1
|
Talukdar A, Maddhesiya P, Namsa ND, Doley R. Snake venom toxins targeting the central nervous system. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Amit Talukdar
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Priya Maddhesiya
- Cell Biology and Anatomy, Ludwig Maximilian University (LMU), Munich, Germany
| | - Nima Dondu Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Robin Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| |
Collapse
|
2
|
Neuronal Morphology and Spine Density of the Visual Wulst of the Strawberry Finch, Estrilda amandava. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40011-013-0188-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
3
|
Srivastava UC, Gaur P. Naturally occurring neuronal plasticity in visual wulst of the Baya weaver, Ploceus philippinus (Linnaeus, 1766). Cell Tissue Res 2013; 352:445-67. [DOI: 10.1007/s00441-013-1579-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/30/2013] [Indexed: 12/24/2022]
|
4
|
Bolin BL, Cornett HL, Barnes AF, Gill KE, Akins CK. Nicotine induces a conditioned place preference in male Japanese quail (Coturnix japonica). Physiol Behav 2012; 107:364-7. [PMID: 22939765 DOI: 10.1016/j.physbeh.2012.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/28/2012] [Accepted: 08/16/2012] [Indexed: 11/19/2022]
Abstract
Visual stimuli may play an important role in the development and maintenance of addiction in humans. Research with a visually-oriented animal model such as Japanese quail (Coturnix japonica) may provide insight into how visual cues contribute to the addiction process. The aim of the current study was to investigate the rewarding properties of nicotine in male Japanese quail using a biased conditioned place preference (CPP) procedure. Adult male quail (N=30) were allowed to freely explore the entire CPP apparatus during a place preference pre-test and time spent in each chamber was measured. During nicotine conditioning sessions, quail were administered nicotine (0.5, 1.0, or 2.0mg/kg) or saline and were then confined to their initially least preferred chamber. On alternating days, all quail received saline and were confined to their initially preferred chamber. Locomotor activity was assessed in both chambers. The conditioning chambers had yellow or green walls to enhance the visual salience of each context. Following 8 conditioning sessions (4 nicotine; 4 saline), quail were allowed to explore the entire apparatus during a CPP post-test and time spent in each chamber was measured. The results indicated that quail treated with 0.5 and 1.0mg/kg nicotine significantly increased the amount of time they spent in the nicotine-paired chamber compared to saline controls, suggesting that nicotine produced a CPP. Furthermore, quail treated with 0.5mg/kg nicotine showed a significant increase in locomotor activity with repeated treatments. The current findings suggest that nicotine may have a rewarding effect in quail and may tentatively suggest that the neuropharmacological mechanisms that mediate CPP for nicotine are conserved in birds.
Collapse
Affiliation(s)
- B Levi Bolin
- Department of Psychology, University of Kentucky, Lexington, KY 40506, United States
| | | | | | | | | |
Collapse
|
5
|
The receptor architecture of the pigeons’ nidopallium caudolaterale: an avian analogue to the mammalian prefrontal cortex. Brain Struct Funct 2011; 216:239-54. [DOI: 10.1007/s00429-011-0301-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 01/12/2011] [Indexed: 01/09/2023]
|
6
|
Guo JZ, Sorenson EM, Chiappinelli VA. Cholinergic modulation of non-N-methyl-D-aspartic acid glutamatergic transmission in the chick ventral lateral geniculate nucleus. Neuroscience 2009; 166:604-14. [PMID: 20035842 DOI: 10.1016/j.neuroscience.2009.12.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 12/15/2009] [Accepted: 12/17/2009] [Indexed: 10/20/2022]
Abstract
Neurotransmission between glutamatergic terminals of retinal ganglion cells and principal neurons of the ventral lateral geniculate nucleus (LGNv) was examined with patch clamp recordings in chick brain slices during electrical stimulation of the optic tract. Since muscarinic and nicotinic receptors are present in high densities in LGNv, the present study examined possible roles of both receptors in modulating retinogeniculate transmission. During whole-cell recordings from LGNv neurons, acetylcholine (ACh, 100 microM) caused an initial increase in amplitudes of optic tract-evoked non-N-methyl-D-aspartic acid (NMDA) glutamatergic postsynaptic currents (PSCs). This increase was unchanged when 1 microM atropine was present, indicating that this initial enhancement of PSCs was due entirely to activation of nicotinic receptors. However, during washout of ACh the amplitudes of evoked PSCs became significantly decreased by 40.4+/-5.0% for several minutes before recovering to their original amplitudes, an effect blocked by 1 microM atropine. Exogenously applied muscarine (10 microM) markedly depressed optic tract-evoked PSCs, and this decrease in amplitude was blocked by atropine. In a second set of experiments, we examined effects of releasing endogenous ACh prior to optic tract stimulation. This was accomplished by stimulation of the lateral portion of LGNv via a separate conditioning electrode. Following a brief train of low intensity conditioning stimuli, non-NMDA glutamatergic PSCs evoked by optic tract stimulation were potentiated. However, at higher conditioning stimulus intensities the PSCs were markedly decreased compared with control, and this decrease was partially blocked by atropine (1 microM). Neither ACh nor muscarine altered amplitudes of PSCs elicited by exogenously applied glutamate. Muscarine significantly reduced the frequency but not the amplitudes of miniature PSCs, consistent with a presynaptic location for muscarinic receptors mediating these effects. Thus while activation of nicotinic receptors potentiates retinogeniculate transmission, activation of muscarinic receptors mediates depression of transmission, demonstrating a complex cholinergic modulation of sensory information in LGNv.
Collapse
Affiliation(s)
- J-Z Guo
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, the George Washington University, 2300 Eye Street Northwest Washington, DC 20037, USA
| | | | | |
Collapse
|
7
|
Sadananda M. Acetylcholinesterase in central vocal control nuclei of the zebra finch (Taeniopygia guttata). J Biosci 2009; 29:189-200. [PMID: 15286416 DOI: 10.1007/bf02703417] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The distribution of acetylcholinesterase (AChE) in the central vocal control nuclei of the zebra finch was studied using enzyme histochemistry. AChE fibres and cells are intensely labelled in the forebrain nucleus area X, strongly labelled in high vocal centre (HVC) perikarya, and moderately to lightly labelled in the somata and neuropil of vocal control nuclei robust nucleus of arcopallium (RA), medial magnocellular nucleus of the anterior nidopallium (MMAN) and lateral magnocellular nucleus of the anterior nidopallium (LMAN). The identified sites of cholinergic and/or cholinoceptive neurons are similar to the cholinergic presence in vocal control regions of other songbirds such as the song sparrow, starling and another genus of the zebra finch (Poephila guttata), and to a certain extent in parallel vocal control regions in vocalizing birds such as the budgerigar. AChE presence in the vocal control system suggests innervation by either afferent projecting cholinergic systems and/or local circuit cholinergic neurons. Co-occurrence with choline acetyltransferase (ChAT) indicates efferent cholinergic projections. The cholinergic presence in parts of the zebra finch vocal control system, such as the area X, that is also intricately wired with parts of the basal ganglia, the descending fibre tracts and brain stem nuclei could underlie this circuitry's involvement in sensory processing and motor control of song
Collapse
Affiliation(s)
- Monika Sadananda
- Department of Applied Zoology, Mangalore University, Mangalagangothri, India.
| |
Collapse
|
8
|
Govind AP, Vezina P, Green WN. Nicotine-induced upregulation of nicotinic receptors: underlying mechanisms and relevance to nicotine addiction. Biochem Pharmacol 2009; 78:756-65. [PMID: 19540212 DOI: 10.1016/j.bcp.2009.06.011] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 06/04/2009] [Accepted: 06/09/2009] [Indexed: 02/05/2023]
Abstract
A major hurdle in defining the molecular biology of nicotine addiction has been characterizing the different nicotinic acetylcholine receptor (nAChR) subtypes in the brain and how nicotine alters their function. Mounting evidence suggests that the addictive effects of nicotine, like other drugs of abuse, occur through interactions with its receptors in the mesolimbic dopamine system, particularly ventral tegmental area (VTA) neurons, where nicotinic receptors act to modulate the release of dopamine. The molecular identity of the nicotinic receptors responsible for drug seeking behavior, their cellular and subcellular location and the mechanisms by which these receptors initiate and maintain addiction are poorly defined. In this commentary, we review how nicotinic acetylcholine receptors (nAChRs) are upregulated by nicotine exposure, the potential posttranslational events that appear to cause it and how upregulation is linked to nicotine addiction.
Collapse
Affiliation(s)
- Anitha P Govind
- Department of Neurobiology, University of Chicago, Abbot Hall 402-MC0926, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
9
|
Loring RH. The Molecular Basis of Curaremimetic Snake Neurotoxin Specificity for Neuronal Nicotinic Receptor Subtypes. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569549309033109] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Sharma G, Vijayaraghavan S. Nicotinic Receptors: Role in Addiction and Other Disorders of the Brain. SUBSTANCE ABUSE: RESEARCH AND TREATMENT 2008. [DOI: 10.1177/117822180800100005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Nicotine, the addictive component of cigarette smoke has profound effects on the brain. Activation of its receptors by nicotine has complex consequences for network activity throughout the brain, potentially contributing to the addictive property of the drug. Nicotinic receptors have been implicated in psychiatric illnesses like schizophrenia and are also neuroprotective, potentially beneficial for neurodegenerative diseases. These effects of nicotine serve to emphasize the multifarious roles the drug, acting through multiple nicotinic acetylcholine receptor subtypes. The findings also remind us of the complexity of signaling mechanisms and stress the risks of unintended consequences of drugs designed to combat nicotine addiction.
