential role of parkin in directly controlling the glutamatergic corticostriatal synapse transmission. We discuss the novel theory that loss of parkin function can dysregulate transmission at the corticostriatal synapses where they cause early maladaptive changes that co-occur with the changes stemming from DA loss. This hypothesis suggests an early striatal synaptopathy; it could lay the groundwork for pharmacological treatment of dyskinesias and LID in patients with PARKIN mutations.
Collapse
Affiliation(s)
- Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Ciammola
- Department of Neurology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
10
|
Grbatinić I, Krstonošić B, Marić D, Milošević N. Morphological Properties of the Two Types of Caudate Interneurons: Kohonen Self-Organizing Maps and Correlation-Comparison Analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:684-707. [PMID: 30449292 DOI: 10.1017/s1431927618015337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Our previous study found that caudate and putaminal interneurons are morphologically very different, and that accordingly they could be divided in two separate clusters. In addition, it also demonstrated, as a collateral result, that the caudate cluster itself consists of two clusters of morphologically different interneurons. Hence, the objective of this study is a morphological description and subtle differing of morphologies of these two types of caudate interneurons, i.e., an investigation of those morphological traits which characterize them uniquely, and which would distinguish them. Binary two-dimensional images of caudate interneurons, taken from deceased adult human subjects, were analyzed by using 46 parameters, describing the morphology of interneurons. The parameters can be divided in the following classes: size (surface) of a neuron, neuronal shape, length of neuronal morphological compartments, dendritic branching, morphological organization, and complexity. The morphological determination of caudate interneurons was performed in a step-wise manner. The first step was the assignment of each individual neuron to an adequate cluster where it belonged according to morphological criteria. This was done by using the trained artificial neural network, Kohonen self-organizing map. After the clusters were formed, the analysis is further continued by the precise, feature-wise determination of morphological differences found between clusters of caudate interneurons and then finished by defining correlation-based, mutual, inter-parametric relations for each of the clusters. The first was performed by using single-factor analysis, and the second by correlation-comparison analysis. Single-factor analysis showed significance for 34 parameters (morphological features) that distinguish between the clusters. Correlation-comparison analysis extended the results of single-factor analysis by demonstrating significance for 198 inter-parametric correlation pairs that represent 19.13% of mismatched correlations of the first kind among the total number of correlations. This represents a significant inter-cluster separation zone. In addition, the analysis extracted one correlation of the second kind, namely, the DO-MDCBO, very highly significant (p<0.001), positive (r=0.45) in the cluster I, while negative (r=-0.13), also significant (p<0.05) in the cluster II. The two clusters of caudate interneurons were found to be significantly morphologically different. These differences, albeit not strong as the caudate-putaminal differences, are more numerous with respect to significant morphological properties defining them. They probably underlie, influence, and modulate different neurofunctional behavior of the two types of interneurons, which need to be further investigated by future studies.
Collapse
Affiliation(s)
- Ivan Grbatinić
- 1Laboratory for Digital Image Processing and Analysis,Institute of Biophysics, Medical Faculty,University of Belgrade,Visegradska 2, Belgrade,Serbia
| | - Bojana Krstonošić
- 2Institute of Anatomy, Medical Faculty,University of Novi Sad,Hajduk Velljkova 3, Novi Sad,Serbia
| | - Dušica Marić
- 2Institute of Anatomy, Medical Faculty,University of Novi Sad,Hajduk Velljkova 3, Novi Sad,Serbia
| | - Nebojša Milošević
- 1Laboratory for Digital Image Processing and Analysis,Institute of Biophysics, Medical Faculty,University of Belgrade,Visegradska 2, Belgrade,Serbia
| |
Collapse
|
11
|
Hu B, Shi Q, Guo Y, Diao X, Guo H, Zhang J, Yu L, Dai H, Chen L. The oscillatory boundary conditions of different frequency bands in Parkinson's disease. J Theor Biol 2018; 451:67-79. [PMID: 29727632 DOI: 10.1016/j.jtbi.2018.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/10/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease that is common in the elderly population. The most important pathological change in PD is the degeneration and death of dopaminergic neurons in the substantia nigra of the midbrain, which results in a decrease in the dopamine (DA) content of the striatum. The exact cause of this pathological change is still unknown. Numerous studies have shown that the evolution of PD is associated with abnormal oscillatory activities in the basal ganglia, with different oscillation frequency ranges, such as the typical beta band (13-30 Hz), the alpha band (8-12 Hz), the theta band (4-7 Hz) and the delta band (1-3 Hz). Although some studies have implied that abnormal interactions between the subthalamic nucleus (STN) and globus pallidus (GP) neurons may be a key factor required to induce these oscillations, the relative mechanism is still unclear. The effects of other nerve nuclei in the basal ganglia, such as the striatum, on these oscillations are still unknown. The thalamus and cortex both have close input and output relationships with the basal ganglia, and many previous studies have indicated that they may also exert effects on Parkinson's disease oscillation, but the mechanisms involved are unclear. In this paper, we built a corticothalamic-basal ganglia (CTBG) mean firing-rate model to explore the onset mechanisms of these different oscillation phenomena. We found that, in addition to the STN-GP network, Parkinson's disease oscillations may also be induced by changing the coupling strength and delays in other pathways. Different frequency bands appear in the oscillating region, and various boundary conditions are depicted in parameter diagrams. The onset mechanism is well explained both by the model and by the numerical simulation results. Therefore, this model provides a unifying framework for studying the mechanism of Parkinson's disease oscillations, and we hope that the results obtained in this work can inspire future experimental studies.
Collapse
Affiliation(s)
- Bing Hu
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Qianqian Shi
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Guo
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiyezi Diao
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Heng Guo
- Institute of Applied Mathematics, Department of Mathematics and Statistics, College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Zhang
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liang Yu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hao Dai
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
12
|
Wolmarans DW, Scheepers IM, Stein DJ, Harvey BH. Peromyscus maniculatus bairdii as a naturalistic mammalian model of obsessive-compulsive disorder: current status and future challenges. Metab Brain Dis 2018; 33:443-455. [PMID: 29214602 DOI: 10.1007/s11011-017-0161-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a prevalent and debilitating condition, characterized by intrusive thoughts and repetitive behavior. Animal models of OCD arguably have the potential to contribute to our understanding of the condition. Deer mice (Permomyscus maniculatus bairdii) are characterized by stereotypic behavior which is reminiscent of OCD symptomology, and which may serve as a naturalistic animal model of this disorder. Moreover, a range of deer mouse repetitive behaviors may be representative of different compulsive-like phenotypes. This paper will review work on deer mouse behavior, and evaluate the extent to which this serves as a valid and useful model of OCD. We argue that findings over the past decade indicate that the deer mouse model has face, construct and predictive validity.
