1
|
Lalonde R, Strazielle C. Neurochemical Anatomy of Cushing's Syndrome. Neurochem Res 2024; 49:1945-1964. [PMID: 38833089 DOI: 10.1007/s11064-024-04172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/05/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
The neurochemical anatomy underlying Cushing's syndrome is examined for regional brain metabolism as well as neurotransmitter levels and receptor binding of biogenic amines and amino acids. Preliminary studies generally indicate that glucose uptake, blood flow, and activation on fMRI scans decreased in neocortical areas and increased in subcortical areas of patients with Cushing's syndrome or disease. Glucocorticoid-mediated increases in hippocampal metabolism occurred despite in vitro evidence of glucocorticoid-induced decreases in glucose uptake or consumption, indicating that in vivo increases are the result of indirect, compensatory, or preliminary responses. In animal studies, glucocorticoid administration decreased 5HT levels and 5HT1A receptor binding in several brain regions while adrenalectomy increased such binding. Region-specific effects were also obtained in regard to the dopaminergic system, with predominant actions of glucocorticoid-induced potentiation of reuptake blockers and releasing agents. More in-depth neuroanatomical analyses are warranted of these and amino acid-related neurotransmission.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (UR SIMPA), University of Lorraine, Campus Santé, Bât A/B 9, avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, 54500, France.
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (UR SIMPA), University of Lorraine, Campus Santé, Bât A/B 9, avenue de la Forêt de Haye, Vandoeuvre-les-Nancy, 54500, France
- CHRU Nancy, Vandoeuvre-les-Nancy, France
| |
Collapse
|
2
|
Bickle JG, Li Y, Millette A, Dixon R, Wu S, Arias EC, Luna VM, Anacker C. 5-HT 1A Receptors on Dentate Gyrus Granule Cells Confer Stress Resilience. Biol Psychiatry 2024; 95:800-809. [PMID: 37863245 PMCID: PMC10978305 DOI: 10.1016/j.biopsych.2023.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/19/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND Hyperactivity of granule cells in the ventral dentate gyrus (vDG) promotes vulnerability to chronic stress. However, which receptors in the vDG could be targeted to inhibit this hyperactivity and confer stress resilience is not known. The serotonin 1A receptor (5-HT1AR) is a Gi protein-coupled inhibitory receptor that has been implicated in stress adaptation, anxiety, depression, and antidepressant responses. 5-HT1ARs are highly expressed in the DG, but their potential to promote stress resilience by regulating granule cell activity has never been examined. METHODS We exposed male and female mice expressing 5-HT1ARs only in DG granule cells to 10 days of chronic social defeat stress (CSDS) and treated them with the 5-HT1AR agonist 8-OH-DPAT every day 30 minutes before each defeat throughout the CSDS paradigm. We then used whole-cell current clamp recordings, immunohistochemistry for the immediate early gene cFos, corticosterone immunoassays, and behavioral testing to determine how activating 5-HT1ARs on granule cells affects DG activity, neuroendocrine stress responses, and avoidance behavior. RESULTS We found that activating 5-HT1ARs hyperpolarized DG granule cells and reduced cFos+ granule cells in the vDG following CSDS, indicating that 5-HT1AR activation rescued stress-induced vDG hyperactivity. Moreover, 5-HT1AR activation dampened corticosterone responses to CSDS and prevented the development of stress-induced avoidance in the social interaction test and in the open field test. CONCLUSIONS Our findings show that activating 5-HT1ARs on DG granule cells can prevent stress-induced neuronal hyperactivity of the vDG and confer resilience to chronic stress.
Collapse
Affiliation(s)
- John Gregory Bickle
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and Research Foundation for Mental Hygiene, Inc., New York State Psychiatric Institute, New York, New York
| | - Yifei Li
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and Research Foundation for Mental Hygiene, Inc., New York State Psychiatric Institute, New York, New York
| | - Amira Millette
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and Research Foundation for Mental Hygiene, Inc., New York State Psychiatric Institute, New York, New York
| | - Rushell Dixon
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and Research Foundation for Mental Hygiene, Inc., New York State Psychiatric Institute, New York, New York
| | - Serena Wu
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and Research Foundation for Mental Hygiene, Inc., New York State Psychiatric Institute, New York, New York
| | - Elena Carazo Arias
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and Research Foundation for Mental Hygiene, Inc., New York State Psychiatric Institute, New York, New York
| | - Victor Mari Luna
- Alzheimer's Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Christoph Anacker
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University and Research Foundation for Mental Hygiene, Inc., New York State Psychiatric Institute, New York, New York; Columbia University Institute for Developmental Sciences, Department of Psychiatry, Columbia University Irving Medical Center, New York, New York; Columbia University Stem Cell Initiative, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
3
|
Alonso-Alconada D, Gressens P, Golay X, Robertson NJ. Therapeutic hypothermia modulates the neurogenic response of the newborn piglet subventricular zone after hypoxia-ischemia. Pediatr Res 2024; 95:112-119. [PMID: 37573381 PMCID: PMC10798892 DOI: 10.1038/s41390-023-02751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/07/2023] [Accepted: 07/09/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Neuroprotection combined with neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy. To investigate the neurogenic response to hypoxia-ischemia (HI) followed by normothermia (38.5 °C) or three different hypothermic temperatures (35, 33.5, or 30 °C) in the subventricular zone (SVZ) of the neonatal piglet. METHODS Following transient cerebral HI and resuscitation, 28 newborn piglets were randomized to: normothermia or whole-body cooling to 35 °C, 33.5 °C, or 30 °C during 2-26 h (all n = 7). At 48 h, piglets were euthanized and SVZ obtained to evaluate its cellularity, pattern of cell death, radial glia length, doublecortin (DCX, neuroblasts) expression, and Ki67 (cell proliferation) and Ki67/Sox2 (neural stem/progenitor dividing) cell counts. RESULTS Normothermic piglets showed lower total (Ki67+) and neural stem/progenitor dividing (Ki67+Sox2+) cell counts when compared to hypothermic groups. Cooling to 33.5 °C obtained the highest values of SVZ cellularity, radial glia length processes, neuroblast chains area and DCX immunohistochemistry. Cooling to 30 °C, however, revealed decreased cellularity in the lateral SVZ and shorter radial glia processes when compared with 33.5 °C. CONCLUSIONS In a neonatal piglet model, hypothermia to 33.5 °C modulates the neurogenic response of the SVZ after HI, highlighting the potential beneficial effect of hypothermia to 33.5 °C on endogenous neurogenesis and the detrimental effect of overcooling beyond this threshold. IMPACT Neuroprotection combined with neuroregeneration may be critical for optimizing functional recovery in neonatal encephalopathy. Hypothermia may modulate neurogenesis in the subventricular zone (SVZ) of the neonatal hypoxic-ischemic piglet. Cooling to 33.5 °C obtained the highest values of SVZ cellularity, radial glia length processes, neuroblast chains area and doublecortin immunohistochemistry; cooling to 30 °C, however, revealed decreased cellularity and shorter radial glia processes. In a neonatal piglet model, therapeutic hypothermia (33.5 °C) modulates the neurogenic response of the SVZ after hypoxia-ischemia, highlighting also the detrimental effect of overcooling beyond this threshold.
Collapse
Affiliation(s)
- Daniel Alonso-Alconada
- Department of Cell Biology & Histology, School of Medicine & Nursing, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Bizkaia, Spain.
| | - Pierre Gressens
- Université Paris Cité, NeuroDiderot, Inserm, F-75019, Paris, France
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.
- Edinburgh Neuroscience & Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB*, UK.
| |
Collapse
|
4
|
Wei Q, Kumar V, Moore S, Li F, Murphy GG, Watson SJ, Akil H. High emotional reactivity is associated with activation of a molecularly distinct hippocampal-amygdala circuit modulated by the glucocorticoid receptor. Neurobiol Stress 2023; 27:100581. [PMID: 37928820 PMCID: PMC10623371 DOI: 10.1016/j.ynstr.2023.100581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023] Open
Abstract
Emotions are characterized not only by their valence but also by whether they are stable or labile. Yet, we do not understand the molecular or circuit mechanisms that control the dynamic nature of emotional responses. We have shown that glucocorticoid receptor overexpression in the forebrain (GRov) leads to a highly reactive mouse with increased anxiety behavior coupled with greater swings in emotional responses. This phenotype is established early in development and persists into adulthood. However, the neural circuitry mediating this lifelong emotional lability remains unknown. In the present study, optogenetic stimulation in ventral dentate gyrus (vDG) of GRov mice led to a greater range and a prolonged duration of anxiety behavior. cFos expression analysis showed that the amplified behavioral response to vDG activation in GRov mice is coupled to increased neuronal activity in specific brain regions. Relative to wild type mice, GRov mice displayed glutamatergic/GABAergic activation imbalance in ventral CA1 (vCA1) and selectively increased glutamatergic activation in the basal posterior amygdaloid complex. Moreover, forebrain GR overexpression led to increased activation of molecularly distinct subpopulations of neurons within the hippocampus and the posterior basolateral amygdala (pBLA) as evident from the increased cFos co-labeling in the calbindin1+ glutamatergic neurons in vCA1 and in the DARPP-32/Ppp1r1b+ glutamatergic neurons in pBLA. We propose that a molecularly distinct hippocampal-amygdala circuit is shaped by stress early in life and tunes the dynamics of emotional responses.