Collapse
Affiliation(s)
- Geeta Sharma
- Department of Physiology and Biophysics and the Neuroscience Program, University of Colorado, Denver, School of Medicine Aurora CO 80045
| | - Sukumar Vijayaraghavan
- Department of Physiology and Biophysics and the Neuroscience Program, University of Colorado, Denver, School of Medicine Aurora CO 80045
| |
Collapse
|
11
|
Rasmussen BA, Perry DC. An autoradiographic analysis of [125I]alpha-bungarotoxin binding in rat brain after chronic nicotine exposure. Neurosci Lett 2006; 404:9-14. [PMID: 16750882 DOI: 10.1016/j.neulet.2006.05.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 05/01/2006] [Accepted: 05/05/2006] [Indexed: 11/25/2022]
Abstract
Chronic exposure to nicotine has been shown to increase binding to high affinity nicotinic cholinergic receptors in rat brain, but the effect of this treatment on the low affinity alpha7 nicotinic receptors has been less well characterized. Male Sprague-Dawley rats were treated with saline or nicotine (6 mg/kg/day, by osmotic minipump) for 14 days. Frozen brain sections were then prepared and processed for quantitative autoradiography using [(125)I]alpha-bungarotoxin to measure the effect of this treatment on low affinity nicotinic receptors. Nicotine exposure increased [(125)I]alpha-bungarotoxin binding in 26 of 52 brain regions analyzed; increases ranged from 10 to 70% over saline controls. Increases were seen in all areas of the brain, but were more prominent in forebrain areas, and especially in cerebral cortex. These data demonstrate that low affinity alpha7 nicotinic receptors are also up-regulated by chronic nicotine. This phenomenon may be relevant to the heavy use of tobacco products in diseases like schizophrenia, and needs to be considered in the design of pharmaceuticals directed at this receptor system.
Collapse
Affiliation(s)
- Bruce A Rasmussen
- Department of Pharmacology & Physiology, George Washington University Medical School, Washington, DC 20037, USA
| | | |
Collapse
|
12
|
Guo JZ, Liu Y, Sorenson EM, Chiappinelli VA. Synaptically Released and Exogenous ACh Activates Different Nicotinic Receptors to Enhance Evoked Glutamatergic Transmission in the Lateral Geniculate Nucleus. J Neurophysiol 2005; 94:2549-60. [PMID: 15972832 DOI: 10.1152/jn.00339.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of activation of nicotinic acetylcholine receptors (nAChRs) on glutamatergic transmission in the ventral lateral geniculate nucleus (LGNv) were examined in chick brain slices. Whole cell recordings showed that monosynaptic postsynaptic currents (PSCs) evoked in LGNv neurons by optic tract stimulation were blocked by glutamate receptor antagonists. Exogenously applied nicotine (0.5 μM), choline (1 mM), or acetylcholine (ACh, 100 μM) markedly increased (>3-fold) these evoked PSCs. Potentiation by ACh was dose-dependent and did not desensitize during a 5-min application. In a second set of experiments, the effect of releasing endogenous ACh by stimulating the lateral portion of the LGNv through a separate conditioning electrode before optic tract stimulation was examined. Conditioning stimulation trains increased PSCs by an average of 5.2-fold, an effect dependent on both the intensity and number of conditioning pulses. This increase in PSC amplitude was most likely caused by released ACh activating α6- and/or α3-containing nAChRs because it was blocked by 100 nM α-conotoxin MII, 100 nM dihydro-β-erythroidine (DHβE), and 0.1–1.0 μM methyllycaconitine (MLA). In contrast, exogenously applied ACh increased PSC amplitude by activating a pharmacologically different population of nAChRs because this effect was inhibited by 100 nM α-bungarotoxin, 50 nM MLA, and a high concentration (30 μM) of DHβE, indicating that α7- and/or α8-containing receptors were involved. The results are consistent with a model whereby α6- and/or α3-containing nAChRs on retinal ganglion cell nerve terminals are located preferentially at cholinergic synapses, whereas α7- and/or α8-containing receptors are primarily extrasynaptic.
Collapse
Affiliation(s)
- Jian-Zhong Guo
- Department of Pharmacology and Physiology, George Washington University, School of Medicine and Health Sciences, DC 20037, USA.
| | | | | | | |
Collapse
|
13
|
CROLL ROGERP, DICKINSON AMANDAJ. Form and function of the larval nervous system in molluscs. INVERTEBR REPROD DEV 2004. [DOI: 10.1080/07924259.2004.9652620] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Dickinson AJG, Croll RP. Development of the larval nervous system of the gastropod Ilyanassa obsoleta. J Comp Neurol 2003; 466:197-218. [PMID: 14528448 DOI: 10.1002/cne.10863] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Gastropods have been well studied in terms of early cell cleavage patterns and the neural basis of adult behaviors; however, much less is known about neural development in this taxon. Here we reveal a relatively sophisticated larval nervous system in a well-studied gastropod, Ilyanassa obsoleta. The present study employed immunocytochemical and histofluorescent techniques combined with confocal microscopy to examine the development of cells containing monoamines (serotonin and catecholamine), neuropeptides (FMRFamide and leu-enkephalin related peptides), and a substance(s) reactive to antibodies raised against dopamine beta-hydroxylase. Neurons were first observed in the apical organ and posterior regions during the embryonic trochophore stage. During later embryonic development neurons appeared in peripheral regions such as the foot, velum, and mantle and in the developing ganglia destined to become the adult central nervous system. In subsequent free-swimming veliger stages the larval nervous system became increasingly elaborate and by late larval stages there existed approximately 26-28 apical cells, 80-100 neurons in the central ganglia, and 200-300 peripherally located neurons. During metamorphosis some populations of neurons in the apical organ and in the periphery disappeared, while others were incorporated into the juvenile nervous system. Comparisons of neural elements in other molluscan larvae reveal several similarities such as comparable arrangements of cells in the apical organ and patterns of peripheral cells. This investigation reveals the most extensive larval nervous system described in any mollusc to date and information from this study will be useful for future experimental studies determining the role of larval neurons and investigations of the cellular and molecular mechanisms governing neural development in this taxon.
Collapse
Affiliation(s)
- Amanda J G Dickinson
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, B3H 4H7 Nova Scotia, Canada.
| | | |
Collapse
|
15
|
Nong Y, Sorenson EM, Chiappinelli VA. Opioid receptor activation attenuates nicotinic enhancement of spontaneous GABA release in lateral spiriform nucleus of the chick. Brain Res 2003; 961:45-52. [PMID: 12535775 DOI: 10.1016/s0006-8993(02)03837-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We examined the effects of opioids on the nicotinic enhancement of spontaneous GABA release from presynaptic terminals in the lateral spiriform nucleus (SpL) of the chick. Whole cell recordings from SpL neurons in brain slices were used to monitor spontaneous GABA release. Nicotine (1 microM) produced an 8-fold increase in the frequency of GABA events without changing their amplitude, consistent with an increase of GABA release from presynaptic terminals. L-enkephalin (1 microM) blocked these effects of nicotine on presynaptic GABA release, and the opioid antagonist naloxone (100 nM) antagonized the actions of L-enkephalin. The selective mu agonist DAMGO (300 nM) also attenuated the nicotine-mediated enhancement of GABA release, and the mu selective antagonist CTOP (1 microM) blocked the actions of DAMGO. In contrast, the kappa opioid agonist U50488 (3 microM) and the delta opioid agonist DPDPE (1 microM) had no effect. The results demonstrate that presynaptic release of GABA in the SpL can be regulated by both nicotinic agonists and mu opioids. While mu opioids have little effect on GABA release by themselves, they are able to block the marked enhancement of GABA release normally produced by nicotine. Since both cholinergic and enkephalinergic nerves are present in the SpL, the interactions of these two neurotransmitter systems may serve to precisely regulate GABA release in this brain region.
