1
|
Garcia‐Rill E, D'Onofrio S, Mahaffey SC, Bisagno V, Urbano FJ. Bottom-up gamma and bipolar disorder, clinical and neuroepigenetic implications. Bipolar Disord 2019; 21:108-116. [PMID: 30506611 PMCID: PMC6441386 DOI: 10.1111/bdi.12735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES This limited review examines the role of the reticular activating system (RAS), especially the pedunculopontine nucleus (PPN), one site of origin of bottom-up gamma, in the symptoms of bipolar disorder (BD). METHODS The expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of BD patients is increased. It has recently been found that all PPN neurons manifest intrinsic membrane beta/gamma frequency oscillations mediated by high threshold calcium channels, suggesting that it is one source of bottom-up gamma. This review specifically addresses the involvement of these channels in the manifestation of BD. RESULTS Excess NCS-1 was found to dampen gamma band oscillations in PPN neurons. Lithium, a first line treatment for BD, was found to decrease the effects of NCS-1 on gamma band oscillations in PPN neurons. Moreover, gamma band oscillations appear to epigenetically modulate gene transcription in PPN neurons, providing a new direction for research in BD. CONCLUSIONS This is an area needing much additional research, especially since the dysregulation of calcium channels may help explain many of the disorders of arousal in, elicit unwanted neuroepigenetic modulation in, and point to novel therapeutic avenues for, BD.
Collapse
Affiliation(s)
- Edgar Garcia‐Rill
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Stasia D'Onofrio
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Susan C Mahaffey
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas
| | - Veronica Bisagno
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas,IFIBYNECONICETUniversidad de Buenos AiresBuenos AiresArgentina
| | - Francisco J Urbano
- Center for Translational NeuroscienceUniversity of Arkansas for Medical SciencesLittle RockArkansas,IFIBYNECONICETUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
2
|
Smith JB, Alloway KD, Hof PR, Orman R, Reser DH, Watakabe A, Watson GDR. The relationship between the claustrum and endopiriform nucleus: A perspective towards consensus on cross-species homology. J Comp Neurol 2019; 527:476-499. [PMID: 30225888 PMCID: PMC6421118 DOI: 10.1002/cne.24537] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
With the emergence of interest in studying the claustrum, a recent special issue of the Journal of Comparative Neurology dedicated to the claustrum (Volume 525, Issue 6, pp. 1313-1513) brought to light questions concerning the relationship between the claustrum (CLA) and a region immediately ventral known as the endopiriform nucleus (En). These structures have been identified as separate entities in rodents but appear as a single continuous structure in primates. During the recent Society for Claustrum Research meeting, a panel of experts presented data pertaining to the relationship of these regions and held a discussion on whether the CLA and En should be considered (a) separate unrelated structures, (b) separate nuclei within the same formation, or (c) subregions of a continuous structure. This review article summarizes that discussion, presenting comparisons of the cytoarchitecture, neurochemical profiles, genetic markers, and anatomical connectivity of the CLA and En across several mammalian species. In rodents, we conclude that the CLA and the dorsal endopiriform nucleus (DEn) are subregions of a larger complex, which likely performs analogous computations and exert similar effects on their respective cortical targets (e.g., sensorimotor versus limbic). Moving forward, we recommend that the field retain the nomenclature currently employed for this region but should continue to examine the delineation of these structures across different species. Using thorough descriptions of a variety of anatomical features, this review offers a clear definition of the CLA and En in rodents, which provides a framework for identifying homologous structures in primates.
Collapse
Affiliation(s)
- Jared B. Smith
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kevin D. Alloway
- Neural and Behavioral Sciences, Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rena Orman
- Department of Physiology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, 11203 USA
| | - David H. Reser
- Graduate Entry Medicine Program, Monash Rural Health Churchill, Monash University, Churchill, Victoria 3842, Australia
- Department of Physiology, Monash University, Clayton 3800, Victoria, Australia
| | | | - Glenn D. R. Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Jijón-Lorenzo R, Caballero-Florán IH, Recillas-Morales S, Cortés H, Avalos-Fuentes JA, Paz-Bermúdez FJ, Erlij D, Florán B. Presynaptic Dopamine D2 Receptors Modulate [ 3H]GABA Release at StriatoPallidal Terminals via Activation of PLC → IP3 → Calcineurin and Inhibition of AC → cAMP → PKA Signaling Cascades. Neuroscience 2017; 372:74-86. [PMID: 29292080 DOI: 10.1016/j.neuroscience.2017.12.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/14/2017] [Accepted: 12/23/2017] [Indexed: 01/11/2023]
Abstract
Striatal dopamine D2 receptors activate the PLC → IP3 → Calcineurin-signaling pathway to modulate the neural excitability of En+ Medium-sized Spiny GABAergic neurons (MSN) through the regulation of L-type Ca2+ channels. Presynaptic dopaminergic D2 receptors modulate GABA release at striatopallidal terminals through L-type Ca2+ channels as well, but their signaling pathway is still undetermined. Since D2 receptors are Gi/o-coupled and negatively modulate adenylyl cyclase (AC), we investigated whether presynaptic D2 receptors modulate GABA release through the same signaling cascade that controls excitability in the striatum or by the inhibition of AC and decreased PKA activity. Activation of D2 receptors stimulated formation of [3H]IP1 and decreased Forskolin-stimulated [3H]cAMP accumulation in synaptosomes from rat Globus Pallidus. D2 receptor activation with Quinpirole in the presence of L 745,870 decreased, in a dose-dependent manner, K+-induced [3H]GABA release in pallidal slices. The effect was prevented by the pharmacological blockade of Gi/o βγ subunit effects with Gallein, PLC with U 73122, IP3 receptor activation with 4-APB, Calcineurin with FK506. In addition, when release was stimulated with Forskolin to activate AC, D2 receptors also decreased K+-induced [3H]GABA release, an effect occluded with the effect of the blockade of PKA with H89 or stimulation of release with the cAMP analog 8-Br-cAMP. These data indicate that D2 receptors modulate [3H]GABA release at striatopallidal terminals by activating the PLC → IP3 → Calcineurin-signaling cascade, the same one that modulates excitability in soma. Additionally, D2 receptors inhibit release when AC is active. Both mechanisms appear to converge to regulate the activity of presynaptic L-type Ca2+ channels.
