1
|
Kis N, Lükő B, Herédi J, Magó Á, Erlinghagen B, Ahmadi M, Raus Balind S, Irás M, Ujfalussy BB, Makara JK. Cholinergic regulation of dendritic Ca 2+ spikes controls firing mode of hippocampal CA3 pyramidal neurons. Proc Natl Acad Sci U S A 2024; 121:e2321501121. [PMID: 39503887 PMCID: PMC11572977 DOI: 10.1073/pnas.2321501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/29/2024] [Indexed: 11/20/2024] Open
Abstract
Active dendritic integrative mechanisms such as regenerative dendritic spikes enrich the information processing abilities of neurons and fundamentally contribute to behaviorally relevant computations. Dendritic Ca2+ spikes are generally thought to produce plateau-like dendritic depolarization and somatic complex spike burst (CSB) firing, which can initiate rapid changes in spatial coding properties of hippocampal pyramidal cells (PCs). However, here we reveal that a morpho-topographically distinguishable subpopulation of rat and mouse hippocampal CA3PCs exhibits compound apical dendritic Ca2+ spikes with unusually short duration that do not support the firing of sustained CSBs. These Ca2+ spikes are mediated by L-type Ca2+ channels and their time course is restricted by A- and M-type K+ channels. Cholinergic activation powerfully converts short Ca2+ spikes to long-duration forms, and facilitates and prolongs CSB firing. We propose that cholinergic neuromodulation controls the ability of a CA3PC subtype to generate sustained plateau potentials, providing a state-dependent dendritic mechanism for memory encoding and retrieval.
Collapse
Affiliation(s)
- Noémi Kis
- Laboratory of Neuronal Signaling, Hungarian Research Network Institute of Experimental Medicine, Budapest1083, Hungary
- Doctoral College of Semmelweis University, János Szentágothai Neurosciences Division, Budapest1085, Hungary
| | - Balázs Lükő
- Laboratory of Neuronal Signaling, Hungarian Research Network Institute of Experimental Medicine, Budapest1083, Hungary
| | - Judit Herédi
- Laboratory of Cellular Neurophysiology, Hungarian Research Network Institute of Experimental Medicine, Budapest1083, Hungary
| | - Ádám Magó
- Laboratory of Neuronal Signaling, Hungarian Research Network Institute of Experimental Medicine, Budapest1083, Hungary
| | - Bela Erlinghagen
- Laboratory of Neuronal Signaling, Hungarian Research Network Institute of Experimental Medicine, Budapest1083, Hungary
| | - Mahboubeh Ahmadi
- Laboratory of Neuronal Signaling, Hungarian Research Network Institute of Experimental Medicine, Budapest1083, Hungary
| | - Snezana Raus Balind
- Laboratory of Neuronal Signaling, Hungarian Research Network Institute of Experimental Medicine, Budapest1083, Hungary
| | - Mátyás Irás
- Laboratory of Neuronal Signaling, Hungarian Research Network Institute of Experimental Medicine, Budapest1083, Hungary
| | - Balázs B. Ujfalussy
- Laboratory of Biological Computation, Hungarian Research Network Institute of Experimental Medicine, Budapest1083, Hungary
| | - Judit K. Makara
- Laboratory of Neuronal Signaling, Hungarian Research Network Institute of Experimental Medicine, Budapest1083, Hungary
| |
Collapse
|
2
|
Kong E, Zabeh E, Liao Z, Mihaila TS, Wilson C, Santhirasegaran C, Peterka DS, Losonczy A, Geiller T. Recurrent Connectivity Shapes Spatial Coding in Hippocampal CA3 Subregions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622379. [PMID: 39574766 PMCID: PMC11581023 DOI: 10.1101/2024.11.07.622379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Stable and flexible neural representations of space in the hippocampus are crucial for navigating complex environments. However, how these distinct representations emerge from the underlying local circuit architecture remains unknown. Using two-photon imaging of CA3 subareas during active behavior, we reveal opposing coding strategies within specific CA3 subregions, with proximal neurons demonstrating stable and generalized representations and distal neurons showing dynamic and context-specific activity. We show in artificial neural network models that varying the recurrence level causes these differences in coding properties to emerge. We confirmed the contribution of recurrent connectivity to functional heterogeneity by characterizing the representational geometry of neural recordings and comparing it with theoretical predictions of neural manifold dimensionality. Our results indicate that local circuit organization, particularly recurrent connectivity among excitatory neurons, plays a key role in shaping complementary spatial representations within the hippocampus.
Collapse
Affiliation(s)
- Eunji Kong
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Erfan Zabeh
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Tiberiu S Mihaila
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Caroline Wilson
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Charan Santhirasegaran
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Darcy S Peterka
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Tristan Geiller
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Li M, Jiang YQ, Lee DK, Wang H, Lu MC, Sun Q. Dorsoventral Heterogeneity of Synaptic Connectivity in Hippocampal CA3 Pyramidal Neurons. J Neurosci 2024; 44:e0370242024. [PMID: 39025678 PMCID: PMC11326861 DOI: 10.1523/jneurosci.0370-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/11/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
The hippocampal CA3 region plays an important role in learning and memory. CA3 pyramidal neurons (PNs) receive two prominent excitatory inputs-mossy fibers (MFs) from dentate gyrus (DG) and recurrent collaterals (RCs) from CA3 PNs-that play opposing roles in pattern separation and pattern completion, respectively. Although the dorsoventral heterogeneity of the hippocampal anatomy, physiology, and behavior has been well established, nothing is known about the dorsoventral heterogeneity of synaptic connectivity in CA3 PNs. In this study, we performed Timm's sulfide silver staining, dendritic and spine morphological analyses, and ex vivo electrophysiology in mice of both sexes to investigate the heterogeneity of MF and RC pathways along the CA3 dorsoventral axis. Our morphological analyses demonstrate that ventral CA3 (vCA3) PNs possess greater dendritic lengths and more complex dendritic arborization, compared with dorsal CA3 (dCA3) PNs. Moreover, using ChannelRhodopsin2 (ChR2)-assisted patch-clamp recording, we found that the ratio of the RC-to-MF excitatory drive onto CA3 PNs increases substantially from dCA3 to vCA3, with vCA3 PNs receiving significantly weaker MFs, but stronger RCs, excitation than dCA3 PNs. Given the distinct roles of MF versus RC inputs in pattern separation versus completion, our findings of the significant dorsoventral variations of MF and RC excitation in CA3 PNs may have important functional implications for the contribution of CA3 circuit to the dorsoventral difference in hippocampal function.
Collapse
Affiliation(s)
- Minghua Li
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Daniel K Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Haoran Wang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Melissa C Lu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qian Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
4
|
Ku SP, Atucha E, Alavi N, Mulla-Osman H, Kayumova R, Yoshida M, Csicsvari J, Sauvage MM. Phase locking of hippocampal CA3 neurons to distal CA1 theta oscillations selectively predicts memory performance. Cell Rep 2024; 43:114276. [PMID: 38814781 DOI: 10.1016/j.celrep.2024.114276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/09/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024] Open
Abstract
How the coordination of neuronal spiking and brain rhythms between hippocampal subregions supports memory function remains elusive. We studied the interregional coordination of CA3 neuronal spiking with CA1 theta oscillations by recording electrophysiological signals along the proximodistal axis of the hippocampus in rats that were performing a high-memory-demand recognition memory task adapted from humans. We found that CA3 population spiking occurs preferentially at the peak of distal CA1 theta oscillations when memory was tested but only when previously encountered stimuli were presented. In addition, decoding analyses revealed that only population cell firing of proximal CA3 together with that of distal CA1 can predict performance at test in the present non-spatial task. Overall, our work demonstrates an important role for the synchronization of CA3 neuronal activity with CA1 theta oscillations during memory testing.
Collapse
Affiliation(s)
- Shih-Pi Ku
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany.
| | - Erika Atucha
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Nico Alavi
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Halla Mulla-Osman
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Rukhshona Kayumova
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany
| | - Motoharu Yoshida
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Jozsef Csicsvari
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Magdalena M Sauvage
- Leibniz Institute for Neurobiology, Functional Architecture of Memory Department, Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Functional Neuroplasticity Department, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
5
|
Mertens EJ, Leibner Y, Pie J, Galakhova AA, Waleboer F, Meijer J, Heistek TS, Wilbers R, Heyer D, Goriounova NA, Idema S, Verhoog MB, Kalmbach BE, Lee BR, Gwinn RP, Lein ES, Aronica E, Ting J, Mansvelder HD, Segev I, de Kock CPJ. Morpho-electric diversity of human hippocampal CA1 pyramidal neurons. Cell Rep 2024; 43:114100. [PMID: 38607921 PMCID: PMC11106460 DOI: 10.1016/j.celrep.2024.114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/15/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Hippocampal pyramidal neuron activity underlies episodic memory and spatial navigation. Although extensively studied in rodents, extremely little is known about human hippocampal pyramidal neurons, even though the human hippocampus underwent strong evolutionary reorganization and shows lower theta rhythm frequencies. To test whether biophysical properties of human Cornu Amonis subfield 1 (CA1) pyramidal neurons can explain observed rhythms, we map the morpho-electric properties of individual CA1 pyramidal neurons in human, non-pathological hippocampal slices from neurosurgery. Human CA1 pyramidal neurons have much larger dendritic trees than mouse CA1 pyramidal neurons, have a large number of oblique dendrites, and resonate at 2.9 Hz, optimally tuned to human theta frequencies. Morphological and biophysical properties suggest cellular diversity along a multidimensional gradient rather than discrete clustering. Across the population, dendritic architecture and a large number of oblique dendrites consistently boost memory capacity in human CA1 pyramidal neurons by an order of magnitude compared to mouse CA1 pyramidal neurons.
Collapse
Affiliation(s)
- Eline J Mertens
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Yoni Leibner
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jean Pie
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Anna A Galakhova
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Femke Waleboer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Julia Meijer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Tim S Heistek
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - René Wilbers
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Djai Heyer
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Natalia A Goriounova
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | - Sander Idema
- Amsterdam UMC, location VUmc, Amsterdam 1081 HV, the Netherlands
| | - Matthijs B Verhoog
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands
| | | | - Brian R Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ryder P Gwinn
- Epilepsy Surgery and Functional Neurosurgery, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jonathan Ting
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Huibert D Mansvelder
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands.
| | - Idan Segev
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | - Christiaan P J de Kock
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Berdugo‐Vega G, Dhingra S, Calegari F. Sharpening the blades of the dentate gyrus: how adult-born neurons differentially modulate diverse aspects of hippocampal learning and memory. EMBO J 2023; 42:e113524. [PMID: 37743770 PMCID: PMC11059975 DOI: 10.15252/embj.2023113524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/19/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
For decades, the mammalian hippocampus has been the focus of cellular, anatomical, behavioral, and computational studies aimed at understanding the fundamental mechanisms underlying cognition. Long recognized as the brain's seat for learning and memory, a wealth of knowledge has been accumulated on how the hippocampus processes sensory input, builds complex associations between objects, events, and space, and stores this information in the form of memories to be retrieved later in life. However, despite major efforts, our understanding of hippocampal cognitive function remains fragmentary, and models trying to explain it are continually revisited. Here, we review the literature across all above-mentioned domains and offer a new perspective by bringing attention to the most distinctive, and generally neglected, feature of the mammalian hippocampal formation, namely, the structural separability of the two blades of the dentate gyrus into "supra-pyramidal" and "infra-pyramidal". Next, we discuss recent reports supporting differential effects of adult neurogenesis in the regulation of mature granule cell activity in these two blades. We propose a model for how differences in connectivity and adult neurogenesis in the two blades can potentially provide a substrate for subtly different cognitive functions.