Collapse
Affiliation(s)
- De Wet Wolmarans
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, South Africa.
| | - Isabella M Scheepers
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Dan J Stein
- MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
- Department of Psychiatry and Mental Health, MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Brian H Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, South Africa
- MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| |
Collapse
|
13
|
Grbatinić I, Milošević N, Krstonošić B. The neuromorphological caudate–putaminal clustering of neostriate interneurons: Kohonen self–organizing maps and supervised artificial neural networks with multivariate analysis. J Theor Biol 2018; 438:96-115. [DOI: 10.1016/j.jtbi.2017.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 10/18/2022]
|
14
|
Zhang X, Liu S, Zhan F, Wang J, Jiang X. The Effects of Medium Spiny Neuron Morphologcial Changes on Basal Ganglia Network under External Electric Field: A Computational Modeling Study. Front Comput Neurosci 2017; 11:91. [PMID: 29123477 PMCID: PMC5662631 DOI: 10.3389/fncom.2017.00091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/22/2017] [Indexed: 11/30/2022] Open
Abstract
The damage of dopaminergic neurons that innervate the striatum has been considered to be the proximate cause of Parkinson's disease (PD). In the dopamine-denervated state, the loss of dendritic spines and the decrease of dendritic length may prevent medium spiny neuron (MSN) from receiving too much excitatory stimuli from the cortex, thereby reducing the symptom of Parkinson's disease. However, the reduction in dendritic spine density obtained by different experiments is significantly different. We developed a biological-based network computational model to quantify the effect of dendritic spine loss and dendrites tree degeneration on basal ganglia (BG) signal regulation. Through the introduction of error index (EI), which was used to measure the attenuation of the signal, we explored the amount of dendritic spine loss and dendritic trees degradation required to restore the normal regulatory function of the network, and found that there were two ranges of dendritic spine loss that could reduce EI to normal levels in the case of dopamine at a certain level, this was also true for dendritic trees. However, although these effects were the same, the mechanisms of these two cases were significant difference. Using the method of phase diagram analysis, we gained insight into the mechanism of signal degradation. Furthermore, we explored the role of cortex in MSN morphology changes dopamine depletion-induced and found that proper adjustments to cortical activity do stop the loss in dendritic spines induced by dopamine depleted. These results suggested that modifying cortical drive onto MSN might provide a new idea on clinical therapeutic strategies for Parkinson's disease.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Department of Mathematics, South China University of Technology, Guangzhou, China
| | - Shenquan Liu
- Department of Mathematics, South China University of Technology, Guangzhou, China
| | - Feibiao Zhan
- Department of Mathematics, South China University of Technology, Guangzhou, China
| | - Jing Wang
- Department of Mathematics, South China University of Technology, Guangzhou, China
| | - Xiaofang Jiang
- Department of Mathematics and Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
15
|
Apicella P. The role of the intrinsic cholinergic system of the striatum: What have we learned from TAN recordings in behaving animals? Neuroscience 2017; 360:81-94. [PMID: 28768155 DOI: 10.1016/j.neuroscience.2017.07.060] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/24/2017] [Accepted: 07/24/2017] [Indexed: 11/28/2022]
Abstract
Cholinergic interneurons provide rich local innervation of the striatum and play an important role in controlling behavior, as evidenced by the variety of movement and psychiatric disorders linked to disrupted striatal cholinergic transmission. Much progress has been made in recent years regarding our understanding of how these interneurons contribute to the processing of information in the striatum. In particular, investigation of the activity of presumed striatal cholinergic interneurons, identified as tonically active neurons or TANs in behaving animals, has pointed to their role in the signaling and learning of the motivational relevance of environmental stimuli. Although the bulk of this work has been conducted in monkeys, several studies have also been carried out in behaving rats, but information remains rather disparate across studies and it is still questionable whether rodent TANs correspond to TANs described in monkeys. Consequently, our current understanding of the function of cholinergic transmission in the striatum is challenged by the rapidly growing, but often confusing literature on the relationship between TAN activity and specific behaviors. As regards the precise nature of the information conveyed by the cholinergic TANs, a recent influential view emphasized that these local circuit neurons may play a special role in the processing of contextual information that is important for reinforcement learning and selection of appropriate actions. This review provides a summary of recent progress in TAN physiology from which it is proposed that striatal cholinergic interneurons are crucial elements for flexible switching of behaviors under changing environmental conditions.
Collapse
Affiliation(s)
- Paul Apicella
- Institut de Neurosciences de la Timone UMR 7289, Aix Marseille Université, CNRS, 13385 Marseille, France.
| |
Collapse
|
16
|
Grbatinić I, Milošević N. Classification of adult human dentate nucleus border neurons: Artificial neural networks and multidimensional approach. J Theor Biol 2016; 404:273-284. [DOI: 10.1016/j.jtbi.2016.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 06/05/2016] [Accepted: 06/09/2016] [Indexed: 11/25/2022]
|
17
|
Hinaut X, Lance F, Droin C, Petit M, Pointeau G, Dominey PF. Corticostriatal response selection in sentence production: Insights from neural network simulation with reservoir computing. BRAIN AND LANGUAGE 2015; 150:54-68. [PMID: 26335997 DOI: 10.1016/j.bandl.2015.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 07/18/2015] [Accepted: 08/04/2015] [Indexed: 06/05/2023]
Abstract
Language production requires selection of the appropriate sentence structure to accommodate the communication goal of the speaker - the transmission of a particular meaning. Here we consider event meanings, in terms of predicates and thematic roles, and we address the problem that a given event can be described from multiple perspectives, which poses a problem of response selection. We present a model of response selection in sentence production that is inspired by the primate corticostriatal system. The model is implemented in the context of reservoir computing where the reservoir - a recurrent neural network with fixed connections - corresponds to cortex, and the readout corresponds to the striatum. We demonstrate robust learning, and generalization properties of the model, and demonstrate its cross linguistic capabilities in English and Japanese. The results contribute to the argument that the corticostriatal system plays a role in response selection in language production, and to the stance that reservoir computing is a valid potential model of corticostriatal processing.
Collapse
Affiliation(s)
- Xavier Hinaut
- CNPS, UMR CNRS 8195, University Paris-Sud, Orsay, France
| | - Florian Lance
- INSERM Stem Cell and Brain Research Institute, Human and Robot Cognitive Systems, 18 Ave Lepine, 69675 Bron Cedex, France
| | - Colas Droin
- INSERM Stem Cell and Brain Research Institute, Human and Robot Cognitive Systems, 18 Ave Lepine, 69675 Bron Cedex, France
| | - Maxime Petit
- INSERM Stem Cell and Brain Research Institute, Human and Robot Cognitive Systems, 18 Ave Lepine, 69675 Bron Cedex, France
| | - Gregoire Pointeau
- INSERM Stem Cell and Brain Research Institute, Human and Robot Cognitive Systems, 18 Ave Lepine, 69675 Bron Cedex, France
| | - Peter Ford Dominey
- INSERM Stem Cell and Brain Research Institute, Human and Robot Cognitive Systems, 18 Ave Lepine, 69675 Bron Cedex, France.
| |
Collapse
|
18
|
Krstonošić B, Milošević NT, Marić DL, Babović SS. Quantitative analysis of spiny neurons in the adult human caudate nucleus: can it confirm the current qualitative cell classification? Acta Neurol Belg 2015; 115:273-80. [PMID: 25273896 DOI: 10.1007/s13760-014-0365-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/08/2014] [Indexed: 11/25/2022]
Abstract
The caudate nucleus, as a part of the striatum (neostriatum or dorsal striatum), is involved in the control of cognitive, motor and limbic functions. The majority of the caudate nucleus cells are projection spiny neurons, whose activity is determined by excitatory inputs from the cortex, thalamus, globus pallidus and brainstem. A qualitative analysis of human caudate nucleus neurons involves the description of the structure and features of cells, and accordingly, their classification into an appropriate type. The aim of this study is to determine the justification of the current qualitative classification of spiny neurons in the precommissural head of the human caudate nucleus by quantifying morphological properties of neurons. After the qualitative analysis of microscopic images of the Golgi-impregnated caudate nucleus neurons, five morphological properties of cells were measured/quantified. In terms of the dendritic field area, caudate nucleus neurons were divided into two subgroups: small and large neurons. In our sample of 251 projection nerve cells, 58.17 % (146) were small and 41.83 % (105) were large neurons. These data show that suggested groups of spiny neurons in the human caudate nucleus differ in their morphology. Since the structure and function of cells are closely correlated, it is possible that these morphologically different types of neurons may represent different functional groups.