Collapse
Affiliation(s)
- Rafael Jijón-Lorenzo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Isaac Hiram Caballero-Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | | | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - José Arturo Avalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Francisco Javier Paz-Bermúdez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - David Erlij
- Department of Physiology, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico.
| |
Collapse
|
4
|
D'Onofrio S, Hyde J, Garcia-Rill E. Interaction between neuronal calcium sensor protein 1 and lithium in pedunculopontine neurons. Physiol Rep 2017; 5:e13246. [PMID: 28408639 PMCID: PMC5392530 DOI: 10.14814/phy2.13246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 11/24/2022] Open
Abstract
Bipolar disorder is characterized by sleep dysregulation, suggesting a role for the reticular activating system (RAS). Postmortem studies showed increased expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of some bipolar disorder patients, and reduced or aberrant gamma band activity is present in the same disorder. Lithium (Li+) has been shown to effectively treat the mood disturbances in bipolar disorder patients. We previously showed that NCS-1 at low levels increased, and at high levels decreased, gamma oscillations in RAS pedunculopontine neurons (PPN), and that Li+ decreased these oscillations. We previously described the effects of each agent on oscillations, G-protein mechanisms, and Ca2+ currents. However, we designed the present experiments to determine the nature of the interaction of NCS-1 and Li+ at physiological concentrations that would have an effect within minutes of application. As expected, Li+ decreased gamma oscillation amplitude, while NCS-1 increased the amplitude of gamma oscillations. We identified NCS-1 at 2 μmol/L as a concentration that increased gamma oscillations within 5-10 min, and Li+ at 10 μmol/L as a concentration that decreased gamma oscillations within 5 min. The combined application of NCS-1 and Li+ at these concentrations showed that Li+ reduced the effects of NCS-1 on oscillation amplitude within 5-10 min. These results demonstrate that at physiological levels, Li+ acts to reduce the effects of NCS-1 so that, given over expression of NCS-1, Li+ would have salutary effects.
Collapse
Affiliation(s)
- Stasia D'Onofrio
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - James Hyde
- Department of Psychiatry and Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
5
|
D'Onofrio S, Mahaffey S, Garcia-Rill E. Role of calcium channels in bipolar disorder. CURRENT PSYCHOPHARMACOLOGY 2017; 6:122-135. [PMID: 29354402 PMCID: PMC5771645 DOI: 10.2174/2211556006666171024141949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bipolar disorder is characterized by a host of sleep-wake abnormalities that suggests that the reticular activating system (RAS) is involved in these symptoms. One of the signs of the disease is a decrease in high frequency gamma band activity, which accounts for a number of additional deficits. Bipolar disorder has also been found to overexpress neuronal calcium sensor protein 1 (NCS-1). Recent studies showed that elements in the RAS generate gamma band activity that is mediated by high threshold calcium (Ca2+) channels. This mini-review provides a description of recent findings on the role of Ca2+ and Ca2+ channels in bipolar disorder, emphasizing the involvement of arousal-related systems in the manifestation of many of the disease symptoms. This will hopefully bring attention to a much-needed area of research and provide novel avenues for therapeutic development.
Collapse
Affiliation(s)
- Stasia D'Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
6
|
Garcia-Rill E, Luster B, D'Onofrio S, Mahaffey S, Bisagno V, Urbano FJ. Implications of gamma band activity in the pedunculopontine nucleus. J Neural Transm (Vienna) 2016; 123:655-665. [PMID: 26597124 PMCID: PMC4877293 DOI: 10.1007/s00702-015-1485-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/10/2015] [Indexed: 01/07/2023]
Abstract
The fact that the pedunculopontine nucleus (PPN) is part of the reticular activating system places it in a unique position to modulate sensory input and fight-or-flight responses. Arousing stimuli simultaneously activate ascending projections of the PPN to the intralaminar thalamus to trigger cortical high-frequency activity and arousal, as well as descending projections to reticulospinal systems to alter posture and locomotion. As such, the PPN has become a target for deep brain stimulation for the treatment of Parkinson's disease, modulating gait, posture, and higher functions. This article describes the latest discoveries on PPN physiology and the role of the PPN in a number of disorders. It has now been determined that high-frequency activity during waking and REM sleep is controlled by two different intracellular pathways and two calcium channels in PPN cells. Moreover, there are three different PPN cell types that have one or both calcium channels and may be active during waking only, REM sleep only, or both. Based on the new discoveries, novel mechanisms are proposed for insomnia as a waking disorder. In addition, neuronal calcium sensor protein-1 (NCS-1), which is over expressed in schizophrenia and bipolar disorder, may be responsible for the dysregulation in gamma band activity in at least some patients with these diseases. Recent results suggest that NCS-1 modulates PPN gamma band activity and that lithium acts to reduce the effects of over expressed NCS-1, accounting for its effectiveness in bipolar disorder.
