1
|
Hoch E, Briandet R, Hezard B, Lintz A, Stahl V, Omhover-Fougy L. Assessment of Viability of Listeria monocytogenes by Flow Cytometry. Methods Mol Biol 2025; 2852:105-122. [PMID: 39235739 DOI: 10.1007/978-1-0716-4100-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In food industry, Listeria monocytogenes contamination can occur accidentally despite the quality control of raw materials and factory. Decontamination processes or inhibitory effects of ingredients/additives in food products are set up to ensure compliance with hygiene and microbiological criteria. These actions represent stresses for the pathogenic agent, causing fluctuations in its physiological states. Moreover, during these environmental stresses, Listeria monocytogenes can enter in a viable but nonculturable (VBNC) state which is not detected by plate counting but by flow cytometry. This technique coupled with cell staining by fluorescent dyes offers the possibility to assess different physiological states based on different cellular parameters: enzymatic activity, transmembrane integrity, membrane potential, and respiratory activity. In this chapter, we present a method to assess the viability of foodborne pathogens using a double-staining principle based on the assessment of membrane integrity and intracellular esterase activity.
Collapse
Affiliation(s)
| | - Romain Briandet
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
2
|
Thompson C, Waldron C, George S, Ouyang Z. Assessment of the hypothetical protein BB0616 in the murine infection of Borrelia burgdorferi. Infect Immun 2024; 92:e0009024. [PMID: 38700336 PMCID: PMC11237664 DOI: 10.1128/iai.00090-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
bb0616 of Borrelia burgdorferi, the Lyme disease pathogen, encodes a hypothetical protein of unknown function. In this study, we showed that BB0616 was not surface-exposed or associated with the membrane through localization analyses using proteinase K digestion and cell partitioning assays. The expression of bb0616 was influenced by a reduced pH but not by growth phases, elevated temperatures, or carbon sources during in vitro cultivation. A transcriptional start site for bb0616 was identified by using 5' rapid amplification of cDNA ends, which led to the identification of a functional promoter in the 5' regulatory region upstream of bb0616. By analyzing a bb0616-deficient mutant and its isogenic complemented counterparts, we found that the infectivity potential of the mutant was significantly attenuated. The inactivation of bb0616 displayed no effect on borrelial growth in the medium or resistance to oxidative stress, but the mutant was significantly more susceptible to osmotic stress. In addition, the production of global virulence regulators such as BosR and RpoS as well as virulence-associated outer surface lipoproteins OspC and DbpA was reduced in the mutant. These phenotypes were fully restored when gene mutation was complemented with a wild-type copy of bb0616. Based on these findings, we concluded that the hypothetical protein BB0616 is required for the optimal infectivity of B. burgdorferi, potentially by impacting B. burgdorferi virulence gene expression as well as survival of the spirochete under stressful conditions.
Collapse
Affiliation(s)
- Christina Thompson
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Connor Waldron
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Sierra George
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
3
|
Trinh KTL, Lee NY. Recent Methods for the Viability Assessment of Bacterial Pathogens: Advances, Challenges, and Future Perspectives. Pathogens 2022; 11:1057. [PMID: 36145489 PMCID: PMC9500772 DOI: 10.3390/pathogens11091057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Viability assessment is a critical step in evaluating bacterial pathogens to determine infectious risks to public health. Based on three accepted viable criteria (culturability, metabolic activity, and membrane integrity), current viability assessments are categorized into three main strategies. The first strategy relies on the culturability of bacteria. The major limitation of this strategy is that it cannot detect viable but nonculturable (VBNC) bacteria. As the second strategy, based on the metabolic activity of bacteria, VBNC bacteria can be detected. However, VBNC bacteria sometimes can enter a dormant state that allows them to silence reproduction and metabolism; therefore, they cannot be detected based on culturability and metabolic activity. In order to overcome this drawback, viability assessments based on membrane integrity (third strategy) have been developed. However, these techniques generally require multiple steps, bulky machines, and laboratory technicians to conduct the tests, making them less attractive and popular applications. With significant advances in microfluidic technology, these limitations of current technologies for viability assessment can be improved. This review summarized and discussed the advances, challenges, and future perspectives of current methods for the viability assessment of bacterial pathogens.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Korea
| |
Collapse
|
4
|
Al-madani H, Du H, Yao J, Peng H, Yao C, Jiang B, Wu A, Yang F. Living Sample Viability Measurement Methods from Traditional Assays to Nanomotion. BIOSENSORS 2022; 12:453. [PMID: 35884256 PMCID: PMC9313330 DOI: 10.3390/bios12070453] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/18/2022]
Abstract
Living sample viability measurement is an extremely common process in medical, pharmaceutical, and biological fields, especially drug pharmacology and toxicology detection. Nowadays, there are a number of chemical, optical, and mechanical methods that have been developed in response to the growing demand for simple, rapid, accurate, and reliable real-time living sample viability assessment. In parallel, the development trend of viability measurement methods (VMMs) has increasingly shifted from traditional assays towards the innovative atomic force microscope (AFM) oscillating sensor method (referred to as nanomotion), which takes advantage of the adhesion of living samples to an oscillating surface. Herein, we provide a comprehensive review of the common VMMs, laying emphasis on their benefits and drawbacks, as well as evaluating the potential utility of VMMs. In addition, we discuss the nanomotion technique, focusing on its applications, sample attachment protocols, and result display methods. Furthermore, the challenges and future perspectives on nanomotion are commented on, mainly emphasizing scientific restrictions and development orientations.
