1
|
Cornejo MP, De Francesco PN, García Romero G, Portiansky EL, Zigman JM, Reynaldo M, Perello M. Ghrelin receptor signaling targets segregated clusters of neurons within the nucleus of the solitary tract. Brain Struct Funct 2018; 223:3133-3147. [DOI: 10.1007/s00429-018-1682-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/09/2018] [Indexed: 11/29/2022]
|
2
|
Chen Z, Travers SP, Travers JB. Inhibitory modulation of optogenetically identified neuron subtypes in the rostral solitary nucleus. J Neurophysiol 2016; 116:391-403. [PMID: 27146980 DOI: 10.1152/jn.00168.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/27/2016] [Indexed: 12/27/2022] Open
Abstract
Inhibition is presumed to play an important role in gustatory processing in the rostral nucleus of the solitary tract (rNST). One source of inhibition, GABA, is abundant within the nucleus and comes both from local, intrasolitary sources and from outside the nucleus. In addition to the receptor-mediated effects of GABA on rNST neurons, the hyperpolarization-sensitive currents, Ih and IA, have the potential to further modulate afferent signals. To elucidate the effects of GABAergic modulation on solitary tract (ST)-evoked responses in phenotypically defined rNST neurons and to define the presence of IA and Ih in the same cells, we combined in vitro recording and optogenetics in a transgenic mouse model. This mouse expresses channelrhodopsin 2 (ChR2) in GAD65-expressing GABAergic neurons throughout the rNST. GABA positive (GABA+) neurons differed from GABA negative (GABA-) neurons in their response to membrane depolarization and ST stimulation. GABA+ neurons had lower thresholds to direct membrane depolarization compared with GABA- neurons, but GABA- neurons responded more faithfully to ST stimulation. Both IA and Ih were present in subsets of GABA+ and GABA- neurons. Interestingly, GABA+ neurons with Ih were more responsive to afferent stimulation than inhibitory neurons devoid of these currents, whereas GABA- neurons with IA were more subject to inhibitory modulation. These results suggest that the voltage-gated channels underlying IA and Ih play an important role in modulating rNST output through a circuit of feedforward inhibition.
Collapse
Affiliation(s)
- Z Chen
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - S P Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - J B Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
3
|
Ganchrow D, Ganchrow JR, Cicchini V, Bartel DL, Kaufman D, Girard D, Whitehead MC. Nucleus of the solitary tract in the C57BL/6J mouse: Subnuclear parcellation, chorda tympani nerve projections, and brainstem connections. J Comp Neurol 2014; 522:1565-96. [PMID: 24151133 PMCID: PMC4090073 DOI: 10.1002/cne.23484] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/08/2013] [Indexed: 01/28/2023]
Abstract
The nucleus of the solitary tract (NST) processes gustatory and related somatosensory information rostrally and general viscerosensory information caudally. To compare its connections with those of other rodents, this study in the C57BL/6J mouse provides a subnuclear cytoarchitectonic parcellation (Nissl stain) of the NST into rostral, intermediate, and caudal divisions. Subnuclei are further characterized by NADPH staining and P2X2 immunoreactivity (IR). Cholera toxin subunit B (CTb) labeling revealed those NST subnuclei receiving chorda tympani nerve (CT) afferents, those connecting with the parabrachial nucleus (PBN) and reticular formation (RF), and those interconnecting NST subnuclei. CT terminals are densest in the rostral central (RC) and medial (M) subnuclei; less dense in the rostral lateral (RL) subnucleus; and sparse in the ventral (V), ventral lateral (VL), and central lateral (CL) subnuclei. CTb injection into the PBN retrogradely labels cells in the aforementioned subnuclei; RC and M providing the largest source of PBN projection neurons. Pontine efferent axons terminate mainly in V and rostral medial (RM) subnuclei. CTb injection into the medullary RF labels cells and axonal endings predominantly in V at rostral and intermediate NST levels. Small CTb injections within the NST label extensive projections from the rostral division to caudal subnuclei. Projections from the caudal division primarily interconnect subnuclei confined to the caudal division of the NST; they also connect with the area postrema. P2X2-IR identifies probable vagal nerve terminals in the central (Ce) subnucleus in the intermediate/caudal NST. Ce also shows intense NADPH staining and does not project to the PBN. J. Comp. Neurol. 522:1565–1596, 2014.
Collapse
Affiliation(s)
- Donald Ganchrow
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Ramat Aviv, Tel-Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
4
|
Kv4 channels underlie A-currents with highly variable inactivation time courses but homogeneous other gating properties in the nucleus tractus solitarii. Pflugers Arch 2014; 467:789-803. [PMID: 24872163 DOI: 10.1007/s00424-014-1533-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/18/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
In the nucleus of the tractus solitarii (NTS), a large proportion of neurones express transient A-type potassium currents (I KA) having deep influence on the fidelity of the synaptic transmission of the visceral primary afferent inputs to second-order neurones. Up to now, the strong impact of I KA within the NTS was considered to result exclusively from its variation in amplitude, and its molecular correlate(s) remained unknown. In order to identify which Kv channels underlie I KA in NTS neurones, the gating properties and the pharmacology of this current were determined using whole cell patch clamp recordings in slices. Complementary information was brought by immunohistochemistry. Strikingly, two neurone subpopulations characterized by fast or slow inactivation time courses (respectively about 50 and 200 ms) were discriminated. Both characteristics matched those of the Kv4 channel subfamily. The other gating properties, also matching the Kv4 channel ones, were homogeneous through the NTS. The activation and inactivation occurred at membrane potentials around the threshold for generating action potentials, and the time course of recovery from inactivation was rapid. Pharmacologically, I KA in NTS neurones was found to be resistant to tetraethylammonium (TEA), sea anemone toxin blood-depressing substance (BDS) and dendrotoxin (DTX), whereas Androctonus mauretanicus mauretanicus toxin 3 (AmmTX3), a scorpion toxin of the α-KTX 15 family that has been shown to block all the members of the Kv4 family, inhibited 80 % of I KA irrespectively of its inactivation time course. Finally, immunohistochemistry data suggested that, among the Kv4 channel subfamily, Kv4.3 is the prevalent subunit expressed in the NTS.
Collapse
|
5
|
Corson JA, Erisir A. Monosynaptic convergence of chorda tympani and glossopharyngeal afferents onto ascending relay neurons in the nucleus of the solitary tract: a high-resolution confocal and correlative electron microscopy approach. J Comp Neurol 2014; 521:2907-26. [PMID: 23640852 DOI: 10.1002/cne.23357] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 04/16/2013] [Accepted: 04/25/2013] [Indexed: 01/22/2023]
Abstract
Physiological studies suggest convergence of chorda tympani and glossopharyngeal afferent axons onto single neurons of the rostral nucleus of the solitary tract (rNTS), but anatomical evidence has been elusive. The current study uses high-magnification confocal microscopy to identify putative synaptic contacts from afferent fibers of the two nerves onto individual projection neurons. Imaged tissue is revisualized with electron microscopy, confirming that overlapping fluorescent signals in confocal z-stacks accurately identify appositions between labeled terminal and dendrite pairs. Monte Carlo modeling reveals that the probability of overlapping fluorophores is stochastically unrelated to the density of afferent label, suggesting that convergent innervation in the rNTS is selective rather than opportunistic. Putative synaptic contacts from each nerve are often compartmentalized onto dendrite segments of convergently innervated neurons. These results have important implications for orosensory processing in the rNTS, and the techniques presented here have applications in investigations of neural microcircuitry with an emphasis on innervation patterning.