Collapse
Affiliation(s)
- Bojana Krstonošić
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000, Novi Sad, Serbia,
| | | | | | | |
Collapse
|
19
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
20
|
Liénard J, Girard B. A biologically constrained model of the whole basal ganglia addressing the paradoxes of connections and selection. J Comput Neurosci 2014; 36:445-68. [PMID: 24077957 DOI: 10.1007/s10827-013-0476-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 05/30/2013] [Accepted: 08/04/2013] [Indexed: 11/28/2022]
Abstract
The basal ganglia nuclei form a complex network of nuclei often assumed to perform selection, yet their individual roles and how they influence each other is still largely unclear. In particular, the ties between the external and internal parts of the globus pallidus are paradoxical, as anatomical data suggest a potent inhibitory projection between them while electrophysiological recordings indicate that they have similar activities. Here we introduce a theoretical study that reconciles both views on the intra-pallidal projection, by providing a plausible characterization of the relationship between the external and internal globus pallidus. Specifically, we developed a mean-field model of the whole basal ganglia, whose parameterization is optimized to respect best a collection of numerous anatomical and electrophysiological data. We first obtained models respecting all our constraints, hence anatomical and electrophysiological data on the intrapallidal projection are globally consistent. This model furthermore predicts that both aforementioned views about the intra-pallidal projection may be reconciled when this projection is weakly inhibitory, thus making it possible to support similar neural activity in both nuclei and for the entire basal ganglia to select between actions. Second, we predicts that afferent projections are substantially unbalanced towards the external segment, as it receives the strongest excitation from STN and the weakest inhibition from the striatum. Finally, our study strongly suggests that the intrapallidal connection pattern is not focused but diffuse, as this latter pattern is more efficient for the overall selection performed in the basal ganglia.
Collapse
|
21
|
Beatty JA, Song SC, Wilson CJ. Cell-type-specific resonances shape the responses of striatal neurons to synaptic input. J Neurophysiol 2014; 113:688-700. [PMID: 25411465 DOI: 10.1152/jn.00827.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurons respond to synaptic inputs in cell-type-specific ways. Each neuron type may thus respond uniquely to shared patterns of synaptic input. We applied statistically identical barrages of artificial synaptic inputs to four striatal cell types to assess differences in their responses to a realistic input pattern. Each interneuron type fired in phase with a specific input-frequency component. The fast-spiking interneuron fired in relation to the gamma-band (and higher) frequencies, the low-threshold spike interneuron to the beta-band frequencies, and the cholinergic neurons to the delta-band frequencies. Low-threshold spiking and cholinergic interneurons showed input impedance resonances at frequencies matching their spiking resonances. Fast-spiking interneurons showed resonance of input impedance but at lower than gamma frequencies. The spiny projection neuron's frequency preference did not have a fixed frequency but instead tracked its own firing rate. Spiny cells showed no input impedance resonance. Striatal interneurons are each tuned to a specific frequency band corresponding to the major frequency components of local field potentials. Their influence in the circuit may fluctuate along with the contribution of that frequency band to the input. In contrast, spiny neurons may tune to any of the frequency bands by a change in firing rate.
Collapse
Affiliation(s)
- Joseph A Beatty
- Department of Biology, University of Texas, San Antonio, Texas
| | - Soomin C Song
- Department of Biology, University of Texas, San Antonio, Texas
| | | |
Collapse
|
22
|
Korzhevskii DE, Grigoriev IP, Kirik OV, Sukhorukova EG, Alekseyeva OS. Comparative study of cholinergic structures of the striatum of human and rat using choline acetyltransferase immunocytochemical reaction. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Mesulam MM. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer's disease. J Comp Neurol 2013; 521:4124-44. [PMID: 23852922 PMCID: PMC4175400 DOI: 10.1002/cne.23415] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/11/2013] [Accepted: 06/28/2013] [Indexed: 01/15/2023]
Abstract
The nucleus basalis is located at the confluence of the limbic and reticular activating systems. It receives dopaminergic input from the ventral tegmental area/substantia nigra, serotonergic input from the raphe nuclei, and noradrenergic input from the nucleus locus coeruleus. Its cholinergic contingent, known as Ch4, provides the principal source of acetylcholine for the cerebral cortex and amygdala. More than half of presynaptic varicosities along its cholinergic axons make traditional synaptic contacts with cortical neurons. Limbic and paralimbic cortices of the brain receive the heaviest cholinergic input from Ch4 and are also the principal sources of reciprocal cortical projections back to the nucleus basalis. This limbic affiliation explains the role of the nucleus basalis in modulating the impact and memorability of incoming sensory information. The anatomical continuity of the nucleus basalis with other basomedial limbic structures may underlie its early and high vulnerability to the tauopathy and neurofibrillary degeneration of Alzheimer's disease. The tauopathy in Ch4 eventually leads to the degeneration of the cholinergic axons that it sends to the cerebral cortex. The early involvement of Ch4 has a magnifying effect on Alzheimer's pathology, because neurofibrillary degeneration in a small number of neurons can perturb neurotransmission in all cortical areas. Although the exact contribution of the Ch4 lesion to the cognitive changes of Alzheimer's disease remains poorly understood, the cholinergic circuitry of the nucleus basalis is emerging as one of the most strategically positioned and behaviorally consequential modulatory systems of the human cerebral cortex. J. Comp. Neurol. 521:4124-4144, 2013. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M.-Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Medical School, Chicago, Illinois 60611
| |
Collapse
|
24
|
Stocco A, Lebiere C. Inhibitory synapses between striatal projection neurons support efficient enhancement of cortical signals: a computational model. J Comput Neurosci 2013; 37:65-80. [PMID: 24306077 DOI: 10.1007/s10827-013-0490-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 11/25/2022]
Abstract
The function of lateral inhibitory synapses between striatal projection neurons is currently poorly understood. This paper puts forward a model suggesting that inhibitory collaterals can be used to enhance the incoming cortical signals. In particular, we propose that lateral inhibition between projection neurons performs a signal-enhancing process that resembles the image processing technique of "unsharp masking", where a blurred copy is used to enhance and sharpen an input image. The paper also presents the results of computer simulations deomsntrating that the proposed mechanisms is compatible with known properties of striatal projection neurons, and outperforms alternative models of lateral inhibition. Finally, this paper illustrates the advantages of the proposed model and discusses the relevance of these conclusions for existing computational models of the basal ganglia and their role in cognition.
