1
|
Sweeney PW, Walsh C, Walker-Samuel S, Shipley RJ. A three-dimensional, discrete-continuum model of blood pressure in microvascular networks. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3832. [PMID: 38770788 DOI: 10.1002/cnm.3832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
We present a 3D discrete-continuum model to simulate blood pressure in large microvascular tissues in the absence of known capillary network architecture. Our hybrid approach combines a 1D Poiseuille flow description for large, discrete arteriolar and venular networks coupled to a continuum-based Darcy model, point sources of flux, for transport in the capillary bed. We evaluate our hybrid approach using a vascular network imaged from the mouse brain medulla/pons using multi-fluorescence high-resolution episcopic microscopy (MF-HREM). We use the fully-resolved vascular network to predict the hydraulic conductivity of the capillary network and generate a fully-discrete pressure solution to benchmark against. Our results demonstrate that the discrete-continuum methodology is a computationally feasible and effective tool for predicting blood pressure in real-world microvascular tissues when capillary microvessels are poorly defined.
Collapse
Affiliation(s)
- Paul W Sweeney
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Department of Mechanical Engineering, University College London, London, UK
| | - Claire Walsh
- Department of Mechanical Engineering, University College London, London, UK
- Centre for Computational Medicine, University College London, London, UK
| | | | - Rebecca J Shipley
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
2
|
Singh D, Paquin D. Modeling free tumor growth: Discrete, continuum, and hybrid approaches to interpreting cancer development. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:6659-6693. [PMID: 39176414 DOI: 10.3934/mbe.2024292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Tumor growth dynamics serve as a critical aspect of understanding cancer progression and treatment response to mitigate one of the most pressing challenges in healthcare. The in silico approach to understanding tumor behavior computationally provides an efficient, cost-effective alternative to wet-lab examinations and are adaptable to different environmental conditions, time scales, and unique patient parameters. As a result, this paper explored modeling of free tumor growth in cancer, surveying contemporary literature on continuum, discrete, and hybrid approaches. Factors like predictive power and high-resolution simulation competed against drawbacks like simulation load and parameter feasibility in these models. Understanding tumor behavior in different scenarios and contexts became the first step in advancing cancer research and revolutionizing clinical outcomes.
Collapse
Affiliation(s)
- Dashmi Singh
- Stanford University Online High School, 415 Broadway Academy Hall, Floor 2, 8853,415 Broadway, Redwood City, CA 94063, USA
| | - Dana Paquin
- Stanford University Online High School, 415 Broadway Academy Hall, Floor 2, 8853,415 Broadway, Redwood City, CA 94063, USA
| |
Collapse
|
3
|
Lorenzo G, Ahmed SR, Hormuth DA, Vaughn B, Kalpathy-Cramer J, Solorio L, Yankeelov TE, Gomez H. Patient-Specific, Mechanistic Models of Tumor Growth Incorporating Artificial Intelligence and Big Data. Annu Rev Biomed Eng 2024; 26:529-560. [PMID: 38594947 DOI: 10.1146/annurev-bioeng-081623-025834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Despite the remarkable advances in cancer diagnosis, treatment, and management over the past decade, malignant tumors remain a major public health problem. Further progress in combating cancer may be enabled by personalizing the delivery of therapies according to the predicted response for each individual patient. The design of personalized therapies requires the integration of patient-specific information with an appropriate mathematical model of tumor response. A fundamental barrier to realizing this paradigm is the current lack of a rigorous yet practical mathematical theory of tumor initiation, development, invasion, and response to therapy. We begin this review with an overview of different approaches to modeling tumor growth and treatment, including mechanistic as well as data-driven models based on big data and artificial intelligence. We then present illustrative examples of mathematical models manifesting their utility and discuss the limitations of stand-alone mechanistic and data-driven models. We then discuss the potential of mechanistic models for not only predicting but also optimizing response to therapy on a patient-specific basis. We describe current efforts and future possibilities to integrate mechanistic and data-driven models. We conclude by proposing five fundamental challenges that must be addressed to fully realize personalized care for cancer patients driven by computational models.