Collapse
Affiliation(s)
- E Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA.
| | - B Luster
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - S D'Onofrio
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - S Mahaffey
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 847, 4301 West Markham St., Little Rock, AR, 72205, USA
| | - V Bisagno
- IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - F J Urbano
- IFIBYNE-CONICET, ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
D'Onofrio S, Urbano FJ, Messias E, Garcia-Rill E. Lithium decreases the effects of neuronal calcium sensor protein 1 in pedunculopontine neurons. Physiol Rep 2016; 4:e12740. [PMID: 27033453 PMCID: PMC4814880 DOI: 10.14814/phy2.12740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/20/2016] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
Human postmortem studies reported increased expression of neuronal calcium sensor protein 1 (NCS-1) in the brains of some bipolar disorder patients, and reduced or aberrant gamma band activity is present in the same disorder. Bipolar disorder is characterized by sleep dysregulation, suggesting a role for the reticular activating system (RAS). Lithium (Li(+)) has been shown to effectively treat the mood disturbances in bipolar disorder patients and was proposed to act by inhibiting the interaction betweenNCS-1 and inositol 1,4,5-triphosphate receptor protein (InsP3R).NCS-1 is known to enhance the activity of InsP3R, and of Ca(2+)-mediated gamma oscillatory activity in the pedunculopontine nucleus (PPN), part of theRAS This study aimed to determine the nature of some of the intracellular mechanisms of Li(+)on ratPPNcells and to identify the interaction between Li(+)andNCS-1. Since Li(+)has been shown to act by inhibiting the enhancing effects ofNCS-1, we tested the hypothesis that Li(+)would reduced the effects of overexpression ofNCS-1 and prevent the downregulation of gamma band activity. Li(+)decreased gamma oscillation frequency and amplitude by downregulating Ca(2+)channel activity, whereasNCS-1 reduced the effect of Li(+)on Ca(2+)currents. These effects were mediated by a G-protein overinhibition of Ca(2+)currents. These results suggest that Li(+)affected intracellular pathways involving the activation of voltage-gated Ca(2+)channels mediated by an intracellular mechanism involving voltage-dependent activation of G proteins, thereby normalizing gamma band oscillations mediated by P/Q-type calcium channels modulated byNCS-1.
Collapse
Affiliation(s)
- Stasia D'Onofrio
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Francisco J Urbano
- IFIBYNE-CONICET-UBA, University of Buenos Aires, Buenos Aires, Argentina
| | - Erick Messias
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
8
|
Garcia-Rill E, D’Onofrio S, Mahaffey S, Bisagno V, Urbano FJ. Pedunculopontine arousal system physiology-Implications for schizophrenia. Sleep Sci 2015; 8:82-91. [PMID: 26483949 PMCID: PMC4608902 DOI: 10.1016/j.slsci.2015.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 04/23/2015] [Accepted: 04/30/2015] [Indexed: 01/24/2023] Open
Abstract
Schizophrenia is characterized by major sleep/wake disturbances including increased vigilance and arousal, decreased slow wave sleep, and increased REM sleep drive. Other arousal-related symptoms include sensory gating deficits as exemplified by decreased habituation of the blink reflex. There is also dysregulation of gamma band activity, suggestive of disturbances in a host of arousal-related mechanisms. This review examines the role of the reticular activating system, especially the pedunculopontine nucleus, in the symptoms of the disease. Recent discoveries on the physiology of the pedunculopontine nucleus help explain many of these disorders of arousal in, and point to novel therapeutic avenues for, schizophrenia.
Collapse
Key Words
- CaMKII, calcium/calmodulin-dependent protein kinase
- Calcium channels
- EEG, electroencephalogram
- EPSC, excitatory postsynaptic potential
- GABA, γ aminobutyric acid
- Gamma band activity
- InsP, inositol 1,4,5-triphosphate receptor protein
- KA, kainic acid
- NCS-1, neuronal calcium sensor protein 1
- NMDA, n methyl d aspartic acid
- Neuronal calcium sensor protein
- P50 potential
- PGO, ponto-geniculo-occipital
- PPN, pedunculopontine nucleus
- Pf, parafascicular nucleus
- RAS, reticular activating system
- REM, rapid eye movement
- SWS, slow wave sleep
- SubCD, subcoeruleus dorsalis
- cAMP, cyclic adenosine monophosphate
- ω-Aga, ω-agatoxin-IVA
- ω-CgTx, ω-conotoxin-GVIA
Collapse
Affiliation(s)
- Edgar Garcia-Rill
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stasia D’Onofrio
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Susan Mahaffey
- Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Veronica Bisagno
- IFIBYNE-CONICET and ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - Francisco J. Urbano
- IFIBYNE-CONICET and ININFA-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
9
|
D'Onofrio S, Kezunovic N, Hyde JR, Luster B, Messias E, Urbano FJ, Garcia-Rill E. Modulation of gamma oscillations in the pedunculopontine nucleus by neuronal calcium sensor protein-1: relevance to schizophrenia and bipolar disorder. J Neurophysiol 2014; 113:709-19. [PMID: 25376789 DOI: 10.1152/jn.00828.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Reduced levels of gamma-band activity are present in schizophrenia and bipolar disorder patients. In the same disorders, increased neuronal calcium sensor protein-1 (NCS-1) expression was reported in a series of postmortem studies. These disorders are also characterized by sleep dysregulation, suggesting a role for the reticular activating system (RAS). The discovery of gamma-band activity in the pedunculopontine nucleus (PPN), the cholinergic arm of the RAS, revealed that such activity was mediated by high-threshold calcium channels that are regulated by NCS-1. We hypothesized that NCS-1 normally regulates gamma-band oscillations through these calcium channels and that excessive levels of NCS-1, such as would be expected with overexpression, decrease gamma-band activity. We found that PPN neurons in rat brain slices manifested gamma-band oscillations that were increased by low levels of NCS-1 but suppressed by high levels of NCS-1. Our results suggest that NCS-1 overexpression may be responsible for the decrease in gamma-band activity present in at least some schizophrenia and bipolar disorder patients.