Collapse
Affiliation(s)
- James A Corson
- Department of Psychology, University of Virginia, Charlottesville, Virginia, 22904, USA
| | | |
Collapse
|
6
|
Corson JA, Bradley RM. Physiological and anatomical properties of intramedullary projection neurons in rat rostral nucleus of the solitary tract. J Neurophysiol 2013; 110:1130-43. [PMID: 23741045 DOI: 10.1152/jn.00167.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The rostral nucleus of the solitary tract (rNTS), the first-order relay of gustatory information, not only transmits sensory information to more rostral brain areas but also connects to various brain stem sites responsible for orofacial reflex activities. While much is known regarding ascending projections to the parabrachial nucleus, intramedullary projections to the reticular formation (which regulate oromotor reflexive behaviors) remain relatively unstudied. The present study examined the intrinsic firing properties of these neurons as well as their morphological properties and synaptic connectivity with primary sensory afferents. Using in vitro whole cell patch-clamp recording, we found that intramedullary projection neurons respond to depolarizing current injection with either tonic or bursting action potential trains and subsets of these groups of neurons express A-type potassium, H-like, and postinhibitory rebound currents. Approximately half of the intramedullary projection neurons tested received monosynaptic innervation from primary afferents, while the rest received polysynaptic innervation, indicating that at least a subpopulation of these neurons can be directly activated by incoming sensory information. Neuron morphological reconstructions revealed that many of these neurons possessed numerous dendritic spines and that neurons receiving monosynaptic primary afferent input have a greater spine density than those receiving polysynaptic primary afferent input. These results reveal that intramedullary projection neurons represent a heterogeneous class of rNTS neurons and, through both intrinsic voltage-gated ion channels and local circuit interactions, transform incoming gustatory information into signals governing oromotor reflexive behaviors.
Collapse
Affiliation(s)
- James A Corson
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
7
|
Corson J, Aldridge A, Wilmoth K, Erisir A. A survey of oral cavity afferents to the rat nucleus tractus solitarii. J Comp Neurol 2012; 520:495-527. [PMID: 21800298 DOI: 10.1002/cne.22715] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Visualization of myelinated fiber arrangements, cytoarchitecture, and projection fields of afferent fibers in tandem revealed input target selectivity in identified subdivisions of the nucleus tractus solitarii (NTS). The central fibers of the chorda tympani (CT), greater superficial petrosal nerve (GSP), and glossopharyngeal nerve (IX), three nerves that innervate taste buds in the oral cavity, prominently occupy the gustatory-sensitive rostrocentral subdivision. In addition, CT and IX innervate and overlap in the rostrolateral subdivision, which is primarily targeted by the lingual branch of the trigeminal nerve (LV). In the rostrocentral subdivision, compared with the CT terminal field, GSP appeared more rostral and medial, and IX was more dorsal and caudal. Whereas IX and LV filled the rostrolateral subdivision diffusely, CT projected only to the dorsal and medial portions. The intermediate lateral subdivision received input from IX and LV but not CT or GSP. In the caudal NTS, the ventrolateral subdivision received notable innervation from CT, GSP, and LV, but not IX. No caudal subnuclei medial to the solitary tract contained labeled afferent fibers. The data indicate selectivity of fiber populations within each nerve for functionally distinct subdivisions of the NTS, highlighting the possibility of equally distinct functions for CT in the rostrolateral NTS, and CT and GSP in the caudal NTS. Further, this provides a useful anatomical template to study the role of oral cavity afferents in the taste-responsive subdivision of the NTS as well as in subdivisions that regulate ingestion and other oromotor behaviors.
Collapse
Affiliation(s)
- James Corson
- Department of Psychology, University of Virginia, Charlottesville, Virginia 22902, USA
| | | | | | | |
Collapse
|
8
|
Wang M, Bradley RM. Properties of GABAergic neurons in the rostral solitary tract nucleus in mice. J Neurophysiol 2010; 103:3205-18. [PMID: 20375246 DOI: 10.1152/jn.00971.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rostral nucleus of the solitary tract (rNST) plays a pivotal role in taste processing. The rNST contains projection neurons and interneurons that differ in morphology and intrinsic membrane properties. Although characteristics of the projection neurons have been detailed, similar information is lacking on the interneurons. We determined the intrinsic properties of the rNST GABAergic interneurons using a transgenic mouse model that expresses enhanced green fluorescent protein under the control of a GAD67 promoter. Glutamic acid decarboxylase-green fluorescent protein (GAD67-GFP) neurons were distributed throughout the rNST but were concentrated in the ventral subdivision with minimal interaction with the terminal field of the afferent input. Furthermore, the density of the GAD67-GFP neurons decreased in more rostral areas of rNST. In whole cell recordings, GAD67-GFP neurons responded with either an initial burst (73%), tonic (18%), or irregular (9%) discharge pattern of action potentials (APs) in response to membrane depolarization. These three groups also differed in passive and AP characteristics. Initial burst neurons had small ovoid or fusiform cell bodies, whereas tonic firing neurons had large multipolar or fusiform cell bodies. Irregular firing neurons had larger spherical soma. Some of the initial burst and tonic firing neurons were also spontaneously active. The GAD67-GFP neurons could also be categorized in subgroups based on colocalization with somatostatin and parvalbumin immunolabeling. Initial burst neurons would transmit the early dynamic portion of the encoded sensory stimuli, whereas tonic firing neurons could respond to both dynamic and static components of the sensory input, suggesting different roles for GAD67-GFP neurons in taste processing.
Collapse
Affiliation(s)
- Min Wang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | |
Collapse
|
9
|
Tokita K, Inoue T, Boughter JD. Afferent connections of the parabrachial nucleus in C57BL/6J mice. Neuroscience 2009; 161:475-88. [PMID: 19327389 PMCID: PMC2705209 DOI: 10.1016/j.neuroscience.2009.03.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/21/2022]
Abstract
Although the mouse is an experimental model with an increasing importance in various fields of neuroscience, the characteristics of its central gustatory pathways have not yet been well documented. Recent electrophysiological studies using the rat and hamster have revealed that taste processing in the brainstem gustatory relays is under the strong influence of inputs from forebrain gustatory structures. In the present study, we investigated the organization of afferent projections to the mouse parabrachial nucleus (PbN), which is located at a key site between the brainstem and gustatory, viscerosensory and autonomic centers in the forebrain. We made injections of the retrograde tracer fluorogold centered around the "waist" area of the PbN, whose neurons are known to be highly responsive to taste stimuli. Retrogradely labeled neurons were found in the infralimbic, dysgranular and agranular insular cortex as well as the claustrum; the bed nucleus of the stria terminalis and the substantia innominata; the central nucleus of the amygdala; the lateral and medial preoptic areas, the paraventricular, the dorsomedial, the ventromedial, the arcuate, and the lateral hypothalamic areas; the periaqueductal gray, the substantia nigra pars compacta, and the ventral tegmental area; the supratrigeminal nucleus, rostral and caudal nucleus of the solitary tract; the parvicellular intermediate and gigantocellular reticular nucleus; the caudal and interpolar divisions of the spinal trigeminal nucleus, dorsomedial spinal trigeminal nucleus, and the area postrema. Numbers of labeled neurons in the main components of the gustatory system including the insular cortex, bed nucleus of the stria terminalis, central nucleus of the amygdala, lateral hypothalamus, and rostral nucleus of the solitary tract were quantified. These results are basically consistent with those of the previous rat and hamster studies, but some species differences were found. Functional implications of these afferent inputs are discussed with an emphasis on their role in taste.