Collapse
Affiliation(s)
- Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
- Department of Civil Engineering and Architecture, University of Pavia, Pavia, Italy
| | - Syed Rakin Ahmed
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard Medical School, Harvard University, Cambridge, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Hormuth
- Livestrong Cancer Institutes, University of Texas, Austin, Texas, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
| | - Brenna Vaughn
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | | | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| | - Thomas E Yankeelov
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas, USA
- Department of Biomedical Engineering, Department of Oncology, and Department of Diagnostic Medicine, University of Texas, Austin, Texas, USA
- Livestrong Cancer Institutes, University of Texas, Austin, Texas, USA
- Oden Institute for Computational Engineering and Sciences, University of Texas, Austin, Texas, USA
| | - Hector Gomez
- School of Mechanical Engineering and Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA;
| |
Collapse
|
4
|
Wirthl B, Wirthl V, Wall WA. Efficient computational model of the in-flow capturing of magnetic nanoparticles by a cylindrical magnet for cancer nanomedicine. Phys Rev E 2024; 109:065309. [PMID: 39020899 DOI: 10.1103/physreve.109.065309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
Magnetic nanoparticles have emerged as a promising approach to improving cancer treatment. However, many nanoparticle designs fail in clinical trials due to a lack of understanding of how to overcome the in vivo transport barriers. To address this shortcoming, we develop a computational model aimed at the study of magnetic nanoparticles in vitro and in vivo. In this paper, we present an important building block for this overall goal, namely an efficient computational model of the in-flow capture of magnetic nanoparticles by a cylindrical permanent magnet in an idealized test setup. We use a continuum approach based on the Smoluchowski advection-diffusion equation, combined with a simple approach to consider the capture at an impenetrable boundary, and derive an analytical expression for the magnetic force of a cylindrical magnet of finite length on the nanoparticles. This provides a simple and numerically efficient way to study different magnet configurations and their influence on the nanoparticle distribution in three dimensions. Such an in silico model can increase insight into the underlying physics, help to design prototypes, and serve as a precursor to more complex systems in vivo and in silico.
Collapse
|
5
|
Wirthl B, Janko C, Lyer S, Schrefler BA, Alexiou C, Wall WA. An in silico model of the capturing of magnetic nanoparticles in tumour spheroids in the presence of flow. Biomed Microdevices 2023; 26:1. [PMID: 38008813 PMCID: PMC10678808 DOI: 10.1007/s10544-023-00685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
One of the main challenges in improving the efficacy of conventional chemotherapeutic drugs is that they do not reach the cancer cells at sufficiently high doses while at the same time affecting healthy tissue and causing significant side effects and suffering in cancer patients. To overcome this deficiency, magnetic nanoparticles as transporter systems have emerged as a promising approach to achieve more specific tumour targeting. Drug-loaded magnetic nanoparticles can be directed to the target tissue by applying an external magnetic field. However, the magnetic forces exerted on the nanoparticles fall off rapidly with distance, making the tumour targeting challenging, even more so in the presence of flowing blood or interstitial fluid. We therefore present a computational model of the capturing of magnetic nanoparticles in a test setup: our model includes the flow around the tumour, the magnetic forces that guide the nanoparticles, and the transport within the tumour. We show how a model for the transport of magnetic nanoparticles in an external magnetic field can be integrated with a multiphase tumour model based on the theory of porous media. Our approach based on the underlying physical mechanisms can provide crucial insights into mechanisms that cannot be studied conclusively in experimental research alone. Such a computational model enables an efficient and systematic exploration of the nanoparticle design space, first in a controlled test setup and then in more complex in vivo scenarios. As an effective tool for minimising costly trial-and-error design methods, it expedites translation into clinical practice to improve therapeutic outcomes and limit adverse effects for cancer patients.