Collapse
Affiliation(s)
- Gabriel Berdugo‐Vega
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
- Present address:
Laboratory of Neuroepigenetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale Lausanne (EPFL)LausanneSwitzerland
| | - Shonali Dhingra
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| | - Federico Calegari
- CRTD‐Center for Regenerative Therapies DresdenTechnische Universität DresdenDresdenGermany
| |
Collapse
|
7
|
Handwerk CJ, Denzler CJ, Kalinowski AR, Cook HN, Rodriguez HV, Bland KM, Brett CA, Swinehart BD, Vinson EC, Vidal GS. Integrin β3 regulates apical dendritic morphology of pyramidal neurons throughout hippocampal CA3. Hippocampus 2023; 33:936-947. [PMID: 36967540 PMCID: PMC10952146 DOI: 10.1002/hipo.23530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023]
Abstract
In excitatory hippocampal pyramidal neurons, integrin β3 is critical for synaptic maturation and plasticity in vitro. Itgb3 is a potential autism susceptibility gene that regulates dendritic morphology in the cerebral cortex in a cell-specific manner. However, it is unknown what role Itgb3 could have in regulating hippocampal pyramidal dendritic morphology in vivo, a key feature that is aberrant in many forms of autism and intellectual disability. We found that Itgb3 mRNA is expressed in the stratum pyramidale of CA3. We examined the apical dendritic morphology of CA3 hippocampal pyramidal neurons in conditional Itgb3 knockouts and controls, utilizing the Thy1-GFP-M line. We fully reconstructed the apical dendrite of each neuron and determined each neuron's precise location along the dorsoventral, proximodistal, and radial axes of the stratum pyramidale. We found a very strong effect for Itgb3 expression on CA3 apical dendritic morphology: neurons from conditional Itgb3 knockouts had longer and thinner apical dendrites than controls, particularly in higher branch orders. We also assessed potential relationships between pairs of topographic or morphological variables, finding that most variable pairs were free from any linear relationships to each other. We also found that some neurons from controls, but not conditional Itgb3 knockouts, had a graded pattern of overall diameter along the dorsoventral and proximodistal axes of the stratum pyramidale of CA3. Taken together, Itgb3 is essential for constructing normal dendritic morphology in pyramidal neurons throughout CA3.
Collapse
Affiliation(s)
| | - Collin J. Denzler
- Department of BiologyJames Madison UniversityMSC 7801, HarrisonburgVirginia22807USA
| | - Anna R. Kalinowski
- Department of BiologyJames Madison UniversityMSC 7801, HarrisonburgVirginia22807USA
| | - Hollyn N. Cook
- Department of BiologyJames Madison UniversityMSC 7801, HarrisonburgVirginia22807USA
| | - Hilda V. Rodriguez
- Department of BiologyJames Madison UniversityMSC 7801, HarrisonburgVirginia22807USA
| | - Katherine M. Bland
- Department of BiologyJames Madison UniversityMSC 7801, HarrisonburgVirginia22807USA
| | - Cooper A. Brett
- Department of BiologyJames Madison UniversityMSC 7801, HarrisonburgVirginia22807USA
| | - Brian D. Swinehart
- Department of BiologyJames Madison UniversityMSC 7801, HarrisonburgVirginia22807USA
| | - Elizabeth C. Vinson
- Department of BiologyJames Madison UniversityMSC 7801, HarrisonburgVirginia22807USA
| | - George S. Vidal
- Department of BiologyJames Madison UniversityMSC 7801, HarrisonburgVirginia22807USA
| |
Collapse
|
8
|
Takeuchi Y, Yamashiro K, Noguchi A, Liu J, Mitsui S, Ikegaya Y, Matsumoto N. Machine learning-based segmentation of the rodent hippocampal CA2 area from Nissl-stained sections. Front Neuroanat 2023; 17:1172512. [PMID: 37449243 PMCID: PMC10336234 DOI: 10.3389/fnana.2023.1172512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
The hippocampus is a center of learning, memory, and spatial navigation. This region is divided into the CA1, CA2, and CA3 areas, which are anatomically different from each other. Among these divisions, the CA2 area is unique in terms of functional relevance to sociality. The CA2 area is often manually detected based on the size, shape, and density of neurons in the hippocampal pyramidal cell layer, but this manual segmentation relying on cytoarchitecture is impractical to apply to a large number of samples and dependent on experimenters' proficiency. Moreover, the CA2 area has been defined based on expression pattern of molecular marker proteins, but it generally takes days to complete immunostaining for such proteins. Thus, we asked whether the CA2 area can be systematically segmented based on cytoarchitecture alone. Since the expression pattern of regulator of G-protein signaling 14 (RGS14) signifies the CA2 area, we visualized the CA2 area in the mouse hippocampus by RGS14-immunostaining and Nissl-counterstaining and manually delineated the CA2 area. We then established "CAseg," a machine learning-based automated algorithm to segment the CA2 area with the F1-score of approximately 0.8 solely from Nissl-counterstained images that visualized cytoarchitecture. CAseg was extended to the segmentation of the prairie vole CA2 area, which raises the possibility that the use of this algorithm can be expanded to other species. Thus, CAseg will be beneficial for investigating unique properties of the hippocampal CA2 area.
Collapse
Affiliation(s)
- Yuki Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kotaro Yamashiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Jiayan Liu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinichi Mitsui
- Department of Rehabilitation Sciences, Graduate School of Health Sciences, Gunma University, Maebashi, Gunma, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Li M, Kinney JL, Jiang YQ, Lee DK, Wu Q, Lee D, Xiong WC, Sun Q. Hypothalamic Supramammillary Nucleus Selectively Excites Hippocampal CA3 Interneurons to Suppress CA3 Pyramidal Neuron Activity. J Neurosci 2023; 43:4612-4624. [PMID: 37117012 PMCID: PMC10286942 DOI: 10.1523/jneurosci.1910-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
A key mode of neuronal communication between distant brain regions is through excitatory synaptic transmission mediated by long-range glutamatergic projections emitted from principal neurons. The long-range glutamatergic projection normally forms numerous en passant excitatory synapses onto both principal neurons and interneurons along its path. Under physiological conditions, the monosynaptic excitatory drive onto postsynaptic principal neurons outweighs disynaptic feedforward inhibition, with the net effect of depolarizing principal neurons. In contrast with this conventional doctrine, here we report that a glutamatergic projection from the hypothalamic supramammillary nucleus (SuM) largely evades postsynaptic pyramidal neurons (PNs), but preferentially target interneurons in the hippocampal CA3 region to predominantly provide feedforward inhibition. Using viral-based retrograde and anterograde tracing and ChannelRhodopsin2 (ChR2)-assisted patch-clamp recording in mice of either sex, we show that SuM projects sparsely to CA3 and provides minimal excitation onto CA3 PNs. Surprisingly, despite its sparse innervation, the SuM input inhibits all CA3 PNs along the transverse axis. Further, we find that SuM provides strong monosynaptic excitation onto CA3 parvalbumin-expressing interneurons evenly along the transverse axis, which likely mediates the SuM-driven feedforward inhibition. Together, our results demonstrate that a novel long-range glutamatergic pathway largely evades principal neurons, but rather preferentially innervates interneurons in a distant brain region to suppress principal neuron activity. Moreover, our findings reveal a new means by which SuM regulates hippocampal activity through SuM-to-CA3 circuit, independent of the previously focused projections from SuM to CA2 or dentate gyrus.SIGNIFICANCE STATEMENT The dominant mode of neuronal communication between brain regions is the excitatory synaptic transmission mediated by long-range glutamatergic projections, which form en passant excitatory synapses onto both pyramidal neurons and interneurons along its path. Under normal conditions, the excitation onto postsynaptic neurons outweighs feedforward inhibition, with the net effect of depolarization. In contrast with this conventional doctrine, here we report that a glutamatergic input from hypothalamic supramammillary nucleus (SuM) largely evades PNs but selectively targets interneurons to almost exclusively provide disynaptic feedforward inhibition onto hippocampal CA3 PNs. Thus, our findings reveal a novel subcortical-hippocampal circuit that enables SuM to regulate hippocampal activity via SuM-CA3 circuit, independent of its projections to CA2 or dentate gyrus.
Collapse
Affiliation(s)
- Minghua Li
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jessica L Kinney
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Daniel K Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qiwen Wu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qian Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
10
|
He J, Xiao M, Zhao J, Wang Z, Yao Y, Cao J. Tree-structured neural networks: Spatiotemporal dynamics and optimal control. Neural Netw 2023; 164:395-407. [PMID: 37172459 DOI: 10.1016/j.neunet.2023.04.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
How the network topology drives the response dynamic is a basic question that has not yet been fully answered in neural networks. Elucidating the internal relation between topological structures and dynamics is instrumental in our understanding of brain function. Recent studies have revealed that the ring structure and star structure have a great influence on the dynamical behavior of neural networks. In order to further explore the role of topological structures in the response dynamic, we construct a new tree structure that differs from the ring structure and star structure of traditional neural networks. Considering the diffusion effect, we propose a diffusion neural network model with binary tree structure and multiple delays. How to design control strategies to optimize brain function has also been an open question. Thus, we put forward a novel full-dimensional nonlinear state feedback control strategy to optimize relevant neurodynamics. Some conditions about the local stability and Hopf bifurcation are obtained, and it is proved that the Turing instability does not occur. Moreover, for the formation of the spatially homogeneous periodic solution, some diffusion conditions are also fused together. Finally, several numerical examples are carried out to illustrate the results' correctness. Meanwhile, some comparative experiments are rendered to reveal the effectiveness of the proposed control strategy.
Collapse
Affiliation(s)
- Jiajin He
- College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China.
| | - Min Xiao
- College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China.
| | - Jing Zhao
- College of Automation & College of Artificial Intelligence, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, China.
| | - Zhengxin Wang
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yi Yao
- School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Jinde Cao
- School of Mathematics, Southeast University, Nanjing 210096, China; Yonsei Frontier Lab, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
11
|
Handwerk CJ, Bland KM, Denzler CJ, Kalinowski AR, Brett CA, Swinehart BD, Rodriguez HV, Cook HN, Vinson EC, Florenz ME, Vidal GS. Simultaneous 3D cellular positioning and apical dendritic morphology of transgenic fluorescent mouse CA3 hippocampal pyramidal neurons. J Neurosci Methods 2023; 388:109823. [PMID: 36809825 PMCID: PMC10006342 DOI: 10.1016/j.jneumeth.2023.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/31/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
BACKGROUND Pyramidal neurons throughout hippocampal CA3 are diverse in their dendritic morphology, and CA3 is not homogenous in its structure or function. Nonetheless, few structural studies have captured the precise 3D somatic position and the 3D dendritic morphology of CA3 pyramidal neurons simultaneously. NEW METHOD Here, we present a simple approach to reconstruct the apical dendritic morphology of CA3 pyramidal neurons using the transgenic fluorescent Thy1-GFP-M line. The approach simultaneously tracks the dorsoventral, tangential, and radial positions of reconstructed neurons within the hippocampus. It is especially designed for use with transgenic fluorescent mouse lines, which are commonly used in genetic studies of neuronal morphology and development. RESULTS We demonstrate how topographic and morphological data are captured from transgenic fluorescent mouse CA3 pyramidal neurons. COMPARISON WITH EXISTING METHODS There is no need to select and label CA3 pyramidal neurons with the transgenic fluorescent Thy1-GFP-M line. By taking transverse (not coronal) serial sections, we preserve fine dorsoventral, tangential, and radial somatic positioning of 3D-reconstructed neurons. Because CA2 is well defined by PCP4 immunohistochemistry, we use that technique here to to increase precision in defining tangential position along CA3. CONCLUSIONS We developed a method for simultaneously collecting precise somatic positioning as well as 3D morphological data among transgenic fluorescent mouse hippocampal pyramidal neurons. This fluorescent method should be compatible with many other transgenic fluorescent reporter lines and immunohistochemical methods, facilitating the capture of topographic and morphological data from a wide variety of genetic experiments in mouse hippocampus.