Collapse
Affiliation(s)
- Yi Nong
- Department of Pharmacology, The George Washington University Medical Center, 2300 Eye Street NW, Washington, DC 20037, USA
| | | | | |
Collapse
|
16
|
Miceli D, Repérant J, Rio JP, Hains P, Medina M. Serotonin immunoreactivity in the retinal projecting isthmo-optic nucleus and evidence of brainstem raphe connections in the pigeon. Brain Res 2002; 958:122-9. [PMID: 12468036 DOI: 10.1016/s0006-8993(02)03515-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Serotonin (5-HT) immunoreactive (-ir) profiles within the isthmo-optic nucleus (ION) of the centrifugal visual system (CVS) were studied in the pigeon using light microscopic immunohistofluorescent and electron microscopic immunocytochemical pre-embedding techniques. The brainstem origin of the 5-HT input upon the ION was determined by combining 5-HT immunohistofluorescence (FITC) and retrograde transneuronal tracing after intraocular injection of Rhodamine beta-isothiocyanate. The light microscopic results showed that 5-HT endings were mainly localised within the neuropillar zones of the ventral ION. The 5-HT-ir cell bodies, belonging to a lateral extension of the dorsal raphe system, were observed within the same region as the centrifugal ectopic neurons (EN) underlying the ION and some displayed dendritic processes which penetrated the nucleus. Double-labeled neurons, representing 5-HT-ir afferents to the ION, were identified only within the n. linearis caudalis region of the ventral raphe. The electron microscopic results confirmed the presence of 5-HT-ir dendritic processes within the ventral part of the nucleus and showed that they were contacted by axon terminals belonging to intrinsic interneurons. The functional organisation of the ION and the possible contribution of serotonergic raphe afferents and efferents are discussed in relation to present hypotheses linking the avian CVS to mechanisms of visual attention.
Collapse
Affiliation(s)
- Dom Miceli
- Groupe de Recherche en Neurosciences, Département de Psychologie, Université du Québec, CP 500, Trois-Rivières, Quebec, Canada G9A 5H7.
| | | | | | | | | |
Collapse
|
17
|
Torrão AS, Britto LRG. Neurotransmitter regulation of neural development: acetylcholine and nicotinic receptors. AN ACAD BRAS CIENC 2002; 74:453-61. [PMID: 12378313 DOI: 10.1590/s0001-37652002000300008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Several neurotransmitter systems have been related to developmental processes during the past decade. In this review, we discuss the evidence that the nicotinic acetylcholine receptors could have an additional function during development that may be unrelated to their role in cholinergic neurotransmission in the vertebrate brain. Both temporal expression data and in vitro and in vivo studies with nicotinic agonists and antagonists have provided direct support for a role of nicotinic receptors in neural developmental processes such as neurite outgrowth and differentiation. A similar picture has emerged for other neurotransmitter and receptor systems as well, which generates a new view of neural processes during both development and mature life.
Collapse
Affiliation(s)
- Andréa S Torrão
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil
| | | |
Collapse
|
18
|
Guo JZ, Chiappinelli VA. A novel choline-sensitive nicotinic receptor subtype that mediates enhanced GABA release in the chick ventral lateral geniculate nucleus. Neuroscience 2002; 110:505-13. [PMID: 11906789 DOI: 10.1016/s0306-4522(01)00579-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Nicotinic acetylcholine receptors modulate the release of GABA, glutamate, acetylcholine and dopamine in the brain. Here we describe a novel choline-sensitive nicotinic acetylcholine receptor that mediates enhanced GABA release in the chick ventral lateral geniculate nucleus. Whole-cell recordings in slices demonstrated that choline (0.03-10 mM), generally considered an alpha7-selective agonist, and carbachol (3-300 microM), a non-selective cholinergic agonist, both increased the frequency of spontaneous GABAergic events in ventral lateral geniculate nucleus neurons. Tetrodotoxin (0.5 microM) partially reduced responses to carbachol, but eliminated responses to choline. During long-term (5 min) exposure to choline the GABA enhancement was maintained until choline was washed out. Choline (300 microM) enhanced the frequency of spontaneous GABAergic events by 4.28-fold in control artificial cerebrospinal fluid. This choline-mediated enhancement was significantly reduced by the following nicotinic acetylcholine receptor antagonists: 1 microM dihydro-beta-erythroidine (1.49-fold increase, P<0.001), 1 microM methyllycaconitine (1.53-fold, P<0.001) and 0.2 microM alpha-conotoxin ImI (1.84-fold, P<0.001). In contrast, no significant change was seen in the presence of 0.1 microM dihydro-beta-erythroidine, 0.1 microM methyllycaconitine, 0.1 microM alpha-bungarotoxin, 0.1 microM alpha-conotoxin MII, 0.1 microM kappa-bungarotoxin, or 1 microM alpha-conotoxin AuIB. These results indicate that choline, at concentrations as low as 100 microM, activates a nicotinic acetylcholine receptor that is distinct from the classical alpha7 nicotinic acetylcholine receptors previously known to be activated by choline.
Collapse
Affiliation(s)
- J-Z Guo
- Department of Pharmacology, The George Washington University, School of Medicine and Health Sciences, 2300 Eye Street, N.W., Washington, DC 20037, USA.
| | | |
Collapse
|
19
|
Guo J, Chiappinelli VA. Distinct muscarinic receptors enhance spontaneous GABA release and inhibit electrically evoked GABAergic synaptic transmission in the chick lateral spiriform nucleus. Neuroscience 2001; 104:1057-66. [PMID: 11457590 DOI: 10.1016/s0306-4522(01)00152-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of muscarinic agonists on GABAergic synaptic transmission were examined using whole-cell patch-clamp recording in chick brain slices containing the lateral spiriform nucleus. Bath application of muscarine (10 microM) both increased the frequency of spontaneous GABAergic postsynaptic currents and reduced the amplitude of evoked GABAergic polysynaptic postsynaptic currents elicited by focal afferent fiber electrical stimulation. Both of these muscarinic actions were reversible and dose-dependent. Two M(1) antagonists, telenzepine and pirenzipine, and to a lesser extent the M(2) antagonist methoctramine, protected against muscarine's inhibition of the evoked polysynaptic currents. Other M(2) antagonists (tripitramine and gallamine) as well as the M(3) antagonist 4-DAMP mustard (4-diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochloride) and an M(4) antagonist (tropicamide) provided little or no protection against muscarine in this assay. In contrast, 4-diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochloride, tropicamide and telenzepine, but not pirenzepine, methoctramine, tripitramine and gallamine, blocked muscarine's enhancement of spontaneous GABAergic currents. McN-A-343 [(4-hydroxy-2-butynyl)-1-trimethylammonium-m-chlorocarbanilate chloride] and CDD-0097 (5-propargyloxycarbonyl-1,4,5,6-tetrahydropyrimidine hydrochloride), two M(1) agonists, mimicked muscarine's inhibition of the evoked polysynaptic GABAergic currents but did not mimic muscarine's enhancement of spontaneous GABAergic currents. Both actions of muscarine persisted when slices were pretreated with pertussis toxin or N-ethylmaleimide, which inactivate G-proteins coupled to M(2) and M(4) receptors while leaving G-proteins coupled to M(1), M(3) and M(5) receptors intact. Muscarine had no significant effect on the amplitude of the direct postsynaptic current elicited by exogenous GABA in the presence of tetrodotoxin. The results demonstrate that distinct muscarinic receptors oppositely modulate GABAergic transmission in the lateral spiriform nucleus. The receptor mediating the inhibition of evoked GABAergic polysynaptic currents is pharmacologically similar to an M(1) receptor, while the enhancement of spontaneous GABAergic currents appears to be mediated by an M(3) receptor.
Collapse
Affiliation(s)
- J Guo
- Department of Pharmacology, School of Medicine and Health Sciences, The George Washington University, 2300 Eye Street N.W., Washington, DC 20037, USA.
| | | |
Collapse
|
20
|
Nucleus isthmi, pars semilunaris as a key component of the tectofugal visual system in pigeons. J Comp Neurol 2001. [DOI: 10.1002/cne.1058] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Tizabi Y, Russell LT, Nespor SM, Perry DC, Grunberg NE. Prenatal nicotine exposure: effects on locomotor activity and central [125I]alpha-BT binding in rats. Pharmacol Biochem Behav 2000; 66:495-500. [PMID: 10899361 DOI: 10.1016/s0091-3057(00)00171-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maternal smoking during pregnancy or in utero exposure of the fetus to nicotine may result in learning difficulties and hyperactivity in the child. To elucidate possible involvement of the alpha(7) nicotinic receptor subtype in these behavioral impairments, pregnant dams were treated with nicotine (9 mg/kg/day) via osmotic minipumps throughout gestation. Male offspring were weaned at postnatal day 18, and were tested for locomotor activity at postnatal days 20-24. Pups were sacrificed on postnatal day 36-38 and 18 discrete brain areas were analyzed for [125I]alpha-bungarotoxin (alpha-BT) binding by quantitative autoradiography. Prenatal nicotine caused an elevation in locomotor activity (vertical movements) in offspring. [125I]alpha-BT binding was significantly reduced in the hippocampal CA1 region (29%), dentate gyrus (22%), and medial geniculate nucleus (29%). These findings suggest that some of the behavioral abnormalities induced by prenatal nicotine exposure may be due to a reduction of alpha(7) nicotinic receptors in discrete brain regions.