Collapse
Affiliation(s)
- Hamzah Al-madani
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Du
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junlie Yao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Peng
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyang Yao
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Jiang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Fang Yang
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS), Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, CAS, Ningbo 315201, China; (H.A.-m.); (H.D.); (J.Y.); (H.P.); (C.Y.); (B.J.)
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| |
Collapse
|
5
|
El Mujtar VA, Chirdo F, Lagares A, Wall L, Tittonell P. Soil bacterial biodiversity characterization by flow cytometry: The bottleneck of cell extraction from soil. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Verónica A. El Mujtar
- Agroecology, Environment and Systems Group, Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB) INTA‐CONICET, San Carlos de Bariloche Río Negro Argentina
| | - Fernando Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP)(UNLP‐CONICET), Facultad de Ciencias Exactas Universidad Nacional de La Plata La Plata Argentina
| | - Antonio Lagares
- IBBM—Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas Universidad Nacional de La Plata, CCT‐La Plata CONICET La Plata Argentina
| | - Luis Wall
- Laboratorio de Bioquímica y Microbiología de Suelo, Centro de Bioquímica y Microbiología de Suelos Universidad Nacional de Quilmes Bernal Argentina
| | - Pablo Tittonell
- Agroecology, Environment and Systems Group, Instituto de Investigaciones Forestales y Agropecuarias de Bariloche (IFAB) INTA‐CONICET, San Carlos de Bariloche Río Negro Argentina
- Groningen Institute of Evolutionary Life Sciences Groningen University Groningen The Netherlands
| |
Collapse
|
6
|
Lindivat M, Bratbak G, Larsen A, Hess-Erga OK, Hoell IA. Flow Cytometric Analysis of Bacterial Protein Synthesis: Monitoring Vitality After Water Treatment. Front Microbiol 2021; 12:772651. [PMID: 34956134 PMCID: PMC8702973 DOI: 10.3389/fmicb.2021.772651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/12/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial vitality after water disinfection treatment was investigated using bio-orthogonal non-canonical amino acid tagging (BONCAT) and flow cytometry (FCM). Protein synthesis activity and DNA integrity (BONCAT–SYBR Green) was monitored in Escherichia coli monocultures and in natural marine samples after UV irradiation (from 25 to 200 mJ/cm2) and heat treatment (from 15 to 45 min at 55°C). UV irradiation of E. coli caused DNA degradation followed by the decrease in protein synthesis within a period of 24 h. Heat treatment affected both DNA integrity and protein synthesis immediately, with an increased effect over time. Results from the BONCAT method were compared with results from well-known methods such as plate counts (focusing on growth) and LIVE/DEAD™ BacLight™ (focusing on membrane permeability). The methods differed somewhat with respect to vitality levels detected in bacteria after the treatments, but the results were complementary and revealed that cells maintained metabolic activity and membrane integrity despite loss of cell division. Similarly, analysis of protein synthesis in marine bacteria with BONCAT displayed residual activity despite inability to grow or reproduce. Background controls (time zero blanks) prepared using different fixatives (formaldehyde, isopropanol, and acetic acid) and several different bacterial strains revealed that the BONCAT protocol still resulted in labeled, i.e., apparently active, cells. The reason for this is unclear and needs further investigation to be understood. Our results show that BONCAT and FCM can detect, enumerate, and differentiate bacterial cells after physical water treatments such as UV irradiation and heating. The method is reliable to enumerate and explore vitality of single cells, and a great advantage with BONCAT is that all proteins synthesized within cells are analyzed, compared to assays targeting specific elements such as enzyme activity.
