1
|
Abstract
In the last few years, researchers have focused their attention on the synthesis of new catalyst structures based on or inspired by nature. Biotemplating involves the transfer of biological structures to inorganic materials through artificial mineralization processes. This approach offers the main advantage of allowing morphological control of the product, as a template with the desired morphology can be pre-determined, as long as it is found in nature. This way, natural evolution through millions of years can provide us with new synthetic pathways to develop some novel functional materials with advantageous properties, such as sophistication, miniaturization, hybridization, hierarchical organization, resistance, and adaptability to the required need. The field of application of these materials is very wide, covering nanomedicine, energy capture and storage, sensors, biocompatible materials, adsorbents, and catalysis. In the latter case, bio-inspired materials can be applied as catalysts requiring different types of active sites (i.e., redox, acidic, basic sites, or a combination of them) to a wide range of processes, including conventional thermal catalysis, photocatalysis, or electrocatalysis, among others. This review aims to cover current experimental studies in the field of biotemplating materials synthesis and their characterization, focusing on their application in heterogeneous catalysis.
Collapse
|
2
|
Li F, Wang D, Zhou J, Men D, Zhan XE. Design and biosynthesis of functional protein nanostructures. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1142-1158. [PMID: 32253589 DOI: 10.1007/s11427-019-1641-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
Proteins are one of the major classes of biomolecules that execute biological functions for maintenance of life. Various kinds of nanostructures self-assembled from proteins have been created in nature over millions of years of evolution, including protein nanowires, layers and nanocages. These protein nanostructures can be reconstructed and equipped with desired new functions. Learning from and manipulating the self-assembly of protein nanostructures not only help to deepen our understanding of the nature of life but also offer new routes to fabricate novel nanomaterials for diverse applications. This review summarizes the recent research progress in this field, focusing on the characteristics, functionalization strategies, and applications of protein nanostructures.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xian-En Zhan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Heinz D, Amado E, Kressler J. Polyphilicity-An Extension of the Concept of Amphiphilicity in Polymers. Polymers (Basel) 2018; 10:E960. [PMID: 30960885 PMCID: PMC6403972 DOI: 10.3390/polym10090960] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/23/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
Recent developments in synthetic pathways as simple reversible-deactivation radical polymerization (RDRP) techniques and quantitative post-polymerization reactions, most notoriously 'click' reactions, leading to segmented copolymers, have broadened the molecular architectures accessible to polymer chemists as a matter of routine. Segments can be blocks, grafted chains, branchings, telechelic end-groups, covalently attached nanoparticles, nanodomains in networks, even sequences of random copolymers, and so on. In this review, we describe the variety of the segmented synthetic copolymers landscape from the point of view of their chemical affinity, or synonymous philicity, in bulk or with their surroundings, such as solvents, permeant gases, and solid surfaces. We focus on recent contributions, current trends, and perspectives regarding polyphilic copolymers, which have, in addition to hydrophilic and lipophilic segments, other philicities, for example, towards solvents, fluorophilic entities, ions, silicones, metals, nanoparticles, and liquid crystalline moieties.
Collapse
Affiliation(s)
- Daniel Heinz
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| | - Elkin Amado
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| | - Jörg Kressler
- Department of Chemistry, Martin Luther University Halle-Wittenberg, D-06099 Halle (Saale), Germany.
| |
Collapse
|
4
|
Schuster B. S-Layer Protein-Based Biosensors. BIOSENSORS 2018; 8:E40. [PMID: 29641511 PMCID: PMC6023001 DOI: 10.3390/bios8020040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/14/2023]
Abstract
The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.