Collapse
Affiliation(s)
- Qiang Wei
- Corresponding author. Michigan Neuroscience Institute University of Michigan 205 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| | - Vivek Kumar
- Corresponding author. Michigan Neuroscience Institute, University of Michigan, 205 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| | - Shannon Moore
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Fei Li
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Geoffrey G. Murphy
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | |
Collapse
|
5
|
Alviña K, Jodeiri Farshbaf M, Mondal AK. Long term effects of stress on hippocampal function: Emphasis on early life stress paradigms and potential involvement of neuropeptide Y. J Neurosci Res 2021; 99:57-66. [PMID: 32162350 DOI: 10.1002/jnr.24614] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/06/2020] [Accepted: 02/27/2020] [Indexed: 01/06/2023]
Abstract
The brain is both central in orchestrating the response to stress, and, a very sensitive target when such response is not controlled. In fact, stress has long been associated with the onset and/or exacerbation of several neuropsychiatric disorders such as anxiety, depression, and drug addiction. The hippocampus is a key brain region involved in the response to stress, not only due to its anatomical connections with the hypothalamic-pituitary-adrenal axis but also as a major target of stress mediators. The hippocampal dentate gyrus (DG)-CA3 circuit, composed of DG granule cells axons (mossy fibers) synapsing onto CA3 pyramidal cells, plays an essential role in memory encoding and retrieval, functions that are vulnerable to stress. Although naturally excitatory, this circuit is under the inhibitory control of GABAergic interneurons that maintain the excitation/inhibition balance. One subgroup of such interneurons produces neuropeptide Y (NPY), which has emerged as a promising endogenous stress "resilience molecule" due to its anxiolytic and anti-epileptic properties. Here we examine existing evidence that reveals a potential role for hilar NPY+ interneurons in mediating stress-induced changes in hippocampal function. We will focus specifically on rodent models of early life stress (ELS), defined as adverse conditions during the early postnatal period that can have profound consequences for neurodevelopment. Collectively, these findings suggest that the long-lasting effects of ELS might stem from the loss of GABAergic NPY+ cells, which then can lead to reduced inhibition in the DG-CA3 pathway. Such change might then lead to hyperexcitability and concomitant hippocampal-dependent behavioral deficits.
Collapse
Affiliation(s)
- Karina Alviña
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Amit Kumar Mondal
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
6
|
Demaestri C, Pan T, Critz M, Ofray D, Gallo M, Bath KG. Type of early life adversity confers differential, sex-dependent effects on early maturational milestones in mice. Horm Behav 2020; 124:104763. [PMID: 32407728 PMCID: PMC7487052 DOI: 10.1016/j.yhbeh.2020.104763] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/16/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022]
Abstract
Early life adversity (ELA) increases risk for negative health outcomes, with sex disparities in prevalence and form of ELA experienced and risk for neuropsychiatric pathology. ELA comes in many forms (e.g. parental neglect/loss, limited access to resources) but whether disparate forms of ELA have common effects on outcomes, and if males and females are equally affected, remains unknown. Epidemiological studies often fail to accurately account for differences in type, timing, and duration of adversity experienced. Rodent models allow precise control of many of these variables. However, differences in the form of ELA, species, strain, housing, and testing paradigms used may contribute to differences in outcomes leading to questions of whether differences are the result of the form of ELA or these other variables. Here, we directly compared two mouse models of ELA, maternal separation (MS) and limited bedding (LB) in males and females on development of the body, motor and visual milestones, stress physiology, and anxiety-like behavior. LB affected timing of early milestones, somatic growth, and stress physiology in both sexes, yet only females showed later anxiety-like behaviors. MS rearing affected males and females similarly in early milestone development, yet only males showed changes in stress physiology and anxiety-like outcomes. These studies provide a platform to directly compare MS and LB models within one lab. The current work advances our understanding of the unique features of ELA that shape early neurodevelopmental events and risk for later pathology, increasing the translational relevance of these ELA models.
Collapse
Affiliation(s)
- Camila Demaestri
- Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Box 1821, Brown University, Providence, RI 02912, USA
| | - Tracy Pan
- Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Box 1821, Brown University, Providence, RI 02912, USA
| | - Madalyn Critz
- Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Box 1821, Brown University, Providence, RI 02912, USA
| | - Dayshalis Ofray
- Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Box 1821, Brown University, Providence, RI 02912, USA
| | - Meghan Gallo
- Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Box 1821, Brown University, Providence, RI 02912, USA
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer St., Box 1821, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
7
|
Youssef M, Atsak P, Cardenas J, Kosmidis S, Leonardo ED, Dranovsky A. Early life stress delays hippocampal development and diminishes the adult stem cell pool in mice. Sci Rep 2019; 9:4120. [PMID: 30858462 PMCID: PMC6412041 DOI: 10.1038/s41598-019-40868-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/18/2019] [Indexed: 12/18/2022] Open
Abstract
Early life stress predisposes to mental illness and behavioral dysfunction in adulthood, but the mechanisms underlying these persistent effects are poorly understood. Stress throughout life impairs the structure and function of the hippocampus, a brain system undergoing considerable development in early life. The long-term behavioral consequences of early life stress may therefore be due in part to interference with hippocampal development, in particular with assembly of the dentate gyrus (DG) region of the hippocampus. We investigated how early life stress produces long-term alterations in DG structure by examining DG assembly and the generation of a stable adult stem cell pool in routine housing and after stress induced by the limited bedding/nesting paradigm in mice. We found that early life stress leads to a more immature, proliferative DG than would be expected for the animal's age immediately after stress exposure, suggesting that early life stress delays DG development. Adult animals exposed to early life stress exhibited a reduction in the number of DG stem cells, but unchanged neurogenesis suggesting a depletion of the stem cell pool with compensation in the birth and survival of adult-born neurons. These results suggest a developmental mechanism by which early life stress can induce long-term changes in hippocampal function by interfering with DG assembly and ultimately diminishing the adult stem cell pool.
Collapse
Affiliation(s)
- Mary Youssef
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
- Graduate Program in Neurobiology and Behavior, Columbia University, New York, NY, 10032, USA
| | - Piray Atsak
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Cognitive Neuroscience, Radboud University Medical Center, 6500 HB, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN, Nijmegen, The Netherlands
| | - Jovani Cardenas
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Stylianos Kosmidis
- Department of Neuroscience, Columbia University, New York, NY, 10032, USA
- Howard Hughes Medical Institute, Columbia University, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10032, USA
| | - E David Leonardo
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA.
| | - Alex Dranovsky
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA.
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY, 10032, USA.
| |
Collapse
|
8
|
Gee DG, Bath KG, Johnson CM, Meyer HC, Murty VP, van den Bos W, Hartley CA. Neurocognitive Development of Motivated Behavior: Dynamic Changes across Childhood and Adolescence. J Neurosci 2018; 38:9433-9445. [PMID: 30381435 PMCID: PMC6209847 DOI: 10.1523/jneurosci.1674-18.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
The ability to anticipate and respond appropriately to the challenges and opportunities present in our environments is critical for adaptive behavior. Recent methodological innovations have led to substantial advances in our understanding of the neurocircuitry supporting such motivated behavior in adulthood. However, the neural circuits and cognitive processes that enable threat- and reward-motivated behavior undergo substantive changes over the course of development, and these changes are less well understood. In this article, we highlight recent research in human and animal models demonstrating how developmental changes in prefrontal-subcortical neural circuits give rise to corresponding changes in the processing of threats and rewards from infancy to adulthood. We discuss how these developmental trajectories are altered by experiential factors, such as early-life stress, and highlight the relevance of this research for understanding the developmental onset and treatment of psychiatric disorders characterized by dysregulation of motivated behavior.
Collapse
Affiliation(s)
- Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT 06520,
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912
| | - Carolyn M Johnson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | - Heidi C Meyer
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065
| | - Vishnu P Murty
- Department of Psychology, Temple University, Philadelphia, PA 19122
| | - Wouter van den Bos
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, Netherlands, and
| | | |
Collapse
|
9
|
Dutta RR, Taffe MA, Mandyam CD. Chronic administration of amphetamines disturbs development of neural progenitor cells in young adult nonhuman primates. Prog Neuropsychopharmacol Biol Psychiatry 2018; 85:46-53. [PMID: 29601895 PMCID: PMC5962428 DOI: 10.1016/j.pnpbp.2018.03.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 02/07/2023]
Abstract
The detrimental effects of amphetamines on developmental stages of NPCs are limited to rodent brain and it is not known if these effects occur in nonhuman primates which are the focus of the current investigation. Young adult rhesus macaques either experienced MDMA only, a combination of amphetamines (MDMA, MDA and methamphetamine) or no amphetamines (controls) and hippocampal tissue was processed for immunohistochemical analysis.Quantitative stereological analysis showed that intermittent exposure to MDMA or the three amphetamines over 9.6 months causes >80% decrease in the number of Ki-67 cells (actively dividing NPCs) and >50% decrease in the number of NeuroD1 cells (NPCs that have attained a neuronal phenotype). Co-labeling analysis revealed distinct, actively dividing hippocampal NPCs in the subgranular zone of the dentate gyrus that were in transition from stem-like radial glia-like cells (type-1) to immature transiently amplifying neuroblasts (type-2a, type-2b, and type-3).MDMA-alone and the combination reduced the number of dividing type-1 and type-3 NPCs and cells that were not NPCs. These data indicate that amphetamines interfere with the division and migration of NPCs. Notably, the reduction in the number of NPCs and immature neurons were not associated with changes in cell death (via apoptosis) or granule cell neuron numbers, indicating that amphetamines selectively affected the generation and maturation of newly born granule cell neurons. In sum, our findings suggest that alterations in the cellular composition in the dentate gyrus during chronic exposure to amphetamines can effect neuroplasticity in the hippocampus and influence functional properties of hippocampal neurons.