Collapse
Affiliation(s)
- Stasia D'Onofrio
- Center for Translational Neuroscience, Departments of Neurobiology and Developmental Sciences and Psychiatry, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Nebojsa Kezunovic
- Center for Translational Neuroscience, Departments of Neurobiology and Developmental Sciences and Psychiatry, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - James R Hyde
- Center for Translational Neuroscience, Departments of Neurobiology and Developmental Sciences and Psychiatry, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Brennon Luster
- Center for Translational Neuroscience, Departments of Neurobiology and Developmental Sciences and Psychiatry, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Erick Messias
- Center for Translational Neuroscience, Departments of Neurobiology and Developmental Sciences and Psychiatry, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Francisco J Urbano
- Instituto de Fisiología, Biología Molecular y Neurociencias, Consejo Nacional de Investigaciones Científicas y Técnicas, University of Buenos Aires, Buenos Aires, Argentina
| | - Edgar Garcia-Rill
- Center for Translational Neuroscience, Departments of Neurobiology and Developmental Sciences and Psychiatry, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| |
Collapse
|
10
|
Brunjes PC, Illig KR, Meyer EA. A field guide to the anterior olfactory nucleus (cortex). ACTA ACUST UNITED AC 2005; 50:305-35. [PMID: 16229895 DOI: 10.1016/j.brainresrev.2005.08.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 08/25/2005] [Accepted: 08/25/2005] [Indexed: 02/05/2023]
Abstract
While portions of the mammalian olfactory system have been studied extensively, the anterior olfactory nucleus (AON) has been relatively ignored. Furthermore, the existing research is dispersed and obscured by many different nomenclatures and approaches. The present review collects and assembles the relatively sparse literature regarding the portion of the brain situated between the olfactory bulb and primary olfactory (piriform) cortex. Included is an overview of the area's organization, the functional, morphological and neurochemical characteristics of its cells and a comprehensive appraisal of its efferent and afferent fiber systems. Available evidence suggests the existence of subdivisions within the AON and demonstrates that the structure influences ongoing activity in many other olfactory areas. We conclude with a discussion of the AON's mysterious but complex role in olfactory information processing.
Collapse
Affiliation(s)
- Peter C Brunjes
- Department of Psychology, University of Virginia, 102 Gilmer Hall PO Box 400400, Charlottesville, VA 22904-4400, USA
| | | | | |
Collapse
|
11
|
Heinke B, Sandkühler J. Signal transduction pathways of group I metabotropic glutamate receptor-induced long-term depression at sensory spinal synapses. Pain 2005; 118:145-54. [PMID: 16185811 DOI: 10.1016/j.pain.2005.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2005] [Revised: 07/08/2005] [Accepted: 08/01/2005] [Indexed: 12/12/2022]
Abstract
Activation of spinal group I metabotropic glutamate receptors (mGluRs) may have antinociceptive or pro-nociceptive effects in different pain models. Pharmacological activation of group I mGluRs leads to long-term depression (LTD) of synaptic strength between Adelta-fibers and neurons in lamina II of spinal dorsal horn of the rat. Here, we studied the signal transduction pathways involved. Synaptic strength between Adelta-fibers and lamina II neurons was assessed by perforated whole-cell patch-clamp recordings in a spinal cord-dorsal root slice preparation of young rats. Bath application of the specific group I mGluR agonist (S)-3,5-dihydroxyphenylglycine [(S)-3,5-DHPG] produced an LTD of Adelta-fiber-evoked responses. LTD induction by (S)-3,5-DHPG was prevented, when intracellular Ca(2+) stores were depleted by thapsigargin or cyclopiazonic acid (CPA). Preincubation with ryanodine to inhibit Ca(2+)-induced Ca(2+) release had no effect on LTD-induction by (S)-3,5-DHPG. In contrast, pretreatment with 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of inositol-1,4,5-trisphosphate (IP(3))-sensitive Ca(2+) stores prevented LTD induction. Preincubation with the specific protein kinase C (PKC) inhibitors bisindolylmaleimide I (BIM) or chelerythrine, respectively, had no effect. Inhibition of L-type VDCCs by verapamil or nifedipine prevented LTD-induction by (S)-3,5-DHPG. The presently identified signal transduction cascade may be relevant to the long-term depression of sensory information in the spinal cord, including nociception.