Collapse
Affiliation(s)
- Christopher J Handwerk
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Katherine M Bland
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Collin J Denzler
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Anna R Kalinowski
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Cooper A Brett
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Brian D Swinehart
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Hilda V Rodriguez
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Hollyn N Cook
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Elizabeth C Vinson
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - Madison E Florenz
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America
| | - George S Vidal
- Department of Biology, James Madison University, MSC 7801, Harrisonburg, VA 22807, United States of America.
| |
Collapse
|
12
|
Che X, Wu J, Liu H, Su J, Chen X. Cellular liquid-liquid phase separation: Concept, functions, regulations, and detections. J Cell Physiol 2023; 238:847-865. [PMID: 36870067 DOI: 10.1002/jcp.30980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/06/2023]
Abstract
Liquid-liquid phase separation is a multicomponent system separated into phases with different compositions and structures. It has been identified and explored in organisms after being introduced from the thermodynamic field. Condensate, the product of phase separation, exists in different scales of cellular structures, such as nucleolus, stress granules, and other organelles in nuclei or cytoplasm. And also play critical roles in different cellular behaviors. Here, we review the concept, thermodynamical and biochemical principles of phase separation. We summarized the main functions including the adjustment of biochemical reaction rates, the regulation of macromolecule folding state, subcellular structural support, the mediation of subcellular location, and intimately linked to different kinds of diseases, such as cancer and neurodegeneration. Advanced detection methods to investigate phase separation are collected and analyzed. We conclude with the discussion of anxiety of phase separation, and thought about how progress can be made to develop precise detection methods and disclose the potential application of condensates.
Collapse
Affiliation(s)
- Xuanlin Che
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Jiajun Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Hua Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.,Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.,Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| |
Collapse
|
13
|
Oliva A, Fernandez-Ruiz A, Karaba LA. CA2 orchestrates hippocampal network dynamics. Hippocampus 2023; 33:241-251. [PMID: 36575880 PMCID: PMC9974898 DOI: 10.1002/hipo.23495] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/25/2022] [Accepted: 12/11/2022] [Indexed: 12/29/2022]
Abstract
The hippocampus is composed of various subregions: CA1, CA2, CA3, and the dentate gyrus (DG). Despite the abundant hippocampal research literature, until recently, CA2 received little attention. The development of new genetic and physiological tools allowed recent studies characterizing the unique properties and functional roles of this hippocampal subregion. Despite its small size, the cellular content of CA2 is heterogeneous at the molecular and physiological levels. CA2 has been heavily implicated in social behaviors, including social memory. More generally, the mechanisms by which the hippocampus is involved in memory include the reactivation of neuronal ensembles following experience. This process is coordinated by synchronous network events known as sharp-wave ripples (SWRs). Recent evidence suggests that CA2 plays an important role in the generation of SWRs. The unique connectivity and physiological properties of CA2 pyramidal cells make this region a computational hub at the core of hippocampal information processing. Here, we review recent findings that support the role of CA2 in coordinating hippocampal network dynamics from a systems neuroscience perspective.
Collapse
Affiliation(s)
- Azahara Oliva
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | | | - Lindsay A Karaba
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| |
Collapse
|
14
|
Radzicki D, Chong S, Dudek SM. Morphological and molecular markers of mouse area CA2 along the proximodistal and dorsoventral hippocampal axes. Hippocampus 2023; 33:133-149. [PMID: 36762588 PMCID: PMC10443601 DOI: 10.1002/hipo.23509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023]
Abstract
Hippocampal area CA2 is a molecularly and functionally distinct region of the hippocampus that has classically been defined as the area with large pyramidal neurons lacking input from the dentate gyrus and the thorny excrescences (TEs) characteristic of CA3 neurons. A modern definition of CA2, however, makes use of the expression of several molecular markers that distinguish it from neighboring CA3 and CA1. Using immunohistochemistry, we sought to characterize the staining patterns of commonly used CA2 markers along the dorsal-ventral hippocampal axis and determine how these markers align along the proximodistal axis. We used a region of CA2 that stained for both Regulator of G-protein Signaling 14 (RGS14) and Purkinje Cell Protein 4 (PCP4; "double-labeled zone" [DLZ]) as a reference. Here, we report that certain commonly used CA2 molecular markers may be better suited for drawing distinct boundaries between CA2/3 and CA2/1. For example, RGS14+ and STEP+ neurons showed minimal to no extension into area CA1 while areas stained with VGluT2 and Wisteria Floribunda agglutinin were consistently smaller than the DLZ/CA2 borders by ~100 μ on the CA1 or CA3 sides respectively. In addition, these patterns are dependent on position along the dorsal-ventral hippocampal axis such that PCP4 labeling often extended beyond the distal border of the DLZ into CA1. Finally, we found that, consistent with previous findings, mossy fibers innervate a subset of RGS14 positive neurons (~65%-70%) and that mossy fiber bouton number and relative size in CA2 are less than that of boutons in CA3. Unexpectedly, we did find evidence of some complex spines on apical dendrites in CA2, though much fewer in number than in CA3. Our results indicate that certain molecular markers may be better suited than others when defining the proximal and distal borders of area CA2 and that the presence or absence of complex spines alone may not be suitable as a distinguishing feature differentiating CA3 from CA2 neurons.
Collapse
Affiliation(s)
- Daniel Radzicki
- Neurobiology Laboratory, National Institute of Environmental Health SciencesNational Institute of HealthResearch Triangle ParkNorth CarolinaUSA
| | - Sarah Chong
- Neurobiology Laboratory, National Institute of Environmental Health SciencesNational Institute of HealthResearch Triangle ParkNorth CarolinaUSA
| | - Serena M. Dudek
- Neurobiology Laboratory, National Institute of Environmental Health SciencesNational Institute of HealthResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
15
|
Piskorowski RA, Chevaleyre V. Hippocampal area CA2: interneuron disfunction during pathological states. Front Neural Circuits 2023; 17:1181032. [PMID: 37180763 PMCID: PMC10174260 DOI: 10.3389/fncir.2023.1181032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Hippocampal area CA2 plays a critical role in social recognition memory and has unique cellular and molecular properties that distinguish it from areas CA1 and CA3. In addition to having a particularly high density of interneurons, the inhibitory transmission in this region displays two distinct forms of long-term synaptic plasticity. Early studies on human hippocampal tissue have reported unique alteration in area CA2 with several pathologies and psychiatric disorders. In this review, we present recent studies revealing changes in inhibitory transmission and plasticity of area CA2 in mouse models of multiple sclerosis, autism spectrum disorder, Alzheimer's disease, schizophrenia and the 22q11.2 deletion syndrome and propose how these changes could underly deficits in social cognition observed during these pathologies.
Collapse
Affiliation(s)
- Rebecca A. Piskorowski
- Université Paris Cité, INSERM UMRS 1266, Institute of Psychiatry and Neuroscience of Paris, GHU Paris Psychiatrie et Neurosciences, Paris, France
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U1130, Sorbonne Université, Paris, France
- *Correspondence: Rebecca A. Piskorowski,
| | - Vivien Chevaleyre
- Université Paris Cité, INSERM UMRS 1266, Institute of Psychiatry and Neuroscience of Paris, GHU Paris Psychiatrie et Neurosciences, Paris, France
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR 8246, INSERM U1130, Sorbonne Université, Paris, France
| |
Collapse
|
16
|
Sun C, Schuman EM. Logistics of neuronal protein turnover: Numbers and mechanisms. Mol Cell Neurosci 2022; 123:103793. [PMID: 36396040 DOI: 10.1016/j.mcn.2022.103793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Research in the past twenty years or so has revealed that neurons synthesize and degrade proteins at their synapses to enable synaptic proteome remodelling on demand and in real-time. Here we provide a quantitative overview of the decentralized neuronal protein-turnover logistics. We first analyse the huge neuronal protein turnover demand that arises from subcellular compartments outside the cell body, followed by an overview of key quantities and modulation strategies in neuronal protein turnover logistics. In the end, we briefly review recent progress in neuronal local protein synthesis and summarize diverse protein-degradation mechanisms that are found near synapses.
Collapse
Affiliation(s)
- Chao Sun
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Bhasin G, Nair IR. Dynamic Hippocampal CA2 Responses to Contextual Spatial Novelty. Front Syst Neurosci 2022; 16:923911. [PMID: 36003545 PMCID: PMC9393711 DOI: 10.3389/fnsys.2022.923911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Hippocampal place cells are functional units of spatial navigation and are present in all subregions: CA1, CA2, CA3, and CA4. Recent studies on CA2 have indicated its role in social and contextual memories, but its contribution to spatial novelty detection and encoding remains largely unknown. The current study aims to uncover how CA2 processes spatial novelty and to distinguish its functional role towards the same from CA1. Accordingly, a novel 3-day paradigm was designed where animals were introduced to a completely new environment on the first day, and on subsequent days, novel segments were inserted into the existing spatial environment while the other segments remained the same, allowing us to compare novel and familiar parts of the same closed-loop track on multiple days. We found that spatial novelty leads to dynamic and complex hippocampal place cell firings at both individual neuron and population levels. Place cells in both CA1 and CA2 had strong responses to novel segments, leading to higher average firing rates and increased pairwise cross correlations across all days. However, CA2 place cells that fired for novel areas had lower spatial information scores than CA1 place cells active in the same areas. At the ensemble level, CA1 only responded to spatial novelty on day 1, when the environment was completely novel, whereas CA2 responded to it on all days, each time novelty was introduced. Therefore, CA2 was more sensitive and responsive to novel spatial features even when introduced in a familiar environment, unlike CA1.
Collapse
|
18
|
Blackstad JS, Osen KK, Leergaard TB. The fibro- and cyto-architecture demarcating the border between the dentate gyrus and CA3 in sheep (Ovis aries) and domestic pig (Sus scrofa domesticus). Hippocampus 2022; 32:639-659. [PMID: 35913094 PMCID: PMC9546232 DOI: 10.1002/hipo.23457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/28/2022] [Accepted: 07/07/2022] [Indexed: 11/05/2022]
Abstract
The hippocampal formation is essential for spatial navigation and episodic memory. The anatomical structure is largely similar across mammalian species, apart from the deep polymorphic layer of the dentate gyrus and the adjacent part of cornu ammonis 3 (CA3) which feature substantial variations. In rodents, the polymorphic layer has a triangular cross‐section abutting on the end of the CA3 pyramidal layer, while in primates it is long and band‐shaped capping the expanded CA3 end, which here lacks a distinct pyramidal layer. This structural variation has resulted in a confusing nomenclature and unclear anatomical criteria for the definition of the dentate‐ammonic border. Seeking to clarify the border, we present here a light microscopic investigation based on Golgi‐impregnated and Timm–thionin‐stained sections of the Artiodactyla sheep and domestic pig, in which the dentate gyrus and CA3 end have some topographical features in common with primates. In short, the band‐shaped polymorphic layer coincides with the Timm‐positive mossy fiber collateral plexus and the Timm‐negative subgranular zone. While the soma and excrescence‐covered proximal dendrites of the mossy cells are localized within the plexus, the peripheral mossy cell dendrites extend outside the plexus, both into the granular and molecular layers, and the CA3. The main mossy fibers leave the collateral plexus in a scattered formation to converge gradually through the CA3 end in between the dispersed pyramidal cells, which are of three subtypes, as in monkey, with the classical apical subtype dominating near the hidden blade, the nonapical subtype near the exposed blade, and the dentate subtype being the only pyramidal cells that extend dendrites into the dentate gyrus. In agreement with our previous study in mink, the findings show that the border between the dentate gyrus and the CA3 end can be more accurately localized by the mossy fiber system than by cyto‐architecture alone.