Collapse
Affiliation(s)
- Barbara Wirthl
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Garching bei München, Germany.
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Lyer
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Professorship for AI-Guided Nanomaterials within the framework of the Hightech Agenda (HTA) of the Free State of Bavaria, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Bernhard A Schrefler
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Padua, Italy
- Institute for Advanced Study, Technical University of Munich, Garching bei München, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Garching bei München, Germany
| |
Collapse
|
6
|
Hervas-Raluy S, Wirthl B, Guerrero PE, Robalo Rei G, Nitzler J, Coronado E, Font de Mora Sainz J, Schrefler BA, Gomez-Benito MJ, Garcia-Aznar JM, Wall WA. Tumour growth: An approach to calibrate parameters of a multiphase porous media model based on in vitro observations of Neuroblastoma spheroid growth in a hydrogel microenvironment. Comput Biol Med 2023; 159:106895. [PMID: 37060771 DOI: 10.1016/j.compbiomed.2023.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/09/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
To unravel processes that lead to the growth of solid tumours, it is necessary to link knowledge of cancer biology with the physical properties of the tumour and its interaction with the surrounding microenvironment. Our understanding of the underlying mechanisms is however still imprecise. We therefore developed computational physics-based models, which incorporate the interaction of the tumour with its surroundings based on the theory of porous media. However, the experimental validation of such models represents a challenge to its clinical use as a prognostic tool. This study combines a physics-based model with in vitro experiments based on microfluidic devices used to mimic a three-dimensional tumour microenvironment. By conducting a global sensitivity analysis, we identify the most influential input parameters and infer their posterior distribution based on Bayesian calibration. The resulting probability density is in agreement with the scattering of the experimental data and thus validates the proposed workflow. This study demonstrates the huge challenges associated with determining precise parameters with usually only limited data for such complex processes and models, but also demonstrates in general how to indirectly characterise the mechanical properties of neuroblastoma spheroids that cannot feasibly be measured experimentally.
Collapse
Affiliation(s)
- Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain.
| | - Barbara Wirthl
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Pedro E Guerrero
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain
| | - Gil Robalo Rei
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Jonas Nitzler
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany; Professorship for Data-Driven Materials Modeling, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Esther Coronado
- Clinical and Translational Oncology Research Group, Instituto de Investigación La Fe,, Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Jaime Font de Mora Sainz
- Clinical and Translational Oncology Research Group, Instituto de Investigación La Fe,, Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Bernhard A Schrefler
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Marzolo 9, Padua, 35131, Italy; Institute for Advanced Study, Technical University of Munich, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering, Department of Mechanical Engineering, University of Zaragoza, Aragon Institute for Engineering Research (I3A), Maria de Luna 3, Zaragoza, 50018, Spain
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, TUM School of Engineering and Design, Department of Engineering Physics & Computation, Boltzmannstraße 15, Garching b. Munich, 85748, Germany
| |
Collapse
|
7
|
Wirthl B, Brandstaeter S, Nitzler J, Schrefler BA, Wall WA. Global sensitivity analysis based on Gaussian-process metamodelling for complex biomechanical problems. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3675. [PMID: 36546844 DOI: 10.1002/cnm.3675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 11/14/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Biomechanical models often need to describe very complex systems, organs or diseases, and hence also include a large number of parameters. One of the attractive features of physics-based models is that in those models (most) parameters have a clear physical meaning. Nevertheless, the determination of these parameters is often very elaborate and costly and shows a large scatter within the population. Hence, it is essential to identify the most important parameters (worth the effort) for a particular problem at hand. In order to distinguish parameters which have a significant influence on a specific model output from non-influential parameters, we use sensitivity analysis, in particular the Sobol method as a global variance-based method. However, the Sobol method requires a large number of model evaluations, which is prohibitive for computationally expensive models. We therefore employ Gaussian processes as a metamodel for the underlying full model. Metamodelling introduces further uncertainty, which we also quantify. We demonstrate the approach by applying it to two different problems: nanoparticle-mediated drug delivery in a complex, multiphase tumour-growth model, and arterial growth and remodelling. Even relatively small numbers of evaluations of the full model suffice to identify the influential parameters in both cases and to separate them from non-influential parameters. The approach also allows the quantification of higher-order interaction effects. We thus show that a variance-based global sensitivity analysis is feasible for complex, computationally expensive biomechanical models. Different aspects of sensitivity analysis are covered including a transparent declaration of the uncertainties involved in the estimation process. Such a global sensitivity analysis not only helps to massively reduce costs for experimental determination of parameters but is also highly beneficial for inverse analysis of such complex models.