Collapse
Affiliation(s)
- Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
5
|
Eibling MJ, MacDermaid CM, Qian Z, Lanci CJ, Park SJ, Saven JG. Controlling Association and Separation of Gold Nanoparticles with Computationally Designed Zinc-Coordinating Proteins. J Am Chem Soc 2017; 139:17811-17823. [DOI: 10.1021/jacs.7b04786] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Matthew J. Eibling
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher M. MacDermaid
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhaoxia Qian
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Christopher J. Lanci
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - So-Jung Park
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, South Korea
| | - Jeffery G. Saven
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Zan G, Wu Q. Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2099-147. [PMID: 26729639 DOI: 10.1002/adma.201503215] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/09/2015] [Indexed: 05/13/2023]
Abstract
In recent years, due to its unparalleled advantages, the biomimetic and bioinspired synthesis of nanomaterials/nanostructures has drawn increasing interest and attention. Generally, biomimetic synthesis can be conducted either by mimicking the functions of natural materials/structures or by mimicking the biological processes that organisms employ to produce substances or materials. Biomimetic synthesis is therefore divided here into "functional biomimetic synthesis" and "process biomimetic synthesis". Process biomimetic synthesis is the focus of this review. First, the above two terms are defined and their relationship is discussed. Next different levels of biological processes that can be used for process biomimetic synthesis are compiled. Then the current progress of process biomimetic synthesis is systematically summarized and reviewed from the following five perspectives: i) elementary biomimetic system via biomass templates, ii) high-level biomimetic system via soft/hard-combined films, iii) intelligent biomimetic systems via liquid membranes, iv) living-organism biomimetic systems, and v) macromolecular bioinspired systems. Moreover, for these five biomimetic systems, the synthesis procedures, basic principles, and relationships are discussed, and the challenges that are encountered and directions for further development are considered.
Collapse
Affiliation(s)
- Guangtao Zan
- Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, P. R. China
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qingsheng Wu
- Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, P. R. China
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
7
|
Suhr M, Raff J, Pollmann K. Au-Interaction of Slp1 Polymers and Monolayer from Lysinibacillus sphaericus JG-B53 - QCM-D, ICP-MS and AFM as Tools for Biomolecule-metal Studies. J Vis Exp 2016:e53572. [PMID: 26863150 PMCID: PMC4781654 DOI: 10.3791/53572] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In this publication the gold sorption behavior of surface layer (S-layer) proteins (Slp1) of Lysinibacillus sphaericus JG-B53 is described. These biomolecules arrange in paracrystalline two-dimensional arrays on surfaces, bind metals, and are thus interesting for several biotechnical applications, such as biosorptive materials for the removal or recovery of different elements from the environment and industrial processes. The deposition of Au(0) nanoparticles on S-layers, either by S-layer directed synthesis or adsorption of nanoparticles, opens new possibilities for diverse sensory applications. Although numerous studies have described the biosorptive properties of S-layers, a deeper understanding of protein-protein and protein-metal interaction still remains challenging. In the following study, inductively coupled mass spectrometry (ICP-MS) was used for the detection of metal sorption by suspended S-layers. This was correlated to measurements of quartz crystal microbalance with dissipation monitoring (QCM-D), which allows the online detection of proteinaceous monolayer formation and metal deposition, and thus, a more detailed understanding on metal binding. The ICP-MS results indicated that the binding of Au(III) to the suspended S-layer polymers is pH dependent. The maximum binding of Au(III) was obtained at pH 4.0. The QCM-D investigations enabled the detection of Au(III) sorption as well as the deposition of Au(0)-NPs in real-time during the in situ experiments. Further, this method allowed studying the influence of metal binding on the protein lattice stability of Slp1. Structural properties and protein layer stability could be visualized directly after QCM-D experiment using atomic force microscopy (AFM). In conclusion, the combination of these different methods provides a deeper understanding of metal binding by bacterial S-layer proteins in suspension or as monolayers on either bacterial cells or recrystallized surfaces.