Collapse
Affiliation(s)
- Y Tizabi
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | | | | | | | | |
Collapse
|
22
|
Lohmann TH, Torrão AS, Britto LR, Lindstrom J, Hamassaki-Britto DE. A comparative non-radioactive in situ hybridization and immunohistochemical study of the distribution of alpha7 and alpha8 subunits of the nicotinic acetylcholine receptors in visual areas of the chick brain. Brain Res 2000; 852:463-9. [PMID: 10678774 DOI: 10.1016/s0006-8993(99)02082-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The distribution of mRNA transcripts corresponding to the alpha7 and alpha8 subunits of the nicotinic acetylcholine receptors (nAChRs) was studied in selected structures of the chick visual system with non-radioactive in situ hybridization and immunohistochemical techniques. The results indicated that the alpha7 and alpha8 nAChR transcripts are widely distributed in the brain, exhibiting differential expression in some structures but also some degree of co-localization. The pattern of localization of alpha7 and alpha8 nAChR transcripts was highly correlated with immunohistochemical data, with very few instances of possible mismatches between the distribution of mRNAs and their corresponding proteins.
Collapse
Affiliation(s)
- T H Lohmann
- Department of Histology and Embryology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
23
|
Guo JZ, Chiappinelli VA. Muscarinic receptors mediate enhancement of spontaneous GABA release in the chick brain. Neuroscience 2000; 95:273-82. [PMID: 10619484 DOI: 10.1016/s0306-4522(99)00391-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The functional role of muscarinic acetylcholine receptors in the lateral spiriform nucleus was studied in chick brain slices. Whole-cell patch-clamp recordings of neurons in the lateral spiriform nucleus revealed that carbachol enhanced GABAergic spontaneous inhibitory postsynaptic currents. The duration of the response to carbachol was significantly reduced after blockade of muscarinic receptors with atropine. In the presence of the nicotinic receptor antagonist dihydro-beta-erythroidine, carbachol produced a delayed but prolonged enhancement of spontaneous GABAergic inhibitory postsynaptic currents that was completely blocked by atropine. Muscarine also enhanced the frequency of spontaneous GABAergic inhibitory postsynaptic currents in a dose-dependent manner, but had no effect on inhibitory postsynaptic current amplitude. While 4-diphenylacetoxy-N-(2-chloroethyl)-piperidine hydrochloride, a M3 antagonist, completely blocked muscarine's effect, telenzepine, a M1 antagonist, and tropicamide, a M4 antagonist, only partially decreased the response to muscarine. Pirenzepine, a M1 antagonist, and methoctramine, a M2 antagonist, potentiated muscarine's enhancement of spontaneous GABAergic inhibitory postsynaptic currents. Muscarine's action was blocked by tetrodotoxin, cadmium chloride and omega-conotoxin GVIA, but was not affected by dihydro-beta-erythroidine, 6-cyano-7-nitroquinoxaline-2,3-dione, D(-)-2-amino-5-phosphonopentanoic acid, naloxone or fluphenazine. These results demonstrate that activation of both muscarinic and nicotinic acetylcholine receptors can enhance GABAergic inhibitory postsynaptic currents in the lateral spiriform nucleus. The muscarinic response has a slower onset but lasts longer than the nicotinic effect. The M3 receptor subtype is predominantly involved in enhancing spontaneous GABAergic inhibitory postsynaptic currents. These M3 receptors must be located some distance from GABA release sites, since activation of voltage-dependent sodium channels, and consequent activation of N-type voltage-dependent calcium channels, is required to trigger enhanced GABA release following activation of muscarinic receptors.
Collapse
Affiliation(s)
- J Z Guo
- Department of Pharmacology, The George Washington University, School of Medicine and Health Sciences, Washington, DC 20037, USA
| | | |
Collapse
|
24
|
Medina L, Reiner A. Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci 2000; 23:1-12. [PMID: 10631781 DOI: 10.1016/s0166-2236(99)01486-1] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent data on the expression of several homeobox genes in the embryonic telencephalon of mammals, birds and reptiles support the homology of a part of the avian pallium, named the Wulst, and at least the more-medial and superior parts of mammalian neocortex. This conclusion is also supported by previous embryological, topological and hodological data. Furthermore, new evidence on the connections and electrophysiological properties of specific subfields within the avian Wulst, and on the thalamic territories that project to these fields, supports the more-specific conclusion that a primary visual area and a primary somatosensory-somatomotor area are present in the avian Wulst; these areas are likely to be homologous to their counterparts in mammals. In spite of this, developmental, morphological and comparative evidence indicate that some structural and physiological traits that appear to be similar in the Wulst and neocortex (such as the lamination or binocularity) evolved independently in birds and mammals.
Collapse
Affiliation(s)
- L Medina
- Dept of Morphological Sciences, Faculty of Medicine, University of Murcia, Spain
| | | |
Collapse
|
25
|
Abstract
The lateral spiriform nucleus (SpL) in the chick mesencephalon contains functional nicotinic receptors and receives a cholinergic fiber projection. We now use double-label immunohistochemistry to demonstrate that choline acetyltransferase-immunopositive fibers in the SpL and in the cholinergic fiber tract lateral to the nucleus are associated with fibers expressing the alpha5 and/or alpha3 nicotinic receptor subunits as determined by mAb35 immunoreactivity. This morphological evidence suggests that there might be synapses between the cholinergic fibers and the dendrites of SpL neurons. Whole-cell recordings from SpL neurons in current-clamp mode revealed EPSPs evoked by stimulation of the cholinergic fiber tract lateral to the SpL. These EPSPs increased in amplitude in the presence of bicuculline. Further addition of the nicotinic antagonist dihydro-beta-erythroidine (DHbetaE) to the buffer significantly attenuated them. Almost all of the remaining EPSP was blocked by 6,7-dinitroquinoxaline-2,3-dione. In the presence of an antagonist cocktail that isolated the nicotinic responses, a fast, monosynaptic nicotinic EPSP or EPSC was evoked. In some neurons, the nicotinic EPSP resulted in the generation of an action potential. The nicotinic nature of the evoked response was confirmed by blockade of the EPSPs or EPSCs with nicotinic antagonists, including DHbetaE, D-tubocurare, and mecamylamine. The nicotinic response was insensitive to low concentrations (10-100 nM) of methyllycaconitine, indicating that typical alpha7-containing receptors were not involved. The results demonstrate that endogenously released acetylcholine generates EPSPs that can elicit action potentials by acting at postsynaptic nicotinic receptors on SpL neurons.
Collapse
|
26
|
Mezey S, Székely AD, Bourne RC, Kabai P, Csillag A. Changes in binding to muscarinic and nicotinic cholinergic receptors in the chick telencephalon, following passive avoidance learning. Neurosci Lett 1999; 270:75-8. [PMID: 10462101 DOI: 10.1016/s0304-3940(99)00472-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Changes in nicotinic and muscarinic cholinergic receptors 30 min after one-trial passive avoidance training were studied in day-old chicks (Gallus domesticus), by quantitative receptor autoradiography. [3H]-alpha-bungarotoxin (alpha-BgT) and [3H]-quinuclidinyl benzilate (QNB) were used to monitor changes in 15 forebrain regions for nicotinic and muscarinic receptors, respectively. A significant increase occurred bilaterally in the quantity of bound alpha-BgT in the lobus parolfactorius, while the amount of bound QNB decreased significantly, and bilaterally, in the hippocampus, hyperstriatum ventrale, lobus parolfactorius and posterolateral telencephalon, pars dorsalis. The data support an involvement of cholinergic receptor types in the neural mechanisms underlying passive avoidance learning.
Collapse
Affiliation(s)
- S Mezey
- Centre of Zoology, University of Veterinary Medicine, Budapest, Hungary
| | | | | | | | | |
Collapse
|
27
|
Tredway TL, Guo JZ, Chiappinelli VA. N-type voltage-dependent calcium channels mediate the nicotinic enhancement of GABA release in chick brain. J Neurophysiol 1999; 81:447-54. [PMID: 10036250 DOI: 10.1152/jn.1999.81.2.447] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of voltage-dependent calcium channels (VDCCs) in the nicotinic acetylcholine receptor (nAChR)-mediated enhancement of spontaneous GABAergic inhibitory postsynaptic currents (IPSCs) was investigated in chick brain slices. Whole cell recordings of neurons in the lateral spiriform (SpL) and ventral lateral geniculate (LGNv) nuclei showed that cadmium chloride (CdCl2) blocked the carbachol-induced increase of spontaneous GABAergic IPSCs, indicating that VDCCs might be involved. To conclusively show a role for VDCCs, the presynaptic effect of carbachol on SpL and LGNv neurons was examined in the presence of selective blockers of VDCC subtypes. omega-Conotoxin GVIA, a selective antagonist of N-type channels, significantly reduced the nAChR-mediated enhancement of gamma-aminobutyric acid (GABA) release in the SpL by 78% compared with control responses. Nifedipine, an L-type channel blocker, and omega-Agatoxin-TK, a P/Q-type channel blocker, did not inhibit the enhancement of GABAergic IPSCs. In the LGNv, omega-Conotoxin GVIA also significantly reduced the nAChR-mediated enhancement of GABA release by 71% from control values. Although omega-Agatoxin-TK did not block the nicotinic enhancement, L-type channel blockers showed complex effects on the nAChR-mediated enhancement. These results indicate that the nAChR-mediated enhancement of spontaneous GABAergic IPSCs requires activation of N-type channels in both the SpL and LGNv.