Collapse
Affiliation(s)
- K Tokita
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.
| | | | | |
Collapse
|
10
|
Suwabe T, Bradley RM. Characteristics of rostral solitary tract nucleus neurons with identified afferent connections that project to the parabrachial nucleus in rats. J Neurophysiol 2009; 102:546-55. [PMID: 19439671 DOI: 10.1152/jn.91182.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Afferent information derived from oral chemoreceptors is transmitted to second-order neurons in the rostral solitary tract nucleus (rNST) and then relayed to other CNS locations responsible for complex sensory and motor behaviors. Here we investigate the characteristics of rNST neurons sending information rostrally to the parabrachial nucleus (PBN). Afferent connections to these rNST-PBN projection neurons were identified by anterograde labeling of the chorda tympani (CT), glossopharyngeal (IX), and lingual (LV) nerves. We used voltage- and current-clamp recordings in brain slices to characterize the expression of both the transient A-type potassium current, IKA and the hyperpolarization-activated inward current, Ih, important determinants of neuronal repetitive discharge characteristics. The majority of rNST-PBN neurons express IKA, and these IKA-expressing neurons predominate in CT and IX terminal fields but were expressed in approximately half of the neurons in the LV field. rNST-PBN neurons expressing Ih were evenly distributed among CT, IX and LV terminal fields. However, expression patterns of IKA and Ih differed among CT, IX, and LV fields. IKA-expressing neurons frequently coexpress Ih in CT and IX terminal fields, whereas neurons in LV terminal field often express only Ih. After GABAA receptor block all rNST-PBN neurons responded to afferent stimulation with all-or-none excitatory synaptic responses. rNST-PBN neurons had either multipolar or elongate morphologies and were distributed throughout the rNST, but multipolar neurons were more often encountered in CT and IX terminal fields. No correlation was found between the biophysical and morphological characteristics of the rNST-PBN projection neurons in each terminal field.
Collapse
Affiliation(s)
- Takeshi Suwabe
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | |
Collapse
|
11
|
Nasse J, Terman D, Venugopal S, Hermann G, Rogers R, Travers JB. Local circuit input to the medullary reticular formation from the rostral nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1391-408. [PMID: 18716034 DOI: 10.1152/ajpregu.90457.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The intermediate reticular formation (IRt) subjacent to the rostral (gustatory) nucleus of the solitary tract (rNST) receives projections from the rNST and appears essential to the expression of taste-elicited ingestion and rejection responses. We used whole cell patch-clamp recording and calcium imaging to characterize responses from an identified population of prehypoglossal neurons in the IRt to electrical stimulation of the rNST in a neonatal rat pup slice preparation. The calcium imaging studies indicated that IRt neurons could be activated by rNST stimulation and that many neurons were under tonic inhibition. Whole cell patch-clamp recording revealed mono- and polysynaptic projections from the rNST to identified prehypoglossal neurons. The projection was primarily excitatory and glutamatergic; however, there were some inhibitory GABAergic projections, and many neurons received excitatory and inhibitory inputs. There was also evidence of disinhibition. Overall, bath application of GABA(A) antagonists increased the amplitude of excitatory currents, and, in several neurons, stimulation of the rNST systematically decreased inhibitory currents. We have hypothesized that the transition from licks to gapes by natural stimuli, such as quinine monohydrochloride, could occur via such disinhibition. We present an updated dynamic model that summarizes the complex synaptic interface between the rNST and the IRt and demonstrates how inhibition could contribute to the transition from ingestion to rejection.
Collapse
Affiliation(s)
- J Nasse
- College of Dentistry, Ohio State Univ., 305 W. 12th Ave., Columbus, OH 43201, USA
| | | | | | | | | | | |
Collapse
|
12
|
|
13
|
Bradley R. rNST Circuits. Front Neurosci 2006. [DOI: 10.1201/9781420005974.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
14
|
Yoshioka M, Okada T, Inoue K, Kawai Y. Pattern differentiation of excitatory and inhibitory synaptic inputs on distinct neuronal types in the rat caudal nucleus of the tractus solitarius. Neurosci Res 2006; 55:300-15. [PMID: 16716422 DOI: 10.1016/j.neures.2006.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Revised: 03/25/2006] [Accepted: 04/03/2006] [Indexed: 01/14/2023]
Abstract
Region- and size-specific neuronal organizations of the caudal nucleus of the tractus solitarius (cNTS) were investigated, followed by analyses of excitatory and inhibitory synaptic input patterns onto specific cell types by patch clamp recordings and immunoelectron microscopy. Cell size distribution and numerical density of cNTS neurons were examined in subregions at levels of the area postrema. In the subpostremal and dorsomedial subnuclei, characterized by the presence of dense glutamatergic and sparse GABAergic somata, small calbindin neurons constituted 42% of the total cells. The medial subnucleus contained large numbers of glutamatergic, GABAergic, and catecholaminergic somata and large tyrosine hydroxylase-containing cells constituted 13% in this region. In total, small neurons (<150 microm2) represented about 80% of the cell population in the cNTS. Predominant excitatory postsynaptic currents were observed in the adult small neurons, while inhibitory postsynaptic currents were more evident in larger neurons, irrespective of subnuclear location. This distinct differentiation of postsynaptic current patterns was not evident in neonates. GABAergic synapses were more frequently associated with dendrites of large catecholaminergic cells (73%) than with those of small calbindin-containing cells (10%) in adults. These results indicate that differential synaptic input patterns were developmentally established in distinct small and large neurons.
Collapse
Affiliation(s)
- Masayuki Yoshioka
- Department of Anatomy I, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi Minato-ku, Tokyo 105-8461, Japan
| | | | | | | |
Collapse
|
15
|
Uteshev VV, Smith DV. Cholinergic modulation of neurons in the gustatory region of the nucleus of the solitary tract. Brain Res 2006; 1084:38-53. [PMID: 16546141 DOI: 10.1016/j.brainres.2006.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/03/2006] [Accepted: 02/07/2006] [Indexed: 02/05/2023]
Abstract
The rostral portion of the nucleus of the solitary tract (rNST) is an obligatory relay for gustatory afferent input on its way to the forebrain. Previous studies have demonstrated excitation of rNTS neurons by glutamate and substance P and inhibition by gamma-aminobutyric acid (GABA) and met-enkephalin (ENK). Despite the existence of cholinergic neurons and putative terminals within the rNTS, there are no data on the effects of acetylcholine (ACh) on rNTS processing. Here, we use patch-clamp recording of rNTS neurons in vitro to examine ACh-mediated responses and voltage-gated conductances in these cells. Results revealed (1) intrinsic voltage-gated inhibition via activation of voltage-gated potassium A-channels (I(A)), found almost exclusively in the medial rNTS, and hyperpolarization-activated potassium/sodium channels (I(h)), found more frequently in the lateral rNST; and (2) ligand-gated inhibition via activation of muscarinic m2 ACh receptors (mAChRs) linked to inward rectifier potassium channels (K(ir)) evenly distributed throughout the rNTS, a mechanism dependent on cholinergic inputs. Muscarinic responses were blocked by AFDX-116, a selective m2 mAChR antagonist, and by BaCl2, an antagonist of K(ir) channels. In addition, many rNTS neurons exhibited excitation via alpha7 and non-alpha7 nicotinic AChRs. Non-alpha7 nAChRs, blocked by 10 microM mecamylamine, occurred more frequently in the lateral rNTS. In contrast, alpha7 nAChRs, blocked by 20 nM methyllcaconitine, were evenly distributed across the nucleus. As previously reported for voltage-activated conductances, none of these currents was related to neuronal morphology. These voltage- and ligand-dependent inhibitory mechanisms would be expected to contribute to the modulation of gustatory processing through the NST.
Collapse
Affiliation(s)
- Victor V Uteshev
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Avenue, Suite 515, Memphis, TN 38163, USA.
| | | |
Collapse
|
16
|
Okada T, Yoshioka M, Inoue K, Kawai Y. Local axonal arborization patterns of distinct neuronal types in the caudal nucleus of the tractus solitarius. Brain Res 2006; 1083:134-44. [PMID: 16545781 DOI: 10.1016/j.brainres.2006.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/27/2006] [Accepted: 02/01/2006] [Indexed: 11/20/2022]
Abstract
Neurons in the caudal nucleus of the tractus solitarius (cNTS) are quite heterogeneous in cell size (50 to 450 microm(2) in somal area) and other morphologic characteristics. For a more objective classification of cNTS neurons, their morphologic features were analyzed quantitatively based on reconstructed biocytin-filled cells after whole-cell patch-clamp recordings. According to the patterns of axonal branching behaviors, cNTS cells could be classified into two groups: smaller cells (94.1 microm(2) in mean somal area, range 62-120 microm(2), n = 22) and larger cells (245 microm(2) in mean somal area, range 142-411 microm(2), n = 23). Extensive axonal arborization with numerous possible synaptic boutons was specifically associated with smaller neurons, while larger cells possessed no or few axon collaterals, suggesting their distinct roles as local circuit neurons (or interneurons) and projection neurons, respectively. With regard to somatodendritic characteristics, the following correlations with cell size were found: smaller cells had larger form factors than larger cells (P < 0.05). Larger neurons had more extensive dendritic arborization, expressed by total dendritic length (P < 0.01) and number of dendritic branching points (P < 0.01), than smaller cells. It was suggested that small cNTS neurons contribute specifically to an integration of input information generated in the local circuits, while large neurons convey the integrated information to other autonomic brain regions.