Collapse
Affiliation(s)
- Matthias Suhr
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf;
| | - Johannes Raff
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf; Institute for Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf
| | - Katrin Pollmann
- Helmholtz Institute Freiberg for Resource Technology, Helmholtz-Zentrum Dresden-Rossendorf
| |
Collapse
|
8
|
Raff J, Matys S, Suhr M, Vogel M, Günther T, Pollmann K. S-Layer-Based Nanocomposites for Industrial Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:245-279. [PMID: 27677516 DOI: 10.1007/978-3-319-39196-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This chapter covers the fundamental aspects of bacterial S-layers: what are S-layers, what is known about them, and what are their main features that makes them so interesting for the production of nanostructures. After a detailed introduction of the paracrystalline protein lattices formed by S-layer systems in nature the chapter explores the engineering of S-layer-based materials. How can S-layers be used to produce "industry-ready" nanoscale bio-composite materials, and which kinds of nanomaterials are possible (e.g., nanoparticle synthesis, nanoparticle immobilization, and multifunctional coatings)? What are the advantages and disadvantages of S-layer-based composite materials? Finally, the chapter highlights the potential of these innovative bacterial biomolecules for future technologies in the fields of metal filtration, catalysis, and bio-functionalization.
Collapse
Affiliation(s)
- Johannes Raff
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany.
| | - Sabine Matys
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Matthias Suhr
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Manja Vogel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Tobias Günther
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Katrin Pollmann
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| |
Collapse
|
9
|
Synthesis of S-layer conjugates and evaluation of their modifiability as a tool for the functionalization and patterning of technical surfaces. Molecules 2015; 20:9847-61. [PMID: 26023942 PMCID: PMC6272543 DOI: 10.3390/molecules20069847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/20/2015] [Indexed: 12/03/2022] Open
Abstract
Chemical functional groups of surface layer (S-layer) proteins were chemically modified in order to evaluate the potential of S-layer proteins for the introduction of functional molecules. S-layer proteins are structure proteins that self-assemble into regular arrays on surfaces. One general feature of S-layer proteins is their high amount of carboxylic and amino groups. These groups are potential targets for linking functional molecules, thus producing reactive surfaces. In this work, these groups were conjugated with the amino acid tryptophan. In another approach, SH-groups were chemically inserted in order to extend the spectrum of modifiable groups. The amount of modifiable carboxylic groups was further evaluated by potentiometric titration in order to evaluate the potential efficiency of S-layer proteins to work as matrix for bioconjugations. The results proved that S-layer proteins can work as effective matrices for the conjugation of different molecules. The advantage of using chemical modification methods over genetic methods lies in its versatile usage enabling the attachment of biomolecules, as well as fluorescent dyes and inorganic molecules. Together with their self-assembling properties, S-layer proteins are suitable as targets for bioconjugates, thus enabling a nanostructuring and bio-functionalization of surfaces, which can be used for different applications like biosensors, filter materials, or (bio)catalytic surfaces.
Collapse
|
10
|
Schuster B, Sleytr UB. Biomimetic interfaces based on S-layer proteins, lipid membranes and functional biomolecules. J R Soc Interface 2014; 11:20140232. [PMID: 24812051 PMCID: PMC4032536 DOI: 10.1098/rsif.2014.0232] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/15/2014] [Indexed: 12/20/2022] Open
Abstract
Designing and utilization of biomimetic membrane systems generated by bottom-up processes is a rapidly growing scientific and engineering field. Elucidation of the supramolecular construction principle of archaeal cell envelopes composed of S-layer stabilized lipid membranes led to new strategies for generating highly stable functional lipid membranes at meso- and macroscopic scale. In this review, we provide a state-of-the-art survey of how S-layer proteins, lipids and polymers may be used as basic building blocks for the assembly of S-layer-supported lipid membranes. These biomimetic membrane systems are distinguished by a nanopatterned fluidity, enhanced stability and longevity and, thus, provide a dedicated reconstitution matrix for membrane-active peptides and transmembrane proteins. Exciting areas in the (lab-on-a-) biochip technology are combining composite S-layer membrane systems involving specific membrane functions with the silicon world. Thus, it might become possible to create artificial noses or tongues, where many receptor proteins have to be exposed and read out simultaneously. Moreover, S-layer-coated liposomes and emulsomes copying virus envelopes constitute promising nanoformulations for the production of novel targeting, delivery, encapsulation and imaging systems.