Collapse
Affiliation(s)
- Jan Sigurd Blackstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.,Kavli Institute for Systems Neuroscience and Center for Biology of Memory, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kirsten K Osen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Redman WT, Wolcott NS, Montelisciani L, Luna G, Marks TD, Sit KK, Yu CH, Smith S, Goard MJ. Long-term transverse imaging of the hippocampus with glass microperiscopes. eLife 2022; 11:75391. [PMID: 35775393 PMCID: PMC9249394 DOI: 10.7554/elife.75391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/12/2022] [Indexed: 11/19/2022] Open
Abstract
The hippocampus consists of a stereotyped neuronal circuit repeated along the septal-temporal axis. This transverse circuit contains distinct subfields with stereotyped connectivity that support crucial cognitive processes, including episodic and spatial memory. However, comprehensive measurements across the transverse hippocampal circuit in vivo are intractable with existing techniques. Here, we developed an approach for two-photon imaging of the transverse hippocampal plane in awake mice via implanted glass microperiscopes, allowing optical access to the major hippocampal subfields and to the dendritic arbor of pyramidal neurons. Using this approach, we tracked dendritic morphological dynamics on CA1 apical dendrites and characterized spine turnover. We then used calcium imaging to quantify the prevalence of place and speed cells across subfields. Finally, we measured the anatomical distribution of spatial information, finding a non-uniform distribution of spatial selectivity along the DG-to-CA1 axis. This approach extends the existing toolbox for structural and functional measurements of hippocampal circuitry.
Collapse
Affiliation(s)
- William T Redman
- Interdepartmental Graduate Program in Dynamical Neuroscience, University of California, Santa Barbara, United States
| | - Nora S Wolcott
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, United States
| | - Luca Montelisciani
- Cognitive and Systems Neuroscience Group, University of Amsterdam, Amsterdam, Netherlands
| | - Gabriel Luna
- Neuroscience Research Institute, University of California, Santa Barbara, United States
| | - Tyler D Marks
- Neuroscience Research Institute, University of California, Santa Barbara, United States
| | - Kevin K Sit
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, United States
| | - Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, United States
| | - Spencer Smith
- Neuroscience Research Institute, University of California, Santa Barbara, United States.,Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, United States
| | - Michael J Goard
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, United States.,Neuroscience Research Institute, University of California, Santa Barbara, United States.,Department of Psychological and Brain Sciences, University of California, Santa Barbara, United States
| |
Collapse
|
20
|
Lee H, Wang Z, Tillekeratne A, Lukish N, Puliyadi V, Zeger S, Gallagher M, Knierim JJ. Loss of functional heterogeneity along the CA3 transverse axis in aging. Curr Biol 2022; 32:2681-2693.e4. [PMID: 35597233 PMCID: PMC9233142 DOI: 10.1016/j.cub.2022.04.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 01/05/2023]
Abstract
Age-related deficits in pattern separation have been postulated to bias the output of hippocampal memory processing toward pattern completion, which can cause deficits in accurate memory retrieval. Although the CA3 region of the hippocampus is often conceptualized as a homogeneous network involved in pattern completion, growing evidence demonstrates a functional gradient in CA3 along the transverse axis, as pattern-separated outputs (dominant in the more proximal CA3) transition to pattern-completed outputs (dominant in the more distal CA3). We examined the neural representations along the CA3 transverse axis in young (Y), aged memory-unimpaired (AU), and aged memory-impaired (AI) rats when different changes were made to the environment. Functional heterogeneity in CA3 was observed in Y and AU rats when the environmental similarity was high (altered cues or altered environment shapes in the same room), with more orthogonalized representations in proximal CA3 than in distal CA3. In contrast, AI rats showed reduced orthogonalization in proximal CA3 but showed normal (i.e., generalized) representations in distal CA3, with little evidence of a functional gradient. Under experimental conditions when the environmental similarity was low (different rooms), representations in proximal and distal CA3 remapped in all rats, showing that CA3 of AI rats is able to encode distinctive representations for inputs with greater dissimilarity. These experiments support the hypotheses that the age-related bias toward hippocampal pattern completion is due to the loss in AI rats of the normal transition from pattern separation to pattern completion along the CA3 transverse axis.
Collapse
Affiliation(s)
- Heekyung Lee
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218,Correspondence: ;
| | - Zitong Wang
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205
| | - Arjuna Tillekeratne
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218
| | - Nick Lukish
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218
| | - Vyash Puliyadi
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD
| | - Scott Zeger
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205
| | - Michela Gallagher
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD,Kavli Neuroscience Discovery Institute, Johns Hopkins University
| | - James J. Knierim
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218,Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD,Kavli Neuroscience Discovery Institute, Johns Hopkins University,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205,Lead Contact,Correspondence: ;
| |
Collapse
|
21
|
Upchurch CM, Combe CL, Knowlton CJ, Rousseau VG, Gasparini S, Canavier CC. Long-Term Inactivation of Sodium Channels as a Mechanism of Adaptation in CA1 Pyramidal Neurons. J Neurosci 2022; 42:3768-3782. [PMID: 35332085 PMCID: PMC9087813 DOI: 10.1523/jneurosci.1914-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/28/2022] [Accepted: 03/09/2022] [Indexed: 11/21/2022] Open
Abstract
Many hippocampal CA1 pyramidal cells function as place cells, increasing their firing rate when a specific place field is traversed. The dependence of CA1 place cell firing on position within the place field is asymmetric. We investigated the source of this asymmetry by injecting triangular depolarizing current ramps to approximate the spatially tuned, temporally diffuse depolarizing synaptic input received by these neurons while traversing a place field. Ramps were applied to CA1 pyramidal neurons from male rats in vitro (slice electrophysiology) and in silico (multicompartmental NEURON model). Under control conditions, CA1 neurons fired more action potentials at higher frequencies on the up-ramp versus the down-ramp. This effect was more pronounced for dendritic compared with somatic ramps. We incorporated a four-state Markov scheme for NaV1.6 channels into our model and calibrated the spatial dependence of long-term inactivation according to the literature; this spatial dependence was sufficient to explain the difference in dendritic versus somatic ramps. Long-term inactivation reduced the firing frequency by decreasing open-state occupancy, and reduced spike amplitude during trains by decreasing occupancy in the closed state, which comprises the available pool. PKC activator phorbol-dibutyrate, known to reduce NaV long-term inactivation, removed spike amplitude attenuation in vitro more visibly in dendrites and greatly reduced adaptation, consistent with our hypothesized mechanism. Intracellular application of a peptide inducing long-term NaV inactivation elicited spike amplitude attenuation during spike trains in the soma and greatly enhanced adaptation. Our synergistic experimental/computational approach shows that long-term inactivation of NaV1.6 is a key mechanism of adaptation in CA1 pyramidal cells.SIGNIFICANCE STATEMENT The hippocampus plays an important role in certain types of memory, in part through context-specific firing of "place cells"; these cells were first identified in rodents as being particularly active when an animal is in a specific location in an environment, called the place field of that neuron. In this in vitro/in silico study, we found that long-term inactivation of sodium channels causes adaptation in the firing rate that could potentially skew the firing of CA1 hippocampal pyramidal neurons earlier within a place field. A computational model of the sodium channel revealed differential regulation of spike frequency and amplitude by long-term inactivation, which may be a general mechanism for spike frequency adaptation in the CNS.
Collapse
Affiliation(s)
- Carol M Upchurch
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Crescent L Combe
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Christopher J Knowlton
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Valery G Rousseau
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Sonia Gasparini
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Carmen C Canavier
- Department of Cell Biology & Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
22
|
Grochowska KM, Andres‐Alonso M, Karpova A, Kreutz MR. The needs of a synapse—How local organelles serve synaptic proteostasis. EMBO J 2022; 41:e110057. [PMID: 35285533 PMCID: PMC8982616 DOI: 10.15252/embj.2021110057] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/24/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
Synaptic function crucially relies on the constant supply and removal of neuronal membranes. The morphological complexity of neurons poses a significant challenge for neuronal protein transport since the machineries for protein synthesis and degradation are mainly localized in the cell soma. In response to this unique challenge, local micro‐secretory systems have evolved that are adapted to the requirements of neuronal membrane protein proteostasis. However, our knowledge of how neuronal proteins are synthesized, trafficked to membranes, and eventually replaced and degraded remains scarce. Here, we review recent insights into membrane trafficking at synaptic sites and into the contribution of local organelles and micro‐secretory pathways to synaptic function. We describe the role of endoplasmic reticulum specializations in neurons, Golgi‐related organelles, and protein complexes like retromer in the synthesis and trafficking of synaptic transmembrane proteins. We discuss the contribution of autophagy and of proteasome‐mediated and endo‐lysosomal degradation to presynaptic proteostasis and synaptic function, as well as nondegradative roles of autophagosomes and lysosomes in signaling and synapse remodeling. We conclude that the complexity of neuronal cyto‐architecture necessitates long‐distance protein transport that combines degradation with signaling functions.
Collapse
Affiliation(s)
- Katarzyna M Grochowska
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | - Maria Andres‐Alonso
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
| | - Anna Karpova
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences Otto von Guericke University Magdeburg Germany
| | - Michael R Kreutz
- Leibniz Group “Dendritic Organelles and Synaptic Function” Center for Molecular Neurobiology ZMNH University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Research Group Neuroplasticity Leibniz Institute for Neurobiology Magdeburg Germany
- Center for Behavioral Brain Sciences Otto von Guericke University Magdeburg Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg Germany
| |
Collapse
|
23
|
Functionally-distinct pyramidal cell subpopulations during gamma oscillations in mouse hippocampal area CA3. Prog Neurobiol 2021; 210:102213. [PMID: 34954329 DOI: 10.1016/j.pneurobio.2021.102213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/09/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022]
Abstract
Gamma oscillations (γ-oscillations) in hippocampal area CA3 are essential for memory function. Particularly, CA3 is involved in the memory related process pattern completion, which is linked with the γ-oscillations in human hippocampus. Recent studies suggest that heterogeneity in the functional properties of pyramidal cells (PCs) in CA3 plays an important role in hippocampal function. By performing concomitant recordings of PC activity and network γ-oscillations in CA3 we found three functionally-different PC subpopulations. PCs with high spike-frequency adaptation (hAPC) have the strongest action potential gamma phase-coupling, PCs with low adaptation (lAPC) show lower phase-coupling and PCs displaying a burst-firing pattern (BPC) remained quiescent. In addition, we discovered that hAPC display the highest excitatory/inhibitory drive, followed by lAPC, and lastly BPC. In conclusion, our data advance the hypothesis that PCs in CA3 are organized into subpopulations with distinct functional roles for cognition-relevant network dynamics and provide new insights in the physiology of hippocampus.