Collapse
Affiliation(s)
- Tomoaki Okada
- Department of Anatomy I, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi Minato-ku, Tokyo 105-8461, Japan
| | | | | | | |
Collapse
|
17
|
Kim M, Chiego DJ, Bradley RM. Morphology of parasympathetic neurons innervating rat lingual salivary glands. Auton Neurosci 2004; 111:27-36. [PMID: 15109936 DOI: 10.1016/j.autneu.2004.01.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 01/22/2004] [Accepted: 01/28/2004] [Indexed: 11/21/2022]
Abstract
Saliva is essential for taste function and not only does saliva influence taste reception, but also taste perception initiates salivation. As a first step in investigating circuits involved in gustatory-salivary reflexes, we have studied the morphology of the rat inferior salivatory nucleus (ISN), which contains parasympathetic secretomotor neurons that control the parotid and lingual (von Ebner) salivary glands. By applying the fluorescent label Fluorogold to the cut end of the glossopharyngeal nerve, the neurons supplying only the lingual salivary glands were labeled. Confocal microscopy and three-dimensional reconstruction were used to analyze the labeled neurons in the horizontal plane to determine their morphological characteristics. Additional neurons were studied in the coronal plane to determine the influence of the plane of section on neuron morphology. Reconstructions indicated that inferior salivatory neurons extend in a rostral-caudal distribution just adjacent to the medial border of the nucleus of the solitary tract (NST). There is considerable morphological variability among neurons, with neurons having up to 6 primary dendrites and 17 dendritic segments that extend a maximum of 834 microm from the soma. However, although ISN neurons vary in the size and complexity of their dendritic trees, distributions of all measures of neuron morphology are unimodal, indicating that distinct groups of neurons are not revealed based on these measures. There is, however, variability in the orientation pattern of the dendritic trees that is not represented in either the population or mean measures. Individual neurons can be categorized with either mediolateral, rostro-caudal or no apparent preferred orientation. Comparisons of neurons in rostral, intermediate or caudal third of the ISN revealed regional differences in neuron morphology; neurons in the caudal third have significantly longer dendrites than those in the intermediate or rostral third. Thus, while ISN neurons belong to a single morphological grouping, they vary in the size and complexity of their dendritic trees, as well as having different dendritic orientations within the salivary nucleus.
Collapse
Affiliation(s)
- Miwon Kim
- Department of Biology and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | |
Collapse
|
18
|
Di Lorenzo PM, Hallock RM, Kennedy DP. Temporal coding of sensation: mimicking taste quality with electrical stimulation of the brain. Behav Neurosci 2004; 117:1423-33. [PMID: 14674860 DOI: 10.1037/0735-7044.117.6.1423] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two experiments suggested that the temporal pattern of a taste response in the brain can convey meaningful information. In Experiment 1, rats avoided lick-contingent electrical stimulation of the nucleus of the solitary tract (NTS; the first synaptic relay for taste) when the temporal pattern of pulses mimicked the electrophysiological response to quinine, but not when the temporal pattern was randomized. In Experiment 2, rats avoided lick-contingent electrical stimulation of the NTS that mimicked the temporal pattern of a sucrose response following stimulation-illness pairings. This aversion generalized to sucrose but not to the other tastants; extinction of the aversion to electrical stimulation also extinguished the aversion to sucrose. Results replicate and extend previous findings (P. M. Di Lorenzo & G. S. Hecht, 1993).
Collapse
Affiliation(s)
- Patricia M Di Lorenzo
- Department of Psychology, State University of New York at Binghamton, 13902-6000, USA.
| | | | | |
Collapse
|
19
|
Glatzer NR, Hasney CP, Bhaskaran MD, Smith BN. Synaptic and morphologic properties in vitro of premotor rat nucleus tractus solitarius neurons labeled transneuronally from the stomach. J Comp Neurol 2003; 464:525-39. [PMID: 12900922 DOI: 10.1002/cne.10831] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Neurons in the rat nucleus tractus solitarius (NTS) possess morphologic characteristics that have been correlated with the type of synaptic information they receive. These features have been described for viscerosensory neurons but not for premotor NTS neurons. The morphologic and synaptic features of neurons in the rat caudal NTS were assessed using whole-cell patch-clamp recordings and biocytin labeling in brainstem slices. Gastric-related premotor NTS neurons were identified for recording after inoculation of the stomach wall with a transneuronal retrograde viral label that reports enhanced green fluorescent protein. Three morphologic groups of NTS neurons were identified based on quantitative aspects of soma area and proximal dendritic arborization, measures that were consistent across slice recordings. The most common type of cell (group I) had relatively small somata and one to three sparsely branching dendrites, whereas the other groups had larger somata and more than three dendrites, which branched predominantly close to (group II) or distant from (group III) the soma. Voltage-clamp recordings revealed spontaneous excitatory and inhibitory postsynaptic currents in all neurons, regardless of morphology. Gastric-related premotor NTS neurons composed two of the three morphologic types (i.e., groups I and II). Compared with unlabeled neurons, these cells were less likely to receive constant-latency synaptic input from the tractus solitarius. These results refute the hypothesis that general patterns of synaptic input to NTS neurons depend on morphology. Gastric premotor neurons comprise a subset of NTS morphologic types, the organization of the viscerosensory input to which has yet to be defined.
Collapse
Affiliation(s)
- Nicholas R Glatzer
- Department of Cell and Molecular Biology, Tulane University, New Orleans, Louisiana 70118, USA
| | | | | | | |
Collapse
|
20
|
Barnes KL, DeWeese DM, Andresen MC. Angiotensin potentiates excitatory sensory synaptic transmission to medial solitary tract nucleus neurons. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1340-53. [PMID: 12531785 DOI: 10.1152/ajpregu.00505.2002] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Femtomole doses of angiotensin (ANG) II microinjected into nucleus tractus solitarii (nTS) decrease blood pressure and heart rate, mimicking activation of the baroreflex, whereas higher doses depress this reflex. ANG II might generate cardioinhibitory responses by augmenting cardiovascular afferent synaptic transmission onto nTS neurons. Intracellular recordings were obtained from 99 dorsal medial nTS region neurons in rat medulla horizontal slices to investigate whether ANG II modulated short-latency excitatory postsynaptic potentials (EPSPs) evoked by solitary tract (TS) stimulation. ANG II (200 fmol) increased TS-evoked EPSP amplitudes 20-200% with minimal membrane depolarization in 12 neurons excited by ANG II and glutamate, but not substance P (group A). Blockade of non-N-methyl-d-aspartate receptors eliminated TS-evoked EPSPs and responses to ANG II. ANG II did not alter TS-evoked EPSPs in 14 other neurons depolarized substantially by ANG II and substance P (group B). ANG II appeared to selectively augment presynaptic sensory transmission in one class of nTS neurons but had only postsynaptic effects on another group of cells. Thus ANG II is likely to modulate cardiovascular function by more than one nTS neuronal pathway.