Collapse
Affiliation(s)
- Bernhard Heinke
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, A-1090 Vienna, Austria
| | | |
Collapse
|
12
|
Lorke DE, Gustke H, Mayr GW. An optimized fixation and extraction technique for high resolution of inositol phosphate signals in rodent brain. Neurochem Res 2005; 29:1887-96. [PMID: 15532545 DOI: 10.1023/b:nere.0000042216.86633.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Members of lower and higher inositol phosphates distinctly participate in signal transduction (1). Relatively little is known regarding possible biological functions of inositol phosphates in functionally different areas of the intact brain. A detailed study on the regional distribution of biologically important inositol phosphates may help elucidate their physiological functions in different brain regions in the regional tissue context. We now show a novel technique which allows fixation and subsequent dissection of whole rat brains into small volume elements for mapping of the whole range of inositol phosphates from Ins(1,4,5)P3 to InsP6. The method has been successfully applied to investigate regional differences of a broader spectrum of inositol phosphates in microdissected brain tissue and to construct 3D-maps of these signaling compounds. The technique can be particularly well employed to investigate regional changes in the spectrum of higher inositol phosphates and phosphoinositides upon neuronal stimulation induced by motor activity or drug treatment.
Collapse
Affiliation(s)
- Dietrich E Lorke
- Institute of Anatomy II, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
13
|
Fuchs JL, Moore JA, Schwark HD. Peripheral inflammation increases phosphoinositide activity in the rat dorsal horn. Brain Res 2004; 1003:183-7. [PMID: 15019578 DOI: 10.1016/j.brainres.2003.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2003] [Indexed: 11/15/2022]
Abstract
Persistent pain leads to changes in the spinal cord that contribute to hyperalgesia and allodynia. The effort to characterize these changes has focused on neurotransmitters and receptors, while relatively little is known about pain-associated modulation of second-messenger responses. Nearly all neurotransmitters can activate the phosphoinositide (PI) second-messenger system which has been investigated using a method that localizes membrane-bound [(3)H]CDP-diacylglycerol (DAG) produced from the precursor [(3)H]cytidine [Science 249 (1990) 802]. The present study applied this method in spinal cord slices from rats injected with complete Freund's adjuvant in one hindpaw and from uninflamed control rats. Two days after the injection, slices were removed and maintained in vitro for pharmacological testing. Some slices were exposed to the acetylcholine agonist carbachol which is antinociceptive in the spinal cord. Inflammation resulted in increased baseline, unstimulated [(3)H]CDP-DAG accumulation, especially in superficial dorsal horn layers, as well as enhanced carbachol-stimulated labeling. These results suggest that persistent pain leads to neurochemical changes within the spinal cord that could potentially enhance responses to a spectrum of pain-modulating transmitters.
Collapse
Affiliation(s)
- Jannon L Fuchs
- Department of Biological Sciences, University of North Texas, PO Box 305220, Denton, TX 76203, USA
| | | | | |
Collapse
|
14
|
Zelenin S, Aperia A, Diaz Heijtz R. Calcyon in the rat brain: cloning of cDNA and expression of mRNA. J Comp Neurol 2002; 446:37-45. [PMID: 11920718 DOI: 10.1002/cne.10198] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Calcyon is a 24 kD protein recently cloned from a human brain cDNA library and shown to interact with the dopamine receptor 1 (D1R) of D1-like receptors. This interaction shifts the effector coupling of D1R to stimulate a calcium signaling pathway, without influencing the D1R-adenylyl-cAMP pathway. To obtain more knowledge about the potential role of calcyon in the brain, we cloned rat calcyon cDNA and studied its distribution in the brain. Northern blot analysis and RT-PCR revealed that rat calcyon mRNA was expressed only in the brain. With the use of the in situ hybridization technique, we studied rat calcyon mRNA distribution in the brain and related it to the distribution of D1R and dopamine receptor 5 (D5R) mRNAs. Prominent calcyon mRNA signals were found in several brain regions, including hippocampus, hypothalamus, cerebellum, and medial prefrontal cortex. Less abundant calcyon mRNA expression was observed in the dorsal striatum region, where D1R mRNA is highly expressed and where D1R/cAMP-DARPP-32 signaling pathway is of great functional importance. The strongest expression of D5R mRNA was found in the hippocampus and cerebellum, where D1R mRNA expression was relatively low. In conclusion, rat calcyon appears to be a brain specific protein. There is a certain overlap between calcyon mRNA distribution and that of the D1R and D5 mRNAs, indicating that calcyon might be associated not only with D1R but also with D5R.
Collapse
|
15
|
Ochiishi T, Yamauchi T, Terashima T. Regional differences between the immunohistochemical distribution of Ca2+/calmodulin-dependent protein kinase II alpha and beta isoforms in the brainstem of the rat. Brain Res 1998; 790:129-40. [PMID: 9593859 DOI: 10.1016/s0006-8993(98)00058-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The distribution of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) alpha and beta isoforms in the brainstem of adult rats was investigated using an immunohistochemical method with two monoclonal antibodies which specifically recognize the alpha and beta isoform, respectively. We found that these isoforms were differentially expressed by neurons in the substantia nigra, red nucleus, dorsal cochlear nucleus, pontine nuclei and inferior olivary nucleus. Neurons in the inferior olivary nucleus express the alpha isoform, but not the beta isoform. In contrast, neurons in the substantia nigra, red nucleus and pontine nuclei were immunostained with the beta antibody, but not with the alpha antibody. In the dorsal cochlear nucleus, neurons in layers I and II were alpha-immunopositive, whereas neurons in layers III and IV were beta-immunopositive. Therefore, the distribution of the CaM kinase II alpha-immunopositive neurons is completely different from that of CaM kinase II beta-immunopositive neurons. Next we examined the possible coexistence of CaM kinase II alpha isoform and glutamate or that of CaM kinase II beta isoform and glutamic acid decarboxylase (GAD) in the single neuron by double immunofluorescence labelling using a pair of anti-alpha and anti-glutamate antibodies, or a pair of anti-beta and anti-GAD antibodies. The results indicated that neurons expressing anti-alpha immunoreactivity were also immunopositive against anti-glutamate antibody, and neurons expressing beta isoform were also immunopositive against anti-GAD antibody, suggesting that alpha-immunopositive neurons are classified as excitatory-type neurons, and on the contrary, beta-immunopositive neurons are classified as inhibitory-type neurons. In conclusion, the present study confirmed that alpha- and beta-isoforms of CaM kinase II are differentially expressed in the nuclei of the brainstem and have different roles.