Collapse
Affiliation(s)
- Andrea Stocco
- Department of Psychology and Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, 98195, USA,
| | | |
Collapse
|
25
|
Zhao L, Chu CB, Li JF, Yang YT, Niu SQ, Qin W, Hao YG, Dong Q, Guan R, Hu WL, Wang Y. Glycogen synthase kinase-3 reduces acetylcholine level in striatum via disturbing cellular distribution of choline acetyltransferase in cholinergic interneurons in rats. Neuroscience 2013; 255:203-11. [PMID: 24121130 DOI: 10.1016/j.neuroscience.2013.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/12/2013] [Accepted: 10/01/2013] [Indexed: 12/31/2022]
Abstract
Cholinergic interneurons, which provide the main source of acetylcholine (ACh) in the striatum, control the striatal local circuits and deeply involve in the pathogenesis of neurodegenerative diseases. Glycogen synthase kinase-3 (GSK-3) is a crucial kinase with diverse fundamental functions and accepted that deregulation of GSK-3 activity also plays important roles in diverse neurodegenerative diseases. However, up to now, there is no direct proof indicating whether GSK-3 activation is responsible for cholinergic dysfunction. In the present study, with combined intracerebroventricular injection of Wortmannin and GF-109203X, we activated GSK-3 and demonstrated the increased phosphorylation level of microtubule-associated protein tau and neurofilaments (NFs) in the rat striatum. The activated GSK-3 consequently decreased ACh level in the striatum as a result of the reduction of choline acetyltransferase (ChAT) activity. The alteration of ChAT activity was due to impaired ChAT distribution rather than its expression. Furthermore, we proved that cellular ChAT distribution was dependent on low phosphorylation level of NFs. Nevertheless, the cholinergic dysfunction in the striatum failed to induce significant neuronal number reduction. In summary, our data demonstrates the link between GSK-3 activation and cholinergic dysfunction in the striatum and provided beneficial evidence for the pathogenesis study of relevant neurodegenerative diseases.
Collapse
Affiliation(s)
- L Zhao
- Department of Neurobiology and Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gonzales KK, Pare JF, Wichmann T, Smith Y. GABAergic inputs from direct and indirect striatal projection neurons onto cholinergic interneurons in the primate putamen. J Comp Neurol 2013; 521:2502-22. [PMID: 23296794 PMCID: PMC3983787 DOI: 10.1002/cne.23295] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/14/2012] [Accepted: 12/27/2012] [Indexed: 01/30/2023]
Abstract
Striatal cholinergic interneurons (ChIs) are involved in reward-dependent learning and the regulation of attention. The activity of these neurons is modulated by intrinsic and extrinsic γ-aminobutyric acid (GABA)ergic and glutamatergic afferents, but the source and relative prevalence of these diverse regulatory inputs remain to be characterized. To address this issue, we performed a quantitative ultrastructural analysis of the GABAergic and glutamatergic innervation of ChIs in the postcommissural putamen of rhesus monkeys. Postembedding immunogold localization of GABA combined with peroxidase immunostaining for choline acetyltransferase showed that 60% of all synaptic inputs to ChIs originate from GABAergic terminals, whereas 21% are from putatively glutamatergic terminals that establish asymmetric synapses, and 19% from other (non-GABAergic) sources of symmetric synapses. Double pre-embedding immunoelectron microscopy using substance P and Met-/Leu-enkephalin antibodies to label GABAergic terminals from collaterals of "direct" and "indirect" striatal projection neurons, respectively, revealed that 47% of the indirect pathway terminals and 36% of the direct pathway terminals target ChIs. Together, substance P- and enkephalin-positive terminals represent 24% of all synapses onto ChIs in the monkey putamen. These findings show that ChIs receive prominent GABAergic inputs from multiple origins, including a significant contingent from axon collaterals of direct and indirect pathway projection neurons.
Collapse
Affiliation(s)
- Kalynda Kari Gonzales
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| | - Jean-Francois Pare
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| | - Thomas Wichmann
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Department of Neurology, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia 30329
- Department of Neurology, Emory University, Atlanta, Georgia 30329
- Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
27
|
Attal Y, Schwartz D. Assessment of subcortical source localization using deep brain activity imaging model with minimum norm operators: a MEG study. PLoS One 2013; 8:e59856. [PMID: 23527277 PMCID: PMC3603889 DOI: 10.1371/journal.pone.0059856] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/21/2013] [Indexed: 11/22/2022] Open
Abstract
Subcortical structures are involved in many healthy and pathological brain processes. It is crucial for many studies to use magnetoencephalography (MEG) to assess the ability to detect subcortical generators. This study aims to assess the source localization accuracy and to compare the characteristics of three inverse operators in the specific case of subcortical generators. MEG has a low sensitivity to subcortical sources mainly because of their distance from sensors and their complex cyto-architecture. However, we show that using a realistic anatomical and electrophysiological model of deep brain activity (DBA), the sources make measurable contributions to MEG sensors signals. Furthermore, we study the point-spread and cross-talk functions of the wMNE, sLORETA and dSPM inverse operators to characterize distortions in cortical and subcortical regions and to study how noise-normalization methods can improve or bias accuracy. We then run Monte Carlo simulations with neocortical and subcortical activations. In the case of single hippocampus patch activations, the results indicate that MEG can indeed localize the generators in the head and the body of the hippocampus with good accuracy. We then tackle the question of simultaneous cortical and subcortical activations. wMNE can detect hippocampal activations that are embedded in cortical activations that have less than double their amplitude, but it does not completely correct the bias to more superficial sources. dSPM and sLORETA can still detect hippocampal activity above this threshold, but such detection might include the creation of ghost deeper sources. Finally, using the DBA model, we showed that the detection of weak thalamic modulations of ongoing brain activity is possible.
Collapse
Affiliation(s)
- Yohan Attal
- CRICM UMR-S975 - Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Université Pierre et Marie Curie-Paris 6, Paris, France.
| | | |
Collapse
|
28
|
Mathematical modelling of transformations of asymmetrically distributed biological data: An application to a quantitative classification of spiny neurons of the human putamen. J Theor Biol 2012; 302:81-8. [DOI: 10.1016/j.jtbi.2012.02.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 11/23/2022]
|
29
|
Neuronal images of the putamen in the adult human neostriatum: a revised classification supported by a qualitative and quantitative analysis. Anat Sci Int 2012; 87:115-25. [DOI: 10.1007/s12565-012-0131-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/28/2012] [Indexed: 11/25/2022]
|
30
|
Abstract
BACKGROUND/AIM Nucleus accumbens is a part of the ventral striatum also known as a drug active brain region, especially related with drug addiction. The aim of the study was to investigate the Golgi morphology of the nucleus accumbens neurons. METHODS The study was performed on the frontal and sagittal sections of 15 human brains by the Golgi Kopsch method. We classified neurons in the human nucleus accumbens according to their morphology and size into four types: type I--fusiform neurons; type II--fusiform neurons with lateral dendrite, arising from a part of the cell body; type III--pyramidal-like neuron; type IV--multipolar neuron. The medium spiny neurons, which are mostly noted regarding to the drug addictive conditions of the brain, correspond to the type IV--multipolar neurons. RESULTS Two regions of human nucleus accumbens could be clearly recognized on Nissl and Golgi preparations each containing different predominant neuronal types. Central part of nucleus accumbens, core region, has a low density of impregnated neurons with predominant type III, pyramidal-like neurons, with spines on secondary branches and rare type IV, multipolar neurons. Contrary to the core, peripheral region, shell of nucleus, has a high density of impregnated neurons predominantly contained of type I and type IV--multipolar neurons, which all are rich in spines on secondary and tertiary dendritic branches. CONCLUSION Our results indicate great morphological variability of human nucleus accumbens neurons. This requires further investigations and clarifying clinical significance of this important brain region.