Collapse
Affiliation(s)
- Karen L Barnes
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|
21
|
Grabauskas G, Bradley RM. Frequency-dependent properties of inhibitory synapses in the rostral nucleus of the solitary tract. J Neurophysiol 2003; 89:199-211. [PMID: 12522172 DOI: 10.1152/jn.00963.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To explore the parameters that define the characteristics of either inhibitory postsynaptic potentials (IPSP) or currents (IPSC) in the gustatory nucleus of the solitary tract (rNST), whole cell patch-clamp recordings were made in horizontal brain stem slices of newborn rats. Neurons were labeled with biocytin to confirm both their location and morphology. IPSPs or IPSCs were evoked by delivering either single, paired-pulse, or tetanic stimulus shocks (0.1-ms duration) via a bipolar stimulating electrode placed on the rNST. Pure IPSP/IPSCs were isolated by the use of glutamate receptor antagonists. For 83% of the single-stimulus-evoked IPSCs, the decay time course was fitted with two exponentials having average time constants of 38 and 181 ms, respectively, while the remainder could be fitted with one exponential of 59 ms. Paired-pulse stimulation resulted in summation of the amplitude of the conditioning and test-stimulus-evoked IPSCs. The decay time course of the test-stimulus-evoked IPSC was slower when compared to the decay time of the conditioning stimulus IPSC. Repeated stimulation resulted in an increase in the decay time of the IPSP/Cs where each consecutive stimulus contributed to prolongation of the decay time constant. Most of the IPSP/Cs resulting from a 1-s >/= 30-Hz tetanic stimulus exhibited an S-shaped decay time course where the amplitude of the IPSP/Cs after termination of the stimulus was initially sustained before starting to decay back to the resting membrane potential. Elevation of extracellular Ca(2+) concentration 10 mM resulted in an increase in the amplitude and decay time of single-stimulus shock-evoked IPSP/Cs. The benzodiazepine GABA(A) receptor modulator diazepam increased the decay time of single-stimulus shock-evoked IPSCs. However, application of diazepam did not affect the decay time of tetanic-stimulation-evoked IPSP/Cs. These results suggest that the decay time of single-stimulus-evoked IPSCs is defined either by receptor kinetics or neurotransmitter clearance from the synaptic cleft or both, while the decay time course of the tetanic stimulus evoked IPSP/Cs is defined by neurotransmitter diffusion from the synaptic cleft. During repetitive stimulation, neurotransmitter accumulates in the synaptic cleft prolonging the decay time constant of the IPSCs. High-frequency stimulation elevates the GABA concentration in the synaptic cleft, which then oversaturates the postsynaptic receptors, and, as a consequence, after termination of the tetanic stimulus, the amplitude of IPSP/Cs is sustained resulting in an S shaped decay time course. This activity-dependent plasticity at GABAergic synapses in the rNST is potentially important in the encoding of taste responses because the dynamic range of stimulus frequencies that result in synaptic plasticity (0-70 Hz) corresponds to the breadth of frequencies that travels via afferent gustatory nerve fibers in response to taste stimuli.
Collapse
Affiliation(s)
- Gintautas Grabauskas
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109, USA.
| | | |
Collapse
|
22
|
Zagon A, Hughes DI. Gating of vagal inputs by sciatic afferents in nonspinally projecting neurons in the rat rostral ventrolateral medulla oblongata. Eur J Neurosci 2001; 13:781-92. [PMID: 11207813 DOI: 10.1046/j.0953-816x.2000.01445.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Integration and coordination of somato-visceral sensory information is crucial to achieve adaptive behavioural responses. We have recently shown that sensory vagal and somato-sensory (sciatic nerve) inputs converge in neurons of the rostral ventrolateral medulla oblongata, which was implicated in adjusting visceral activities to changing somatic performances. In the present study, the neuronal mechanism of interaction between sciatic and vagal sensory inputs was examined in the rostral ventrolateral medulla oblongata using in vivo intracellular recording and labelling. Conditioning stimulation of the contralateral sciatic nerve (2 V) led to a time-dependent inhibition of responses to vagal stimulation (100 microA) in each RVLM neuron that received convergent sciatic and vagal sensory inputs (n = 50). None of these neurons had direct spinal projections, and only 8% of them exhibited a visible response to stimulation of the aortic depressor nerve. A significant attenuation of the amplitude of vagal test responses was present for up to 800 ms of conditioning delay, although the duration of this sciatico-vagal inhibition was greatly dependent on the intensity of both stimuli. The electrophysiological data indicated that sciatico-vagal inhibition is mediated presynaptically, via activation of GABAB receptors. Morphological evidence of axo-axonic interactions that may underlie sciatico-vagal inhibition was subsequently found in the electron microscope. It is suggested that during movements of the hindleg, activation of sciatic sensory fibres leads to re-patterning of neuronal activity in RVLM neurons via inhibition of visceral sensory inputs. Sciatico-vagal inhibition is likely to affect the activity of those RVLM neurons that modulate higher neuronal activities via ascending projections.
Collapse
Affiliation(s)
- A Zagon
- Department of Anatomy and Developmental Biology, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK.
| | | |
Collapse
|
23
|
Esteves FO, McWilliam PN, Batten TF. Nitric oxide producing neurones in the rat medulla oblongata that project to nucleus tractus solitarii. J Chem Neuroanat 2000; 20:185-97. [PMID: 11118810 DOI: 10.1016/s0891-0618(00)00091-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The production of nitric oxide in neurones of the rat medulla oblongata that project to the nucleus tractus solitarii (NTS) was examined by simultaneous immunohistochemical detection of nitric oxide synthase (NOS) and of cholera toxin B-subunit (CTb), which was injected into the caudal zone of the NTS. Neurones immunoreactive for CTb and neurones immunoreactive for NOS were widely co-distributed and found in almost all the anatomical divisions of the medulla. Dual-labelled cells, containing both CTb and NOS immunoreactivities were more numerous ipsilaterally to the injection sites. They were concentrated principally in the more rostral zone of the NTS, raphé nuclei, dorsal, intermediate and lateral reticular areas, spinal trigeminal and paratrigeminal nuclei and the external cuneate and medial vestibular nuclei. Isolated dual-labelled neurones were also scattered throughout most of the divisions of the reticular formation. These observations indicate that many areas of the medulla that are known to relay somatosensory and viscerosensory inputs contain NOS immunoreactive neurones that project to the NTS, and may, therefore, contribute to the dense NOS-immunoreactive innervation of the NTS. The release of nitric oxide from the axon terminals of these neurones may modulate autonomic responses generated by NTS neurones in relation to peripheral sensory stimuli, and thus ultimately regulate sympathetic and/or parasympathetic outflow.
Collapse
Affiliation(s)
- F O Esteves
- Institute for Cardiovascular Research, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
24
|
Abstract
In the study of the neural code for taste, two theories have dominated the literature: the across neuron pattern (ANP), and the labeled line theories. Both of these theories are based on the observations that taste cells are multisensitive across a variety of different taste stimuli. Given a fixed array of taste stimuli, a cell's particular set of sensitivities defines its response profile. The characteristics of response profiles are the basis of both major theories of coding. In reviewing the literature, it is apparent that response profiles are an expression of a complex interplay of excitatory and inhibitory inputs that derive from cells with a wide variety of sensitivity patterns. These observations suggest that, in the absence of inhibition, taste cells might be potentially responsive to all taste stimuli. Several studies also suggest that response profiles can be influenced by the taste context, defined as the taste stimulus presented just before or simultaneously with another, under which they are recorded. A theory, called dynamic coding, was proposed to account for context dependency of taste response profiles. In this theory, those cells that are unaffected by taste context would provide the signal, i.e., the information-containing portion of the ANP, and those cells whose responses are context dependent would provide noise, i.e., less stimulus specific information. When singular taste stimuli are presented, noise cells would provide amplification of the signal, and when complex mixtures are presented, the responses of the noise cells would be suppressed (depending on the particular combination of tastants), and the ratio of signal to noise would be enhanced.