Collapse
Affiliation(s)
- T Ochiishi
- Biosignalling Department, National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, M.I.T. I., Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
16
|
Kreutz MR, Böckers TM, Sabel BA, Hülser E, Stricker R, Reiser G. Expression and subcellular localization of p42IP4/centaurin-alpha, a brain-specific, high-affinity receptor for inositol 1,3,4,5-tetrakisphosphate and phosphatidylinositol 3,4,5-trisphosphate in rat brain. Eur J Neurosci 1997; 9:2110-24. [PMID: 9421171 DOI: 10.1111/j.1460-9568.1997.tb01378.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Recently emerging evidence suggests important roles for inositol polyphosphates and inositol phospholipids in neuronal Ca2+ signalling, membrane vesicle trafficking and cytoskeletal rearrangement. A prerequisite for a detailed physiological characterization of the signalling of both potential second messengers inositol-(1,3,4,5)-tetrakisphosphate (InsP4) and phosphatidylinositol-3,4,5-trisphosphate (PtdInsP3) in the nervous system is the precise cellular localization of their receptors. Based on the cDNA sequence of a recently cloned brain-specific receptor with high affinity for both InsP4 and PtdInsP3 (InsP4-PtdInsP3R), p42IP4/centaurin-alpha, we localized the mRNA and the protein in rat brain. In situ hybridization revealed a widespread expression of the InsP4-PtdInsP3R with prominent labelling in cerebellum, hippocampus, cortex and thalamus, which moreover is developmentally regulated. Using peptide-specific antibodies, the immunoreactivity was localized in the adult brain in the vast majority of neuronal cell types and probably also in some glial cells. Prominent immunoreactivity was found in axonal processes and in cell types characterized by extensive neurites. In the hypothalamus a subpopulation of parvocellular neurons in the peri- and paraventricular nuclei was most heavily labelled. This was confined by strong immunoreactivity in the lamina externa of the median eminence in close proximity to portal plexus blood vessels. Electron microscopy revealed that the InsP4-PtdInsP3R was frequently associated with presynaptic vesicular structures. Further studies should identify the role of the InsP4-PtdInsP3R in cellular neural processes.
Collapse
Affiliation(s)
- M R Kreutz
- AG Molekulare und Zelluläre Neurobiologie, Institut für Medizinische Psychologie, Otto-von-Guericke Universität Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Lukácová N, Marsala J. Regional distribution of phospholipids and polyphosphatidyl inositides in the rabbit's spinal cord. Neurochem Res 1997; 22:687-92. [PMID: 9178951 DOI: 10.1023/a:1027397825584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The plasticity of the membrane phospholipids in general and stimulated phosphoinositides turnover in particular are the subjects in a variety of neural paradigms studying the molecular mechanisms of neuronal changes under normal and pathological conditions. The regional modifiability of phospholipids (SM, PC, PS, PI, PA + DG, PE), polyphosphatidylinositides (PI, PIP, PIP2) and diacylglycerol-dependent incorporation of CDP-choline into phosphatidylcholine in the gray matter, white matter, dorsal horns, intermediate zone and ventral horns of the rabbit's spinal cord was studied. We have found 1. a significant increase in the concentration of SM, PC, PS, DG + PA and PE in the white matter in comparison to the gray one, 2. the highest concentration of the outer membrane leaflet-bound phospholipids in the dorsal horns and the inner membrane phospholipids in the intermediate zone in comparison to the gray matter, 3. a substantial amount of labeled polyphosphatidylinositides (poly-PI(s)) in the spinal cord white matter with descending order PIP > PI > PIP2, 4. similar incorporation of myo-2-[3H]inositol into all poly-PI(s) in ventral horns and intermediate zone, but a different, lower incorporation into PI and PIP and higher into PIP2 in the dorsal horns, 5. higher diacylglycerol-dependent incorporation of CDP-choline into PC in the regionally undivided gray matter than in the white matter taken as a whole, 6. the high proportion of diacylglycerol-dependent incorporation of CDP-choline into PC in both the ventral and dorsal horns, whereas that in the intermediate zone remained low.
Collapse
Affiliation(s)
- N Lukácová
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic
| | | |
Collapse
|
18
|
Yiu AK, Wong PF, Yeung SY, Lam SM, Luk SK, Cheung WT. Immunohistochemical localization of type-II (AT2) angiotensin receptors with a polyclonal antibody against a peptide from the C-terminal tail. REGULATORY PEPTIDES 1997; 70:15-21. [PMID: 9250577 DOI: 10.1016/s0167-0115(97)00010-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A polyclonal antibody has been prepared against a synthetic peptide derived from the C-terminal tail of the cloned rat AT2 angiotensin receptor, corresponding to amino acid residue 341-351. The antibody was of high titer and displayed monospecific activity toward the synthetic peptide in the ELISA assay. Western blot analysis indicated that the antiserum recognised only a single protein band with a mean apparent molecular mass of 75.4 kDa in the rat adrenals. Immunohistochemical studies with affinity purified antibody localised immunoreactive AT2 angiotensin receptor in medulla cells of the adrenals. Immunoreactivity was also observed in pyramidal tract, but no specific immunoreactivity can be detected in regions of rat brain that are known to express AT2 angiotensin receptors, including inferior olive, locus coeruleus and cerebellum.