Collapse
Affiliation(s)
- Mathilde Lindivat
- Faculty of Engineering and Science, Institute of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Haugesund, Norway
| | - Gunnar Bratbak
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Aud Larsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE Environment, NORCE Norwegian Research Center AS, Bergen, Norway
| | | | - Ingunn Alne Hoell
- Faculty of Engineering and Science, Institute of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Haugesund, Norway
| |
Collapse
|
7
|
Dunkers JP, Iyer H, Jones B, Camp CH, Stranick SJ, Lin NJ. Toward absolute viability measurements for bacteria. JOURNAL OF BIOPHOTONICS 2021; 14:e202100175. [PMID: 34510771 DOI: 10.1002/jbio.202100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/13/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
We aim to develop a quantitative viability method that distinguishes individual quiescent from dead cells and is measured in time (ns) as a referenceable, comparable quantity. We demonstrate that fluorescence lifetime imaging of an anionic, fluorescent membrane voltage probe fulfills these requirements for Streptococcus mutans. A random forest machine-learning model assesses whether individual S. mutans can be correctly classified into their original populations: stationary phase (quiescent), heat killed and inactivated via chemical fixation. We compare the results to intensity using three models: lifetime variables (τ1 , τ2 and p1 ), phasor variables (G, S) or all five variables, with the five variable models having the most accurate classification. This initial work affirms the potential for using fluorescence lifetime of a membrane voltage probe as a viability marker for quiescent bacteria, and future efforts on other bacterial species and fluorophores will help refine this approach.
Collapse
Affiliation(s)
- Joy P Dunkers
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Hariharan Iyer
- Statistical Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Brynna Jones
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
- Department of Chemistry, University of North Florida, Jacksonville, Florida, USA
| | - Charles H Camp
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Stephan J Stranick
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Nancy J Lin
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| |
Collapse
|
8
|
Maidin NNM, Buyong MR, Rahim RA, Mohamed MA. Dielectrophoresis applications in biomedical field and future perspectives in biomedical technology. Electrophoresis 2021; 42:2033-2059. [PMID: 34346062 DOI: 10.1002/elps.202100043] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/09/2022]
Abstract
Dielectrophoresis (DEP) is a technique to manipulate trajectories of polarisable particles in non-uniform electric fields by utilising unique dielectric properties. The manipulation of a cell using DEP has been demonstrated in various modes, thereby indicating potential applications in the biomedical field. In this review, recent DEP applications in the biomedical field are discussed. This review is intended to highlight research work that shows significant approach related to dielectrophoresis application in biomedical field reported between 2016 and 2020. Firstly, single-shell model and multiple-shell model of cells are introduced. Current device structures and recently introduced electrode patterns for DEP applications are discussed. Secondly, the biomedical uses of DEP in liquid biopsies, stem cell therapies, and diagnosis of infectious diseases due to bacteria and viruses are presented. Finally, the challenges in DEP research are discussed, and the reported solutions are explained. DEP's potential research directions are mentioned. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nur Nasyifa Mohd Maidin
- Institute of Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Ruslinda A Rahim
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,National Nanotechnology Centre (NNC), Ministry of Science Technology and Innovation (MOSTI), Federal Government Administrative Centre, Putrajaya, 62662, Malaysia
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
9
|
Abstract
Recently, there has been a resurgence of interest in continuous bioprocessing as a cost-optimised production strategy, driven by a rising global requirement for recombinant proteins used as biological drugs. This strategy could provide several benefits over traditional batch processing, including smaller bioreactors, smaller facilities, and overall reduced plant footprints and investment costs. Continuous processes may also offer improved product quality and minimise heterogeneity, both in the culture and in the product. In this paper, a model protein, green fluorescent protein (GFP) mut3*, was used to test the recombinant protein expression in an Escherichia coli strain with industrial relevance grown in chemostat. An important factor in enabling stable productivity in continuous cultures is the carbon source. We have studied the viability and heterogeneity of the chemostat cultures using a chemically defined medium based on glucose or glycerol as the single carbon source. As a by-product of biodiesel production, glycerol is expected to become a sustainable alternative substrate to glucose. We have found that although glycerol gives a higher cell density, it also generates higher heterogeneity in the culture and a less stable recombinant protein production. We suggest that manipulating the balance between different subpopulations to increase the proportion of productive cells may be a possible solution for making glycerol a successful alternative to glucose.