Collapse
Affiliation(s)
- Barbara Wirthl
- Institute for Computational Mechanics, Department of Engineering Physics & Computation, TUM School of Engineering and Design, Technical University of Munich, Garching b. Muenchen, Germany
| | - Sebastian Brandstaeter
- Institute for Computational Mechanics, Department of Engineering Physics & Computation, TUM School of Engineering and Design, Technical University of Munich, Garching b. Muenchen, Germany
- Institute of Continuum and Materials Mechanics, Hamburg University of Technology, Hamburg, Germany
| | - Jonas Nitzler
- Institute for Computational Mechanics, Department of Engineering Physics & Computation, TUM School of Engineering and Design, Technical University of Munich, Garching b. Muenchen, Germany
- Professorship for Data-Driven Materials Modeling, Department of Engineering Physics & Computation, TUM School of Engineering and Design, Technical University of Munich, Garching b. Muenchen, Germany
| | - Bernhard A Schrefler
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Padua, Italy
- Institute for Advanced Study, Technical University of Munich, Garching b. Muenchen, Germany
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Department of Engineering Physics & Computation, TUM School of Engineering and Design, Technical University of Munich, Garching b. Muenchen, Germany
| |
Collapse
|
8
|
Akalın AA, Dedekargınoğlu B, Choi SR, Han B, Ozcelikkale A. Predictive Design and Analysis of Drug Transport by Multiscale Computational Models Under Uncertainty. Pharm Res 2023; 40:501-523. [PMID: 35650448 PMCID: PMC9712595 DOI: 10.1007/s11095-022-03298-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/17/2022] [Indexed: 01/18/2023]
Abstract
Computational modeling of drug delivery is becoming an indispensable tool for advancing drug development pipeline, particularly in nanomedicine where a rational design strategy is ultimately sought. While numerous in silico models have been developed that can accurately describe nanoparticle interactions with the bioenvironment within prescribed length and time scales, predictive design of these drug carriers, dosages and treatment schemes will require advanced models that can simulate transport processes across multiple length and time scales from genomic to population levels. In order to address this problem, multiscale modeling efforts that integrate existing discrete and continuum modeling strategies have recently emerged. These multiscale approaches provide a promising direction for bottom-up in silico pipelines of drug design for delivery. However, there are remaining challenges in terms of model parametrization and validation in the presence of variability, introduced by multiple levels of heterogeneities in disease state. Parametrization based on physiologically relevant in vitro data from microphysiological systems as well as widespread adoption of uncertainty quantification and sensitivity analysis will help address these challenges.
Collapse
Affiliation(s)
- Ali Aykut Akalın
- Department of Mechanical Engineering, Middle East Technical University, 06531, Ankara, Turkey
| | - Barış Dedekargınoğlu
- Department of Mechanical Engineering, Middle East Technical University, 06531, Ankara, Turkey
| | - Sae Rome Choi
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana, 47907, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana, 47907, USA.
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.