Collapse
Affiliation(s)
- A K Yiu
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T
| | | | | | | | | | | |
Collapse
|
19
|
Dent MA, Raisman G, Lai FA. Expression of type 1 inositol 1,4,5-trisphosphate receptor during axogenesis and synaptic contact in the central and peripheral nervous system of developing rat. Development 1996; 122:1029-39. [PMID: 8631248 DOI: 10.1242/dev.122.3.1029] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Release of intracellular Ca2+ is triggered by the second messenger inositol 1,4,5-trisphosphate, which binds to the inositol 1,4,5-trisphosphate receptor and gates the opening of an intrinsic calcium channel in the endoplasmic reticulum. In order to understand the importance of this mechanism in development, we have examined the distribution of the type 1 inositol 1,4,5-trisphosphate receptor during development, in some areas of the rat brain and spinal cord and in peripheral neurons, using in situ hybridization and immunohistochemistry. In brain, we find that type 1 inositol 1,4,5-trisphosphate receptor is expressed in neurons from very early in development; low levels of expression are first detected after the neurons have migrated to their final positions, when they start to differentiate and begin axonal growth. Increasing levels of expression are observed later in development, during the time of synaptogenesis and dendritic contact. Glial cells do not express type 1 inositol 1,4,5-trisphosphate receptor, except for a transient period of expression, probably by oligodendrocytes, in developing fibre tracts during the onset of myelination. In contrast with the brain, both grey and white matter of the spinal cord express type 1 inositol 1,4,5-trisphosphate receptor throughout development, and it remains present in the adult spinal cord. We also show, for the first time, that type 1 inositol 1,4,5-trisphosphate receptor is expressed in the peripheral nervous system. Strong labelling was observed in the dorsal root ganglia and during development this expression seems to coincide with the onset of axogenesis. These results suggest that type 1 inositol 1,4,5-trisphosphate may be involved in the regulatory mechanism controlling Ca2+ levels in neurons during the periods of cell differentiation, axogenesis and synaptogenesis.
Collapse
Affiliation(s)
- M A Dent
- MRC National Institute for Medical Research, London, UK
| | | | | |
Collapse
|
20
|
|
21
|
Igwe OJ, Filla MB. Regulation of phosphatidylinositide transduction system in the rat spinal cord during aging. Neuroscience 1995; 69:1239-51. [PMID: 8848110 DOI: 10.1016/0306-4522(95)00298-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Age-related functional alterations in a variety of neurotransmitter systems result in modulation of interneuronal communications which has some relevance in neurological deficits observed in the aging process. The synergistic interactions between protein kinase and inositol 1,4,5-trisphosphate (insP3)/Ca2+ pathways underlie a variety of cellular responses to external stimuli. To determine whether age-dependent changes occur in the regulation of protein kinase C and inositol 1,4,5-trisphosphate/Ca2+ pathways, insP3 contents as a marker for the release of intracellular calcium, saturation binding analysis of Ins P3 receptor using [3H]inositol 1,4,5-trisphosphate, slot/northern blot analysis of Ins P3 receptor-encoding mRNA transcripts, and the activities of Ca2+/phospholipid-dependent protein kinase C isozymes were investigated in the rat spinal cord. Inositol 1,4,5-trisphosphate content and [3H]inositol 1,4,5-trisphosphate binding site density (Bmax) were quantified in the spinal cords of young (three months old), adult (12 months old) and senescent (25 months old) male Fischer 344 rats. Spinal cord content of inositol 1,4,5-trisphosphate was increased (P < 0.01) in the 25-month old compared to the three- and 12-month old animals. The density of Ins P3 receptor in particulate membranes derived from the 25-month old rats was reduced (P < or = 0.01), but the binding affinity (Kd) was increased (P < or = 0.04) by a factor of 2.2 and 3.2 at 25 months of age when compared with three- and 12-month old animals, respectively. Young and middle-aged animals showed no differences in both inositol 1,4,5-trisphosphate contents and [3H]inositol 1,4,5-trisphosphate binding site density. The quantity of Ins P3 receptor mRNA was significantly increased with age in the order 25 >> 12 > 3 months of age. Total functional cytosolic and membrane-associated PKC activities were decreased (P < or = 0.05) in the 25-month compared to the three- and 12-month old rats in which activity remained unchanged. Total membrane/cytosolic activity ratios were unchanged by the aging process. In all cases, the activities of membrane-associated conventional protein kinase C isozymes (alpha, beta and gamma), determined by immunoprecipitation followed by in situ quantification of protein kinase C activities in the immunoprecipitates, showed age-dependent decline. The activities of protein kinase C-alpha and beta were significantly decreased in age-related manner. However, the activity of the gamma-isozyme was not significantly changed at 12- and 25-months of age, although it was higher (P < or = 0.03) in young rats. Western blot analyses using affinity purified polyclonal antibodies specific for each isozyme indicated a single protein with an apparent molecular mass of approximately 80 x 10(3) molec. weight for all isozymes except for the beta isozyme that also had an appreciable immunoreactive band at approximately 36 x 10(3) molec. weight. Overall, the aging process did not affect the electropheretic mobility of each isozyme. With decreased protein kinase C activity, the present data suggest that the aging process would decrease protein kinase C-induced phosphorylation of membrane proteins including Ins P3 receptor. A significant change in Ins P3 receptor affinity combined with increased levels of Ins P3 receptor mRNA-encoding transcripts in senescent rats suggests not only a modification (possibly by phosphorylation) of Ins P3 receptor protein but also the existence of multiple (spliced) variants of Ins P3 receptor in spinal neurons with increasing age. The present data indicate that the spinal contents of inositol 1,4,5-trisphosphate increased with age, but with decreased efficacy and number of inositol 1,4,5-trisphosphate-activatable Ca2+ channels in the spinal cord of senescent rats. These age-related changes may contribute to the attenuated responsiveness of spinal cord neurons by phosphoinositide-coupled receptors during the aging process.