Collapse
Affiliation(s)
- Rahul R Dutta
- Department of Neuroscience, The Scripps Research Institute,USA
| | - Michael A Taffe
- Department of Neuroscience, The Scripps Research Institute,USA
| | - Chitra D Mandyam
- Department of Neuroscience, The Scripps Research Institute,USA; VA San Diego Healthcare System, USA; Department of Anesthesiology, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
10
|
Reshetnikov VV, Lepeshko AA, Ryabushkina YA, Studenikina AA, Merkulova TI, Bondar NP. The Long-Term Effects of Early Postnatal Stress on Cognitive Abilities and Expression of Genes of the Glutamatergic System in Mice. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418020095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Bath KG, Russo SJ, Pleil KE, Wohleb ES, Duman RS, Radley JJ. Circuit and synaptic mechanisms of repeated stress: Perspectives from differing contexts, duration, and development. Neurobiol Stress 2017; 7:137-151. [PMID: 29276735 PMCID: PMC5736942 DOI: 10.1016/j.ynstr.2017.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 05/04/2017] [Indexed: 12/12/2022] Open
Abstract
The current review is meant to synthesize research presented as part of a symposium at the 2016 Neurobiology of Stress workshop in Irvine California. The focus of the symposium was "Stress and the Synapse: New Concepts and Methods" and featured the work of several junior investigators. The presentations focused on the impact of various forms of stress (altered maternal care, binge alcohol drinking, chronic social defeat, and chronic unpredictable stress) on synaptic function, neurodevelopment, and behavioral outcomes. One of the goals of the symposium was to highlight the mechanisms accounting for how the nervous system responds to stress and their impact on outcome measures with converging effects on the development of pathological behavior. Dr. Kevin Bath's presentation focused on the impact of disruptions in early maternal care and its impact on the timing of hippocampus maturation in mice, finding that this form of stress drove accelerated synaptic and behavioral maturation, and contributed to the later emergence of risk for cognitive and emotional disturbance. Dr. Scott Russo highlighted the impact of chronic social defeat stress in adolescent mice on the development and plasticity of reward circuity, with a focus on glutamatergic development in the nucleus accumbens and mesolimbic dopamine system, and the implications of these changes for disruptions in social and hedonic response, key processes disturbed in depressive pathology. Dr. Kristen Pleil described synaptic changes in the bed nuclei of the stria terminalis that underlie the behavioral consequences of allostatic load produced by repeated cycles of alcohol binge drinking and withdrawal. Dr. Eric Wohleb and Dr. Ron Duman provided new data associating decreased mammalian target of rapamycin (mTOR) signaling and neurobiological changes in the synapses in response to chronic unpredictable stress, and highlighted the potential for the novel antidepressant ketamine to rescue synaptic and behavioral effects. In aggregate, these presentations showcased how divergent perspectives provide new insights into the ways in which stress impacts circuit development and function, with implications for understanding emergence of affective pathology.
Collapse
Affiliation(s)
- Kevin G. Bath
- Department of Cognitive Linguistic and Psychological Sciences, Brown University, Providence, RI 02912, United States
| | - Scott J. Russo
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kristen E. Pleil
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, United States
| | - Eric S. Wohleb
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45237, United States
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06508, United States
| | - Ronald S. Duman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06508, United States
| | - Jason J. Radley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
12
|
Affiliation(s)
- Philippe Taupin
- National Neuroscience Institute, Singapore
- National University of Singapore
- Nanyang Technological University, Singapore
| |
Collapse
|
13
|
Pattwell SS, Bath KG. Emotional learning, stress, and development: An ever-changing landscape shaped by early-life experience. Neurobiol Learn Mem 2017; 143:36-48. [PMID: 28458034 PMCID: PMC5540880 DOI: 10.1016/j.nlm.2017.04.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022]
Abstract
The capacity to learn to associate cues with negative outcomes is a highly adaptive process that appears to be conserved across species. However, when the cue is no longer a valid predictor of danger, but the emotional response persists, this can result in maladaptive behaviors, and in humans contribute to debilitating emotional disorders. Over the past several decades, work in neuroscience, psychiatry, psychology, and biology have uncovered key processes underlying, and structures governing, emotional responding and learning, as well as identified disruptions in the structural and functional integrity of these brain regions in models of pathology. In this review, we highlight some of this elegant body of work as well as incorporate emerging findings from the field of developmental neurobiology to emphasize how development contributes to changes in the ability to learn and express emotional responses, and how early experiences, such as stress, shape the development and functioning of these circuits.
Collapse
Affiliation(s)
- Siobhan S Pattwell
- Department of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109, United States.
| | - Kevin G Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, United States
| |
Collapse
|
14
|
Staples MC, Fannon MJ, Mysore KK, Dutta RR, Ongjoco AT, Quach LW, Kharidia KM, Somkuwar SS, Mandyam CD. Dietary restriction reduces hippocampal neurogenesis and granule cell neuron density without affecting the density of mossy fibers. Brain Res 2017; 1663:59-65. [PMID: 28284897 DOI: 10.1016/j.brainres.2017.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/04/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022]
Abstract
The hippocampal formation undergoes significant morphological and functional changes after prolonged caloric and dietary restriction (DR). In this study we tested whether prolonged DR results in deleterious alterations in hippocampal neurogenesis, density of granule cell neurons and mossy fibers, all of which support plasticity in the dentate gyrus. Young adult animals either experienced free access to food (control condition), or every-other-day feeding regimen (DR condition) for 3months. The number of Ki-67 cells and 28-day old 5-bromo-2'-deoxyuridine (BrdU) cells were quantified in the dorsal and ventral dentate gyrus to determine the effect of DR on cellular proliferation and survival of neural progenitor cells in the anatomically defined regions of the dentate gyrus. The density of granule cell neurons and synaptoporin were also quantified to determine the effect of DR on granule cell neurons and mossy fiber projections in the dentate gyrus. Our results show that DR increases cellular proliferation and concurrently reduces survival of newly born neurons in the ventral dentate gyrus without effecting the number of cells in the dorsal dentate gyrus. DR reduced density of granule cell neurons in the dorsal dentate gyrus. These alterations in the number of granule cell neurons did not affect mossy fiber density in DR animals, which was visualized as no differences in synaptoporin expression. Our findings demonstrate that granule cell neurons in the dentate gyrus are vulnerable to chronic DR and that the reorganization of granule cells in the dentate gyrus subregions is not producing concomitant alterations in dentate gyrus neuronal circuitry with this type of DR.
Collapse
Affiliation(s)
- Miranda C Staples
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - McKenzie J Fannon
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Karthik K Mysore
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Rahul R Dutta
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Alexandria T Ongjoco
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Leon W Quach
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Khush M Kharidia
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Sucharita S Somkuwar
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Chitra D Mandyam
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
15
|
Tzeng WY, Wu HH, Wang CY, Chen JC, Yu L, Cherng CG. Sex Differences in Stress and Group Housing Effects on the Number of Newly Proliferated Cells and Neuroblasts in Middle-Aged Dentate Gyrus. Front Behav Neurosci 2017; 10:249. [PMID: 28119581 PMCID: PMC5220061 DOI: 10.3389/fnbeh.2016.00249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/19/2016] [Indexed: 11/13/2022] Open
Abstract
Sex differences in stress and coping responses have been frequently documented in aged people, while whether such differences in aged people may appear at the middle age are unknown. This study was undertaken to study the impact of acute stress and social interaction on early neurogenesis in the dentate gyrus (DG) and hippocampus-related memory in two sexes of middle-aged mice. The number of newly proliferated cells, neuroblasts in DG, the object recognition and location memory in 9-month-old male and female C57BL/6N mice were assessed under baseline conditions as well as following an acute stressor regimen and group housing. Three conspecific companions, serving as "the housing group," were used to model the social interaction throughout the stressor regimen. Males had lower numbers of newly proliferated cells and neuroblasts under baseline conditions as compared to females. The stressor regimen caused rapid decreases in the number of newly proliferated cells and neuroblasts in female DG but no obvious changes were observed in male DG. Group housing, regardless of companions' age, prevented the stress-induced decreases in the number of newly proliferated cells and neuroblasts in female DG. In contrast, the presence of young or age-matched companions potentiated the stress effect in males by decreasing the number of newly proliferated cells and neuroblasts. Finally, neither the stressor regimen nor group housing affected mouse performances in the object recognition and location memory in either sex. These findings, taken together, provide evidence to support a notion that middle-aged females appear to demonstrate more stress susceptibility on early neurogenesis in DG as compared to middle-aged males, although the hippocampus-related memory performances are comparable and not affected by stress in these males and females. Experiencing stress, middle-aged females are more prone to benefit from social interaction as compared to middle-aged males in this regard. We suggest, accordingly, that involving social interaction may afford a therapeutic advance in preventing stress-produced decreases in early neurogenesis in middle-aged females' DG.