- Center for Cancer Research, Purdue University, 585 Purdue Mall, West Lafayette, Indiana, 47907, USA.
| | - Altug Ozcelikkale
- Department of Mechanical Engineering, Middle East Technical University, 06531, Ankara, Turkey.
| |
Collapse
|
9
|
Fritz M, Köppl T, Oden JT, Wagner A, Wohlmuth B, Wu C. A 1D-0D-3D coupled model for simulating blood flow and transport processes in breast tissue. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3612. [PMID: 35522186 DOI: 10.1002/cnm.3612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/30/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
In this work, we present mixed dimensional models for simulating blood flow and transport processes in breast tissue and the vascular tree supplying it. These processes are considered, to start from the aortic inlet to the capillaries and tissue of the breast. Large variations in biophysical properties and flow conditions exist in this system necessitating the use of different flow models for different geometries and flow regimes. In total, we consider four different model types. First, a system of 1D nonlinear hyperbolic partial differential equations (PDEs) is considered to simulate blood flow in larger arteries with highly elastic vessel walls. Second, we assign 1D linearized hyperbolic PDEs to model the smaller arteries with stiffer vessel walls. The third model type consists of ODE systems (0D models). It is used to model the arterioles and peripheral circulation. Finally, homogenized 3D porous media models are considered to simulate flow and transport in capillaries and tissue within the breast volume. Sink terms are used to account for the influence of the venous and lymphatic systems. Combining the four model types, we obtain two different 1D-0D-3D coupled models for simulating blood flow and transport processes: The first model results in a fully coupled 1D-0D-3D model covering the complete path from the aorta to the breast combining a generic arterial network with a patient specific breast network and geometry. The second model is a reduced one based on the separation of the generic and patient specific parts. The information from a calibrated fully coupled model is used as inflow condition for the patient specific sub-model allowing a significant computational cost reduction. Several numerical experiments are conducted to calibrate the generic model parameters and to demonstrate realistic flow simulations compared to existing data on blood flow in the human breast and vascular system. Moreover, we use two different breast vasculature and tissue data sets to illustrate the robustness of our reduced sub-model approach.
Collapse
Affiliation(s)
- Marvin Fritz
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Tobias Köppl
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - John Tinsley Oden
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Andreas Wagner
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Barbara Wohlmuth
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
10
|
Miller CT, Gray WG, Schrefler BA. A continuum mechanical framework for modeling tumor growth and treatment in two- and three-phase systems. ARCHIVE OF APPLIED MECHANICS = INGENIEUR-ARCHIV 2022; 92:461-489. [PMID: 35811645 PMCID: PMC9269988 DOI: 10.1007/s00419-021-01891-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The growth and treatment of tumors is an important problem to society that involves the manifestation of cellular phenomena at length scales on the order of centimeters. Continuum mechanical approaches are being increasingly used to model tumors at the largest length scales of concern. The issue of how to best connect such descriptions to smaller-scale descriptions remains open. We formulate a framework to derive macroscale models of tumor behavior using the thermodynamically constrained averaging theory (TCAT), which provides a firm connection with the microscale and constraints on permissible forms of closure relations. We build on developments in the porous medium mechanics literature to formulate fundamental entropy inequality expressions for a general class of three-phase, compositional models at the macroscale. We use the general framework derived to formulate two classes of models, a two-phase model and a three-phase model. The general TCAT framework derived forms the basis for a wide range of potential models of varying sophistication, which can be derived, approximated, and applied to understand not only tumor growth but also the effectiveness of various treatment modalities.