Collapse
Affiliation(s)
- O J Igwe
- Division of Pharmacology, University of Missouri-Kansas City 64108-2792, USA
| | | |
Collapse
|
22
|
Llinás R, Sugimori M, Silver RB. The concept of calcium concentration microdomains in synaptic transmission. Neuropharmacology 1995; 34:1443-51. [PMID: 8606792 DOI: 10.1016/0028-3908(95)00150-5] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ever since the initial measurements of presynaptic calcium currents it has been evident that calcium triggers transmitter release quite rapidly. Several models indicate, as did the initial voltage clamp measurements, that the calcium concentration triggering such release could be very high at the entry site and that this concentration should be very short lasting. In order to determine this time course, calcium entry was studied at the squid giant synapse by imaging light emission from n-aequorin-J, intracellularly injected into the presynaptic terminal. The imaging utilized a video system capable of acquiring 4000 frames per sec. The results indicate that the calcium entry, triggered by action potentials, reaches a peak within 200 musec and has an overall duration of close to 800 musec, closely matching the duration of the presynaptic calcium current determined by voltage clamp results under similar conditions.
Collapse
Affiliation(s)
- R Llinás
- Department of Physiology and Neuroscience, New York University Medical Center, NY 10016, USA
| | | | | |
Collapse
|
23
|
Ryugo DK, Pongstaporn T, Wright DD, Sharp AH. Inositol 1,4,5-trisphosphate receptors: immunocytochemical localization in the dorsal cochlear nucleus. J Comp Neurol 1995; 358:102-18. [PMID: 7560273 DOI: 10.1002/cne.903580107] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the cochlear nucleus of mammals, the relatively homogeneous responses of auditory nerve fibers are transformed into a variety of different response patterns by the different classes of resident neurons. The spectrum of these responses is hypothesized to depend on the types and distribution of receptors, ion channels, G proteins, and second messengers that form the signaling capabilities in each cell class. In the present study, we examined the immunocytochemical distribution of the inositol 1,4,5-triphosphate (IP3) receptor in the dorsal cochlear nucleus to better understand how this second messenger might be involved in shaping the neural signals evoked by sound. Affinity-purified polyclonal antibodies directed against the IP3 receptor labeled a homogeneous population of neurons in the dorsal cochlear nucleus of rats, guinea pigs, mustache bats, cats, New World owl monkeys, rhesus monkeys, and humans. These cells were all darkly immunostained except in the human where the labeling was less intense. Immunoblots of dorsal cochlear nucleus tissue from the rat revealed a single band of protein of molecular weight approximately 260 kD, which is the same size as the purified receptor, indicating that our antibodies reacted specifically with the IP3 receptor. These immunolabeled neurons were identified as cartwheel cells on the basis of shared characteristics across species, including cell body size and distribution, the presence of a highly invaginated nucleus, and a well-developed system of cisternae. Reaction product was localized along the membranes of rough and smooth endoplasmic reticulum, subsurface cisternae, and the nuclear envelope. This label was distributed throughout the cartwheel cell body and dendritic shafts but not within dendritic spines, axons, or axons terminals. The regular pattern of immunolabeling across mammals suggests that IP3 and cartwheel cells are conserved in evolution and that both play an important but as yet unknown role in hearing.
Collapse
Affiliation(s)
- D K Ryugo
- Center for Hearing Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
24
|
Rodrigo J, Uttenthal O, Bentura ML, Maeda N, Mikoshiba K, Martinez-Murillo R, Polak JM. Subcellular localization of the inositol 1,4,5-trisphosphate receptor, P400, in the vestibular complex and dorsal cochlear nucleus of the rat. Brain Res 1994; 634:191-202. [PMID: 8131069 DOI: 10.1016/0006-8993(94)91922-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The subcellular localization of the inositol 1,4,5-trisphosphate receptor protein, P400, was studied in the vestibular complex, an area to which Purkinje cells project, as well as in neurons of the dorsal cochlear nucleus and in ectopic Purkinje cells of adult rat brain. The receptor was demonstrated by electron microscopical immunocytochemistry using the avidin-biotin peroxidase complex procedure, with the monoclonal antibody 4C11 raised against mouse cerebellar inositol 1,4,5-trisphosphate receptor protein. Immunoreactivity was found in preterminal fibres and terminal boutons in the nuclei of the vestibular complex, generally associated with the subsurface systems and stacks or fragments of smooth endoplasmic reticulum. Ectopic Purkinje cells and cartwheel cells of the dorsal cochlear nucleus also displayed immunoreactivity, but this was much less intense in the latter. The results of the present study suggest that this receptor protein, involved in the release of Ca2+, is located in sites that enable it to influence the synthesis, transport and release of neurotransmitters.
Collapse
Affiliation(s)
- J Rodrigo
- Unidad de Neuroanatomía Funcional, Instituto Cajal, C.S.I.C., Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|