Collapse
Affiliation(s)
- Wen-Yu Tzeng
- Department of Physiology, National Cheng Kung University College of Medicine Tainan, Taiwan
| | - Hsin-Hua Wu
- Department of Physiology, National Cheng Kung University College of Medicine Tainan, Taiwan
| | - Ching-Yi Wang
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine Tainan, Taiwan
| | - Jin-Chung Chen
- Graduate Institute of Biomedical Sciences, Chang Gung University Taoyuan, Taiwan
| | - Lung Yu
- Department of Physiology, National Cheng Kung University College of MedicineTainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University College of MedicineTainan, Taiwan
| | - Chianfang G Cherng
- Department of Health Psychology, Chang Jung Christian University Tainan, Taiwan
| |
Collapse
|
16
|
Becker S. Neurogenesis and pattern separation: time for a divorce. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 8. [PMID: 28026915 DOI: 10.1002/wcs.1427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/09/2016] [Accepted: 09/30/2016] [Indexed: 01/08/2023]
Abstract
The generation of new neurons in the adult mammalian brain has led to numerous theories as to their functional significance. One of the most widely held views is that adult neurogenesis promotes pattern separation, a process by which overlapping patterns of neural activation are mapped to less overlapping representations. While a large body of evidence supports a role for neurogenesis in high interference memory tasks, it does not support the proposed function of neurogenesis in mediating pattern separation. Instead, the adult-generated neurons seem to generate highly overlapping and yet distinct distributed representations for similar events. One way in which these immature, highly plastic, hyperactive neurons may contribute to novel memory formation while avoiding interference is by virtue of their extremely sparse connectivity with incoming perforant path fibers. Another intriguing proposal, awaiting empirical confirmation, is that the young neurons' recruitment into memory formation is gated by a novelty/mismatch mechanism mediated by CA3 or hilar back-projections. Ongoing research into the intriguing link between neurogenesis, stress-related mood disorders, and age-related neurodegeneration may lead to promising neurogenesis-based treatments for this wide range of clinical disorders. WIREs Cogn Sci 2017, 8:e1427. doi: 10.1002/wcs.1427 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Suzanna Becker
- Department of Psychology Neuroscience and Behaviour, McMaster University, Hamilton, Canada
| |
Collapse
|
17
|
Zuena AR, Zinni M, Giuli C, Cinque C, Alemà GS, Giuliani A, Catalani A, Casolini P, Cozzolino R. Maternal exposure to environmental enrichment before and during gestation influences behaviour of rat offspring in a sex-specific manner. Physiol Behav 2016; 163:274-287. [DOI: 10.1016/j.physbeh.2016.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 01/14/2023]
|
18
|
Duman RS, Vaidya VA, Nibuya M, Morinobu S, Fitzgerald LR. Review : Stress, Antidepressant Treatments, and Neurotrophic Factors: Molecular and Cellular Mechanisms. Neuroscientist 2016. [DOI: 10.1177/107385849500100607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Repeated stress or an excess of glucocorticoids can exacerbate neuronal damage in response to insults and, in severe cases, can lead to neuronal atrophy and death. These effects are thought to be related to the actions of stress and glucocorticoids on glutamate function, neuronal metabolism, and the generation of cytotoxic free radicals. Recent studies demonstrate that the regulation of neurotrophic factors may contribute to the actions of stress on neuronal function. Acute or chronic stress decreases the expression of brain derived neurotrophic factor, the most abundant neurotrophin in the brain, in specific regions of the hippocampus, and other forebrain regions. In addition, chronic stress increases the expression of neurotrophin-3 in certain regions of the hippocampus and may, thereby, help to protect these regions from the neurotoxic effects of chronic stress. The deleterious effects of stress may contribute to psy chiatric illnesses, such as depression, that can be precipitated or worsened by stress and that are often characterized by hypercortisolism. Electroconvulsive seizure therapy, as well as antidepressant drugs, increase the expression of brain derived neurotrophic factor and its receptor, trkB, in the brain, demon strating that neurotrophins are a target of antidepressant treatments. These findings outline a role of neurotrophic factors in the etiology and treatment of certain psychiatric illnesses. The Neuroscientist 1:351-360, 1995
Collapse
Affiliation(s)
- Ronald S. Duman
- Laboratory of Molecular Psychiatry Departments of Psychiatry and Pharmacology Yale University School of Medicine Connecticut Mental Health Center New Haven, Connecticut
| | - Vidita A. Vaidya
- Laboratory of Molecular Psychiatry Departments of Psychiatry and Pharmacology Yale University School of Medicine Connecticut Mental Health Center New Haven, Connecticut
| | - Masashi Nibuya
- Laboratory of Molecular Psychiatry Departments of Psychiatry and Pharmacology Yale University School of Medicine Connecticut Mental Health Center New Haven, Connecticut
| | - Shigeru Morinobu
- Laboratory of Molecular Psychiatry Departments of Psychiatry and Pharmacology Yale University School of Medicine Connecticut Mental Health Center New Haven, Connecticut
| | - Laura Rydelek Fitzgerald
- Laboratory of Molecular Psychiatry Departments of Psychiatry and Pharmacology Yale University School of Medicine Connecticut Mental Health Center New Haven, Connecticut
| |
Collapse
|
19
|
Bath K, Manzano-Nieves G, Goodwill H. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice. Horm Behav 2016; 82:64-71. [PMID: 27155103 PMCID: PMC5308418 DOI: 10.1016/j.yhbeh.2016.04.010] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 04/20/2016] [Accepted: 04/23/2016] [Indexed: 12/22/2022]
Abstract
Early life stress (ELS) increases the risk for later cognitive and emotional dysfunction. ELS is known to truncate neural development through effects on suppressing cell birth, increasing cell death, and altering neuronal morphology, effects that have been associated with behavioral profiles indicative of precocious maturation. However, how earlier silencing of growth drives accelerated behavioral maturation has remained puzzling. Here, we test the novel hypothesis that, ELS drives a switch from growth to maturation to accelerate neural and behavioral development. To test this, we used a mouse model of ELS, fragmented maternal care, and a cross-sectional dense sampling approach focusing on hippocampus and measured effects of ELS on the ontogeny of behavioral development and biomarkers of neural maturation. Consistent with previous work, ELS was associated with an earlier developmental decline in expression of markers of cell proliferation (Ki-67) and differentiation (doublecortin). However, ELS also led to a precocious arrival of Parvalbumin-positive cells, led to an earlier switch in NMDA receptor subunit expression (marker of synaptic maturity), and was associated with an earlier rise in myelin basic protein expression (key component of the myelin sheath). In addition, in a contextual fear-conditioning task, ELS accelerated the timed developmental suppression of contextual fear. Together, these data provide support for the hypothesis that ELS serves to switch neurodevelopment from processes of growth to maturation and promotes accelerated development of some forms of emotional learning.
Collapse
Affiliation(s)
- K Bath
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI 02912, United States.
| | - G Manzano-Nieves
- Department of Neuroscience, Brown University, Providence, RI, 02912, United States
| | - H Goodwill
- Department of Neuroscience, Brown University, Providence, RI, 02912, United States
| |
Collapse
|
20
|
De Vry J, Vanmierlo T, Martínez-Martínez P, Losen M, Temel Y, Boere J, Kenis G, Steckler T, Steinbusch HW, Baets MD, Prickaerts J. TrkB in the hippocampus and nucleus accumbens differentially modulates depression-like behavior in mice. Behav Brain Res 2016; 296:15-25. [DOI: 10.1016/j.bbr.2015.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
|
21
|
Behavioral epigenetics and the developmental origins of child mental health disorders. J Dev Orig Health Dis 2015; 3:395-408. [PMID: 25084292 DOI: 10.1017/s2040174412000426] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Advances in understanding the molecular basis of behavior through epigenetic mechanisms could help explain the developmental origins of child mental health disorders. However, the application of epigenetic principles to the study of human behavior is a relatively new endeavor. In this paper we discuss the 'Developmental Origins of Health and Disease' including the role of fetal programming. We then review epigenetic principles related to fetal programming and the recent application of epigenetics to behavior. We focus on the neuroendocrine system and develop a simple heuristic stress-related model to illustrate how epigenetic changes in placental genes could predispose the infant to neurobehavioral profiles that interact with postnatal environmental factors potentially leading to mental health disorders. We then discuss from an 'Evo-Devo' perspective how some of these behaviors could also be adaptive. We suggest how elucidation of these mechanisms can help to better define risk and protective factors and populations at risk.
Collapse
|
22
|
REES TOBIAS. Developmental diseases-an introduction to the neurological human (in motion). AMERICAN ETHNOLOGIST 2015. [DOI: 10.1111/amet.12123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- TOBIAS REES
- Social Studies of Medicine; McGill University; 3647 Peel Street, Montreal, Quebec H3A 1×1 Canada
| |
Collapse
|
23
|
Lajud N, Torner L. Early life stress and hippocampal neurogenesis in the neonate: sexual dimorphism, long term consequences and possible mediators. Front Mol Neurosci 2015; 8:3. [PMID: 25741234 PMCID: PMC4327304 DOI: 10.3389/fnmol.2015.00003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023] Open
Abstract
Adverse early life experience decreases adult hippocampal neurogenesis and results in increased vulnerability to neuropsychiatric disorders. Despite that the effects of postnatal stress on neurogenesis have been widely studied in adult individuals, few efforts have been done to evaluate its immediate effects on the developing hippocampus. Moreover, it is not clear whether postnatal stress causes a differential impact in hippocampus development in male and female neonates that could be related to emotional deficits in adulthood. It has been proposed that the long term effects of early stress exposure rise from a persistent HPA axis activation during sensitive time windows; nevertheless the exact mechanisms and mediators remain unknown. Here, we summarize the immediate and late effects of early life stress on hippocampal neurogenesis in male and female rat pups, compare its later consequences in emotionality, and highlight some relevant mediator peptides that could be potentially involved in programming.
Collapse
Affiliation(s)
- Naima Lajud
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social Morelia, Mexico
| | - Luz Torner
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social Morelia, Mexico
| |
Collapse
|
24
|
Abstract
New neurons continue to be generated in the dentate gyrus throughout life, providing this region of the hippocampus with exceptional structural plasticity, but the function of this ongoing neurogenesis is unknown. Inhibition of adult neurogenesis produces some behavioral impairments that suggest a role for new neurons in learning and memory; however, other behavioral changes appear inconsistent with this function. A review of studies investigating the function of the hippocampus going back several decades reveals many ideas that seem to converge on a critical role for the hippocampus in stress response and emotion. These potential hippocampal functions provide new avenues for investigating the behavioral functions of adult neurogenesis. And, conversely, studies in animals lacking adult neurogenesis, which are likely to have more limited and more specific impairments than are seen with lesions, may provide valuable new insights into the function of the hippocampus. A complete understanding of the function of the hippocampus must explain its role in emotion and the relationship between its emotional and memory functions.