Collapse
Affiliation(s)
- T L Tredway
- Department of Pharmacology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA
| | | | | |
Collapse
|
28
|
Miceli D, Repérant J, Bertrand C, Rio JP. Functional anatomy of the avian centrifugal visual system. Behav Brain Res 1999; 98:203-10. [PMID: 10683108 DOI: 10.1016/s0166-4328(98)00085-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although first described over a century ago, the centrifugal visual system (CVS) projecting to the retina still remains somewhat of an enigma with regard to its functional role in visually-guided behavior. The highly developed avian CVS has been the most extensively investigated and the anatomical organization of its two component centrifugal structures, the n. isthmo-opticus (NIO) and ectopic neurons (EN), including its afferent brainstem projections is reviewed. The results of double-labeling studies combining axonal tracing techniques and immunohistofluorescence have demonstrated GABA immunoreactivity (-ir) of interneurons within the neuropilar zone of the NIO, choline acetyltransferase (ChAT)-ir and nitric oxide synthase (NOS)-ir in the centrifugal cells of the NIO and EN as well as in the afferent projection neurons of layers 9/10 of the optic tectum. The data are discussed in terms of neurochemical and excitatory/inhibitory mechanisms within the different components of the avian CVS in relation to hypotheses which have implicated this system in visual attention and ground-feeding behavior.
Collapse
Affiliation(s)
- D Miceli
- Département de psychologie, Université du Québec, Trois-Rivières, Canada
| | | | | | | |
Collapse
|
29
|
|
30
|
Médina M, Repérant J, Miceli D, Bertrand C, Bennis M. An immunohistochemical study of putative neuromodulators and transmitters in the centrifugal visual system of the quail (Coturnix japonica). J Chem Neuroanat 1998; 15:75-95. [PMID: 9719361 DOI: 10.1016/s0891-0618(98)00034-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to analyze the neurochemical properties of the centrifugal visual system (CVS) of the quail using an immunohistochemical approach by testing 16 neuropeptides (angiotensin: ANG, bradykinin: BK, cholecystokinin, dynorphin, L and M-enkephalin, beta-endorphin: beta-END, galanin, alpha-neoendorphin, neurokinin A, neuropeptide Y (NPY), ocytocin, somatostatin, substance P, vasopressin, vasoactive intestinal polypeptide) and three neurotransmitters or their synthetic enzymes (choline acetyltransferase: ChAT, tyrosine hydroxylase: TH, serotonin: 5-HT and nitric oxide synthase: NOS, including the histochemical nicotinamide adenine dinucleotide phosphate diaphorase technique). For each substance, the somatic and afferent fiber and terminal labeling was analyzed within the nucleus isthmo-opticus (NIO) and the ectopic area (EA) and compared with that of retinopetal cell bodies labeled retrogradely with RITC following its intraocular injection (double-labeling procedure). The results showed that none of the centrifugal neurons were reactive to any of the substances tested. In contrast, all with the exception of ANG, BK and beta-END, labeled fibers and terminals within the EA and only four (ChAT, 5-HT, NPY and NOS) within the NIO. Possible sources of these immunoreactive fibers terminating in the NIO and EA were investigated by mapping the somatic immunolabeling of the different substances within brainstem regions previously shown by Miceli and other authors to project upon the centrifugal neurons. The data suggests that, besides the rapid retino-tecto-NIO-retinal loop, which facilitates the transfer of meaningful or more relevant information within particular portions of the visual field, the multiple afferent input which stems from various brainstem regions utilizes a wide range of neuroactive substances. Some of these afferent projections upon the centrifugal neurons appear to belong to nonspecific systems which might play a role in modulating the excitability of centrifugal neurons as a function of arousal.
Collapse
Affiliation(s)
- M Médina
- CNRS-URA 1137, Laboratoire d'Anatomie Comparée, Muséum National d'Histoire Naturelle, Paris, France.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Single cells in the rat anterior thalamic nucleus (ATN) and postsubiculum (PoS) discharge as a function of the rat's directional heading in the horizontal plane, independent of its location. A previous study that compared cell firing during clockwise and counterclockwise head turns concluded that ATN 'head direction' (HD) cell discharge anticipates the rat's future directional heading, while PoS HD cell discharge is in register with the rat's current directional heading (Blair and Sharp [1995] J Neurosci 15:6260-6270). In the current study we extend these findings by using a different method of analysis. HD cells in the ATN and PoS were first characterized by three different measures: peak firing rate, range width, and information content. We then examined how these measures varied when cell firing was aligned with past (negative time shift) or future (positive time shift) head direction of the rat. We report that all three measures were optimized when ATN cell firing was aligned with the animal's future directional heading by about +23 msec. In contrast, PoS HD cell firing was optimized when cell firing was aligned with the rat's past head direction by about -7 msec. When the optimal value was plotted as a function of the amount of time spikes were shifted relative to head orientation, the mean ATN function was shifted to the right of the PoS function only at negative time shifts; at positive time shifts the two functions overlapped. Analysis of two recording sessions from the same cell indicated that each cell in a particular brain area is 'tuned' to a specific time shift so that all cells within a brain area are not uniformly tuned to the same time shift. Other analyses showed that the clockwise and counterclockwise tuning functions were not skewed in the direction of the head turn as postulated by Redish et al. ([1996] Network: Computation in Neural Systems 7:671-685) and Blair et al. ([1997] J Neurophysiol 17:145-159). Additional analysis on episodes when the rat happened to continually point its head in the preferred direction indicated that HD cell firing undergoes little adaptation. In the Discussion, we argue that these results are best accounted for by a motor efference copy signal operating on both types of HD cells such that the copy associated with the PoS HD cells is delayed in time by about 30 msec relative to the copy associated with ATN HD cells.
Collapse
Affiliation(s)
- J S Taube
- Department of Psychology, Dartmouth College, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
32
|
Glutamate and GABA release are enhanced by different subtypes of presynaptic nicotinic receptors in the lateral geniculate nucleus. J Neurosci 1998. [PMID: 9482782 DOI: 10.1523/jneurosci.18-06-01963.1998] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The functional role of nicotinic acetylcholine receptors (nAChRs) in the ventral lateral geniculate nucleus (LGNv) was examined in chick brain slices. Whole-cell patch-clamp recordings of neurons in the LGNv revealed the presence of bicuculline-resistant spontaneous postsynaptic currents (PSCs), which were subsequently blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), an AMPA receptor antagonist. Carbachol and other nicotinic agonists produced marked increases in the frequency of the glutamatergic spontaneous PSCs in the presence of tetrodotoxin, whereas they had little or no effect on current amplitude. The nicotinic receptor antagonist dihydro-beta-erythroidine (DHbetaE) blocked the carbachol-induced enhancement of spontaneous glutamatergic PSCs. alpha-bungarotoxin (alpha-BgTx) selectively blocked the nAChR-mediated enhancement of spontaneous glutamatergic PSCs but did not prevent nAChR-mediated enhancement of spontaneous GABAergic PSCs in the LGNv. Methyllycaconitine and strychnine, other blockers of nAChRs containing the alpha7 subunit, failed to inhibit carbachol's increase of spontaneous glutamatergic and GABAergic PSCs. These results demonstrate that the LGNv neurons receive both glutamatergic and GABAergic inputs and that the release of these transmitters can be modulated by different presynaptic nAChRs. Thus, the regulation of synaptic efficacy in the brain by presynaptic nAChRs can be complex, involving multiple neurotransmitters acting on the same neuron.
Collapse
|
33
|
Abstract
Axon order throughout the visual pathway of the quokka wallaby (Setonix brachyurus) was determined after localised retinal applications of the tracers DiI and/or DiASP. Postnatal days (P) 22-90 were studied to encompass the development and refinement of retinal projections. Order was essentially similar at all stages. Axons entered the optic nerve head true to their sector of retinal origin. In the optic nerve, nasal and temporal axons continued to reflect their retinal origin, dominating, respectively, the medial and lateral halves. By contrast, dorsal and ventral axons exchanged locations between the retrobulbar level and one-third the distance along the nerve; thus, the inversion of the dorsoventral retinal axis, imposed by the lens, was corrected. Decussating axons maintained their relative locations through the chiasm. At the base of the optic tract, nasal and temporal axons underwent an axial rotation to lie on the medial and lateral sides, respectively; thus nasal overlapped with ventral axons and temporal with dorsal axons. Axons maintained their alignments throughout the tract, and as a result, nasal and ventral axons invaded the superior colliculus medially, whereas temporal and dorsal axons invaded laterally. Each retinal quadrant terminated preferentially in its retinotopically appropriate sector of the colliculus. The arrangement of axons in the quokka visual pathway displays several novel features. Axon order is distinct throughout, involving a well-demarcated exchange of dorsal and ventral axons in the nerve and an axial rotation of nasal and temporal axons at the base of the tract; these relocations suggest decision regions for growing axons. The organisation presumably underlies the less extensive searching within the developing superior colliculus to generate retinotopic maps in the quokka and also in tammar wallaby [Marotte, J. Comp Neurol. 293:524-539, 1990] than in the rat [Simon and O'Leary, J. Neurosci. 12:1212-1232, 1992].