Collapse
|
31
|
Jung EY, Shim I. Differential DAergic Control of D1 and D2 Receptor Agonist Over Locomotor Activity and GABA Level in the Striatum. Exp Neurobiol 2011; 20:153-7. [PMID: 22110374 PMCID: PMC3214772 DOI: 10.5607/en.2011.20.3.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Accepted: 09/08/2011] [Indexed: 11/19/2022] Open
Abstract
The basal ganglia, a group of nuclei, are associated with a variety of functions, including motor control. The striatum, which is the major input station of the basal ganglia in the brain, is regulated in part by dopaminergic input from the substantia nigra. The striatum is made up 96% of medium spiny neurons which are GABAergic cells. GABAergic cells are known to contain DA receptors which divide into two main branches- the D1 receptor (D1R)-expressing direct pathway and the D2 receptor (D2R)-expressing indirect pathway. The role of these two efferent pathways has not been clear in control of motor behaviors. To establish the influence of the different DA subtypes on GABAergic systems in the striatum, D1 selective receptor agonist (SKF 38393) and D2 selective receptor agonist (Quinpirole) were administered to mice. SKF 38393 and quinpirole were administered intraperitoneally in a volume of 0, 1, 5, 10 (mg/kg) and motor activity was assessed for 60 min immediately after the injection of DA agonists. Mice were sacrificed after behavioral test and the striatum in the brain were dissected for analysis of GABA level with HPLC. Both SKF 38393 and quinpirole dose-dependently increased locomotor activity but, GABA level in the striatum was clearly different in two agonists. These findings provide insight into the selective contributions of the direct and indirect pathways to striatal GABAergic motor behaviors.
Collapse
Affiliation(s)
- Eun-Yee Jung
- Department of Basic Oriental Medical Science, Acupuncture & Meridian Science Research Center, College of Oriental Medicine, Kyung Hee University, Seoul 130-701, Korea
| | | |
Collapse
|
32
|
Rice MW, Roberts RC, Melendez-Ferro M, Perez-Costas E. Neurochemical characterization of the tree shrew dorsal striatum. Front Neuroanat 2011; 5:53. [PMID: 21887131 PMCID: PMC3157016 DOI: 10.3389/fnana.2011.00053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 08/01/2011] [Indexed: 11/29/2022] Open
Abstract
The striatum is a major component of the basal ganglia and is associated with motor and cognitive functions. Striatal pathologies have been linked to several disorders, including Huntington’s, Tourette’s syndrome, obsessive–compulsive disorders, and schizophrenia. For the study of these striatal pathologies different animal models have been used, including rodents and non-human primates. Rodents lack on morphological complexity (for example, the lack of well defined caudate and putamen nuclei), which makes it difficult to translate data to the human paradigm. Primates, and especially higher primates, are the closest model to humans, but there are ever-increasing restrictions to the use of these animals for research. In our search for a non-primate animal model with a striatum that anatomically (and perhaps functionally) can resemble that of humans, we turned our attention to the tree shrew. Evolutionary genetic studies have provided strong data supporting that the tree shrews (Scadentia) are one of the closest groups to primates, although their brain anatomy has only been studied in detail for specific brain areas. Morphologically, the tree shrew striatum resembles the primate striatum with the presence of an internal capsule separating the caudate and putamen, but little is known about its neurochemical composition. Here we analyzed the expression of calcium-binding proteins, the presence and distribution of the striosome and matrix compartments (by the use of calbindin, tyrosine hydroxylase, and acetylcholinesterase immunohistochemistry), and the GABAergic system by immunohistochemistry against glutamic acid decarboxylase and Golgi impregnation. In summary, our results show that when compared to primates, the tree shrew dorsal striatum presents striking similarities in the distribution of most of the markers studied, while presenting some marked divergences when compared to the rodent striatum.
Collapse
Affiliation(s)
- Matthew W Rice
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Birmingham, AL, USA
| | | | | | | |
Collapse
|
33
|
Ashby FG, Crossley MJ. A computational model of how cholinergic interneurons protect striatal-dependent learning. J Cogn Neurosci 2010; 23:1549-66. [PMID: 20521851 DOI: 10.1162/jocn.2010.21523] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
An essential component of skill acquisition is learning the environmental conditions in which that skill is relevant. This article proposes and tests a neurobiologically detailed theory of how such learning is mediated. The theory assumes that a key component of this learning is provided by the cholinergic interneurons in the striatum known as tonically active neurons (TANs). The TANs are assumed to exert a tonic inhibitory influence over cortical inputs to the striatum that prevents the execution of any striatal-dependent actions. The TANs learn to pause in rewarding environments, and this pause releases the striatal output neurons from this inhibitory effect, thereby facilitating the learning and expression of striatal-dependent behaviors. When rewards are no longer available, the TANs cease to pause, which protects striatal learning from decay. A computational version of this theory accounts for a variety of single-cell recording data and some classic behavioral phenomena, including fast reacquisition after extinction.
Collapse
Affiliation(s)
- F Gregory Ashby
- Department of Psychology, University of California, Santa Barbara, CA 93106, USA.
| | | |
Collapse
|
34
|
Stocco A, Lebiere C, Anderson JR. Conditional routing of information to the cortex: a model of the basal ganglia's role in cognitive coordination. Psychol Rev 2010; 117:541-74. [PMID: 20438237 PMCID: PMC3064519 DOI: 10.1037/a0019077] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The basal ganglia play a central role in cognition and are involved in such general functions as action selection and reinforcement learning. Here, we present a model exploring the hypothesis that the basal ganglia implement a conditional information-routing system. The system directs the transmission of cortical signals between pairs of regions by manipulating separately the selection of sources and destinations of information transfers. We suggest that such a mechanism provides an account for several cognitive functions of the basal ganglia. The model also incorporates a possible mechanism by which subsequent transfers of information control the release of dopamine. This signal is used to produce novel stimulus-response associations by internalizing transferred cortical representations in the striatum. We discuss how the model is related to production systems and cognitive architectures. A series of simulations is presented to illustrate how the model can perform simple stimulus-response tasks, develop automatic behaviors, and provide an account of impairments in Parkinson's and Huntington's diseases.