Collapse
Affiliation(s)
- Heather A Cameron
- Section on Neuroplasticity, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892;
| | | |
Collapse
|
25
|
Abstract
Intrauterine methamphetamine exposure adversely affects the neurofunctional profile of exposed children, leading to a variety of higher order cognitive deficits, such as decreased attention, reduced working-memory capability, behavioral dysregulation, and spatial memory impairments (Kiblawi et al. in J Dev Behav Pediatr 34:31-37, 2013; Piper et al. in Pharmacol Biochem Behav 98:432-439 2011; Roussotte et al. in Neuroimage 54:3067-3075, 2011; Twomey et al. in Am J Orthopsychiatry 83:64-72, 2013). In animal models of developmental methamphetamine, both neuroanatomical and behavioral outcomes critically depend on the timing of methamphetamine administration. Methamphetamine exposure during the third trimester human equivalent period of brain development results in well-defined and persistent wayfinding and spatial navigation deficits in rodents (Vorhees et al. in Neurotoxicol Teratol 27:117-134, 2005, Vorhees et al. in Int J Dev Neurosci 26:599-610, 2008; Vorhees et al. in Int J Dev Neurosci 27:289-298, 2009; Williams et al. in Psychopharmacology (Berl) 168:329-338, 2003b), whereas drug delivery during the first and second trimester equivalents produces no such effect (Acuff-Smith et al. in Neurotoxicol Teratol 18:199-215, 1996; Schutova et al. in Physiol Res 58:741-750, 2009a; Slamberova et al. in Naunyn Schmiedebergs Arch Pharmacol 380:109-114, 2009, Slamberova et al. in Physiol Res 63:S547-S558, 2014b). In this review, we examine the impact of developmental methamphetamine on emerging neural circuitry, neurotransmission, receptor changes, and behavioral outcomes in animal models. The review is organized by type of effects and timing of drug exposure (prenatal only, pre- and neonatal, and neonatal only). The findings elucidate functional patterns of interconnected brain structures (e.g., frontal cortex and striatum) and neurotransmitters (e.g., dopamine and serotonin) involved in methamphetamine-induced developmental neurotoxicity.
Collapse
|
26
|
Naninck EF, Hoeijmakers L, Kakava-Georgiadou N, Meesters A, Lazic SE, Lucassen PJ, Korosi A. Chronic early life stress alters developmental and adult neurogenesis and impairs cognitive function in mice. Hippocampus 2014; 25:309-28. [DOI: 10.1002/hipo.22374] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Eva F.G. Naninck
- Center for Neuroscience, Structural and Functional Plasticity of the Nervous System Group, Swammerdam Institute for Life Sciences, University of Amsterdam; The Netherlands
| | - Lianne Hoeijmakers
- Center for Neuroscience, Structural and Functional Plasticity of the Nervous System Group, Swammerdam Institute for Life Sciences, University of Amsterdam; The Netherlands
| | - Nefeli Kakava-Georgiadou
- Center for Neuroscience, Structural and Functional Plasticity of the Nervous System Group, Swammerdam Institute for Life Sciences, University of Amsterdam; The Netherlands
| | - Astrid Meesters
- Center for Neuroscience, Structural and Functional Plasticity of the Nervous System Group, Swammerdam Institute for Life Sciences, University of Amsterdam; The Netherlands
| | - Stanley E. Lazic
- In Silico Lead Discovery, Novartis Institutes for BioMedical Research; Basel Switzerland
| | - Paul J. Lucassen
- Center for Neuroscience, Structural and Functional Plasticity of the Nervous System Group, Swammerdam Institute for Life Sciences, University of Amsterdam; The Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Structural and Functional Plasticity of the Nervous System Group, Swammerdam Institute for Life Sciences, University of Amsterdam; The Netherlands
| |
Collapse
|
27
|
Tzeng WY, Chen LH, Cherng CG, Tsai YN, Yu L. Sex differences and the modulating effects of gonadal hormones on basal and the stressor-decreased newly proliferative cells and neuroblasts in dentate gyrus. Psychoneuroendocrinology 2014; 42:24-37. [PMID: 24636498 DOI: 10.1016/j.psyneuen.2014.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/06/2014] [Accepted: 01/06/2014] [Indexed: 01/23/2023]
Abstract
This study was undertaken to assess sex differences and the modulating effects of gonad intactness and the estrous phase on basal and the stressor-decreased cell proliferation and early differentiation in Balb/C mouse dentate gyrus (DG). Besides, we compared the stress-reversing effects exerted by the presence of male and female Balb/C mouse odors in stressed male and female mouse DG in this regard. Female mice had lower baselines in the number of newly proliferated cells and neuroblasts than male mice. Although the stressor induced decreases in the number of newly proliferative cells and neuroblasts in both male and female DG, an obvious decrease in neuronal lineage commitment was observed in female DG. Moreover, ovariectomy induced decreases in baselines in the number of proliferative cells and neuroblasts but did not affect the stressor-induced decrease in neuronal lineage commitment in female DG. Interestingly, pro-estrous mice exhibited the stressor-decreased neuronal lineage commitment, while estrous and diestrous mice did not display such a decrease. Furthermore, orchidectomy did not affect basal or the stressor-decreased newly proliferative cells or neuroblasts in male DG. Finally, male odors were less effective than female odors in abolishing the stressor-decreased neuronal lineage commitment in female mice, while male and female odors were comparable in reversing the stressor-decreased newly proliferated cells and neuroblasts in male mice. The protective effects of mouse odors' company in the stressed male mouse DG were associated with local BDNF and NGF replenishment. Taken together, sexual differences in baselines in the number of newly proliferative cells, neuroblasts, and the sensitivity to stress-altered neuronal lineage commitment in the DG could be, in part, due to gonadal hormone differences between the two sexes. Mouse odors may reverse stressor-decreased newly proliferative cells and neuroblasts in male, but not in female, mouse DG by restoring BDNF and NGF levels.
Collapse
Affiliation(s)
- Wen-Yu Tzeng
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan 70101, Taiwan, ROC
| | - Li-Hsien Chen
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan 70101, Taiwan, ROC
| | - Chianfang G Cherng
- Department of Health Psychology, Chang Jung Christian University, Tainan 71101, Taiwan, ROC
| | - Yi-Ni Tsai
- Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, Tainan 70101, Taiwan, ROC
| | - Lung Yu
- Institute of Basic Medical Sciences, National Cheng Kung University College of Medicine, Tainan 70101, Taiwan, ROC; Institute of Behavioral Medicine, National Cheng Kung University College of Medicine, Tainan 70101, Taiwan, ROC.
| |
Collapse
|
28
|
Early repeated maternal separation induces alterations of hippocampus reelin expression in rats. J Biosci 2013; 38:27-33. [PMID: 23385810 DOI: 10.1007/s12038-012-9286-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The long-term effects of repeated maternal separation (MS) during early postnatal life on reelin expression in the hippocampus of developing rats were investigated in the present study. MS was carried out by separating Wistar rat pups singly from their mothers for 3 h a day during postnatal days (PND) 2-14. Reelin mRNA and protein levels in the hippocampus were determined using qRT-PCR and Western blotting, at PND 22, PND 60 and PND 90. MS resulted in the loss of body weight in the developing rats, and reelin mRNA and protein levels in the hippocampus generally were down-regulated over the developing period, but the reelin mRNA and protein levels in the hippocampus of 90-day-old male rats were up-regulated. These findings suggest that the long-term effects of MS on the expression levels of hippocampal reelin mRNA and protein depends on the age at which the stressed rats' brains were collected; reelin had important implications for the maternal-neonate interaction needed for normal brain development. In conclusion, repeated MS occurring during early postnatal life may cause the alterations of hippocampal reelin expression with the increasing age of developing rats.
Collapse
|
29
|
Abstract
Stress and glucocorticoid hormones regulate hippocampal neurogenesis, but the molecular mechanisms underlying their effects are unknown. We, therefore, investigated the molecular signaling pathways mediating the effects of cortisol on proliferation, neuronal differentiation, and astrogliogenesis, in an immortalized human hippocampal progenitor cell line. In addition, we examined the molecular signaling pathways activated in the hippocampus of prenatally stressed rats, characterized by persistently elevated glucocorticoid levels in adulthood. In human hippocampal progenitor cells, we found that low concentrations of cortisol (100 nM) increased proliferation (+16%), decreased neurogenesis into microtubule-associated protein 2 (MAP2)-positive neurons (-24%) and doublecortin (Dcx)-positive neuroblasts (-21%), and increased differentiation into S100β-positive astrocytes (+23%). These effects were dependent on the mineralocorticoid receptor (MR) as they were abolished by the MR antagonist, spironolactone, and mimicked by the MR-agonist, aldosterone. In contrast, high concentrations of cortisol (100 μM) decreased proliferation (-17%) and neuronal differentiation into MAP2-positive neurons (-22%) and into Dcx-positive neuroblasts (-27%), without regulating astrogliogenesis. These effects were dependent on the glucocorticoid receptor (GR), blocked by the GR antagonist RU486, and mimicked by the GR-agonist, dexamethasone. Gene expression microarray and pathway analysis showed that the low concentration of cortisol enhances Notch/Hes-signaling, the high concentration inhibits TGFβ-SMAD2/3-signaling, and both concentrations inhibit Hedgehog signaling. Mechanistically, we show that reduced Hedgehog signaling indeed critically contributes to the cortisol-induced reduction in neuronal differentiation. Accordingly, TGFβ-SMAD2/3 and Hedgehog signaling were also inhibited in the hippocampus of adult prenatally stressed rats with high glucocorticoid levels. In conclusion, our data demonstrate novel molecular signaling pathways that are regulated by glucocorticoids in vitro, in human hippocampal progenitor cells, and by stress in vivo, in the rat hippocampus.