Collapse
|
24
|
Lin X, Amalraj M, Blanton C, Avila B, Holmes TC, Nitz DA, Xu X. Noncanonical projections to the hippocampal CA3 regulate spatial learning and memory by modulating the feedforward hippocampal trisynaptic pathway. PLoS Biol 2021; 19:e3001127. [PMID: 34928938 PMCID: PMC8741299 DOI: 10.1371/journal.pbio.3001127] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 01/07/2022] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
The hippocampal formation (HF) is well documented as having a feedforward, unidirectional circuit organization termed the trisynaptic pathway. This circuit organization exists along the septotemporal axis of the HF, but the circuit connectivity across septal to temporal regions is less well described. The emergence of viral genetic mapping techniques enhances our ability to determine the detailed complexity of HF circuitry. In earlier work, we mapped a subiculum (SUB) back projection to CA1 prompted by the discovery of theta wave back propagation from the SUB to CA1 and CA3. We reason that this circuitry may represent multiple extended noncanonical pathways involving the subicular complex and hippocampal subregions CA1 and CA3. In the present study, multiple retrograde viral tracing approaches produced robust mapping results, which supports this prediction. We find significant noncanonical synaptic inputs to dorsal hippocampal CA3 from ventral CA1 (vCA1), perirhinal cortex (Prh), and the subicular complex. Thus, CA1 inputs to CA3 run opposite the trisynaptic pathway and in a temporal to septal direction. Our retrograde viral tracing results are confirmed by anterograde-directed viral mapping of projections from input mapped regions to hippocampal dorsal CA3 (dCA3). We find that genetic inactivation of the projection of vCA1 to dCA3 impairs object-related spatial learning and memory but does not modulate anxiety-related behaviors. Our data provide a circuit foundation to explore novel functional roles contributed by these noncanonical hippocampal circuit connections to hippocampal circuit dynamics and learning and memory behaviors.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, California, United States of America
| | - Michelle Amalraj
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, California, United States of America
| | - Crisylle Blanton
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, California, United States of America
| | - Brenda Avila
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, California, United States of America
| | - Todd C. Holmes
- Department Physiology & Biophysics, School of Medicine, University of California, Irvine, California, United States of America
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, California, United States of America
| | - Douglas A. Nitz
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, California, United States of America
- Department of Cognitive Science, University of California San Diego, La Jolla, California, United States of America
| | - Xiangmin Xu
- Department Anatomy & Neurobiology, School of Medicine, University of California, Irvine, California, United States of America
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, California, United States of America
| |
Collapse
|
25
|
Prince LY, Bacon T, Humphries R, Tsaneva-Atanasova K, Clopath C, Mellor JR. Separable actions of acetylcholine and noradrenaline on neuronal ensemble formation in hippocampal CA3 circuits. PLoS Comput Biol 2021; 17:e1009435. [PMID: 34597293 PMCID: PMC8513881 DOI: 10.1371/journal.pcbi.1009435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 10/13/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
In the hippocampus, episodic memories are thought to be encoded by the formation of ensembles of synaptically coupled CA3 pyramidal cells driven by sparse but powerful mossy fiber inputs from dentate gyrus granule cells. The neuromodulators acetylcholine and noradrenaline are separately proposed as saliency signals that dictate memory encoding but it is not known if they represent distinct signals with separate mechanisms. Here, we show experimentally that acetylcholine, and to a lesser extent noradrenaline, suppress feed-forward inhibition and enhance Excitatory-Inhibitory ratio in the mossy fiber pathway but CA3 recurrent network properties are only altered by acetylcholine. We explore the implications of these findings on CA3 ensemble formation using a hierarchy of models. In reconstructions of CA3 pyramidal cells, mossy fiber pathway disinhibition facilitates postsynaptic dendritic depolarization known to be required for synaptic plasticity at CA3-CA3 recurrent synapses. We further show in a spiking neural network model of CA3 how acetylcholine-specific network alterations can drive rapid overlapping ensemble formation. Thus, through these distinct sets of mechanisms, acetylcholine and noradrenaline facilitate the formation of neuronal ensembles in CA3 that encode salient episodic memories in the hippocampus but acetylcholine selectively enhances the density of memory storage.
Collapse
Affiliation(s)
- Luke Y. Prince
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
- Mila, Montreal, Quebec, Canada
- School of Computer Science, McGill University, Montreal, Quebec, Canada
| | - Travis Bacon
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Rachel Humphries
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Department of Mathematics and Living Systems Institute, University of Exeter, Exeter, United Kingdom
- EPRSC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom
| | - Claudia Clopath
- Bioengineering Department, Imperial College London, London, United Kingdom
| | - Jack R. Mellor
- Centre for Synaptic Plasticity, School of Physiology Pharmacology, and Neuroscience, University of Bristol, Bristol, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Whitney K, Nikulina E, Rahman SN, Alexis A, Bergold PJ. Delayed dosing of minocycline plus N-acetylcysteine reduces neurodegeneration in distal brain regions and restores spatial memory after experimental traumatic brain injury. Exp Neurol 2021; 345:113816. [PMID: 34310944 DOI: 10.1016/j.expneurol.2021.113816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
Multiple drugs to treat traumatic brain injury (TBI) have failed clinical trials. Most drugs lose efficacy as the time interval increases between injury and treatment onset. Insufficient therapeutic time window is a major reason underlying failure in clinical trials. Few drugs have been developed with therapeutic time windows sufficiently long enough to treat TBI because little is known about which brain functions can be targeted if therapy is delayed hours to days after injury. We identified multiple injury parameters that are improved by first initiating treatment with the drug combination minocycline (MINO) plus N-acetylcysteine (NAC) at 72 h after injury (MN72) in a mouse closed head injury (CHI) experimental TBI model. CHI produces spatial memory deficits resulting in impaired performance on Barnes maze, hippocampal neuronal loss, and bilateral damage to hippocampal neurons, dendrites, spines and synapses. MN72 treatment restores Barnes maze acquisition and retention, protects against hippocampal neuronal loss, limits damage to dendrites, spines and synapses, and accelerates recovery of microtubule associated protein 2 (MAP2) expression, a key protein in maintaining proper dendritic architecture and synapse density. These data show that in addition to the structural integrity of the dendritic arbor, spine and synapse density can be successfully targeted with drugs first dosed days after injury. Retention of substantial drug efficacy even when first dosed 72 h after injury makes MINO plus NAC a promising candidate to treat clinical TBI.
Collapse
Affiliation(s)
- Kristen Whitney
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America; Program in Neural and Behavioral Science, School of Graduate Studies, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America
| | - Elena Nikulina
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America
| | - Syed N Rahman
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America
| | - Alisia Alexis
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America
| | - Peter J Bergold
- Department of Physiology and Pharmacology, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America; Program in Neural and Behavioral Science, School of Graduate Studies, State University of New York-Downstate Health Sciences University, Brooklyn, NY 11215, United States of America.
| |
Collapse
|
27
|
Meyer MAA, Radulovic J. Functional differentiation in the transverse plane of the hippocampus: An update on activity segregation within the DG and CA3 subfields. Brain Res Bull 2021; 171:35-43. [PMID: 33727088 PMCID: PMC8068647 DOI: 10.1016/j.brainresbull.2021.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/01/2022]
Abstract
Decades of neuroscience research in rodents have established an essential role of the hippocampus in the processing of episodic memories. Based on accumulating evidence of functional segregation in the hippocampus along the longitudinal axis, this role has been primarily ascribed to the dorsal hippocampus. More recent findings, however, demonstrate that functional segregation also occurs along transverse axis of the hippocampus, within the hippocampal subfields CA1, CA2, CA3, and the dentate gyrus (DG). Because the functional heterogeneity within CA1 has been addressed in several recent articles, here we discuss behavioral findings and putative mechanisms supporting generation of asymmetrical activity patterns along the transverse axis of DG and CA3. While transverse subnetworks appear to discretely contribute to the processing of spatial, non-spatial, temporal, and social components of episodic memories, integration of these components also occurs, especially in the CA3 subfield and possibly downstream, in the cortical targets of the hippocampus.
Collapse
Affiliation(s)
- Mariah A A Meyer
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States.
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States; Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
28
|
Lehr AB, Kumar A, Tetzlaff C, Hafting T, Fyhn M, Stöber TM. CA2 beyond social memory: Evidence for a fundamental role in hippocampal information processing. Neurosci Biobehav Rev 2021; 126:398-412. [PMID: 33775693 DOI: 10.1016/j.neubiorev.2021.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 01/16/2023]
Abstract
Hippocampal region CA2 has received increased attention due to its importance in social recognition memory. While its specific function remains to be identified, there are indications that CA2 plays a major role in a variety of situations, widely extending beyond social memory. In this targeted review, we highlight lines of research which have begun to converge on a more fundamental role for CA2 in hippocampus-dependent memory processing. We discuss recent proposals that speak to the computations CA2 may perform within the hippocampal circuit.
Collapse
Affiliation(s)
- Andrew B Lehr
- Department of Computational Neuroscience, University of Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Germany; Department of Computational Physiology, Simula Research Laboratory, Lysaker, Norway; Centre for Integrative Neuroplasticity, University of Oslo, Norway.
| | - Arvind Kumar
- Department of Computational Science and Technology, KTH Royal Institute of Technology, Sweden
| | - Christian Tetzlaff
- Department of Computational Neuroscience, University of Göttingen, Germany; Bernstein Center for Computational Neuroscience, University of Göttingen, Germany
| | - Torkel Hafting
- Centre for Integrative Neuroplasticity, University of Oslo, Norway; Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Marianne Fyhn
- Centre for Integrative Neuroplasticity, University of Oslo, Norway; Department of Biosciences, University of Oslo, Norway
| | - Tristan M Stöber
- Department of Computational Physiology, Simula Research Laboratory, Lysaker, Norway; Centre for Integrative Neuroplasticity, University of Oslo, Norway; Department of Informatics, University of Oslo, Norway.
| |
Collapse
|
29
|
Buss EW, Corbett NJ, Roberts JG, Ybarra N, Musial TF, Simkin D, Molina-Campos E, Oh KJ, Nielsen LL, Ayala GD, Mullen SA, Farooqi AK, D'Souza GX, Hill CL, Bean LA, Rogalsky AE, Russo ML, Curlik DM, Antion MD, Weiss C, Chetkovich DM, Oh MM, Disterhoft JF, Nicholson DA. Cognitive aging is associated with redistribution of synaptic weights in the hippocampus. Proc Natl Acad Sci U S A 2021; 118:e1921481118. [PMID: 33593893 PMCID: PMC7923642 DOI: 10.1073/pnas.1921481118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Behaviors that rely on the hippocampus are particularly susceptible to chronological aging, with many aged animals (including humans) maintaining cognition at a young adult-like level, but many others the same age showing marked impairments. It is unclear whether the ability to maintain cognition over time is attributable to brain maintenance, sufficient cognitive reserve, compensatory changes in network function, or some combination thereof. While network dysfunction within the hippocampal circuit of aged, learning-impaired animals is well-documented, its neurobiological substrates remain elusive. Here we show that the synaptic architecture of hippocampal regions CA1 and CA3 is maintained in a young adult-like state in aged rats that performed comparably to their young adult counterparts in both trace eyeblink conditioning and Morris water maze learning. In contrast, among learning-impaired, but equally aged rats, we found that a redistribution of synaptic weights amplifies the influence of autoassociational connections among CA3 pyramidal neurons, yet reduces the synaptic input onto these same neurons from the dentate gyrus. Notably, synapses within hippocampal region CA1 showed no group differences regardless of cognitive ability. Taking the data together, we find the imbalanced synaptic weights within hippocampal CA3 provide a substrate that can explain the abnormal firing characteristics of both CA3 and CA1 pyramidal neurons in aged, learning-impaired rats. Furthermore, our work provides some clarity with regard to how some animals cognitively age successfully, while others' lifespans outlast their "mindspans."