Collapse
Affiliation(s)
- P M Di Lorenzo
- Department of Psychology, State University of New York at Binghamton, 13902-6000, USA.
| |
Collapse
|
25
|
Grabauskas G, Bradley RM. Potentiation of GABAergic synaptic transmission in the rostral nucleus of the solitary tract. Neuroscience 2000; 94:1173-82. [PMID: 10625056 DOI: 10.1016/s0306-4522(99)00379-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whole-cell recordings were made from neurons in the rostral nucleus of the solitary tract in horizontal brainstem slices. Monosynaptic GABAA receptor-mediated inhibitory postsynaptic potentials were evoked by single stimulus shocks or by high-frequency tetanic stimulation in the presence of glutamate receptor blockers. While single stimulus-evoked inhibitory postsynaptic potentials had variable amplitudes, tetanic stimulation-induced, hyperpolarizing postsynaptic potentials were of a more constant amplitude. Furthermore, tetanic stimulation resulted in potentiation of the amplitude of single stimulus shock-evoked inhibitory postsynaptic potentials. Of 55 neurons that were tested, potentiation lasted over 30 min for 11, 10-30 min for 13, less than 10 min for 23 and no potentiation occurred in eight. Tetanic stimulation did not result in potentiation of the tetanic stimulus-evoked hyperpolarizing postsynaptic potentials. Both the single stimulus shock- and tetanic stimulus-evoked potentials had similar inhibition concentration-response curves to the GABAA antagonist, bicuculline methiodide (EC50 = 0.75 and 0.83, respectively), indicating that they were mediated by the same postsynaptic receptors. By comparing the effect of bicuculline methiodide on the amplitude of the single stimulus shock-evoked inhibitory postsynaptic potentials and the tetanic stimulus-evoked hyperpolarizing potentials, we concluded that a single stimulus shock does not activate all postsynaptic GABAA receptors. However, tetanic stimulation results in activation of all postsynaptic GABAA receptors and induces long-lasting changes in the presynaptic GABAergic neuron. These long-lasting changes of the presynaptic neuron facilitate the release of GABA during single stimulus shock and, as a consequence, more postsynaptic receptors are activated during single stimulus shock-evoked synaptic transmission. This conclusion is supported by the results of experiments in which the extracellular Ca2+ concentration was manipulated to change the amount of neurotransmitter released from the presynaptic GABAergic terminals. The single stimulus shock-evoked inhibitory postsynaptic potentials were sensitive to the extracellular Ca2+ concentration, whereas tetanic stimulus-evoked inhibitory post-synaptic potentials were essentially insensitive to extracellular Ca2+ concentration. The relationship between the single stimulus shock-evoked inhibitory postsynaptic potential amplitude and extracellular Ca2+ concentration indicates that, in control physiological saline containing 2.5 mM Ca2+, a single stimulus shock activates less than half the postsynaptic GABA receptors. The phenomenon of long-lasting potentiation of inhibitory transmission within the rostral nucleus of the solitary tract may be important in the processing of gustatory information and play a role in taste-guided behaviors.
Collapse
Affiliation(s)
- G Grabauskas
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109-1078, USA
| | | |
Collapse
|
26
|
Zagon A. Activation of cardiac vagal afferents facilitates late vagal inhibition in neurones of the rostral ventrolateral medulla oblongata bilaterally. Brain Res 2000; 854:172-7. [PMID: 10784119 DOI: 10.1016/s0006-8993(99)02338-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A reduced activity of cardiac vagal afferent fibres is considered as one of the pathophysiological causes of post-infarction complications [A. Head, Baroreflexes and cardiovascular regulation in hypertension. J. Cardiovasc. Pharmacol. 26 (1995) S7-S16]. The mechanism of how a reduction of cardiac vagal activity leads to enhanced sympathetic drive and systemic hypertension is however not yet clear. Experimental data have shown that the rostral ventrolateral medulla oblongata (RVLM) plays an important role in tonic blood pressure regulation, the control of sympathetic vasoconstriction and cardiac performance. The aim of the study was to determine whether activation of cardiac vagal afferents contributes to eliciting the long-lasting late inhibition that we have previously shown to occur in neurones of the RVLM [A. Zagon, K. Ishizuka, I. Rocha, K.M. Spyer, Late vagal inhibition in neurones of the ventrolateral medulla oblongata in the rat. Neurosci. 92 (1999) 877-888]. The experiments were carried out in terminally anaesthetised and artificially ventilated rats using in vivo intracellular recordings. The data confirmed that late vagal inhibition is elicited by cumulative activation of functionally different vagal afferents, including those that originate from cardiac receptors. It was also demonstrated that activation of cardiac afferents could lead to a significant increase in the duration of this long-lasting late response component. Facilitation of late vagal inhibition was observed in RVLM neurones both ipsi- and contralateral to the stimulated nerve. It is suggested that such facilitation of late vagal inhibition may be a mechanism of how pulse-synchronous activation of cardiac afferents leads to a tonic modulation of the activity of RVLM neurones. An attenuation of late vagal inhibition during reduced activity of cardiac vagal afferents could lead to enhanced excitability in these neurones which in turn can lead to an increase in medullary sympathetic outflows towards the heart and peripheral blood vessels.
Collapse
Affiliation(s)
- A Zagon
- Department of Physiology, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
27
|
Vincent A, Tell F. Postnatal development of rat nucleus tractus solitarius neurons: morphological and electrophysiological evidence. Neuroscience 1999; 93:293-305. [PMID: 10430493 DOI: 10.1016/s0306-4522(99)00109-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Postnatal development of neurons in the caudal nucleus tractus solitarii of rats was studied using the Golgi-Cox technique and whole-cell recordings. Two cell classes were defined on the basis of somatic and dendritic morphology. Elongated neurons have two thick primary dendrites originating from the long axis of the soma. The primary dendrites, tapering distally, give rise to one to four secondary dendrites. Multipolar neurons have pyramidal somas. Extending from each apex of the cell body was a long primary dendrite, which gave rise to a variable number of secondary dendrites. The relative proportion of the two classes was rather constant from birth to adulthood. During the first two postnatal weeks, dendritic length and area of influence increase, but neuronal geometry is not altered in either class. Dendritic appendages appear by postnatal day 5, reach a peak at postnatal day P12 and then almost disappear in adult neurons. Combined intracellular injection of neurobiotin and whole-cell recordings indicate that morphological alteration of caudal nucleus tractus solitarius neurons occurs in parallel with changes in passive properties and spike characteristics. However, the firing pattern of discharge is not correlated with morphology. The physiological significance of these results is discussed.
Collapse
Affiliation(s)
- A Vincent
- Département de Physiologie et Neurophysiologie, Centre National de la Recherche Scientifique ESA 6034, Faculté des Sciences de Saint-Jérôme, Marseille, France
| | | |
Collapse
|
28
|
Kawai Y, Senba E. Electrophysiological and morphological characterization of cytochemically-defined neurons in the caudal nucleus of tractus solitarius of the rat. Neuroscience 1999; 89:1347-55. [PMID: 10362319 DOI: 10.1016/s0306-4522(98)00393-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Morphological and electrophysiological properties of calbindin D-28k-, GABA- and dopamine-beta-hydroxylase-immunopositive neurons were investigated in the caudal nucleus of tractus solitarius of rats, using a patch-clamp whole-cell recording combined with intracellular staining and immunocytochemistry. Calbindin D-28K- and GABA-positive neurons had a small cell body (10.9+/-0.3 microm in diameter) and were distributed throughout the caudal nucleus of tractus solitarius. Double fluorescence immunocytochemistry revealed that calbindin- and GABA-positive neurons formed distinct subpopulations. Calbindin- and GABA-positive neurons double stained for biocytin showed extensive axon collaterals within the nucleus of tractus solitarius and some calbindin-positive, but not GABA-positive neurons, had also projection axons leaving the nucleus of tractus solitarius. Dopamine-beta-hydroxylase-immunopositive neurons had a small (10.8+/-0.3 microm) or large (17.2+/-0.4 microm) cell body. Neurons with a small cell body were observed in the dorsomedial nucleus at the level of the area postrema, and in the area postrema, while neurons with a large cell body were observed in the medial nucleus throughout the caudal nucleus of tractus solitarius. Double fluorescence immunocytochemistry revealed that almost all small dopamine-beta-hydroxylase-positive neurons were also immunoreactive for calbindin, while large dopamine-beta-hydroxylase-positive neurons were not. Double staining for dopamine-beta-hydroxylase and biocytin showed that neurons with a small cell body had moderate axon collaterals. On the contrary, neurons with a large cell body had few, if any, axon collaterals and a projection axon which could leave the nucleus of tractus solitarius. Following stimulation of the tractus solitarius, all neurons with a small cell body exhibited a polysynaptic excitatory response (type I neurons), while dopamine-beta-hydroxylase-immunopositive neurons with a large cell body exhibited a monosynaptic excitatory response (type II neurons) or an excitatory followed by an inhibitory response (type III neurons). Spontaneous and evoked excitatory postsynaptic currents of (type I neurons) calbindin- or GABA-positive neurons were reversibly blocked by 6-cyano-7-nitroquinoxaline-2,3-dione. Spontaneous and evoked inhibitory postsynaptic currents of type III neurons were reversibly blocked by bicuculline. Type II neurons showed no spontaneous excitatory nor inhibitory postsynaptic currents. It was concluded that the three kinds of chemically-defined neurons formed distinct neuronal subpopulations in the caudal nucleus of tractus solitarius in terms of synaptic responses and morphological characteristics such as cell size and axonal trajectory.