Collapse
|
30
|
Martínez-Claros M, Steinbusch H, van Selm A, van den Hove D, Prickaerts J, Pawluski J. Adrenalectomy and corticosterone replacement differentially alter CA3 dendritic morphology and new cell survival in the adult rat hippocampus. J Chem Neuroanat 2013; 48-49:23-8. [DOI: 10.1016/j.jchemneu.2013.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 12/28/2022]
|
31
|
De Vry J, Prickaerts J, Jetten M, Hulst M, Steinbusch HWM, van den Hove DLA, Schuurman T, van der Staay FJ. Recurrent long-lasting tethering reduces BDNF protein levels in the dorsal hippocampus and frontal cortex in pigs. Horm Behav 2012; 62:10-7. [PMID: 22584108 DOI: 10.1016/j.yhbeh.2012.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 03/19/2012] [Accepted: 04/14/2012] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) signaling has been implicated in the onset of depression and in antidepressant efficacy, although the exact role of this neurotrophin in the pathophysiology of depression remains to be elucidated. Also, the interaction between chronic stress, which may precede depression, corticosteroids and BDNF is not fully understood. The present study aimed at investigating whether long-lasting, recurrent tethering of sows during a period of 1.5 or 4.5 years leads to enduring effects on measures that may be indicative of chronic stress, compared with animals kept in a group housing system ('loose' sows). Immediately after slaughter, the frontal cortex, dorsal and ventral hippocampus were dissected and protein levels of BDNF and its receptors were analyzed and compared with plasma cortisol levels and adrenal weights. Results indicate that tethering stress reduced BDNF protein levels in the dorsal hippocampus and the frontal cortex, but not in the ventral hippocampus. In addition, levels of TrkB, the high affinity receptor for BDNF, were increased in the dorsal hippocampus. Plasma cortisol levels and adrenal weight were increased after tethering. These stress effects on BDNF levels were more pronounced after 4.5 years of recurrent tethering and negatively correlated in particular in the frontal cortex with cortisol levels and adrenal weight. This suggests that the stress effect of tethered housing on neurotrophin levels may be mediated via cortisol. Taken together, these data indicate that recurrent tethering stress in sows over 4.5 years results in a loss of neurotrophic support by BDNF, mediated by an overactive neuroendocrine system.
Collapse
Affiliation(s)
- J De Vry
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, European Graduate School of Neuroscience (EURON), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lieberwirth C, Wang Z. The social environment and neurogenesis in the adult Mammalian brain. Front Hum Neurosci 2012; 6:118. [PMID: 22586385 PMCID: PMC3347626 DOI: 10.3389/fnhum.2012.00118] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/16/2012] [Indexed: 12/17/2022] Open
Abstract
Adult neurogenesis - the formation of new neurons in adulthood - has been shown to be modulated by a variety of endogenous (e.g., trophic factors, neurotransmitters, and hormones) as well as exogenous (e.g., physical activity and environmental complexity) factors. Research on exogenous regulators of adult neurogenesis has focused primarily on the non-social environment. More recently, however, evidence has emerged suggesting that the social environment can also affect adult neurogenesis. The present review details the effects of adult-adult (e.g., mating and chemosensory interactions) and adult-offspring (e.g., gestation, parenthood, and exposure to offspring) interactions on adult neurogenesis. In addition, the effects of a stressful social environment (e.g., lack of social support and dominant-subordinate interactions) on adult neurogenesis are reviewed. The underlying hormonal mechanisms and potential functional significance of adult-generated neurons in mediating social behaviors are also discussed.
Collapse
Affiliation(s)
- Claudia Lieberwirth
- Program in Neuroscience, Department of Psychology, Florida State UniversityTallahassee, FL, USA
| | - Zuoxin Wang
- Program in Neuroscience, Department of Psychology, Florida State UniversityTallahassee, FL, USA
| |
Collapse
|
33
|
Lajud N, Roque A, Cajero M, Gutiérrez-Ospina G, Torner L. Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood. Psychoneuroendocrinology 2012; 37:410-20. [PMID: 21862224 DOI: 10.1016/j.psyneuen.2011.07.011] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 07/08/2011] [Accepted: 07/18/2011] [Indexed: 02/03/2023]
Abstract
Although not directly evaluated, the early rise of glucocorticoid (GC) levels, as occur after exposure to adverse early life experience, are assumed to affect hippocampal ontogeny by altering the hippocampus negative feedback on adult HPA axis. To test whether hippocampal ontogeny is affected by early exposure to stress we estimated the survival of recently formed hippocampal granule cells in rat pups subjected to periodic maternal separation (180 min/day; MS180) from postnatal days (PND) 1 to 14. Accordingly, MS180 pups injected with bromodeoxyuridine (BrdU, 50 mg/kg, ip) at PND 5 showed decreased density of doublecortin (DCX) positive BrdU-labeled cells at PND 15. MS180 and AFR pups showed similar corticosterone (CORT) basal levels between PND 3 and 12, whereas adult MS180 rats presented with higher CORT levels than AFR adults. Nonetheless, both AFR and MS180 pups and adults showed similar transient increments of CORT levels in response to stress. In addition, MS180 had no effect on the adult anxiety-like behavior evaluated in the elevated plus maze, but evoked a passive coping strategy in the forced swimming test. The data show that the decrease in hippocampal neurogenesis is an early onset phenomenon, and suggests that adverse experiences alter hippocampal ontogeny without chronic elevation of GC levels.
Collapse
Affiliation(s)
- Naima Lajud
- División de Neurociencias, Centro de Investigación Biomédica de Michoacán - Instituto Mexicano del Seguro Social, Morelia 58341, Michoacán, Mexico
| | | | | | | | | |
Collapse
|
34
|
Early-life stress mediated modulation of adult neurogenesis and behavior. Behav Brain Res 2012; 227:400-9. [DOI: 10.1016/j.bbr.2011.07.037] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/18/2011] [Accepted: 07/21/2011] [Indexed: 02/06/2023]
|
35
|
Wei Q, Fentress HM, Hoversten MT, Zhang L, Hebda-Bauer EK, Watson SJ, Seasholtz AF, Akil H. Early-life forebrain glucocorticoid receptor overexpression increases anxiety behavior and cocaine sensitization. Biol Psychiatry 2012; 71:224-31. [PMID: 21872848 PMCID: PMC3245807 DOI: 10.1016/j.biopsych.2011.07.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/09/2011] [Accepted: 07/12/2011] [Indexed: 02/02/2023]
Abstract
BACKGROUND Genetic factors and early-life adversity are critical in the etiology of mood disorders and substance abuse. Because of their role in the transduction of stress responses, glucocorticoid hormones and their receptors could serve as both genetic factors and mediators of environmental influences. We have shown that constitutive overexpression of the glucocorticoid receptor (GR) in forebrain results in increased emotional reactivity and lability in mice. Here, we asked whether there was a critical period for the emergence of this phenotype. METHODS We generated a mouse line with inducible GR overexpression specifically in forebrain. Anxiety-like behaviors and cocaine-induced sensitization were assessed in adult mice following GR overexpression during different periods in development. The molecular basis of the behavioral phenotype was examined using microarray analyses of dentate gyrus and nucleus accumbens. RESULTS Transient overexpression of GR during early life led to increased anxiety and cocaine sensitization, paralleling the phenotype of lifelong GR overexpression. This increased emotional reactivity was not observed when GR overexpression was induced after weaning. Glucocorticoid receptor overexpression in early life is sufficient to alter gene expression patterns for the rest of the animal's life, with dentate gyrus being more responsive than nucleus accumbens. The altered transcripts are implicated in GR and axonal guidance signaling in dentate gyrus and dopamine receptor signaling in nucleus accumbens. CONCLUSIONS Transient overexpression of GR early in life is both necessary and sufficient for inducing transcriptome-wide changes in the brain and producing a lifelong increase in vulnerability to anxiety and drugs of abuse.
Collapse
Affiliation(s)
- Qiang Wei
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Schaefer TL, Grace CE, Skelton MR, Graham DL, Gudelsky GA, Vorhees CV, Williams MT. Neonatal citalopram treatment inhibits the 5-HT depleting effects of MDMA exposure in rats. ACS Chem Neurosci 2012; 3:12-21. [PMID: 22582138 DOI: 10.1021/cn2000553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Neonatal exposure to 3,4-methylenedioxymethamphetamine (MDMA) produces long-term learning and memory deficits and increased anxiety-like behavior. The mechanism underlying these behavioral changes is unknown but we hypothesized that it involves perturbations to the serotonergic system as this is the principle mode of action of MDMA in the adult brain. During development 5-HT is a neurotrophic factor involved in neurogenesis, synaptogenesis, migration, and target region specification. We have previously showed that MDMA exposure (4×10 mg/kg/day) from P11-20 (analogous to human third trimester exposure) induces ~50% decreases in hippocampal 5-HT throughout treatment. To determine whether MDMA-induced 5-HT changes are determinative, we tested if these changes could be prevented by treatment with a selective serotonin reuptake inhibitor (citalopram: CIT). In a series of experiments we evaluated the effects of different doses and dose regimens of CIT on MDMA-induced 5-HT depletions in three brain regions (hippocampus, entorhinal cortex, and neostriatum) at three time-points (P12, P16, P21) during the treatment interval (P11-20) known to induce behavioral alterations when animals are tested as adults. We found that 5 mg/kg CIT administered twice daily significantly attenuated MDMA-induced 5-HT depletions in all three regions at all three ages but that the protection was not complete at all ages. Striatal dopamine was unaffected. We also found increases in hippocampal NGF and plasma corticosterone following MDMA treatment on P16 and P21, respectively. No changes in BDNF were observed. CIT treatment may be a useful means of interfering with MDMA-induced 5-HT reductions and thus permit tests of the hypothesis that the drug's cognitive and/or anxiety effects are mediated through early disruptions to 5-HT dependent developmental processes.