Collapse
Affiliation(s)
- Eric W Buss
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Nicola J Corbett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Joshua G Roberts
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Natividad Ybarra
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Timothy F Musial
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Dina Simkin
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | | | - Kwang-Jin Oh
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Lauren L Nielsen
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Gelique D Ayala
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Sheila A Mullen
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Anise K Farooqi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Gary X D'Souza
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Corinne L Hill
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Linda A Bean
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Annalise E Rogalsky
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Matthew L Russo
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612
| | - Dani M Curlik
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Marci D Antion
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Craig Weiss
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Dane M Chetkovich
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - M Matthew Oh
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - John F Disterhoft
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611;
| | - Daniel A Nicholson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612;
| |
Collapse
|
30
|
Heterogeneity of Age-Related Neural Hyperactivity along the CA3 Transverse Axis. J Neurosci 2021; 41:663-673. [PMID: 33257325 DOI: 10.1523/jneurosci.2405-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/12/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Age-related memory deficits are correlated with neural hyperactivity in the CA3 region of the hippocampus. Abnormal CA3 hyperactivity in aged rats has been proposed to contribute to an imbalance between pattern separation and pattern completion, resulting in overly rigid representations. Recent evidence of functional heterogeneity along the CA3 transverse axis suggests that proximal CA3 supports pattern separation while distal CA3 supports pattern completion. It is not known whether age-related CA3 hyperactivity is uniformly represented along the CA3 transverse axis. We examined the firing rates of CA3 neurons from young and aged, male, Long-Evans rats along the CA3 transverse axis. Consistent with prior studies, young CA3 cells showed an increasing gradient in mean firing rate from proximal to distal CA3. However, aged CA3 cells showed an opposite, decreasing trend, in that CA3 cells in aged rats were hyperactive in proximal CA3, but possibly hypoactive in distal CA3, compared with young (Y) rats. We suggest that, in combination with altered inputs from the entorhinal cortex and dentate gyrus (DG), the proximal CA3 region of aged rats may switch from its normal function that reflects the pattern separation output of the DG and instead performs a computation that reflects an abnormal bias toward pattern completion. In parallel, distal CA3 of aged rats may create weaker attractor basins that promote abnormal, bistable representations under certain conditions.SIGNIFICANCE STATEMENT Prior work suggested that age-related CA3 hyperactivity enhances pattern completion, resulting in rigid representations. Implicit in prior studies is the notion that hyperactivity is present throughout a functionally homogeneous CA3 network. However, more recent work has demonstrated functional heterogeneity along the CA3 transverse axis, in that proximal CA3 is involved in pattern separation and distal CA3 is involved in pattern completion. Here, we show that age-related hyperactivity is present only in proximal CA3, with potential hypoactivity in distal CA3. This result provides new insight in the role of CA3 in age-related memory impairments, suggesting that the rigid representations in aging result primarily from dysfunction of computational circuits involving the dentate gyrus (DG) and proximal CA3.
Collapse
|
31
|
Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap. J Neurosci 2020; 41:1665-1683. [PMID: 33361464 DOI: 10.1523/jneurosci.1193-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
A quantitative description of the hippocampal formation synaptic architecture is essential for understanding the neural mechanisms of episodic memory. Yet the existing knowledge of connectivity statistics between different neuron types in the rodent hippocampus only captures a mere 5% of this circuitry. We present a systematic pipeline to produce first-approximation estimates for most of the missing information. Leveraging the www.Hippocampome.org knowledge base, we derive local connection parameters between distinct pairs of morphologically identified neuron types based on their axonal-dendritic overlap within every layer and subregion of the hippocampal formation. Specifically, we adapt modern image analysis technology to determine the parcel-specific neurite lengths of every neuron type from representative morphologic reconstructions obtained from either sex. We then compute the average number of synapses per neuron pair using relevant anatomic volumes from the mouse brain atlas and ultrastructurally established interaction distances. Hence, we estimate connection probabilities and number of contacts for >1900 neuron type pairs, increasing the available quantitative assessments more than 11-fold. Connectivity statistics thus remain unknown for only a minority of potential synapses in the hippocampal formation, including those involving long-range (23%) or perisomatic (6%) connections and neuron types without morphologic tracings (7%). The described approach also yields approximate measurements of synaptic distances from the soma along the dendritic and axonal paths, which may affect signal attenuation and delay. Overall, this dataset fills a substantial gap in quantitatively describing hippocampal circuits and provides useful model specifications for biologically realistic neural network simulations, until further direct experimental data become available.SIGNIFICANCE STATEMENT The hippocampal formation is a crucial functional substrate for episodic memory and spatial representation. Characterizing the complex neuron type circuit of this brain region is thus important to understand the cellular mechanisms of learning and navigation. Here we present the first numerical estimates of connection probabilities, numbers of contacts per connected pair, and synaptic distances from the soma along the axonal and dendritic paths, for more than 1900 distinct neuron type pairs throughout the dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex. This comprehensive dataset, publicly released online at www.Hippocampome.org, constitutes an unprecedented quantification of the majority of the local synaptic circuit for a prominent mammalian neural system and provides an essential foundation for data-driven, anatomically realistic neural network models.
Collapse
|
32
|
Yu GJ, Bouteiller JMC, Berger TW. Topographic Organization of Correlation Along the Longitudinal and Transverse Axes in Rat Hippocampal CA3 Due to Excitatory Afferents. Front Comput Neurosci 2020; 14:588881. [PMID: 33328947 PMCID: PMC7715032 DOI: 10.3389/fncom.2020.588881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
The topographic organization of afferents to the hippocampal CA3 subfield are well-studied, but their role in influencing the spatiotemporal dynamics of population activity is not understood. Using a large-scale, computational neuronal network model of the entorhinal-dentate-CA3 system, the effects of the perforant path, mossy fibers, and associational system on the propagation and transformation of network spiking patterns were investigated. A correlation map was constructed to characterize the spatial structure and temporal evolution of pairwise correlations which underlie the emergent patterns found in the population activity. The topographic organization of the associational system gave rise to changes in the spatial correlation structure along the longitudinal and transverse axes of the CA3. The resulting gradients may provide a basis for the known functional organization observed in hippocampus.
Collapse
Affiliation(s)
- Gene J Yu
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA, United States
| | - Jean-Marie C Bouteiller
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA, United States
| | - Theodore W Berger
- Department of Biomedical Engineering, Center for Neural Engineering, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
33
|
The mRNA-Binding Protein RBM3 Regulates Activity Patterns and Local Synaptic Translation in Cultured Hippocampal Neurons. J Neurosci 2020; 41:1157-1173. [PMID: 33310754 PMCID: PMC7888222 DOI: 10.1523/jneurosci.0921-20.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/14/2020] [Accepted: 11/12/2020] [Indexed: 12/18/2022] Open
Abstract
The activity and the metabolism of the brain change rhythmically during the day/night cycle. Such rhythmicity is also observed in cultured neurons from the suprachiasmatic nucleus, which is a critical center in rhythm maintenance. However, this issue has not been extensively studied in cultures from areas less involved in timekeeping, as the hippocampus. Using neurons cultured from the hippocampi of newborn rats (both male and female), we observed significant time-dependent changes in global activity, in synaptic vesicle dynamics, in synapse size, and in synaptic mRNA amounts. A transcriptome analysis of the neurons, performed at different times over 24 h, revealed significant changes only for RNA-binding motif 3 (Rbm3). RBM3 amounts changed, especially in synapses. RBM3 knockdown altered synaptic vesicle dynamics and changed the neuronal activity patterns. This procedure also altered local translation in synapses, albeit it left the global cellular translation unaffected. We conclude that hippocampal cultured neurons can exhibit strong changes in their activity levels over 24 h, in an RBM3-dependent fashion. SIGNIFICANCE STATEMENT This work is important in several ways. First, the discovery of relatively regular activity patterns in hippocampal cultures implies that future studies using this common model will need to take the time parameter into account, to avoid misinterpretation. Second, our work links these changes in activity strongly to RBM3, in a fashion that is independent of the canonical clock mechanisms, which is a very surprising observation. Third, we describe here probably the first molecule (RBM3) whose manipulation affects translation specifically in synapses, and not at the whole-cell level. This is a key finding for the rapidly growing field of local synaptic translation.
Collapse
|
34
|
Yagishita H, Nishimura Y, Noguchi A, Shikano Y, Ikegaya Y, Sasaki T. Urethane anesthesia suppresses hippocampal subthreshold activity and neuronal synchronization. Brain Res 2020; 1749:147137. [DOI: 10.1016/j.brainres.2020.147137] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/04/2020] [Accepted: 09/23/2020] [Indexed: 02/05/2023]
|
35
|
Georgiev DD, Kolev SK, Cohen E, Glazebrook JF. Computational capacity of pyramidal neurons in the cerebral cortex. Brain Res 2020; 1748:147069. [DOI: 10.1016/j.brainres.2020.147069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
|
36
|
Di Giaimo R, Penna E, Pizzella A, Cirillo R, Perrone-Capano C, Crispino M. Cross Talk at the Cytoskeleton-Plasma Membrane Interface: Impact on Neuronal Morphology and Functions. Int J Mol Sci 2020; 21:ijms21239133. [PMID: 33266269 PMCID: PMC7730950 DOI: 10.3390/ijms21239133] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/18/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
The cytoskeleton and its associated proteins present at the plasma membrane not only determine the cell shape but also modulate important aspects of cell physiology such as intracellular transport including secretory and endocytic pathways. Continuous remodeling of the cell structure and intense communication with extracellular environment heavily depend on interactions between cytoskeletal elements and plasma membrane. This review focuses on the plasma membrane-cytoskeleton interface in neurons, with a special emphasis on the axon and nerve endings. We discuss the interaction between the cytoskeleton and membrane mainly in two emerging topics of neurobiology: (i) production and release of extracellular vesicles and (ii) local synthesis of new proteins at the synapses upon signaling cues. Both of these events contribute to synaptic plasticity. Our review provides new insights into the physiological and pathological significance of the cytoskeleton-membrane interface in the nervous system.
Collapse
Affiliation(s)
- Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
- Correspondence: (R.D.G.); (M.C.)
| | - Eduardo Penna
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
| | - Amelia Pizzella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
| | - Raffaella Cirillo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
| | - Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, National Research Council (CNR), 80131 Naples, Italy
| | - Marianna Crispino
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (E.P.); (A.P.); (R.C.)
- Correspondence: (R.D.G.); (M.C.)
| |
Collapse
|
37
|
A framework for understanding the functions of biomolecular condensates across scales. Nat Rev Mol Cell Biol 2020; 22:215-235. [PMID: 33169001 DOI: 10.1038/s41580-020-00303-z] [Citation(s) in RCA: 482] [Impact Index Per Article: 96.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Biomolecular condensates are found throughout eukaryotic cells, including in the nucleus, in the cytoplasm and on membranes. They are also implicated in a wide range of cellular functions, organizing molecules that act in processes ranging from RNA metabolism to signalling to gene regulation. Early work in the field focused on identifying condensates and understanding how their physical properties and regulation arise from molecular constituents. Recent years have brought a focus on understanding condensate functions. Studies have revealed functions that span different length scales: from molecular (modulating the rates of chemical reactions) to mesoscale (organizing large structures within cells) to cellular (facilitating localization of cellular materials and homeostatic responses). In this Roadmap, we discuss representative examples of biochemical and cellular functions of biomolecular condensates from the recent literature and organize these functions into a series of non-exclusive classes across the different length scales. We conclude with a discussion of areas of current interest and challenges in the field, and thoughts about how progress may be made to further our understanding of the widespread roles of condensates in cell biology.