Collapse
|
34
|
Taube JS, Muller RU. Comparisons of head direction cell activity in the postsubiculum and anterior thalamus of freely moving rats. Hippocampus 1998. [DOI: 10.1002/(sici)1098-1063(1998)8:2%3c87::aid-hipo1%3e3.0.co;2-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Fan X, Croll RP, Wu B, Fang L, Shen Q, Painter SD, Nagle GT. Molecular cloning of a cDNA encoding the neuropeptides APGWamide and cerebral peptide 1: localization of APGWamide-like immunoreactivity in the central nervous system and male reproductive organs of Aplysia. J Comp Neurol 1997; 387:53-62. [PMID: 9331171 DOI: 10.1002/(sici)1096-9861(19971013)387:1<53::aid-cne5>3.0.co;2-m] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
While much is known about the neural and endocrine mechanisms that control egg laying in the gastropod mollusk Aplysia, relatively little is known about the regulation of male reproductive activity in this simultaneous hermaphrodite. In the present study, we have cloned and sequenced a cDNA that encodes a precursor protein, the predicted posttranslational processing of which presumably generates nine copies of the neuropeptide Ala-Pro-Gly-Trp-NH2 (APGWamide), five connecting peptide sequences, and a C-terminal peptide. The sequence of one connecting peptide is identical to the previously characterized cerebral peptide 1. Northern blot analysis identified two major APGWamide mRNA transcripts (approximately 1.3 kb, approximately 2.4 kb), which were present in central nervous system ganglia, but were most abundant in the right cerebral and right pedal ganglia. Immunohistochemical studies using sexually mature Aplysia demonstrated that the vast majority of APGWamide-like immunoreactivity was localized in 30-40 neurons along the anterior and medial margins of the right cerebral ganglion and in a cluster of 15-20 neurons in the right pedal ganglion. A total of only about ten immunoreactive neurons were located in other ganglia. Immunohistochemistry also demonstrated that APGWamide was present in the reproductive organs that participate in the storage or transport of sperm, including the small hermaphroditic duct (site of sperm storage before mating), the white hemiduct (also known as the copulatory duct), and penial complex. As a group, these data suggest that APGWamide may play a role in regulating male reproductive function in Aplysia, as it does in other gastropods.
Collapse
Affiliation(s)
- X Fan
- Marine Biomedical Institute and Department of Anatomy and Neurosciences, The University of Texas Medical Branch, Galveston 77555-1043, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
McCrohan CR, Croll RP. Characterization of an identified cerebrobuccal neuron containing the neuropeptide APGWamide (Ala-Pro-Gly-Trp-NH2) in the snail Lymnaea stagnalis. INVERTEBRATE NEUROSCIENCE : IN 1997; 2:273-82. [PMID: 9460237 DOI: 10.1007/bf02211940] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A bilaterally symmetrical pair of cerebrobuccal neurons in Lymnaea stagnalis shows immunoreactivity for the molluscan neuropeptide APGWamide. The neuron somata are whitish in colour and located on the ventral surface of each cerebral ganglion between the roots of the labial nerves. A single axon travels via the ipsilateral cerebrobuccal connective into the buccal ganglia, where it gives rise to fine neuritic branching. Based upon these characteristics, the neuron has been named the cerebrobuccal white cell (CBWC). In isolated CNS preparations, in the absence of feeding motor output, the CBWC is silent and receives few, low amplitude, synaptic inputs. During generation of fictive feeding, the CBWC bursts in phase with cycles of feeding motor output. Tonic or phasic stimulation of CBWC leads to initiation of rhythmic feeding motor output. However, evoked bursts of activity in CBWC, which mimic its normal burst pattern, cannot entrain the buccal rhythm, suggesting that CBWC is not itself a major component of the feeding central pattern generator (CPG). Strong stimulation of CBWC during ongoing feeding motor output leads to a reduction in frequency and/or intensity of the buccal rhythm. Bath application of synthetic APGWamide (10(-7)M-10(-4)M) to the isolated CNS can activate feeding motor output in quiescent preparations after a delay, but disrupts ongoing buccal rhythms. This study represents the first description of a peptidergic cerebrobuccal neuron in the well described gastropod feeding system and also provides new information about the role of a novel molluscan neuropeptide.
Collapse
Affiliation(s)
- C R McCrohan
- School of Biological Sciences, University of Manchester, UK.
| | | |
Collapse
|
37
|
Miceli D, Repérant J, Bavikati R, Rio JP, Volle M. Brain-stem afferents upon retinal projecting isthmo-optic and ectopic neurons of the pigeon centrifugal visual system demonstrated by retrograde transneuronal transport of rhodamine beta-isothiocyanate. Vis Neurosci 1997; 14:213-24. [PMID: 9147474 DOI: 10.1017/s0952523800011354] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Brain-stem afferents to the n. isthmo-opticus (NIO) and ectopic neurons (EN) of the centrifugal visual system (CVS) were determined in the pigeon using the retrograde transneuronal transport of the fluorescent dye Rhodamine beta-isothiocyanate (RITC) after its intraocular injection. In other experiments, either RITC was injected into various periocular tissues (controls) or the retrograde tracer Fluoro-gold (FG) was injected stereotaxically in the NIO. Following intraocular injections, the RITC retrograde labeling of cell bodies was observed contralaterally in the NIO and EN and transneuronally in layers 9/10 of the optic tectum, area ventralis-Tsai, zona peri-NIII, mesencephalic and pontine reticular formation (PRF), n. linearis caudalis-raphe, and bilaterally within a region referred to as zona peri-n.NVI (Zp-n.NVI) immediately underlying the abducens nerve nucleus. None of the above structures were labeled after RITC periocular injections. The FG labeling revealed that the tectal efferent neurons were mainly medium-sized, multipolar cells whose dendrites extended superficially to retino-recipient tectal layers 6 and 5. Quantitative measurements of the distribution of layers 9/10 RITC-labeled neurons indicated the highest densities to be localized within the ventral tectum corresponding to the representation of the dorsal retina and inferior visual field. We suggest that visual and nonvisual brain-stem afferents upon NIO and EN may play a role in the proposed mechanism of the avian CVS in attention, ground-feeding behavior, and modulation of retinal sensitivity.
Collapse
Affiliation(s)
- D Miceli
- Laboratoire de Neuropsychologie Expérimentale et Comparée, Université du Québec, Trois-Rivières, Canada
| | | | | | | | | |
Collapse
|
38
|
Scanziani M, Salin PA, Vogt KE, Malenka RC, Nicoll RA. Use-dependent increases in glutamate concentration activate presynaptic metabotropic glutamate receptors. Nature 1997; 385:630-4. [PMID: 9024660 DOI: 10.1038/385630a0] [Citation(s) in RCA: 392] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The classical view of fast chemical synaptic transmission is that released neurotransmitter acts locally on postsynaptic receptors and is cleared from the synaptic cleft within a few milliseconds by diffusion and by specific reuptake mechanisms. This rapid clearance restricts the spread of neurotransmitter and, combined with the low affinities of many ionotropic receptors, ensures that synaptic transmission occurs in a point-to-point fashion. We now show, however, that when transmitter release is enhanced at hippocampal mossy fibre synapses, the concentration of glutamate increases and its clearance is delayed; this allows it to spread away from the synapse and to activate presynaptic inhibitory metabotropic glutamate receptors (mGluRs). At normal levels of glutamate release during low-frequency activity, these presynaptic receptors are not activated. When glutamate concentration is increased by higher-frequency activity or by blocking glutamate uptake, however, these receptors become activated, leading to a rapid inhibition of transmitter release. This effect may be related to the long-term depression of mossy fibre synaptic responses that has recently been shown after prolonged activation of presynaptic mGluRs (refs 2, 3). The use-dependent activation of presynaptic mGluRs that we describe here thus represents a negative feedback mechanism for controlling the strength of synaptic transmission.
Collapse
Affiliation(s)
- M Scanziani
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, 94143, USA
| | | | | | | | | |
Collapse
|
39
|
Torrão AS, Lindstrom JM, Britto LR. Presumptive presynaptic nicotinic acetylcholine receptors in the chick tectum: effects of lesions of the lateral spiriform nucleus. Brain Res 1996; 743:154-61. [PMID: 9017242 DOI: 10.1016/s0006-8993(96)01038-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
There are indications that nicotinic acetylcholine receptor subunits in the superficial layers of the chick tectum (Cajal's layers 1-7) may be transported from the retina. However, nicotinic receptor subunits are detectable by immunohistochemistry in all layers of the optic tectum. In this study, we performed unilateral electrolytic lesions of the lateral spiriform nucleus, which projects to the deep layers of the tectum and contains high amounts of nicotinic receptors in its perikarya. Following lesions of the lateral spiriform nucleus, both the alpha 5 and the beta 2 subunits were markedly depleted in the neuropil of the deep layers of the ipsilateral optic tectum (layers 8-13). No changes were observed in somata that contain either subunit. The present results suggest that most of the nicotinic acetylcholine receptor subunits in the chick optic tectum occur in axonal systems and could then constitute presynaptic receptors.