Collapse
Affiliation(s)
- Tori L. Schaefer
- Division of Neurology, Department
of Pediatrics, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, United States
| | - Curtis E. Grace
- United States Environmental Protection Agency, Durham, North Carolina 27713, United
States
| | - Matthew R. Skelton
- Division of Neurology, Department
of Pediatrics, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, United States
| | - Devon L. Graham
- Vanderbilt University College of Medicine, Nashville, Tennessee 32732, United
States
| | - Gary A. Gudelsky
- James L. Winkle
College of Pharmacy, University of Cincinnati, Ohio 45267-0004, United States
| | - Charles V. Vorhees
- Division of Neurology, Department
of Pediatrics, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, United States
| | - Michael T. Williams
- Division of Neurology, Department
of Pediatrics, Cincinnati Children’s Research Foundation and University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039, United States
| |
Collapse
|
37
|
Holding ML, Frazier JA, Taylor EN, Strand CR. Experimentally Altered Navigational Demands Induce Changes in the Cortical Forebrain of Free-Ranging Northern Pacific Rattlesnakes(Crotalus o. oreganus). BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:144-54. [DOI: 10.1159/000335034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/28/2011] [Indexed: 11/19/2022]
|
38
|
Maternal antioxidant blocks programmed cardiovascular and behavioural stress responses in adult mice. Clin Sci (Lond) 2011; 121:427-36. [PMID: 21615331 DOI: 10.1042/cs20110153] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intra-uterine growth restriction is an independent risk factor for adult psychiatric and cardiovascular diseases. In humans, intra-uterine growth restriction is associated with increased placental and fetal oxidative stress, as well as down-regulation of placental 11β-HSD (11β-hydroxysteroid dehydrogenase). Decreased placental 11β-HSD activity increases fetal exposure to maternal glucocorticoids, further increasing fetal oxidative stress. To explore the developmental origins of co-morbid hypertension and anxiety disorders, we increased fetal glucocorticoid exposure by administering the 11β-HSD inhibitor CBX (carbenoxolone; 12 mg·kg-1 of body weight·day-1) during the final week of murine gestation. We hypothesized that maternal antioxidant (tempol throughout pregnancy) would block glucocorticoid-programmed anxiety, vascular dysfunction and hypertension. Anxiety-related behaviour (conditioned fear) and the haemodynamic response to stress were measured in adult mice. Maternal CBX administration significantly increased conditioned fear responses of adult females. Among the offspring of CBX-injected dams, maternal tempol markedly attenuated the behavioural and cardiovascular responses to psychological stress. Compared with offspring of undisturbed dams, male offspring of dams that received daily third trimester saline injections had increased stress-evoked pressure responses that were blocked by maternal tempol. In contrast, tempol did not block CBX-induced aortic dysfunction in female mice (measured by myography and lucigenin-enhanced chemiluminescence). We conclude that maternal stress and exaggerated fetal glucocorticoid exposure enhance sex-specific stress responses, as well as alterations in aortic reactivity. Because concurrent tempol attenuated conditioned fear and stress reactivity even among the offspring of saline-injected dams, we speculate that antenatal stressors programme offspring stress reactivity in a cycle that may be broken by antenatal antioxidant therapy.
Collapse
|
39
|
Stress, depression and Parkinson's disease. Exp Neurol 2011; 233:79-86. [PMID: 22001159 DOI: 10.1016/j.expneurol.2011.09.035] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 09/16/2011] [Accepted: 09/30/2011] [Indexed: 12/13/2022]
Abstract
In this review, we focus on the relationship among Parkinson's disease (PD), stress and depression. Parkinson's disease patients have a high risk of developing depression, and it is possible that stress contributes to the development of both pathologies. Stress dysfunction may have a role in the etiology of preclinical non-motor symptoms of PD (such as depression) and, later in the course of the disease, may worsen motor symptoms. However, relatively few studies have examined stress or depression and the injured nigrostriatal system. This review discusses the effects of stress on neurodegeneration and depression, and their association with the symptoms and progression of PD.
Collapse
|
40
|
Grace CE, Schaefer TL, Herring NR, Williams MT, Vorhees CV. Effects of neonatal methamphetamine treatment on adult stress-induced corticosterone release in rats. Neurotoxicol Teratol 2011; 34:136-42. [PMID: 21856413 DOI: 10.1016/j.ntt.2011.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 08/03/2011] [Accepted: 08/06/2011] [Indexed: 10/17/2022]
Abstract
In rats, neonatal (+)-methamphetamine (MA) exposure and maternal separation stress increase corticosterone during treatment and result in learning and memory impairments later in life. Early-life stress also changes later responses to acute stress. We tested the hypothesis that neonatal MA exposure would alter adult corticosterone after acute stress or MA challenge. Rats were treated with MA (10 mg/kg × 4/day), saline, or handling on postnatal (P) days 11-15 or 11-20 (days that lead to learning and memory impairments at this dose). As adults, corticosterone was measured before and after 15 min forced swim (FS) or 15 min forced confinement (FC), counterbalanced, and after an acute MA challenge (10 mg/kg) given last. FS increased corticosterone more than FC; order and stress type interacted but did not interact with treatment; treatment interacted with FS but not with FC. In the P11-15 regimen, MA-treated rats showed more rapid increases in corticosterone after FS than controls. In the P11-20 regimen, MA-treated rats showed a trend toward more rapid decrease in corticosterone after FS. No differences were found after MA challenge. The data do not support the hypothesis that neonatal MA causes changes in adult stress responsiveness to FS, FC, or an acute MA challenge.
Collapse
Affiliation(s)
- Curtis E Grace
- Division of Neurology, Dept. of Pediatrics, Cincinnati Children's Research Foundation and University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA.
| | | | | | | | | |
Collapse
|
41
|
Vestergaard-Poulsen P, Wegener G, Hansen B, Bjarkam CR, Blackband SJ, Nielsen NC, Jespersen SN. Diffusion-weighted MRI and quantitative biophysical modeling of hippocampal neurite loss in chronic stress. PLoS One 2011; 6:e20653. [PMID: 21747929 PMCID: PMC3128590 DOI: 10.1371/journal.pone.0020653] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Accepted: 05/06/2011] [Indexed: 01/21/2023] Open
Abstract
Chronic stress has detrimental effects on physiology, learning and memory and is involved in the development of anxiety and depressive disorders. Besides changes in synaptic formation and neurogenesis, chronic stress also induces dendritic remodeling in the hippocampus, amygdala and the prefrontal cortex. Investigations of dendritic remodeling during development and treatment of stress are currently limited by the invasive nature of histological and stereological methods. Here we show that high field diffusion-weighted MRI combined with quantitative biophysical modeling of the hippocampal dendritic loss in 21 day restraint stressed rats highly correlates with former histological findings. Our study strongly indicates that diffusion-weighted MRI is sensitive to regional dendritic loss and thus a promising candidate for non-invasive studies of dendritic plasticity in chronic stress and stress-related disorders.
Collapse
|
42
|
Liu JX, Pinnock SB, Herbert J. Novel control by the CA3 region of the hippocampus on neurogenesis in the dentate gyrus of the adult rat. PLoS One 2011; 6:e17562. [PMID: 21464973 PMCID: PMC3060811 DOI: 10.1371/journal.pone.0017562] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 02/03/2011] [Indexed: 12/31/2022] Open
Abstract
The dentate gyrus is a site of continued neurogenesis in the adult brain. The CA3 region of the hippocampus is the major projection area from the dentate gyrus. CA3 sends reciprocal projections back to the dentate gyrus. Does this imply that CA3 exerts some control over neurogenesis? We studied the effects of lesions of CA3 on neurogenesis in the dentate gyrus, and on the ability of fluoxetine to stimulate mitotic activity in the progenitor cells. Unilateral ibotenic-acid generated lesions were made in CA3. Four days later there was no change on the number of either BrdU or Ki67-positive progenitor cells in the dentate gyrus. However, after 15 or 28 days, there was a marked reduction in surviving BrdU-labelled cells on the lesioned side (but no change in Ki-67+ cells). pCREB or Wnt3a did not co-localise with Ki-67 but with NeuN, a marker of mature neurons. Lesions had no effect on the basal expression of either pCREB or Wnt3a. Subcutaneous fluoxetine (10 mg/kg/day) for 14 days increased the number of Ki67+ cells as expected on the control (non-lesioned) side but not on that with a CA3 lesion. Nevertheless, the expected increase in BDNF, pCREB and Wnt3a still occurred on the lesioned side following fluoxetine treatment. Fluoxetine has been reported to decrease the number of “mature” calbindin-positive cells in the dentate gyrus; we found this still occurred on the side of a CA3 lesion. We then showed that the expression GAP-43 was reduced in the dentate gyrus on the lesioned side, confirming the existence of a synaptic connection between CA3 and the dentate gyrus. These results show that CA3 has a hitherto unsuspected role in regulating neurogenesis in the dentate gyrus of the adult rat.
Collapse
Affiliation(s)
- Jian Xin Liu
- Institute of Neurobiology, School of Medicine of Xi'an Jiaotong University, Xi'an, P.R.China
| | - Scarlett B. Pinnock
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Joe Herbert
- Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, and Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
43
|
Harris A, Seckl J. Glucocorticoids, prenatal stress and the programming of disease. Horm Behav 2011; 59:279-89. [PMID: 20591431 DOI: 10.1016/j.yhbeh.2010.06.007] [Citation(s) in RCA: 572] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 05/26/2010] [Accepted: 06/08/2010] [Indexed: 11/23/2022]
Abstract
An adverse foetal environment is associated with increased risk of cardiovascular, metabolic, neuroendocrine and psychological disorders in adulthood. Exposure to stress and its glucocorticoid hormone mediators may underpin this association. In humans and in animal models, prenatal stress, excess exogenous glucocorticoids or inhibition of 11β-hydroxysteroid dehydrogenase type 2 (HSD2; the placental barrier to maternal glucocorticoids) reduces birth weight and causes hyperglycemia, hypertension, increased HPA axis reactivity, and increased anxiety-related behaviour. Molecular mechanisms that underlie the 'developmental programming' effects of excess glucocorticoids/prenatal stress include epigenetic changes in target gene promoters. In the case of the intracellular glucocorticoid receptor (GR), this alters tissue-specific GR expression levels, which has persistent and profound effects on glucocorticoid signalling in certain tissues (e.g. brain, liver, and adipose). Crucially, changes in gene expression persist long after the initial challenge, predisposing the individual to disease in later life. Intriguingly, the effects of a challenged pregnancy appear to be transmitted possibly to one or two subsequent generations, suggesting that these epigenetic effects persist.