Collapse
|
38
|
Lee H, GoodSmith D, Knierim JJ. Parallel processing streams in the hippocampus. Curr Opin Neurobiol 2020; 64:127-134. [PMID: 32502734 PMCID: PMC8136469 DOI: 10.1016/j.conb.2020.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 01/06/2023]
Abstract
The hippocampus performs two complementary processes, pattern separation and pattern completion, to minimize interference and maximize the storage capacity of memories. Classic computational models have suggested that the dentate gyrus (DG) supports pattern separation and the putative attractor circuitry in CA3 supports pattern completion. However, recent evidence of functional heterogeneity along the CA3 transverse axis of the hippocampus suggests that the DG and proximal CA3 work as a functional unit for pattern separation, while distal CA3 forms an autoassociative network for pattern completion. We propose that the outputs of these functional circuits, combined with direct projections from entorhinal cortex to CA1, form interconnected, parallel processing circuits to support accurate memory storage and retrieval.
Collapse
Affiliation(s)
- Heekyung Lee
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Douglas GoodSmith
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James J Knierim
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
39
|
Sun Q, Jiang YQ, Lu MC. Topographic heterogeneity of intrinsic excitability in mouse hippocampal CA3 pyramidal neurons. J Neurophysiol 2020; 124:1270-1284. [PMID: 32937083 DOI: 10.1152/jn.00147.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Area CA3 in the hippocampus is traditionally thought to act as a homogeneous neural circuit that is vital for spatial navigation and episodic memories. However, recent studies have revealed that CA3 pyramidal neurons in dorsal hippocampus display marked anatomic and functional heterogeneity along the proximodistal (transverse) axis. The hippocampus is also known to be functionally segregated along the dorsoventral (longitudinal) axis, with dorsal hippocampus strongly involved in spatial navigation and ventral hippocampus associated with emotion and anxiety. Surprisingly, however, relatively little is known about CA3 functional heterogeneity along the dorsoventral axis. Here, we carried out mouse-brain-slice patch-clamp recordings and morphological analyses to examine the heterogeneity of CA3 cellular properties along both proximodistal and dorsoventral axes. We find that CA3 pyramidal neurons exhibit considerable heterogeneity of somatodendritic morphology and intrinsic membrane properties, with ventral CA3 (vCA3) displaying more elaborate somatodendritic morphology, lower intrinsic excitability, smaller input resistance, greater cell capacitance, and more prominent hyperpolarization-activated current than dorsal CA3 (dCA3). Furthermore, although both dCA3 and vCA3 exhibit proximal-to-distal gradients in intrinsic properties and neuronal morphology, these proximal-to-distal gradients in vCA3 are more moderate than those in dCA3. Taken together, our results extend previous findings on the proximodistal heterogeneity of dCA3 function and uncover a complex, yet orderly, pattern of topographic organization of CA3 neuronal features that extends to multiple anatomic dimensions and may contribute to its in vivo functional diversity.NEW & NOTEWORTHY Area CA3 is a major hippocampal region that is classically thought to act as a homogeneous neural network vital for spatial navigation and episodic memories. Here, we report that CA3 pyramidal neurons exhibit marked heterogeneity of somatodendritic morphology and cellular electrical properties along both proximodistal and dorsoventral axes. These new results uncover a complex, yet orderly, pattern of topographic organization of CA3 neuronal features that may contribute to its in vivo functional diversity.
Collapse
Affiliation(s)
- Qian Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yu-Qiu Jiang
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Melissa C Lu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
40
|
Stöber TM, Lehr AB, Hafting T, Kumar A, Fyhn M. Selective neuromodulation and mutual inhibition within the
CA3–CA2
system can prioritize sequences for replay. Hippocampus 2020; 30:1228-1238. [DOI: 10.1002/hipo.23256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Tristan M. Stöber
- Department of Computational Physiology Simula Research Laboratory Lysaker Norway
- Centre for Integrative Neuroplasticity University of Oslo Oslo Norway
- Department of Informatics University of Oslo Oslo Norway
| | - Andrew B. Lehr
- Department of Computational Physiology Simula Research Laboratory Lysaker Norway
- Centre for Integrative Neuroplasticity University of Oslo Oslo Norway
- Department of Computational Neuroscience University of Göttingen Göttingen Germany
| | - Torkel Hafting
- Centre for Integrative Neuroplasticity University of Oslo Oslo Norway
- Institute of Basic Medical Sciences University of Oslo Oslo Norway
| | - Arvind Kumar
- Department of Computational Science and Technology KTH Royal Institute of Technology Stockholm Sweden
| | - Marianne Fyhn
- Centre for Integrative Neuroplasticity University of Oslo Oslo Norway
- Department of Biosciences University of Oslo Oslo Norway
| |
Collapse
|
41
|
Teleńczuk M, Teleńczuk B, Destexhe A. Modelling unitary fields and the single-neuron contribution to local field potentials in the hippocampus. J Physiol 2020; 598:3957-3972. [PMID: 32598027 PMCID: PMC7540286 DOI: 10.1113/jp279452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/17/2020] [Indexed: 11/08/2022] Open
Abstract
Key points We simulate the unitary local field potential (uLFP) generated in the hippocampus CA3, using morphologically detailed models. The model suggests that cancelling effects between apical and basal dendritic synapses explain the low amplitude of excitatory uLFPs. Inhibitory synapses around the soma do not cancel and could explain the high‐amplitude inhibitory uLFPs. These results suggest that somatic inhibition constitutes a strong component of LFPs, which may explain a number of experimental observations.
Abstract Synaptic currents represent a major contribution to the local field potential (LFP) in brain tissue, but the respective contribution of excitatory and inhibitory synapses is not known. Here, we provide estimates of this contribution by using computational models of hippocampal pyramidal neurons, constrained by in vitro recordings. We focus on the unitary LFP (uLFP) generated by single neurons in the CA3 region of the hippocampus. We first reproduce experimental results for hippocampal basket cells, and in particular how inhibitory uLFP are distributed within hippocampal layers. Next, we calculate the uLFP generated by pyramidal neurons, using morphologically reconstructed CA3 pyramidal cells. The model shows that the excitatory uLFP is of small amplitude, smaller than inhibitory uLFPs. Indeed, when the two are simulated together, inhibitory uLFPs mask excitatory uLFPs, which might create the illusion that the inhibitory field is generated by pyramidal cells. These results provide an explanation for the observation that excitatory and inhibitory uLFPs are of the same polarity, in vivo and in vitro. These results suggest that somatic inhibitory currents are large contributors to the LFP, which is important information for interpreting this signal. Finally, the results of our model might form the basis of a simple method to compute the LFP, which could be applied to point neurons for each cell type, thus providing a simple biologically grounded method for calculating LFPs from neural networks. In conclusion, computational models constrained by in vitro recordings suggest that: (1) Excitatory uLFPs are of smaller amplitude than inhibitory uLFPs. (2) Inhibitory uLFPs form the major contribution to LFPs. (3) uLFPs can be used as a simple model to generate LFPs from spiking networks. We simulate the unitary local field potential (uLFP) generated in the hippocampus CA3, using morphologically detailed models. The model suggests that cancelling effects between apical and basal dendritic synapses explain the low amplitude of excitatory uLFPs. Inhibitory synapses around the soma do not cancel and could explain the high‐amplitude inhibitory uLFPs. These results suggest that somatic inhibition constitutes a strong component of LFPs, which may explain a number of experimental observations.
Collapse
Affiliation(s)
- Maria Teleńczuk
- Paris-Saclay University, Institute of Neuroscience (NeuroPSI), Centre National de la Recherche Scientifique, Gif-sur-Yvette, 91198, France
| | - Bartosz Teleńczuk
- Paris-Saclay University, Institute of Neuroscience (NeuroPSI), Centre National de la Recherche Scientifique, Gif-sur-Yvette, 91198, France
| | - Alain Destexhe
- Paris-Saclay University, Institute of Neuroscience (NeuroPSI), Centre National de la Recherche Scientifique, Gif-sur-Yvette, 91198, France
| |
Collapse
|
42
|
Trompoukis G, Papatheodoropoulos C. Dorsal-Ventral Differences in Modulation of Synaptic Transmission in the Hippocampus. Front Synaptic Neurosci 2020; 12:24. [PMID: 32625076 PMCID: PMC7316154 DOI: 10.3389/fnsyn.2020.00024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/14/2020] [Indexed: 11/17/2022] Open
Abstract
Functional diversification along the longitudinal axis of the hippocampus is a rapidly growing concept. Modulation of synaptic transmission by neurotransmitter receptors may importantly contribute to specialization of local intrinsic network function along the hippocampus. In the present study, using transverse slices from the dorsal and the ventral hippocampus of adult rats and recordings of evoked field postsynaptic excitatory potentials (fEPSPs) from the CA1 stratum radiatum, we aimed to compare modulation of synaptic transmission between the dorsal and the ventral hippocampus. We found that transient heterosynaptic depression (tHSD, <2 s), a physiologically relevant phenomenon of regulation of excitatory synaptic transmission induced by paired stimulation of two independent inputs to stratum radiatum of CA1 field, has an increased magnitude and duration in the ventral hippocampus, presumably contributing to increased input segregation in this segment of the hippocampus. GABAB receptors, GABAA receptors, adenosine A1 receptors and L-type voltage-gated calcium channels appear to contribute differently to tHSD in the two hippocampal segments; GABABRs play a predominant role in the ventral hippocampus while both GABABRs and A1Rs play important roles in the dorsal hippocampus. Activation of GABAB receptors by an exogenous agonist, baclofen, robustly and reversibly modulated both the initial fast and the late slow components of excitatory synaptic transmission, expressed by the fEPSPslope and fEPSP decay time constant (fEPSPτ), respectively. Specifically, baclofen suppressed fEPSP slope more in the ventral than in the dorsal hippocampus and enhanced fEPSPτ more in the dorsal than in the ventral hippocampus. Also, baclofen enhanced paired-pulse facilitation in the two hippocampal segments similarly. Blockade of GABAB receptors did not affect basal paired-pulse facilitation in either hippocampal segment. We propose that the revealed dorsal-ventral differences in modulation of synaptic transmission may provide a means for specialization of information processing in the local neuronal circuits, thereby significantly contributing to diversifying neuronal network functioning along the dorsal-ventral axis of hippocampus.
Collapse
Affiliation(s)
- George Trompoukis
- Laboratory of Physiology, Department of Medicine, University of Patras, Patras, Greece
| | | |
Collapse
|
43
|
Structural Correlates of CA2 and CA3 Pyramidal Cell Activity in Freely-Moving Mice. J Neurosci 2020; 40:5797-5806. [PMID: 32554511 DOI: 10.1523/jneurosci.0099-20.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Plasticity within hippocampal circuits is essential for memory functions. The hippocampal CA2/CA3 region is thought to be able to rapidly store incoming information by plastic modifications of synaptic weights within its recurrent network. High-frequency spike-bursts are believed to be essential for this process, by serving as triggers for synaptic plasticity. Given the diversity of CA2/CA3 pyramidal neurons, it is currently unknown whether and how burst activity, assessed in vivo during natural behavior, relates to principal cell heterogeneity. To explore this issue, we juxtacellularly recorded the activity of single CA2/CA3 neurons from freely-moving male mice, exploring a familiar environment. In line with previous work, we found that spatial and temporal activity patterns of pyramidal neurons correlated with their topographical position. Morphometric analysis revealed that neurons with a higher proportion of distal dendritic length displayed a higher tendency to fire spike-bursts. We propose that the dendritic architecture of pyramidal neurons might determine burst-firing by setting the relative amount of distal excitatory inputs from the entorhinal cortex.SIGNIFICANCE STATEMENT High-frequency spike-bursts are thought to serve fundamental computational roles within neural circuits. Within hippocampal circuits, spike-bursts are believed to serve as potent instructive signals, which increase the efficiency of information transfer and induce rapid modifications of synaptic efficacies. In the present study, by juxtacellularly recording and labeling single CA2/CA3 neurons in freely-moving mice, we explored whether and how burst propensity relates to pyramidal cell heterogeneity. We provide evidence that, within the CA2/CA3 region, neurons with higher proportion of distal dendritic length display a higher tendency to fire spike-bursts. Thus, the relative amount of entorhinal inputs, arriving onto the distal dendrites, might determine the burst propensity of individual CA2/CA3 neurons in vivo during natural behavior.