Collapse
Affiliation(s)
- A S Torrão
- Department of Physiology and Biophysics, University of São Paulo, Brazil
| | | | | |
Collapse
|
40
|
Salin PA, Scanziani M, Malenka RC, Nicoll RA. Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc Natl Acad Sci U S A 1996; 93:13304-9. [PMID: 8917586 PMCID: PMC24088 DOI: 10.1073/pnas.93.23.13304] [Citation(s) in RCA: 344] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A single mossy fiber input contains several release sites and is located on the proximal portion of the apical dendrite of CA3 neurons. It is, therefore, well suited to exert a strong influence on pyramidal cell excitability. Accordingly, the mossy fiber synapse has been referred to as a detonator or teacher synapse in autoassociative network models of the hippocampus. The very low firing rates of granule cells [Jung, M. W. & McNaughton, B. L. (1993) Hippocampus 3, 165-182], which give rise to the mossy fibers, raise the question of how the mossy fiber synapse temporally integrates synaptic activity. We have therefore addressed the frequency dependence of mossy fiber transmission and compared it to associational/commissural synapses in the CA3 region of the hippocampus. Paired pulse facilitation had a similar time course, but was 2-fold greater for mossy fiber synapses. Frequency facilitation, during which repetitive stimulation causes a reversible growth in synaptic transmission, was markedly different at the two synapses. At associational/ commissural synapses facilitation occurred only at frequencies greater than once every 10 s and reached a magnitude of about 125% of control. At mossy fiber synapses, facilitation occurred at frequencies as low as once every 40 s and reached a magnitude of 6-fold. Frequency facilitation was dependent on a rise in intraterminal Ca2+ and activation of Ca2+/calmodulin-dependent kinase II, and was greatly reduced at synapses expressing mossy fiber long-term potentiation. These results indicate that the mossy fiber synapse is able to integrate granule cell spiking activity over a broad range of frequencies, and this dynamic range is substantially reduced by long-term potentiation.
Collapse
Affiliation(s)
- P A Salin
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco 94143, USA
| | | | | | | |
Collapse
|
41
|
Weaver WR, Chiappinelli VA. Single-channel recording in brain slices reveals heterogeneity of nicotinic receptors on individual neurons within the chick lateral spiriform nucleus. Brain Res 1996; 725:95-105. [PMID: 8828591 DOI: 10.1016/0006-8993(96)00391-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We examined the functional properties of central nicotinic acetylcholine receptors at the single-channel level using tight-seal, voltage-clamp techniques. Single-channel currents were recorded from cell-attached patches on lateral spiriform neurons in chick brain slices. These neurons are known to express functional nicotinic receptors that are insensitive to the antagonists alpha-bungarotoxin and kappa-bungarotoxin, and which exhibit a high affinity for nicotine and other nicotinic agonists. Single-channel openings were observed in 84% of patches (n = 118) when the nicotinic agonists acetylcholine (1-100 microM), carbamylcholine (3-100 microM), or nicotine (3-10 microM) were present in the patch pipette. In contrast, single-channels were markedly reduced in number or entirely absent when the nicotinic antagonist dihydro-beta-erythroidine was present along with acetylcholine (n = 7) or when no agonist was present in the pipette (n = 22). Single-channel openings displayed inward rectification at depolarized potentials, and were dependent on extracellular sodium. Between 1 and 30 microM acetylcholine, a dose-response relationship was observed between agonist concentration and single-channel open probability during the first minute following seal formation. Multiple classes of single nicotinic channels, with calculated mean slope conductances of 15, 31, 40, and approximately 70 pS, were observed in membrane patches on different neurons within the lateral spiriform nucleus, and even within single patches on individual neurons. We conclude that neurons within the lateral spiriform nucleus express functionally heterogeneous nicotinic receptors and that in some neurons different nicotinic receptor subtypes are present in close proximity to each other on the same cell surface.
Collapse
Affiliation(s)
- W R Weaver
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, MO 63104, USA
| | | |
Collapse
|
42
|
Gamlin PD, Reiner A, Keyser KT, Brecha N, Karten HJ. Projection of the nucleus pretectalis to a retinorecipient tectal layer in the pigeon (Columba livia). J Comp Neurol 1996; 368:424-38. [PMID: 8725349 DOI: 10.1002/(sici)1096-9861(19960506)368:3<424::aid-cne8>3.0.co;2-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The avian optic tectum is composed of at least 15 separate laminae that are distinguishable on the basis of their morphological features and patterns of afferent and efferent connectivity. Layer 5b, a major retinorecipient layer, exhibits dense, dust-like, neuropeptide Y-positive (NPY+) immunoreactive labeling, whereas sparse, larger caliber NPY+ fibers are found in laminae 4 and 7. Anterograde and retrograde labeling techniques, immunohistochemistry, and retinal lesion studies were used to determine the source of this tectal NPY+ labeling. NPY+ was not detectable in cells of the optic tectum or in retinal ganglion cells, and retinal ablation did not diminish the abundance of tectal NPY+ fibers. Neurons of two nuclei previously shown to be sources of tectal input, the nucleus pretectalis (PT) and the intergeniculate leaflet (IGL; Brecha, 1978), were found to be NPY+. Unilateral injection of retrograde tracers into the tectum resulted in bilateral labeling of neurons within PT, and injections of anterograde tracer into PT confirmed that this nucleus projected bilaterally to layer 5b of the optic tectum. Unilateral lesions of PT nearly eliminated NPY+ fibers in the ipsilateral layer 5b and significantly reduced them in the contralateral layer 5b. Bilateral lesions of PT eliminated NPY+ fibers bilaterally in layer 5b. However, these PT lesions had little effect on the NPY+ fibers in layers 4 and 7. Combined retrograde and immunohistochemical studies showed that NPY+ neurons of the IGL project to the optic tectum, and anterograde studies demonstrated that IGL projects to layers 4 and 7. The NPY+ projection to laminae 5b from PT is one of many inputs, which include cholinergic afferents from the nucleus isthmi parvicellularis, terminals from retinal ganglion cells, and dendrites of layer 13 neurons (Karten et al., 1993). The NPY+ input to layer 5b may modulate visual information flow from retinal input to various tectal neurons, including those in layer 13.
Collapse
Affiliation(s)
- P D Gamlin
- Department of Physiological Optics, University of Alabama at Birmingham 35294, USA
| | | | | | | | | |
Collapse
|
43
|
Yum L, Wolf KM, Chiappinelli VA. Nicotinic acetylcholine receptors in separate brain regions exhibit different affinities for methyllycaconitine. Neuroscience 1996; 72:545-55. [PMID: 8737423 DOI: 10.1016/0306-4522(95)00531-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The family of nicotinic acetylcholine receptors contains numerous subtypes. Since the subunit compositions of most native neuronal nicotinic receptors are unknown, an important method for distinguishing subtypes of functional neuronal receptors is based on pharmacological criteria, such as affinity for snake toxins. We have now examined the affinities of native chick nicotinic receptors for methyllycaconitine, a toxin purified from Delphinium. We find that methyllycaconitine is a potent antagonist at central nicotinic receptors located on Edinger-Westphal neurons, producing nearly complete functional blockade of nicotinic responses at 10 nM. In marked contrast, methyllycaconitine is 1000-fold less potent at blocking nicotinic responses in the lateral spiriform nucleus. Methyllycaconitine inhibits kappa-bungarotoxin-sensitive nicotinic receptors in ciliary ganglia at 0.5-1.0 microM. Radioligand binding studies also reveal heterogeneity in the affinity of the toxin for nicotinic receptors. Methyllycaconitine binds most avidly to [125I] alpha-bungarotoxin sites in brain (Ki = 5.4 nM), and is 200-fold less potent at muscle nicotinic receptors (IC50 = 1.1 microM). The least potent binding of the toxin is to [3H]nicotine sites in brain (Ki = 3.7 microM). Methyllycaconitine is thus a useful pharmacological tool for distinguishing certain subtypes of native nicotinic receptors. The relatively low affinity of the toxin for nicotinic receptors in the lateral spiriform nucleus is consistent with the known properties of these receptors, which include a high affinity for [3H]nicotine and a lack of sensitivity to alpha- and kappa-bungarotoxin. On the basis of high affinity for methyllycaconitine and insensitivity to alpha-bungarotoxin, the nicotinic receptors in the Edinger-Westphal nucleus are unlike any previously described nicotinic receptor subtype.