Collapse
Affiliation(s)
- Anjanette Harris
- University of Edinburgh, Endocrinology Unit, Centre for Cardiovascular Science, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | |
Collapse
|
44
|
Dexamethasone pre-treatment protects brain against hypoxic-ischemic injury partially through up-regulation of vascular endothelial growth factor A in neonatal rats. Neuroscience 2011; 179:223-32. [PMID: 21277350 DOI: 10.1016/j.neuroscience.2011.01.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 10/18/2022]
Abstract
Dexamethasone (Dex) provides neuroprotection against subsequent hypoxia ischemia (HI) in newborn rats, but the mechanism of this neuroprotection is not well understood. It is known that vascular endothelial growth factor A (VEGF) has neuroprotective effects. The objective of this study was to evaluate the role of the VEGF signaling pathway in the Dex-induced neuroprotection in newborn rats. Seven-day-old rat pups had the right carotid artery permanently ligated followed by 140 or 160 min of hypoxia (8% oxygen). Rat pups received two i.p. injections of either saline or Dex (0.25 mg/kg) at 24 and 4 h before HI exposure. To quantify the effects of a glucocorticoid receptor (GR) blocker, on postnatal day (PD) 6 and 15 min prior to Dex treatment rat pups received s.c. vehicle or RU486 (GR blocker, 60 mg/kg). After 24 h at PD 7, all rat pups had HI as described earlier. To quantify the effects of a VEGFR 2 blocker, at 24 h after Dex/Veh treatment (PD7), SU5416, a VEGFR 2 inhibitor or vehicle was injected intracerebroventricularly in the right hemisphere at 30 min before and 2 h after HI. Dex pre-treatment reduced brain injury and enhanced the HI-induced brain VEGF protein while a GR blocker inhibited these effects. Treatment with VEGFR 2 blocker decreased Dex-induced neuroprotection also. Dex pre-treatment enhanced the HI-induced increase in mRNA expression of VEGF splice variants and decreased the HI-induced reduction of Akt phosphorylation. Additionally, it also decreased HI-induced increase of caspase-3 activity and DNA fragments in neonatal rat brain. We conclude that Dex provides robust neuroprotection against subsequent HI in newborn rats via GR likely with the partial involvement of VEGF signaling pathway.
Collapse
|
45
|
Schaefer TL, Grace CE, Gudelsky GA, Vorhees CV, Williams MT. Effects on plasma corticosterone levels and brain serotonin from interference with methamphetamine-induced corticosterone release in neonatal rats. Stress 2010; 13:469-80. [PMID: 20666642 DOI: 10.3109/10253891003786407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (MA) induces multiple effects in rats including alterations to corticosterone (CORT) and adrenocorticotropic hormone (ACTH). This effect is age dependent showing a U-shaped function similar to that of other stressors during the stress hyporesponsive period. Neonatal MA treatment leads to adult learning and memory impairments, but whether these are related to MA-induced CORT release is unknown. Here in, four methods were tested in neonatal rats previously established in adult rats for inhibiting stress-induced CORT release: inhibiting synthesis (metyrapone (MET) or ketoconazole (KTZ)) or surgically by adrenalectomy or adrenal autotransplantation (ADXA). Pretreatment on postnatal day 11 with MET or KTZ prior to four doses of 10 mg/kg of MA initially suppressed MA-induced increases in plasma CORT, but 24 h later, even with additional inhibitor treatment, a large CORT increase was seen which exceeded that of MA alone. Adrenalectomy blocked MA-induced increases in CORT but caused a secondary effect on brain serotonin (5-HT) and dopamine (DA), causing greater reductions than those caused by MA alone. ADXA inhibited MA-induced CORT release without causing a 24-h CORT increase and did not produce additional effects on brain 5-HT or DA. Neonatal ADXA is a new model for developmental drug or stress experiments designed to test the role of CORT in mediating early effects on later outcomes.
Collapse
Affiliation(s)
- T L Schaefer
- Division of Neurology, Cincinnati Children's Research Foundation, and University of Cincinnati College of Medicine, Cincinnati, OH, 45229-3039, USA
| | | | | | | | | |
Collapse
|
46
|
Stone SSD, Teixeira CM, Zaslavsky K, Wheeler AL, Martinez-Canabal A, Wang AH, Sakaguchi M, Lozano AM, Frankland PW. Functional convergence of developmentally and adult-generated granule cells in dentate gyrus circuits supporting hippocampus-dependent memory. Hippocampus 2010; 21:1348-62. [PMID: 20824726 DOI: 10.1002/hipo.20845] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2010] [Indexed: 12/16/2022]
Abstract
In the hippocampus, the production of dentate granule cells (DGCs) persists into adulthood. As adult-generated neurons are thought to contribute to hippocampal memory processing, promoting adult neurogenesis therefore offers the potential for restoring mnemonic function in the aged or diseased brain. Within this regenerative context, one key issue is whether developmentally generated and adult-generated DGCs represent functionally equivalent or distinct neuronal populations. To address this, we labeled separate cohorts of developmentally generated and adult-generated DGCs and used immunohistochemical approaches to compare their integration into circuits supporting hippocampus-dependent memory in intact mice. First, in the water maze task, rates of integration of adult-generated DGCs were regulated by maturation, with maximal integration not occurring until DGCs were five or more weeks in age. Second, these rates of integration were equivalent for embryonically, postnatally, and adult-generated DGCs. Third, these findings generalized to another hippocampus-dependent task, contextual fear conditioning. Together, these experiments indicate that developmentally generated and adult-generated DGCs are integrated into hippocampal memory networks at similar rates, and suggest a functional equivalence between DGCs generated at different developmental stages.
Collapse
Affiliation(s)
- Scellig S D Stone
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The purpose of this article was to review follow up studies of children with prenatal drug exposure from preschool through adolescence. Specifically, the authors focus on the effects of prenatal exposure to cocaine, methamphetamine, and opiates on behavior and development. The largest number of studies have examined cocaine-exposed children. The authors identified 42 studies that suggest that there are unique effects of prenatal cocaine exposure on 4- to 13-year-old children, particularly in the areas of behavior problems, attention, language, and cognition. In addition, studies make reasonable attempts to control for possible confounding factors. Systematic research on the long-term effects of prenatal methamphetamine exposure is just beginning but seems to be showing similar effects to that of cocaine. The literature on the on the long-term effects of children with prenatal opiate exposure is more substantial than the methamphetamine literature but it is still relatively sparse and surprising in that there is little recent work. Thus, there are no studies on the current concerns with opiates used for prescription mediation. There is a growing literature using neuroimaging techniques to study the effects of prenatal drug exposure that holds promise for understanding brain/behavior relationships. In addition to pharmacological and teratogenic effects, drugs can also be viewed from a prenatal stressor model. The author discuss this "fetal origins" approach that involves fetal programming and the neuroendocrine system and the potential implications for adolescent brain and behavioral development.
Collapse
Affiliation(s)
- Barry M Lester
- Brown Center for the Study of Children at Risk, The Warren Alpert Medical School of Brown University, Women and Infants Hospital of Rhode Island, Providence, RI 02905, USA.
| | | |
Collapse
|
48
|
Anti-glucocorticoid gene therapy reverses the impairing effects of elevated corticosterone on spatial memory, hippocampal neuronal excitability, and synaptic plasticity. J Neurosci 2010; 30:1712-20. [PMID: 20130180 DOI: 10.1523/jneurosci.4402-09.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Moderate release of the major stress hormones, glucocorticoids (GCs), improves hippocampal function and memory. In contrast, excessive or prolonged elevations produce impairments. Enzymatic degradation and reformation of GCs help to maintain optimal levels within target tissues, including the brain. We hypothesized that expressing a GC-degrading enzyme in hippocampal neurons would attenuate the negative impact of an excessive elevation in GC levels on synaptic physiology and spatial memory. We tested this by expressing 11-beta-hydroxysteroid dehydrogenase (type II) in dentate gyrus granule cells during a 3 d GC treatment followed by examination of synaptic responses in hippocampal slices or spatial performance in the Morris water maze. In adrenalectomized rats with basal GC replacement, additional GC treatments for 3 d reduced synaptic strength and promoted the expression of long-term depression at medial perforant path synapses, increased granule cell and CA1 pyramidal cell excitability, and impaired spatial reference memory (without influencing learning). Expression of 11-beta-hydroxysteroid dehydrogenase (type II), mostly in mature dentate gyrus granule cells, reversed the effects of high GC levels on granule cell and pyramidal cell excitability, perforant path synaptic plasticity, and spatial memory. These data demonstrate the ability of neuroprotective gene expression limited to a specific cell population to both locally and trans-synaptically offset neurophysiological disruptions produced by prolonged increases in circulating stress hormones. This report supplies the first physiological explanation for previously demonstrated cognitive sparing by anti-stress gene therapy approaches and lends additional insight into the hippocampal processes that are important for memory.
Collapse
|
49
|
Cherng CG, Lin PS, Chuang JY, Chang WT, Lee YS, Kao GS, Lai YT, Yu L. Presence of conspecifics and their odor-impregnated objects reverse stress-decreased neurogenesis in mouse dentate gyrus. J Neurochem 2010; 112:1138-46. [DOI: 10.1111/j.1471-4159.2009.06505.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Abstract
The hippocampus is a region of the mammalian brain that shows an impressive capacity for structural reorganization. Preexisting neural circuits undergo modifications in dendritic complexity and synapse number, and entirely novel neural connections are formed through the process of neurogenesis. These types of structural change were once thought to be restricted to development. However, it is now generally accepted that the hippocampus remains structurally plastic throughout life. This article reviews structural plasticity in the hippocampus over the lifespan, including how it is investigated experimentally. The modulation of structural plasticity by various experiential factors as well as the possible role it may have in hippocampal functions such as learning and memory, anxiety, and stress regulation are also considered. Although significant progress has been made in many of these areas, we highlight some of the outstanding issues that remain.
Collapse
Affiliation(s)
- Benedetta Leuner
- Department of Psychology, Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|