Collapse
Affiliation(s)
- Cass T Miller
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - William G Gray
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Bernhard A Schrefler
- Department of Civil, Environmental and Architectural Engineering, University of Padua, Padua, Italy
| |
Collapse
|
11
|
Kremheller J, Brandstaeter S, Schrefler BA, Wall WA. Validation and parameter optimization of a hybrid embedded/homogenized solid tumor perfusion model. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3508. [PMID: 34231326 DOI: 10.1002/cnm.3508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/21/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The goal of this paper is to investigate the validity of a hybrid embedded/homogenized in-silico approach for modeling perfusion through solid tumors. The rationale behind this novel idea is that only the larger blood vessels have to be explicitly resolved while the smaller scales of the vasculature are homogenized. As opposed to typical discrete or fully resolved 1D-3D models, the required data can be obtained with in-vivo imaging techniques since the morphology of the smaller vessels is not necessary. By contrast, the larger vessels, whose topology and structure is attainable noninvasively, are resolved and embedded as one-dimensional inclusions into the three-dimensional tissue domain which is modeled as a porous medium. A sound mortar-type formulation is employed to couple the two representations of the vasculature. We validate the hybrid model and optimize its parameters by comparing its results to a corresponding fully resolved model based on several well-defined metrics. These tests are performed on a complex data set of three different tumor types with heterogeneous vascular architectures. The correspondence of the hybrid model in terms of mean representative elementary volume blood and interstitial fluid pressures is excellent with relative errors of less than 4%. Larger, but less important and explicable errors are present in terms of blood flow in the smaller, homogenized vessels. We finally discuss and demonstrate how the hybrid model can be further improved to apply it for studies on tumor perfusion and the efficacy of drug delivery.
Collapse
Affiliation(s)
- Johannes Kremheller
- Institute for Computational Mechanics, Technical University of Munich, München, Germany
| | | | - Bernhard A Schrefler
- Institute for Advanced Study, Technical University of Munich, München, Germany
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, München, Germany
| |
Collapse
|
12
|
Akbarpour Ghazani M, Saghafian M, Jalali P, Soltani M. Mathematical simulation and prediction of tumor volume using RBF artificial neural network at different circumstances in the tumor microenvironment. Proc Inst Mech Eng H 2021; 235:1335-1355. [PMID: 34247529 PMCID: PMC8573697 DOI: 10.1177/09544119211028380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Uncontrolled proliferation of cells in a tissue caused by genetic mutations inside a cell is referred to as a tumor. A tumor which grows rapidly encounters a barrier when it grows to a certain size in presence of preexisting vasculature. This is the time when it has to find a way to go on the growth. The tumor starts to secrete tumor angiogenic factors (TAFs) and stimulate preexisting vessels to grow new sprouts. These new sprouts will find their way to the tumor in the extracellular matrix (ECM) by the gradient of TAF. As these new capillaries anastomose and reach tumor, fresh oxygen is available for the tumor and it will reinitiate the growth. Number of initial sprouts, distance of initial tumor cells from the vessel(s) and initial density of the tumor at the time of sprout formation are questions which are to be investigated. In the present study, the aim is to find the response of tumor cells and vessels to the reciprocal effects of each other in different circumstances in the tissue. Together with a mathematical formulation, a radial basis function (RBF) neural network is established to predict the number of tumor cells at different circumstances including size and distance of initial tumors from the parent vessel. A final formulation is given for the final number of tumor cells as a function of initial tumor size and distance between a parent vessel and a tumor. Results of this simulation demonstrate that, increasing the distance between a tumor and a parent vessel decreases the number of final tumor cells. Specially, this decrement becomes faster beyond a certain distance. Moreover, initial tumors in bigger domains must become much bigger before inducing angiogenesis which makes it harder for them to survive.