Collapse
Affiliation(s)
- Andrea Stocco
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
35
|
Wang Q, Xu X, Zhang M. Normal aging in the basal ganglia evaluated by eigenvalues of diffusion tensor imaging. AJNR Am J Neuroradiol 2009; 31:516-20. [PMID: 19892817 DOI: 10.3174/ajnr.a1862] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The age effect on the diffusion pattern in the basal ganglia differs from that in the white matter. The main purpose of our study was to provide further insight into the change of water diffusion in the basal ganglia during human brain aging by using the eigenvalues of DTI. MATERIALS AND METHODS We examined 71 healthy subjects (mean age, 41.8 +/- 14.5 years; age range, 20-79 years). The values of MD, FA, and the eigenvalues lambda(1) and lambda(23) (lambda(23) = [lambda(2) + lambda(3)]/2) were determined in regions of the head of the caudate nucleus, putamen, globus pallidus, and in some regions of white matter. The age-dependence of these measurements was tested for statistical significance by using the Pearson correlation analysis. RESULTS A significant reduction of MD with aging was found in the head of caudate nucleus (r = -0.319, P = .007) and putamen (r = -0.410, P < .001), and an increase in FA with aging was found in the putamen (r = 0.535, P < .001). Eigenvalue lambda(23) showed a significant age-related decrease in the putamen (r = -0.451, P < .001) and the head of the caudate nucleus (r = -0.312, P = .008), but no significant changes of lambda(23) were found in the globus pallidus. The results for eigenvalue lambda(1) in the head of caudate nucleus (r = -0.299, P = .011) were close to statistical significance. CONCLUSIONS The eigenvalues provide more insights into the different diffusion patterns in the basal ganglia during human brain aging.
Collapse
Affiliation(s)
- Q Wang
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
36
|
Noori HR, Jäger W. Neurochemical Oscillations in the Basal Ganglia. Bull Math Biol 2009; 72:133-47. [DOI: 10.1007/s11538-009-9441-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 06/12/2009] [Indexed: 12/26/2022]
|
37
|
van Albada SJ, Robinson PA. Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states. J Theor Biol 2008; 257:642-63. [PMID: 19168074 DOI: 10.1016/j.jtbi.2008.12.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/08/2008] [Accepted: 12/08/2008] [Indexed: 01/02/2023]
Abstract
Parkinsonism leads to various electrophysiological changes in the basal ganglia-thalamocortical system (BGTCS), often including elevated discharge rates of the subthalamic nucleus (STN) and the output nuclei, and reduced activity of the globus pallidus external (GPe) segment. These rate changes have been explained qualitatively in terms of the direct/indirect pathway model, involving projections of distinct striatal populations to the output nuclei and GPe. Although these populations partly overlap, evidence suggests dopamine depletion differentially affects cortico-striato-pallidal connection strengths to the two pallidal segments. Dopamine loss may also decrease the striatal signal-to-noise ratio, reducing both corticostriatal coupling and striatal firing thresholds. Additionally, nigrostriatal degeneration may cause secondary changes including weakened lateral inhibition in the GPe, and mesocortical dopamine loss may decrease intracortical excitation and especially inhibition. Here a mean-field model of the BGTCS is presented with structure and parameter estimates closely based on physiology and anatomy. Changes in model rates due to the possible effects of dopamine loss listed above are compared with experiment. Our results suggest that a stronger indirect pathway, possibly combined with a weakened direct pathway, is compatible with empirical evidence. However, altered corticostriatal connection strengths are probably not solely responsible for substantially increased STN activity often found. A lower STN firing threshold, weaker intracortical inhibition, and stronger striato-GPe inhibition help explain the relatively large increase in STN rate. Reduced GPe-GPe inhibition and a lower GPe firing threshold can account for the comparatively small decrease in GPe rate frequently observed. Changes in cortex, GPe, and STN help normalize the cortical rate, also in accord with experiments. The model integrates the basal ganglia into a unified framework along with an existing thalamocortical model that already accounts for a wide range of electrophysiological phenomena. A companion paper discusses the dynamics and oscillations of this combined system.
Collapse
Affiliation(s)
- S J van Albada
- School of Physics, The University of Sydney, New South Wales 2006, Australia.
| | | |
Collapse
|
38
|
Morton AJ, Glynn D, Leavens W, Zheng Z, Faull RLM, Skepper JN, Wight JM. Paradoxical delay in the onset of disease caused by super-long CAG repeat expansions in R6/2 mice. Neurobiol Dis 2008; 33:331-41. [PMID: 19130884 DOI: 10.1016/j.nbd.2008.11.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/04/2008] [Accepted: 11/19/2008] [Indexed: 10/21/2022] Open
Abstract
Huntington's disease (HD) is caused by an expanded CAG repeat in the HD gene. The pathological threshold for expansion in HD is around 36 CAG repeats, although 'super-long' expansions are found in brains of HD patients. We examined the effect of varying the CAG repeat length (from 170 to 450) on behavior and neuropathology of R6/2 mice. Unexpectedly, we found that increasing the repeat length delayed onset of disease and prolonged survival, from around 4 months to over 18 months in mice with the longest repeats. The delay in onset correlated with a delayed appearance of neuronal intranuclear inclusions (NIIs). However, super-long CAG repeats are not neuroprotective. Mice carrying 2 copies of the mutant transgene die earlier than those carrying a single copy. Furthermore, neurodegeneration is present in super-long repeat length mice at mid-stage disease, whereas little neurodegeneration is seen in mice with shorter CAG repeats until end stage. Expanding the CAG repeat beyond the range where NII formation is the dominant pathology has unmasked a slowly progressing neurological phenotype in R6/2 mice with brain pathology, including the identification of a novel form of inclusion, that more closely resembles that seen in adult onset cases of HD. This mouse may represent a better model for adult-onset HD than R6/2 mice with shorter repeats.
Collapse
Affiliation(s)
- A Jennifer Morton
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | | | | | | | | | | | |
Collapse
|
39
|
Worbe Y, Baup N, Grabli D, Chaigneau M, Mounayar S, McCairn K, Féger J, Tremblay L. Behavioral and Movement Disorders Induced by Local Inhibitory Dysfunction in Primate Striatum. Cereb Cortex 2008; 19:1844-56. [DOI: 10.1093/cercor/bhn214] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Modeling the organization of the basal ganglia. Rev Neurol (Paris) 2008; 164:969-76. [DOI: 10.1016/j.neurol.2008.04.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/27/2008] [Indexed: 11/21/2022]
|
41
|
Mouchet P, Yelnik J. Parsimonious modelling allows generation of the dendrograms of primate striatal medium spiny and pallidal type II neurons using a stochastic algorithm. Brain Res 2008; 1238:288-300. [PMID: 18755162 DOI: 10.1016/j.brainres.2008.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 08/05/2008] [Accepted: 08/06/2008] [Indexed: 11/16/2022]
Abstract
Data from quantitative three-dimensional analysis of primate striatal medium spiny neurons (MSNs) and pallidal type I and type II neurons were used to search for possible rules underlying the dendritic architecture of these cells. Branching and terminating probabilities per unit length of dendrite were computed from all available measurement points. In the three neuronal groups, terminating probabilities were found to be exponentially increasing functions of the path distance to soma. MSNs and type II branching probabilities could be accurately modelled with decreasing functions of both the metrical (exponential functions) and topological (power functions of the centrifugal branch order) distances to soma. Additionally, type II branching also slightly depended on the distance to the proximal tip of the supporting branches. Type I branching probabilities did not follow these rules accurately. Embedding the modelled probability functions in a stochastic algorithm allowed generation of dendrograms close to those of the real MSNs and pallidal type II neurons, while the algorithm failed to simulate type I dendrites. MSN and pallidal type II neuron branching and terminating probabilities are thus highly dependent on the position in the dendritic arbor. This relationship can be modelled with simple functions and has a strong incidence on the dendrogram structure of the cells concerned. The additional dependence of the branching probability on the within-branch position led us to propose an extension of a previous modelling study by Nowakowski and co-workers which could account for a large range of topological and metrical (length) dendritic tree structures.