Collapse
|
44
|
miRNAs-dependent regulation of synapse formation and function. Genes Genomics 2020; 42:837-845. [DOI: 10.1007/s13258-020-00940-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022]
|
45
|
Daugherty AM, Schwarb HD, McGarry MDJ, Johnson CL, Cohen NJ. Magnetic Resonance Elastography of Human Hippocampal Subfields: CA3-Dentate Gyrus Viscoelasticity Predicts Relational Memory Accuracy. J Cogn Neurosci 2020; 32:1704-1713. [PMID: 32379003 DOI: 10.1162/jocn_a_01574] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampus is necessary for binding and reconstituting information in relational memory. These essential memory functions are supported by the distinct cytoarchitecture of the hippocampal subfields. Magnetic resonance elastography is an emerging tool that provides sensitive estimates of microstructure vis-à-vis tissue mechanical properties. Here, we report the first in vivo study of human hippocampal subfield viscoelastic stiffness and damping ratio. Stiffness describes resistance of a viscoelastic tissue to a stress and is thought to reflect the relative composition of tissue at the microscale; damping ratio describes relative viscous-to-elastic behavior and is thought to generally reflect microstructural organization. Measures from the subiculum (combined with presubiculum and parasubiculum), cornu ammonis (CA) 1-2, and CA3-dentate gyrus (CA3-DG) were collected in a sample of healthy, cognitively normal men (n = 20, age = 18-33 years). In line with known cytoarchitecture, the subiculum demonstrated the lowest damping ratio, followed by CA3-DG and then combined CA1-CA2. Moreover, damping ratio of the CA3-DG-potentially reflective of number of cells and their connections-predicted relational memory accuracy and alone replicated most of the variance in performance that was explained by the whole hippocampus. Stiffness did not differentiate the hippocampal subfields and was unrelated to task performance in this sample. Viscoelasticity measured with magnetic resonance elastography appears to be sensitive to microstructural properties relevant to specific memory function, even in healthy younger adults, and is a promising tool for future studies of hippocampal structure in aging and related diseases.
Collapse
|
46
|
Birefringence Changes of Dendrites in Mouse Hippocampal Slices Revealed with Polarizing Microscopy. Biophys J 2020; 118:2366-2384. [PMID: 32294480 DOI: 10.1016/j.bpj.2020.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/20/2020] [Accepted: 03/06/2020] [Indexed: 11/23/2022] Open
Abstract
Intrinsic optical signal (IOS) imaging has been widely used to map the patterns of brain activity in vivo in a label-free manner. Traditional IOS refers to changes in light transmission, absorption, reflectance, and scattering of the brain tissue. Here, we use polarized light for IOS imaging to monitor structural changes of cellular and subcellular architectures due to their neuronal activity in isolated brain slices. To reveal fast spatiotemporal changes of subcellular structures associated with neuronal activity, we developed the instantaneous polarized light microscope (PolScope), which allows us to observe birefringence changes in neuronal cells and tissues while stimulating neuronal activity. The instantaneous PolScope records changes in transmission, birefringence, and slow axis orientation in tissue at a high spatial and temporal resolution using a single camera exposure. These capabilities enabled us to correlate polarization-sensitive IOS with traditional IOS on the same preparations. We detected reproducible spatiotemporal changes in both IOSs at the stratum radiatum in mouse hippocampal slices evoked by electrical stimulation at Schaffer collaterals. Upon stimulation, changes in traditional IOS signals were broadly uniform across the area, whereas birefringence imaging revealed local variations not seen in traditional IOS. Locations with high resting birefringence produced larger stimulation-evoked birefringence changes than those produced at low resting birefringence. Local application of glutamate to the synaptic region in CA1 induced an increase in both transmittance and birefringence signals. Blocking synaptic transmission with inhibitors CNQX (for AMPA-type glutamate receptor) and D-APV (for NMDA-type glutamate receptor) reduced the peak amplitude of the optical signals. Changes in both IOSs were enhanced by an inhibitor of the membranous glutamate transporter, DL-TBOA. Our results indicate that the detection of activity-induced structural changes of the subcellular architecture in dendrites is possible in a label-free manner.
Collapse
|
47
|
O’Halloran DM. Simulation model of CA1 pyramidal neurons reveal opposing roles for the Na+/Ca2+ exchange current and Ca2+-activated K+ current during spike-timing dependent synaptic plasticity. PLoS One 2020; 15:e0230327. [PMID: 32150746 PMCID: PMC7062500 DOI: 10.1371/journal.pone.0230327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/27/2020] [Indexed: 11/18/2022] Open
Abstract
Sodium Calcium exchanger (NCX) proteins utilize the electrochemical gradient of Na+ to generate Ca2+ efflux (forward mode) or influx (reverse mode). In mammals, there are three unique NCX encoding genes—NCX1, NCX2, and NCX3, that comprise the SLC8A family, and mRNA from all three exchangers is expressed in hippocampal pyramidal cells. Furthermore, mutant ncx2-/- and ncx3-/- mice have each been shown to exhibit altered long-term potentiation (LTP) in the hippocampal CA1 region due to delayed Ca2+ clearance after depolarization that alters synaptic transmission. In addition to the role of NCX at the synapse of hippocampal subfields required for LTP, the three NCX isoforms have also been shown to localize to the dendrite of hippocampal pyramidal cells. In the case of NCX1, it has been shown to localize throughout the basal and apical dendrite of CA1 neurons where it helps compartmentalize Ca2+ between dendritic shafts and spines. Given the role for NCX and calcium in synaptic plasticity, the capacity of NCX splice-forms to influence backpropagating action potentials has clear consequences for the induction of spike-timing dependent synaptic plasticity (STDP). To explore this, we examined the effect of NCX localization, density, and allosteric activation on forward and back propagating signals and, next employed a STDP paradigm to monitor the effect of NCX on plasticity using back propagating action potentials paired with EPSPs. From our simulation studies we identified a role for the sodium calcium exchange current in normalizing STDP, and demonstrate that NCX is required at the postsynaptic site for this response. We also screened other mechanisms in our model and identified a role for the Ca2+ activated K+ current at the postsynapse in producing STDP responses. Together, our data reveal opposing roles for the Na+/Ca2+ exchanger current and the Ca2+ activated K+ current in setting STDP.
Collapse
Affiliation(s)
- Damien M. O’Halloran
- Department of Biological Sciences, The George Washington University, Washington DC, United States of America
- * E-mail:
| |
Collapse
|
48
|
Trushina NI, Mulkidjanian AY, Brandt R. The microtubule skeleton and the evolution of neuronal complexity in vertebrates. Biol Chem 2020; 400:1163-1179. [PMID: 31116700 DOI: 10.1515/hsz-2019-0149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
The evolution of a highly developed nervous system is mirrored by the ability of individual neurons to develop increased morphological complexity. As microtubules (MTs) are crucially involved in neuronal development, we tested the hypothesis that the evolution of complexity is driven by an increasing capacity of the MT system for regulated molecular interactions as it may be implemented by a higher number of molecular players and a greater ability of the individual molecules to interact. We performed bioinformatics analysis on different classes of components of the vertebrate neuronal MT cytoskeleton. We show that the number of orthologs of tubulin structure proteins, MT-binding proteins and tubulin-sequestering proteins expanded during vertebrate evolution. We observed that protein diversity of MT-binding and tubulin-sequestering proteins increased by alternative splicing. In addition, we found that regions of the MT-binding protein tau and MAP6 displayed a clear increase in disorder extent during evolution. The data provide evidence that vertebrate evolution is paralleled by gene expansions, changes in alternative splicing and evolution of coding sequences of components of the MT system. The results suggest that in particular evolutionary changes in tubulin-structure proteins, MT-binding proteins and tubulin-sequestering proteins were prominent drivers for the development of increased neuronal complexity.
Collapse
Affiliation(s)
- Nataliya I Trushina
- Department of Neurobiology, University of Osnabrück, Barbarastraße 11, D-49076 Osnabrück, Germany
| | - Armen Y Mulkidjanian
- Department of Physics, University of Osnabrück, Barbarastraße 7, D-49076 Osnabrück, Germany.,A.N. Belozersky Institute of Physico-Chemical Biology and School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roland Brandt
- Department of Neurobiology, University of Osnabrück, Barbarastraße 11, D-49076 Osnabrück, Germany.,Center for Cellular Nanoanalytics, University of Osnabrück, Barbarastraße 11, D-49076 Osnabrück, Germany.,Institute of Cognitive Science, University of Osnabrück, Barbarastraße 11, D-49076 Osnabrück, Germany
| |
Collapse
|
49
|
Lee J, Bae C, Lee D, Jung MW. Transient effect of mossy fiber stimulation on spatial firing of CA3 neurons in familiar and novel environments. Hippocampus 2020; 30:693-702. [PMID: 31999030 DOI: 10.1002/hipo.23190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/19/2019] [Accepted: 01/05/2020] [Indexed: 11/11/2022]
Abstract
Hippocampal mossy fibers have long been proposed to impose new patterns to learn onto CA3 neurons during new memory formation. However, inconsistent with this theory, we found in our previous study that mossy fiber stimulation induces only transient changes in CA3 spatial firing in a familiar environment. Here, we tested whether mossy fiber stimulation affects CA3 spatial firing differently between familiar and novel environments. We compared spatial firing of CA3 neurons before and after optogenetic stimulation of mossy fibers in freely behaving mice in a familiar and three sets of novel environments. We found that CA3 neurons are more responsive to mossy fiber stimulation in the novel than familiar environments. However, we failed to obtain evidence for long-lasting effect of mossy fiber stimulation on spatial firing of CA3 neurons in both the familiar and novel environments. Our results provide further evidence against the view that mossy fibers carry teaching signals.
Collapse
Affiliation(s)
- Joonyeup Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Chanmee Bae
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Doyun Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Min Whan Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| |
Collapse
|
50
|
O’Halloran DM. Module for SWC neuron morphology file validation and correction enabled for high throughput batch processing. PLoS One 2020; 15:e0228091. [PMID: 31971963 PMCID: PMC6977721 DOI: 10.1371/journal.pone.0228091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/07/2020] [Indexed: 11/19/2022] Open
Abstract
SWC files are a widely used format to store neuron morphologies, and are used to share digitally reconstructed neurons using NeuroMorpho.org as well as predict functional attributes using simulation environments such as NEURON. Here we set out to develop an easily accessible tool to validate and correct SWC formatted files with an emphasis on high throughput batch processing. SWC_BATCH_CHECK is a package that provides a suite of methods to parse and correct the syntactic structure of a directory of SWC files. This tool ensures that user specified structures such as the soma or basal dendrite are correctly connected while fixing morphological features. This tool will report on missing or invalid data values while also returning basic statistical features for each file. SWC_BATCH_CHECK was validated and tested using thousands of individual SWC files to benchmark runtime performance and efficacy in both reporting on and correcting disparate SWC file features. SWC_BATCH_CHECK is open source and freely available to all users without restriction with guidelines and requirements provided to ensure straightforward installation and execution.
Collapse
Affiliation(s)
- Damien M. O’Halloran
- Department of Biological Sciences, The George Washington University, Washington D.C., United States of America
- * E-mail:
| |
Collapse
|