Collapse
Affiliation(s)
- L Yum
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, MO 63104, USA
| | | | | |
Collapse
|
44
|
Affiliation(s)
- J Lindstrom
- Department of Neuroscience, Medical School of the University of Pennsylvania, Philadelphia 19104-6074, USA
| |
Collapse
|
45
|
Albuquerque EX, Pereira EF, Castro NG, Alkondon M, Reinhardt S, Schröder H, Maelicke A. Nicotinic receptor function in the mammalian central nervous system. Ann N Y Acad Sci 1995; 757:48-72. [PMID: 7611705 DOI: 10.1111/j.1749-6632.1995.tb17464.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The diversity of neuronal nicotinic receptors (nAChRs) in addition to their possible involvement in such pathological conditions as Alzheimer's disease have directed our research towards the characterization of these receptors in various mammalian brain areas. Our studies have relied on electrophysiological, biochemical, and immunofluorescent techniques applied to cultured and acutely dissociated hippocampal neurons, and have been aimed at identifying the various subtypes of nAChRs expressed in the mammalian central nervous system (CNS), at defining the mechanisms by which CNS nAChR activity is modulated, and at determining the ion permeability of CNS nAChR channels. Our findings can be summarized as follows: (1) hippocampal neurons express at least three subtypes of CNS nAChRs--an alpha 7-subunit-bearing nAChR that subserves fast-inactivating, alpha-BGT-sensitive currents, which are referred to as type IA, and alpha 4 beta 2 nAChR that subserves slowly inactivating, dihydro-beta-erythroidine-sensitive currents, which are referred to as type II, and an alpha 3 beta 4 nAChR that subserves slowly inactivating, mecamylamine-sensitive currents, which are referred to as type III; (2) nicotinic agonists can activate a single type of nicotinic current in olfactory bulb neurons, that is, type IA currents; (3) alpha 7-subunit-bearing nAChR channels in the hippocampus have a brief lifetime, a high conductance, and a high Ca2+ permeability; (4) the peak amplitude of type IA currents tends to rundown with time, and this rundown can be prevented by the presence of ATP-regenerating compounds (particularly phosphocreatine) in the internal solution; (5) rectification of type IA currents is dependent on the presence of Mg2+ in the internal solution; and (6) there is an ACh-insensitive site on neuronal and nonneuronal nAChRs through which the receptor channel can be activated. These findings lay the groundwork for a better understanding of the physiological role of these receptors in synaptic transmission in the CNS.
Collapse
Affiliation(s)
- E X Albuquerque
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Britto LR, Torrão AS, Hamassaki-Britto DE, Mpodozis J, Keyser KT, Lindstrom JM, Karten HJ. Effects of retinal lesions upon the distribution of nicotinic acetylcholine receptor subunits in the chick visual system. J Comp Neurol 1994; 350:473-84. [PMID: 7884052 DOI: 10.1002/cne.903500311] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Immunohistochemistry was used in this study to evaluate the effects of retinal lesions upon the distribution of neuronal nicotinic acetylcholine receptor subunits in the chick visual system. Following unilateral retinal lesions, the neuropil staining with an antibody against the beta 2 receptor subunit, a major component of alpha-bungarotoxin-insensitive nicotinic receptors, was dramatically reduced or completely eliminated in all of the contralateral retinorecipient structures. On the other hand, neuropil staining with antibodies against two alpha-bungarotoxin-sensitive receptor subunits, alpha 7 and alpha 8, was only slightly affected after retinal lesions. Decreased neuropil staining for alpha 7-like immunoreactivity was only observed in the nucleus of the basal optic root and layers 2-4 and 7 of the optic tectum. For alpha 8-like immunoreactivity, slight reduction of neuropil staining could be observed in the ventral geniculate complex, griseum tecti, nucleus lateralis anterior, nucleus lentiformis mesencephali, layers 4 and 7 of the tectum, and nucleus suprachiasmaticus. Taken together with previous data on the localization of nicotinic receptors in the retina, the present results indicate that the beta 2 subunit is transported from retinal ganglion cells to their central targets, whereas the alpha 7 and alpha 8 subunit immunoreactivity appears to have a central origin. The source of these immunoreactivities could be, at least in part, the stained perikarya that were observed to contain alpha 7 and alpha 8 subunits in all retinorecipient areas. In agreement with this hypothesis, the beta 2 subunit of the nicotinic acetylcholine receptors was not frequently found in perikarya of the same areas.
Collapse
Affiliation(s)
- L R Britto
- Department of Physiology, University of São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
47
|
Medina L, Reiner A. Distribution of choline acetyltransferase immunoreactivity in the pigeon brain. J Comp Neurol 1994; 342:497-537. [PMID: 8040363 DOI: 10.1002/cne.903420403] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have investigated the distribution of cholinergic perikarya and fibers in the brain of the pigeon (Columba livia). With this aim, pigeon brain sections were processed immunohistochemically by using an antiserum specific for chicken choline acetyltransferase. Our results show cholinergic neurons in the pigeon basal telencephalon, the hypothalamus, the habenula, the pretectum, the midbrain tectum, the dorsal isthmus,the isthmic tegmentum, and the cranial nerve motor nuclei. Cholinergic fibers were prominent in the dorsal telencephalon, the striatum, the thalamus, the tectum, and the interpeduncular nucleus. Comparison of our results with previous studies in birds suggests some major cholinergic pathways in the avian brain and clarifies the possible origin of the cholinergic innervation of some parts of the avian brain. In addition, comparison of our results in birds with those in other vertebrate species shows that the organization of the cholinergic systems in many regions of the avian brain (such as the basal forebrain, the epithalamus, the isthmus, and the hindbrain) is much like that in reptiles and mammals. In contrast, however, birds appear largely to lack intrinsic cholinergic neurons in the dorsal ("neocortex-like") parts of the telencephalon.
Collapse
Affiliation(s)
- L Medina
- Department of Anatomy and Neurobiology, College of Medicine, Memphis 38163
| | | |
Collapse
|
48
|
Abstract
NADPH-diaphorase, an enzyme catalyzed reaction thought to reflect the activity of nitric oxide synthase in the mammalian nervous system, was mapped in the brain of the chicken. Intensely stained neurons and fibers were found in most parts of the telencephalon, in particular in the neostriatum, paleostriatum augmentatum, olfactory tubercle, lobus parolfactorius, hyperstriatum accessorium, and hyperstriatum ventrale. Medial to the nucleus taeniae, an accumulation of stained cells was observed that appeared to merge with a band of stained neurons located dorsal to the occipitomesencephalic tract. These are considered to belong to the nucleus interstitialis of the dorsal olfactory projection. Further caudally, neurons with different staining intensities were found in the lateral hypothalamic area, lateral mammillary nucleus, periventricular organ, ventral tegmental area, medial spiriform nucleus, optic tectum, isthmooptic nucleus, mesencephalic trigeminal nucleus, interpeduncular nucleus, and central gray of the mesencephalon. A particularly dense cluster of NADPH-diaphorase positive neurons was located in the locus coeruleus. It is proposed that these might represent cholinergic cells intermingled with catecholaminergic neurons, thus forming the avian counterpart of the tegmental cholinergic nuclei of mammals. Several NADPH-diaphorase reactive neurons were seen in the parabrachial nucleus and medial and dorsal vestibular nucleus, as well as scattered in the reticular formation. In the caudal medulla, intensely stained cells were grouped around the central canal. Therefore the pattern of expression of NADPH-diaphorase, and thus possibly of nitric oxide synthase, within the avian and mammalian brain might be largely conserved.
Collapse
Affiliation(s)
- G Brüning
- Department of Anatomy, Free University of Berlin, Germany
| |
Collapse
|
49
|
Hof PR, Archin N, Osmand AP, Dougherty JH, Wells C, Bouras C, Morrison JH. Posterior cortical atrophy in Alzheimer's disease: analysis of a new case and re-evaluation of a historical report. Acta Neuropathol 1993; 86:215-23. [PMID: 8213079 DOI: 10.1007/bf00304135] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Disturbances of visual function are not uncommon in Alzheimer's disease and several cases with complex impairment of visuospatial abilities have been described. For instance, posterior cortical atrophy has been demonstrated in cases displaying Balint's syndrome as the first symptom of the dementing illness. Such cases showed very high lesion counts in the occipital cortex, as well as in visual association regions in the posterior parietal and posterior cingulate cortex, whereas the prefrontal cortex was consistently less severely involved than usually observed in Alzheimer's disease. This suggests that the distribution of the lesions had been shifted to specific elements of the visual system. In the present study, we report the quantitative analysis of a new case of Alzheimer's disease with possible Balint's syndrome and re-evaluate a case originally described in 1945. The distribution of lesion in these two cases parallels previous observations of Alzheimer's disease cases with early visual impairment. Both cases displayed very high densities of neurofibrillary tangles and senile plaques in the primary visual cortex, secondary visual cortex, visual association areas of the dorsal occipital and posterior parietal lobe and in the posterior cingulate cortex, whereas the prefrontal and inferior temporal regions were comparatively less affected. These cases may define clinical subgroups of Alzheimer's disease and suggest that the breakdown of corticocortical projections that is known to occur in dementia may involve select components of specific functional systems in certain cases. In particular, pathways that subserve motion detection and visuospatial analysis appear to be dramatically affected in these cases presenting with Balint's syndrome.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P R Hof
- Fishberg Research Center for Neurobiology, Mount Sinai School of Medicine, New York, NY 10029
| | | | | | | | | | | | | |
Collapse
|