Collapse
Affiliation(s)
- Patrick Mouchet
- Grenoble Institut des Neurosciences, Bâtiment Edmond J Safra, Chemin Fortune Ferrini, Universite Joseph Fourier Site Sante, Grenoble Cedex 9, France.
| | | |
Collapse
|
42
|
Bernácer J, Prensa L, Giménez-Amaya JM. Cholinergic interneurons are differentially distributed in the human striatum. PLoS One 2007; 2:e1174. [PMID: 18080007 PMCID: PMC2137841 DOI: 10.1371/journal.pone.0001174] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/24/2007] [Indexed: 11/18/2022] Open
Abstract
Background The striatum (caudate nucleus, CN, and putamen, Put) is a group of subcortical nuclei involved in planning and executing voluntary movements as well as in cognitive processes. Its neuronal composition includes projection neurons, which connect the striatum with other structures, and interneurons, whose main roles are maintaining the striatal organization and the regulation of the projection neurons. The unique electrophysiological and functional properties of the cholinergic interneurons give them a crucial modulating function on the overall striatal response. Methodology/Principle Findings This study was carried out using stereological methods to examine the volume and density (cells/mm3) of these interneurons, as visualized by choline acetyltransferase (ChAT) immunoreactivity, in the following territories of the CN and Put of nine normal human brains: 1) precommissural head; 2) postcommissural head; 3) body; 4) gyrus and 5) tail of the CN; 6) precommissural and 7) postcommissural Put. The distribution of ChAT interneurons was analyzed with respect to the topographical, functional and chemical territories of the dorsal striatum. The CN was more densely populated by cholinergic neurons than the Put, and their density increased along the anteroposterior axis of the striatum with the CN body having the highest neuronal density. The associative territory of the dorsal striatum was by far the most densely populated. The striosomes of the CN precommissural head and the postcommissural Put contained the greatest number of ChAT-ir interneurons. The intrastriosomal ChAT-ir neurons were abundant on the periphery of the striosomes throughout the striatum. Conclusions/Significance All these data reveal that cholinergic interneurons are differentially distributed in the distinct topographical and functional territories of the human dorsal striatum, as well as in its chemical compartments. This heterogeneity may indicate that the posterior aspects of the CN require a special integration of information by interneurons. Interestingly, these striatal regions have been very much left out in functional studies.
Collapse
Affiliation(s)
- Javier Bernácer
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lucía Prensa
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - José Manuel Giménez-Amaya
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Bota M, Swanson LW. The neuron classification problem. ACTA ACUST UNITED AC 2007; 56:79-88. [PMID: 17582506 PMCID: PMC2150566 DOI: 10.1016/j.brainresrev.2007.05.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 05/04/2007] [Accepted: 05/04/2007] [Indexed: 11/18/2022]
Abstract
A systematic account of neuron cell types is a basic prerequisite for determining the vertebrate nervous system global wiring diagram. With comprehensive lineage and phylogenetic information unavailable, a general ontology based on structure-function taxonomy is proposed and implemented in a knowledge management system, and a prototype analysis of select regions (including retina, cerebellum, and hypothalamus) presented. The supporting Brain Architecture Knowledge Management System (BAMS) Neuron ontology is online and its user interface allows queries about terms and their definitions, classification criteria based on the original literature and "Petilla Convention" guidelines, hierarchies, and relations-with annotations documenting each ontology entry. Combined with three BAMS modules for neural regions, connections between regions and neuron types, and molecules, the Neuron ontology provides a general framework for physical descriptions and computational modeling of neural systems. The knowledge management system interacts with other web resources, is accessible in both XML and RDF/OWL, is extendible to the whole body, and awaits large-scale data population requiring community participation for timely implementation.
Collapse
Affiliation(s)
- Mihail Bota
- Department of Biological Sciences, University of Southern California, 3641 Watt Way, Los Angeles, CA 90089-2520, USA
| | | |
Collapse
|
44
|
Leontovich TA, Khrenov AI, Mukhina YK, Fedorov AA, Berezhnaya LA. A common system of sparsely-branched projection (reticular) NADPH-diaphorase neurons in formations of densely-branched cells in the human forebrain. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2006; 36:929-40. [PMID: 17024332 DOI: 10.1007/s11055-006-0109-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Accepted: 04/27/2005] [Indexed: 11/26/2022]
Abstract
Morphometric studies of human forebrain formations composed of densely branched cells - the entorhinal cortex, the basolateral amygdala, the nucleus accumbens, the striatum, and the dorsal thalamus - were performed using nine parameters, with statistical analysis of the resulting data; measurements addressed the major projection-type densely branched and sparsely branched reticular neurons (scattered reticular and marginal reticular cells of the dorsal thalamus) stained by the Golgi method and with NADPH-diaphorase. Scattered reticular cells in the various formations showed no differences in any of the nine measures, while there were significant differences (in 5-7 measures, apart from one comparison, where there were differences in two measures) in their major projection-type densely branched cells. Scattered reticular and main projection-type densely branched neurons in each formation differed in terms of 7-9 measures. In endbrain formations, scattered reticular neurons contained NADPH-diaphorase; in the dorsal thalamus, only intermediate marginal reticular neurons were NADPH-diaphorase-positive. Thus, these human formations contained a common system of ancient integrative NADPH-diaphorase-containing reticular cells. Our results, along with published data, show these to be projection-type cells with projections to layers V and VI of the neocortex, which suggests that they have modulatory influences on its descending systems.
Collapse
Affiliation(s)
- T A Leontovich
- Laboratory for the Neuronal Structure of the Brain, State Research Institute of the Brain, Russian Academy of Medical Sciences, Moscow.
| | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- J Yelnik
- INSERM U679, Hôpital de la Salpêtrière, Paris.
| |
Collapse
|
46
|
Vickaryous MK, Hall BK. Human cell type diversity, evolution, development, and classification with special reference to cells derived from the neural crest. Biol Rev Camb Philos Soc 2006; 81:425-55. [PMID: 16790079 DOI: 10.1017/s1464793106007068] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 03/29/2006] [Accepted: 04/03/2006] [Indexed: 01/10/2023]
Abstract
Metazoans are composed of a finite number of recognisable cell types. Similar to the relationship between species and ecosystems, knowledge of cell type diversity contributes to studies of complexity and evolution. However, as with other units of evolution, the cell type often resists definition. This review proposes guidelines for characterising cell types and discusses cell homology and the various developmental pathways by which cell types arise, including germ layers, blastemata (secondary development/neurulation), stem cells, and transdifferentiation. An updated list of cell types is presented for a familiar, albeit overlooked model taxon, adult Homo sapiens, with 411 cell types, including 145 types of neurons, recognised. Two methods for organising these cell types are explored. One is the artificial classification technique, clustering cells using commonly accepted criteria of similarity. The second approach, an empirical method modeled after cladistics, resolves the classification in terms of shared features rather than overall similarity. While the results of each scheme differ, both methods address important questions. The artificial classification provides compelling (and independent) support for the neural crest as the fourth germ layer, while the cladistic approach permits the evaluation of cell type evolution. Using the cladistic approach we observe a correlation between the developmental and evolutionary origin of a cell, suggesting that this method is useful for predicting which cell types share common (multipotential) progenitors. Whereas the current effort is restricted by the availability of phenotypic details for most cell types, the present study demonstrates that a comprehensive cladistic classification is practical, attainable, and warranted. The use of cell types and cell type comparative classification schemes has the potential to offer new and alternative models for therapeutic evaluation.