Collapse
Affiliation(s)
- Mehran Akbarpour Ghazani
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran.,Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohsen Saghafian
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Peyman Jalali
- Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.,Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.,Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.,Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
13
|
Hormuth DA, Phillips CM, Wu C, Lima EABF, Lorenzo G, Jha PK, Jarrett AM, Oden JT, Yankeelov TE. Biologically-Based Mathematical Modeling of Tumor Vasculature and Angiogenesis via Time-Resolved Imaging Data. Cancers (Basel) 2021; 13:3008. [PMID: 34208448 PMCID: PMC8234316 DOI: 10.3390/cancers13123008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 01/03/2023] Open
Abstract
Tumor-associated vasculature is responsible for the delivery of nutrients, removal of waste, and allowing growth beyond 2-3 mm3. Additionally, the vascular network, which is changing in both space and time, fundamentally influences tumor response to both systemic and radiation therapy. Thus, a robust understanding of vascular dynamics is necessary to accurately predict tumor growth, as well as establish optimal treatment protocols to achieve optimal tumor control. Such a goal requires the intimate integration of both theory and experiment. Quantitative and time-resolved imaging methods have emerged as technologies able to visualize and characterize tumor vascular properties before and during therapy at the tissue and cell scale. Parallel to, but separate from those developments, mathematical modeling techniques have been developed to enable in silico investigations into theoretical tumor and vascular dynamics. In particular, recent efforts have sought to integrate both theory and experiment to enable data-driven mathematical modeling. Such mathematical models are calibrated by data obtained from individual tumor-vascular systems to predict future vascular growth, delivery of systemic agents, and response to radiotherapy. In this review, we discuss experimental techniques for visualizing and quantifying vascular dynamics including magnetic resonance imaging, microfluidic devices, and confocal microscopy. We then focus on the integration of these experimental measures with biologically based mathematical models to generate testable predictions.
Collapse
Affiliation(s)
- David A. Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
| | - Caleb M. Phillips
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
| | - Chengyue Wu
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
| | - Ernesto A. B. F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX 78758, USA
| | - Guillermo Lorenzo
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Prashant K. Jha
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
| | - Angela M. Jarrett
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
| | - J. Tinsley Oden
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
- Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Mathematics, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Computer Science, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA; (C.M.P.); (C.W.); (E.A.B.F.L.); (G.L.); (P.K.J.); (J.T.O.); (T.E.Y.)
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
14
|
Richardson SIH, Gao H, Cox J, Janiczek R, Griffith BE, Berry C, Luo X. A poroelastic immersed finite element framework for modelling cardiac perfusion and fluid-structure interaction. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3446. [PMID: 33559359 PMCID: PMC8274593 DOI: 10.1002/cnm.3446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 05/11/2023]
Abstract
Modern approaches to modelling cardiac perfusion now commonly describe the myocardium using the framework of poroelasticity. Cardiac tissue can be described as a saturated porous medium composed of the pore fluid (blood) and the skeleton (myocytes and collagen scaffold). In previous studies fluid-structure interaction in the heart has been treated in a variety of ways, but in most cases, the myocardium is assumed to be a hyperelastic fibre-reinforced material. Conversely, models that treat the myocardium as a poroelastic material typically neglect interactions between the myocardium and intracardiac blood flow. This work presents a poroelastic immersed finite element framework to model left ventricular dynamics in a three-phase poroelastic system composed of the pore blood fluid, the skeleton, and the chamber fluid. We benchmark our approach by examining a pair of prototypical poroelastic formations using a simple cubic geometry considered in the prior work by Chapelle et al (2010). This cubic model also enables us to compare the differences between system behaviour when using isotropic and anisotropic material models for the skeleton. With this framework, we also simulate the poroelastic dynamics of a three-dimensional left ventricle, in which the myocardium is described by the Holzapfel-Ogden law. Results obtained using the poroelastic model are compared to those of a corresponding hyperelastic model studied previously. We find that the poroelastic LV behaves differently from the hyperelastic LV model. For example, accounting for perfusion results in a smaller diastolic chamber volume, agreeing well with the well-known wall-stiffening effect under perfusion reported previously. Meanwhile differences in systolic function, such as fibre strain in the basal and middle ventricle, are found to be comparatively minor.