Collapse
Affiliation(s)
- Y Kawai
- Department of Anatomy and Neurobiology, Wakayama Medical College, Japan
| | | |
Collapse
|
29
|
Gill CF, Madden JM, Roberts BP, Evans LD, King MS. A subpopulation of neurons in the rat rostral nucleus of the solitary tract that project to the parabrachial nucleus express glutamate-like immunoreactivity. Brain Res 1999; 821:251-62. [PMID: 10064811 DOI: 10.1016/s0006-8993(98)01270-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In rodents, gustatory information is transmitted from second order neurons in the rostral nucleus of the solitary tract (rNST) to the parabrachial nucleus (PBN) in the pons. The chemical nature of this projection is unknown. Therefore, the goal of the current study was to determine if rNST neurons that project to the PBN express glutamate-like immunoreactivity. Projection neurons were retrogradely labeled following stereotaxic injection of rhodamine-filled latex microspheres into the right PBN of seven rats while glutamate-immunoreactive (GLU-IR) structures were visualized in the same tissue using an immunoperoxidase procedure. The number of single- and double-labeled neurons located in the right (ipsilateral) and left rNST, in each of the nuclear subdivisions as well as their position along the rostral-caudal axis of the rNST was determined. GLU-IR cell bodies were located throughout the rNST. Although the rostral central subdivision contained the highest percentage (33.8%) of GLU-IR perikarya, immunolabeled neurons were most concentrated (number/area of subdivision) within the medial subnucleus. The rostral third of the rNST contained the fewest (20. 5%) and lowest density of GLU-IR cell bodies. The highest percentage of rNST neurons retrogradely labeled from the PBN were located ipsilateral (85.4%) to the pontine injection site, in the middle third of the nucleus (44.2%) and within the rostral central subdivision (52.4%). Overall, 18% of the labeled rNST projection neurons were GLU-IR. The distribution of double-labeled neurons mirrored that of the projection neurons with the largest number located in the ipsilateral rNST (84.5%), middle third of the nucleus (40.5%) and rostral central subdivision (64.7%). These results indicate that glutamate may be a main component of the ascending pathway from the rNST to the PBN. In addition, since GLU-IR neurons were located throughout the rNST and most were not retrogradely-labeled, the current results suggest that glutamate may be an important neurotrans-mitter within the medulla.
Collapse
Affiliation(s)
- C F Gill
- Unit 8264, 421 N. Woodland Blvd., Biology Department, Stetson University, DeLand, FL 32720, USA
| | | | | | | | | |
Collapse
|
30
|
Cellular and subcellular distribution of substance P receptor immunoreactivity in the dorsal vagal complex of the rat and cat: A light and electron microscope study. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981214)402:2<181::aid-cne4>3.0.co;2-b] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Dean JB, Huang RQ, Erlichman JS, Southard TL, Hellard DT. Cell-cell coupling occurs in dorsal medullary neurons after minimizing anatomical-coupling artifacts. Neuroscience 1997; 80:21-40. [PMID: 9252218 DOI: 10.1016/s0306-4522(97)00016-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dye (Lucifer Yellow) and tracer (Biocytin) coupling, referred to collectively as anatomical coupling, were identified in 20% of the solitary complex neurons tested in medullary tissue slices (120-350 microm) prepared from rat, postnatal day 1-18, using a modified amphotericin B-perforated patch recording technique. Ten per cent of the neurons sampled in nuclei outside the solitary complex were anatomically coupled. Fifty-eight per cent of anatomically coupled neurons exhibited electrotonic postsynaptic potential-like activity, which had peak-to-peak amplitudes of < or = 7 mV, with the same polarity as action potentials; increased and decreased in frequency during depolarizing and hyperpolarizing current injection; was maintained during high Mg2+-low Ca2+ chemical synaptic blockade; and was measured only in anatomically coupled neurons. The high correlation between anatomical coupling and electrotonic postsynaptic potential-like activity suggests that Lucifer Yellow, Biocytin and ionic current used the same pathways of intercellular communication, which were presumed to be gap junctions. Anatomical coupling was attributed solely to the junctional transfer of Lucifer Yellow and Biocytin since potential sources of non-junctional staining were minimized. Specifically, combining 0.26 mM amphotericin B and 0.15-0.5% Lucifer Yellow produced a hydrophobic, viscous solution that did not leak from the pressurized pipette tip < or = 3 microm outer diameter) submerged in artificial cerebral spinal fluid. Moreover, unintentional contact of the pipette tip with adjacent neurons that resulted in accidental staining, another source of non-junctional staining, wits averted by continuously visualizing the tip prior to tight seal formation with infrared video microscopy, used here for the first time with Hoffman modulation contrast optics. During perforated patch recording which typically lasted for 1-3 h. Lucifer Yellow was confined to the pipette, indicating that the amphotericin B patch was intact. However, once the patch was intentionally ruptured at the end of recording, the viscous, lipophilic solution entered the neuron resulting in double labeling. Placing a mixture of amphotericin B, Biocytin and Lucifer Yellow directly into the pipette tip did not compromise tight seal formation with an exposed, cleaned soma, and resulted in immediate (<1 min) steady-state perforation at 22-25 degrees C. This adaptation of conventional perforated patch recording was termed "rapid perforated patch recording". The possible functional implication of cell-cell coupling in the dorsal medulla oblongata in central CO2/H+ chemoreception for the cardiorespiratory control systems is discussed in the second paper of this set [Huang et al. (1997) Neuroscience 80, 41-57].
Collapse
Affiliation(s)
- J B Dean
- Department of Physiology and Biophysics, Wright State University, School of Medicine, Dayton, OH 45435, USA
| | | | | | | | | |
Collapse
|
32
|
Williams JB, Murphy DM, Reynolds KE, Welch SJ, King MS. Demonstration of a bilateral projection from the rostral nucleus of the solitary tract to the medial parabrachial nucleus in rat. Brain Res 1996; 737:231-7. [PMID: 8930370 DOI: 10.1016/0006-8993(96)00736-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study examined the projection from the rostral nucleus of the solitary tract (rNST) to the medial parabrachial nucleus (mPBN) in male Wistar rats using DiI as a retrograde tracer and biotinylated dextran as an anterograde tracer. Following successful unilateral injection of DiI into the mPBN (n = 8), retrogradely labeled neurons were always found in the rNST both ipsilateral and contralateral to the pontine injection site. Significantly, approximately 25% of the total number of DiI-labeled neurons were located in the contralateral rNST. The labeled neurons were located throughout the rostral-caudal extent of the rNST with the most cells being located in the central portion of the nucleus, and the fewest located ventromedially and dorsolaterally. Supporting the findings of the retrograde labeling study, axons and terminals, anterogradely labeled by injecting biotinylated dextran unilaterally into the rNST (n = 4), were always found in both the ipsilateral and contralateral mPBN. Although the intensity of anterograde labeling was higher ipsilaterally, a mirror-image staining pattern consistently was present contralaterally. These results indicate that there is a substantial contralateral component of the projection from the rNST to the mPBN. This suggests that convergence of gustatory information from the two sides of the oral cavity may occur within the pons before processing in higher brain centers. These findings may have important implications as to where and how bilateral gustatory information is processed and integrated.