Collapse
Affiliation(s)
- Matthew K Vickaryous
- Department of Biology, Life Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J1.
| | | |
Collapse
|
47
|
Tandé D, Höglinger G, Debeir T, Freundlieb N, Hirsch EC, François C. New striatal dopamine neurons in MPTP-treated macaques result from a phenotypic shift and not neurogenesis. ACTA ACUST UNITED AC 2006; 129:1194-200. [PMID: 16481374 DOI: 10.1093/brain/awl041] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We investigated whether there is neurogenesis in the striatum of aged monkeys, and whether dopamine (DA) depletion induces the genesis of new DA neurons in this structure. Six aged macaques received repeated intraperitoneal injections of bromodeoxyuridine (BrdU) over a 3 week period to label dividing cells. Three macaques were injected in parallel with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to decrease dopaminergic innervation of the striatum. The brains were analysed 3 weeks after the last BrdU injection. In MPTP-treated aged macaques, the number of tyrosine hydroxylase (TH) immunoreactive (ir) striatal neurons increased 2.3-fold compared with controls. These TH-ir striatal cells did not express dopamine beta hydroxylase (DBH) but the dopamine transporter (DAT), suggesting that they are functional DA neurons. They were also negative for calbindin (CB), neuropeptide Y (NPY) and parvalbumin (PV), and a small proportion expressed calretinin (CR). This suggests that these cells stained for TH are interneurons. All these cells also co-expressed glutamic acid decarboxylase (GAD). They thus resemble the small, aspiny, GABAergic interneurons. None of the BrdU-labelled cells in the striatum expressed the neuronal markers neuronal nuclei (NeuN), or GAD or TH, and none of TH-ir cells incorporated BrdU. These data indicate that neurogenesis did not occur in the striatum of aged macaques. The new striatal TH-ir neurons observed after DA depletion was therefore derived from pre-existing GABAergic interneurons. Understanding of the molecular signals mediating this phenotypic shift might help in developing novel and elegant strategies for a cell-based therapy for Parkinson's disease that would avoid many of the drawbacks of cell transplantation.
Collapse
Affiliation(s)
- Dominique Tandé
- INSERM U679, Neurology and Experimental Therapeutics, Salpetriere Hospital, Paris, France
| | | | | | | | | | | |
Collapse
|
48
|
Stephens B, Mueller AJ, Shering AF, Hood SH, Taggart P, Arbuthnott GW, Bell JE, Kilford L, Kingsbury AE, Daniel SE, Ingham CA. Evidence of a breakdown of corticostriatal connections in Parkinson's disease. Neuroscience 2005; 132:741-54. [PMID: 15837135 DOI: 10.1016/j.neuroscience.2005.01.007] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2005] [Indexed: 11/20/2022]
Abstract
Dendritic spines are important structures which receive synaptic inputs in many regions of the CNS. The goal of this study was to test the hypothesis that numbers of dendritic spines are significantly reduced on spiny neurones in basal ganglia regions in Parkinson's disease as we had shown them to be in a rat model of the disease [Exp Brain Res 93 (1993) 17]. Postmortem tissue from the caudate and putamen of patients suffering from Parkinson's disease was compared with that from people of a similar age who had no neurological damage. The morphology of Golgi-impregnated projection neurones (medium-sized spiny neurones) was examined quantitatively. The numerical density of dendritic spines on dendrites was reduced by about 27% in both nuclei. The size of the dendritic trees of these neurones was also significantly reduced in the caudate nucleus from the brains of PD cases and their complexity was changed in both the caudate nucleus and the putamen. Dendritic spines receive crucial excitatory input from the cerebral cortex. Reduction in both the density of spines and the total length of the remaining dendrites is likely to have a grave impact on the ability of these neurones to function normally and may partly explain the symptoms of the disorder.
Collapse
Affiliation(s)
- B Stephens
- Division of Veterinary Biomedical Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shashidharan P, Paris N, Sandu D, Karthikeyan L, McNaught KSP, Walker RH, Olanow CW. Overexpression of torsinA in PC12 cells protects against toxicity. J Neurochem 2004; 88:1019-25. [PMID: 14756824 DOI: 10.1046/j.1471-4159.2003.02233.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Childhood-onset dystonia is an autosomal dominant movement disorder associated with a three base pair (GAG) deletion mutation in the DYT1 gene. This gene encodes a novel ATP-binding protein called torsinA, which in the central nervous system is expressed exclusively in neurons. Neither the function of torsinA nor its role in the pathophysiology of DYT1 dystonia is known. In order to better understand the cellular functions of torsinA, we established PC12 cell lines overexpressing wild-type or mutant torsinA and subjected them to various conditions deleterious to cell survival. Treatment of control PC12 cells with an inhibitor of proteasomal activity, an oxidizing agent, or trophic withdrawal, resulted in cell death, whereas PC12 cells that overexpressed torsinA were significantly protected against each of these treatments. Overexpression of mutant torsinA failed to protect cells against trophic withdrawal. These results suggest that torsinA may play a protective role in neurons against a variety of cellular insults.
Collapse
Affiliation(s)
- P Shashidharan
- Department of Neurology, Mount Sinai School of Medicine, New York 10029, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Mezey SE, Csillag A. The light and electron microscopic characterisation of identified striato-ventrotegmental projection neurons in the domestic chick (Gallus domesticus). Neurosci Res 2003; 47:299-308. [PMID: 14568111 DOI: 10.1016/s0168-0102(03)00219-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A major projection of the medial striatum (lobus parolfactorius, LPO) of birds is the striato-ventrotegmental pathway projecting to the area ventralis tegmentalis. In the present study, we investigated the morphology and connectivity of striato-ventrotegmental neurons in the medial LPO. The neurons were identified by injecting the fluorescent retrograde tracer fast blue (FB) into the area ventralis tegmentalis. FB-labelled neurons in the LPO were targeted and iontophoretically injected with lucifer yellow (LY) in paraformaldehyde fixed slices. The fluorescent LY label in the filled neurons was then photoconverted, and the ultrastructure of cells was investigated. According to our results, the soma of striato-ventrotegmental neurons is rich in organelles, in particular rough and smooth endoplasmic reticula and they possess a large, unindented and slightly eccentric nucleus. The LY-labelled cells possess relatively few, sparsely spiny dendrites, and represent a type of medium-sized spiny projection neuron characteristic of the striata of birds. Axospinous synapses on the labelled cells are asymmetric and correspond morphologically to the glutamatergic excitatory type of terminals described previously in the LPO. Both symmetric and asymmetric axodendritic and axosomatic synapses were detected. Some symmetric synapses were GABA immunolabelled, whereas some asymmetric synapses were immunopositive to glutamate. Axon collaterals of labelled cells formed symmetric or asymmetric axodendritic synapses. Direct contact without interposing glial processes was observed between one of the FB-labelled neurons and an adjacent neuronal soma. There was also a microneuron attached to one of the labelled cells, which we identified as a neurogliaform 'dwarf' cell.
Collapse
Affiliation(s)
- Szilvia E Mezey
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tuzoltó u. 58, 1094 Budapest, Hungary
| | | |
Collapse
|