Collapse
Affiliation(s)
| | - Hao Gao
- School of Mathematics and Statistics, University of
Glasgow, Glasgow, UK
| | | | | | - Boyce E. Griffith
- Departments of Mathematics, Applied Physical Sciences, and
Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina,
USA
| | - Colin Berry
- British Heart Foundation Glasgow Cardiovascular Research
Centre, University of Glasgow, Glasgow, UK
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of
Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Köppl T, Vidotto E, Wohlmuth B. A 3D-1D coupled blood flow and oxygen transport model to generate microvascular networks. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3386. [PMID: 32659047 DOI: 10.1002/cnm.3386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/18/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
In this work, we introduce an algorithmic approach to generate microvascular networks starting from larger vessels that can be reconstructed without noticeable segmentation errors. Contrary to larger vessels, the reconstruction of fine-scale components of microvascular networks shows significant segmentation errors, and an accurate mapping is time and cost intense. Thus there is a need for fast and reliable reconstruction algorithms yielding surrogate networks having similar stochastic properties as the original ones. The microvascular networks are constructed in a marching way by adding vessels to the outlets of the vascular tree from the previous step. To optimise the structure of the vascular trees, we use Murray's law to determine the radii of the vessels and bifurcation angles. In each step, we compute the local gradient of the partial pressure of oxygen and adapt the orientation of the new vessels to this gradient. At the same time, we use the partial pressure of oxygen to check whether the considered tissue block is supplied sufficiently with oxygen. Computing the partial pressure of oxygen, we use a 3D-1D coupled model for blood flow and oxygen transport. To decrease the complexity of a fully coupled 3D model, we reduce the blood vessel network to a 1D graph structure and use a bi-directional coupling with the tissue which is described by a 3D homogeneous porous medium. The resulting surrogate networks are analysed with respect to morphological and physiological aspects.
Collapse
Affiliation(s)
- Tobias Köppl
- Chair for Numerics, University of Technology Munich, Garching, Germany
| | - Ettore Vidotto
- Chair for Numerics, University of Technology Munich, Garching, Germany
| | - Barbara Wohlmuth
- Chair for Numerics, University of Technology Munich, Garching, Germany
- Department of Mathematics, University of Bergen, Allegaten 41, 5020 Bergen, Norway, Germany
| |
Collapse
|
16
|
Wirthl B, Kremheller J, Schrefler BA, Wall WA. Extension of a multiphase tumour growth model to study nanoparticle delivery to solid tumours. PLoS One 2020; 15:e0228443. [PMID: 32023318 PMCID: PMC7001947 DOI: 10.1371/journal.pone.0228443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/15/2020] [Indexed: 01/04/2023] Open
Abstract
One of the main challenges in increasing the efficacy of conventional chemotherapeutics is the fact that they do not reach cancerous cells at a sufficiently high dosage. In order to remedy this deficiency, nanoparticle-based drugs have evolved as a promising novel approach to more specific tumour targeting. Nevertheless, several biophysical phenomena prevent the sufficient penetration of nanoparticles in order to target the entire tumour. We therefore extend our vascular multiphase tumour growth model, enabling it to investigate the influence of different biophysical factors on the distribution of nanoparticles in the tumour microenvironment. The novel model permits the examination of the interplay between the size of vessel-wall pores, the permeability of the blood-vessel endothelium and the lymphatic drainage on the delivery of particles of different sizes. Solid tumours develop a non-perfused core and increased interstitial pressure. Our model confirms that those two typical features of solid tumours limit nanoparticle delivery. Only in case of small nanoparticles is the transport dominated by diffusion, and particles can reach the entire tumour. The size of the vessel-wall pores and the permeability of the blood-vessel endothelium have a major impact on the amount of delivered nanoparticles. This extended in-silico tumour growth model permits the examination of the characteristics and of the limitations of nanoparticle delivery to solid tumours, which currently complicate the translation of nanoparticle therapy to a clinical stage.
Collapse
Affiliation(s)
- Barbara Wirthl
- Institute for Computational Mechanics, Technical University of Munich, Garching b. München, Germany
| | - Johannes Kremheller
- Institute for Computational Mechanics, Technical University of Munich, Garching b. München, Germany
| | - Bernhard A. Schrefler
- Institute for Advanced Study, Technical University of Munich, Garching b. München, Germany
- Department of Civil, Environmental and Architectural Engineering, University of Padova, Padova, Italy
| | - Wolfgang A. Wall
- Institute for Computational Mechanics, Technical University of Munich, Garching b. München, Germany
| |
Collapse
|