Collapse
|
10
|
Franklin DJ. Examining the Evidence for Regulated and Programmed Cell Death in Cyanobacteria. How Significant Are Different Forms of Cell Death in Cyanobacteria Population Dynamics? Front Microbiol 2021; 12:633954. [PMID: 33828539 PMCID: PMC8019747 DOI: 10.3389/fmicb.2021.633954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/12/2021] [Indexed: 12/22/2022] Open
Abstract
Cyanobacteria are ancient and versatile members of almost all aquatic food webs. In freshwater ecosystems some cyanobacteria form “bloom” populations containing potent toxins and such blooms are therefore a key focus of study. Bloom populations can be ephemeral, with rapid population declines possible, though the factors causing such declines are generally poorly understood. Cell death could be a significant factor linked to population decline. Broadly, three forms of cell death are currently recognized – accidental, regulated and programmed – and efforts are underway to identify these and standardize the use of cell death terminology, guided by work on better-studied cells. For cyanobacteria, the study of such differing forms of cell death has received little attention, and classifying cell death across the group, and within complex natural populations, is therefore hard and experimentally difficult. The population dynamics of photosynthetic microbes have, in the past, been principally explained through reference to abiotic (“bottom-up”) factors. However, it has become clearer that in general, only a partial linkage exists between abiotic conditions and cyanobacteria population fluctuations in many situations. Instead, a range of biotic interactions both within and between cyanobacteria, and their competitors, pathogens and consumers, can be seen as the major drivers of the observed population fluctuations. Whilst some evolutionary processes may theoretically account for the existence of an intrinsic form of cell death in cyanobacteria, a range of biotic interactions are also likely to frequently cause the ecological incidence of cell death. New theoretical models and single-cell techniques are being developed to illuminate this area. The importance of such work is underlined by both (a) predictions of increasing cyanobacteria dominance due to anthropogenic factors and (b) the realization that influential ecosystem modeling work includes mortality terms with scant foundation, even though such terms can have a very large impact on model predictions. These ideas are explored and a prioritization of research needs is proposed.
Collapse
Affiliation(s)
- Daniel J Franklin
- Centre for Ecology, Environment and Sustainability, Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
| |
Collapse
|
11
|
Sawada T, Katayama M, Takatani S, Ohiro Y. Early detection of drug-resistant Streptococcus pneumoniae and Haemophilus influenzae by quantitative flow cytometry. Sci Rep 2021; 11:2873. [PMID: 33536509 PMCID: PMC7859230 DOI: 10.1038/s41598-021-82186-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Early detection of drug resistance contributes to combating drug-resistant bacteria and improving patient outcomes. Microbial testing in the laboratory is essential for treating infectious diseases because it can provide critical information related to identifying pathogenic bacteria and their resistance profiles. Despite these clinical requirements, conventional phenotypic testing is time-consuming. Additionally, recent rapid drug resistance tests are not compatible with fastidious bacteria such as Streptococcus and Haemophilus species. In this study, we validated the feasibility of direct bacteria counting using highly sensitive quantitative flow cytometry. Furthermore, by combining flow cytometry and a nucleic acid intercalator, we constructed a highly sensitive method for counting viable fastidious bacteria. These are inherently difficult to measure due to interfering substances from nutrients contained in the medium. Based on the conventional broth microdilution method, our method acquired a few microliter samples in a time series from the same microplate well to exclude the growth curve inconsistency between the samples. Fluorescent staining and flow cytometry measurements were completed within 10 min. Therefore, this approach enabled us to determine antimicrobial resistance for these bacteria within a few hours. Highly sensitive quantitative flow cytometry presents a novel avenue for conducting rapid antimicrobial susceptibility tests.
Collapse
Affiliation(s)
- Takahiro Sawada
- grid.508063.80000 0004 1771 0244Fundamental Research Laboratory, Research and Development Division, Eiken Chemical Co., Ltd., 143 Nogi, Nogimachi, Shimotsuga-gun, Tochigi, 329-0114 Japan
| | - Masayuki Katayama
- grid.419812.70000 0004 1777 4627FCM Development, Business Strategy Development, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, 651-2271 Japan
| | - Shogo Takatani
- grid.419812.70000 0004 1777 4627FCM Development, Business Strategy Development, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, 651-2271 Japan
| | - Yoshiyuki Ohiro
- grid.508063.80000 0004 1771 0244Fundamental Research Laboratory, Research and Development Division, Eiken Chemical Co., Ltd., 143 Nogi, Nogimachi, Shimotsuga-gun, Tochigi, 329-0114 Japan
| |
Collapse
|
12
|
Alternative Microbiological Methods for Drug Quality Testing and their Implementation in Pharmacy Practice. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Kamiloglu S, Sari G, Ozdal T, Capanoglu E. Guidelines for cell viability assays. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.44] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Senem Kamiloglu
- Mevsim Gida Sanayi ve Soguk Depo Ticaret A.S. (MVSM Foods) Bursa Turkey
| | - Gulce Sari
- Department of Gastroenterology and Hepatology Erasmus University Medical Center Rotterdam the Netherlands
| | - Tugba Ozdal
- Department of Food Engineering Faculty of Engineering Istanbul Okan University Tuzla Turkey
| | - Esra Capanoglu
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Maslak Turkey
| |
Collapse
|