Collapse
Affiliation(s)
- J B Williams
- Biology Department, Stetson University, DeLand, FL 32720, USA
| | | | | | | | | |
Collapse
|
33
|
Kawai Y, Senba E. Organization of excitatory and inhibitory local networks in the caudal nucleus of tractus solitarius of rats revealed in in vitro slice preparation. J Comp Neurol 1996; 373:309-21. [PMID: 8889930 DOI: 10.1002/(sici)1096-9861(19960923)373:3<309::aid-cne1>3.0.co;2-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Morphological and physiological properties of neurons in the caudal nucleus of tractus solitarius (NTS) of rats were studied in vitro by whole-cell recording and intracellular staining with biocytin. Synaptic responses following the solitary tract stimulation were also investigated to elucidate anatomical substrates of the underlying local circuits. Biocytin-filled NTS cells were divided into three groups according to the pattern of their axonal arborization: (1) local circuit neurons whose axon collaterals were extensively distributed within the NTS with the main axons leaving the NTS; (2) presumed interneurons whose axon collaterals seemed to be restricted within the NTS; and (3) projection neurons whose axons had few, if any, collaterals. Both local circuit neurons and presumed interneurons had small cell bodies (< 150 microns2 in somal area) and exhibited tonic regular spiking at depolarized membrane potentials. Polysynaptic excitatory background activity was increased and lasted for 300-1000 msec in these neurons following solitary tract stimulation. The projection neurons had medium to large cell bodies (> 150 microns2 in somal area). Inhibitory postsynaptic responses produced by an increased CI-conductance were recorded in these projection neurons. These findings suggest that excitatory local networks are organized by an assembly of the local circuit neurons in the caudal NTS, and that the interneurons are arranged to connect the excitatory local network with medium to large projection neurons via inhibitory synapses. Visceral afferent information is probably processed in the highly organized excitatory and inhibitory local networks within the caudal NTS and conveyed to other brain regions.
Collapse
Affiliation(s)
- Y Kawai
- Department of Neurobiology & Anatomy, Wakayama Medical College, Japan
| | | |
Collapse
|
34
|
Bradley PM, Burns BD, King TM, Webb AC. Morphological and electrophysiological properties of neurons in an area of the chick brain involved in learning. Brain Res 1996; 727:125-32. [PMID: 8842390 DOI: 10.1016/0006-8993(96)00361-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The intermediate, medial part of the hyperstriatum ventrale (IMHV) is an area of the avian forebrain which is essential for two forms of early learning in the domestic chick. We have developed an in vitro slice preparation which contains part of the IMHV and have found that the electrophysiological properties of the area show a considerable degree of plasticity. In particular, age and prior learning appear to modify the properties of single neurons recorded intracellularly. We have used the in vitro slice preparation to make intracellular recordings from 38 single neurons in the IMHV and have then dye-injected each cell to find out whether there is any relationship between electrophysiological and morphological characteristics. The basic membrane properties of each neuron were measured. Responses to standard electrical stimuli, delivered extracellularly, were also recorded, and each neuron was classified on this basis. Finally, the presence or absence of spontaneously occurring bursts of EPSPs was noted. At the end of recording biocytin was injected into the cell. After the tissue had been processed, each cell was drawn. The area of the cell body was measured, the number of dendrites was counted, and dendritic extent and branching were estimated. Each cell was also classified as 'spiny' or 'non-spiny'. We found that neurons displaying one particular type of response to external stimulation possessed a well defined set of morphological and electrical properties. In addition, three parameters--electrical resistance, somatic area, and the presence or absence of dendritic spines--were related to specific subsets of anatomical and physiological characteristics. The possible relevance of these findings to the plasticity of the IMHV is discussed.
Collapse
Affiliation(s)
- P M Bradley
- Division of Neurobiology, Medical School, University of Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
35
|
Renehan WE, Jin Z, Zhang X, Schweitzer L. Structure and function of gustatory neurons in the nucleus of the solitary tract: II. Relationships between neuronal morphology and physiology. J Comp Neurol 1996; 367:205-21. [PMID: 8708005 DOI: 10.1002/(sici)1096-9861(19960401)367:2<205::aid-cne4>3.0.co;2-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study employed intracellular recording and labeling techniques to examine potential relationships between the physiology and morphology of brainstem gustatory neurons. When we considered the neuronal response to the four "prototypic" tastants, we were able to demonstrate a positive correlation between breadth of responsiveness and the number of dendritic branch points. An analysis of the response to eight tastants also revealed an association between dendritic spine density and the breadth of responsiveness, with more narrowly tuned neurons exhibiting more spines. Interestingly, a neuron's "best response" was a relatively poor predictor of neuronal morphology. When we focused on those neurons that responded to only one tastant, however, a number of potentially important relationships became apparent. We found that the cells that only responded to quinine were smaller than the neurons that only responded to NaCl, HCl, or sucrose. The HCl-only neurons, however, were more widespread in the rostrocaudal dimension that the neurons that only responded to NaCl. A number of additional structure-function relationships were identified when we examined the neuronal response to selected tastants. We found that neurons that responded to sucrose but not quinine, as well as neurons that responded to quinine but not sucrose, were more widespread in the mediolateral dimension than neurons that responded to both sucrose and quinine. We also discovered that the neurons that responded to NaCl, but not to NH4Cl or KCl, were larger than neurons that responded to all three salts. We believe that these results support the hypothesis that there are relationships between the structure and function of gustatory neurons in the nucleus of the solitary tract, with the data highlighting the importance of three themes: 1) the relationship between dendritic specializations and tuning, 2) the relationship between dendritic arbor orientation and response properties, and 3) the potential importance of stimulus-specific neurons.
Collapse
Affiliation(s)
- W E Renehan
- Laboratory of Gastrointestinal, Gustatory and Somatic Sensation, Henry Ford Health Sciences Center, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
36
|
Wang L, Bradley RM. In vitro study of afferent synaptic transmission in the rostral gustatory zone of the rat nucleus of the solitary tract. Brain Res 1995; 702:188-98. [PMID: 8846076 DOI: 10.1016/0006-8993(95)01062-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The synaptic responses of rostral nucleus of the solitary tract (rNST) neurons to electrical stimulation of the solitary tract (ST) fibers were investigated using whole-cell recordings in brain slices of adult rat medulla. Most neurons of the rNST (47%) responded to stimulation of the ST with excitatory postsynaptic potentials (EPSPs), 28% responded with mixed excitatory and inhibitory postsynaptic potentials (PSPs) and 25% responded with inhibitory postsynaptic potentials (IPSPs). The estimated reversal potentials for the EPSPs (EEPSP) was -7 mV and for the IPSPs (EIPSP) was -69 mV. The glutamate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) acting at the alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA)/kainate receptor, either reduced or blocked all EPSPs tested. D-2-Amino-5-phosphonovalerate (APV), a selective N-methyl-D-aspartate (NMDA) receptor antagonist, also reduced the amplitude of the EPSPs. These results suggest that glutamate is released following stimulation of afferent fibers in the ST and acts on both AMPA/kainate and NMDA glutamate receptors. The IPSPs result from release of gamma-aminobutyric acid (GABA) since superfusion of the GABAA receptor antagonist, bicuculline reversibly blocked the IPSPs. The GABAB receptor antagonist, phaclofen, also reduced the IPSP components in some neurons, indicating that both GABAA and GABAB receptors are involved in inhibitory transmission in the rNST. When the morphology of the recorded neurons was examined by filling the neurons with biocytin and reconstructing the neurons, each morphological type of rNST neuron responded with excitatory and inhibitory PSPs following stimulation of the ST.
Collapse
Affiliation(s)
- L Wang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor 48109-1078, USA
| | | |
Collapse
|