Collapse
Affiliation(s)
- Bernhard Schuster
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190 Vienna, Austria
| | - Uwe B. Sleytr
- Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Institute for Biophysics, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
11
|
Shin SH, Comolli LR, Tscheliessnig R, Wang C, Nam KT, Hexemer A, Siegerist CE, De Yoreo JJ, Bertozzi CR. Self-assembly of "S-bilayers", a step toward expanding the dimensionality of S-layer assemblies. ACS NANO 2013; 7:4946-4953. [PMID: 23705800 DOI: 10.1021/nn400263j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Protein-based assemblies with ordered nanometer-scale features in three dimensions are of interest as functional nanomaterials but are difficult to generate. Here we report that a truncated S-layer protein assembles into stable bilayers, which we characterized using cryogenic-electron microscopy, tomography, and X-ray spectroscopy. We find that emergence of this supermolecular architecture is the outcome of hierarchical processes; the proteins condense in solution to form 2-D crystals, which then stack parallel to one another to create isotropic bilayered assemblies. Within this bilayered structure, registry between lattices in two layers was disclosed, whereas the intrinsic symmetry in each layer was altered. Comparison of these data to images of wild-type SbpA layers on intact cells gave insight into the interactions responsible for bilayer formation. These results establish a platform for engineering S-layer assemblies with 3-D architecture.
Collapse
Affiliation(s)
- Seong-Ho Shin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Qiao H, Krajcikova D, Liu C, Li Y, Wang H, Barak I, Tang J. The Interactions of Spore-Coat Morphogenetic Proteins Studied by Single-Molecule Recognition Force Spectroscopy. Chem Asian J 2012; 7:725-31. [DOI: 10.1002/asia.201100795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Indexed: 11/08/2022]
|
13
|
Kim SJ, An HH, Lee SJ, Lee JH, Kim YH, Yoon CS, Suh SH. Formation of Ag nanostrings induced by lyotropic liquid-crystalline phospholipid multilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:259-263. [PMID: 22118599 DOI: 10.1021/la203721c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Morphological variation of the Ag nanoparticles embedded in a lyotropic phospholipid (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, DOPE) membrane during hydration was investigated. Hydration at 5 °C resulted in transformation of the Ag nanoparticles into a bundle of Ag nanostrings as the Ag nanoparticles conformed to the H(II) phase of the DOPE molecules. Above 30 °C, the nanoparticles quickly coarsened into large polygonal-shaped particles since high mobility of the lipid molecules overwhelmed the tendency for the Ag nanoparticles to order. The result provided an insight into the long-term stability of nanoparticles trapped in different lipid membranes depending on the structural ordering of the molecules.
Collapse
Affiliation(s)
- Suk J Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul, 133-791, Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Molecular recognition force spectroscopy of a specific lectin–carbohydrate interaction at single-molecule level. J Struct Biol 2011; 176:46-51. [DOI: 10.1016/j.jsb.2011.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 11/19/2022]
|
15
|
Wildling L, Unterauer B, Zhu R, Rupprecht A, Haselgrübler T, Rankl C, Ebner A, Vater D, Pollheimer P, Pohl EE, Hinterdorfer P, Gruber HJ. Linking of sensor molecules with amino groups to amino-functionalized AFM tips. Bioconjug Chem 2011; 22:1239-48. [PMID: 21542606 PMCID: PMC3115690 DOI: 10.1021/bc200099t] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
The measuring tip of an atomic force microscope (AFM) can be upgraded to a specific biosensor by attaching one or a few biomolecules to the apex of the tip. The biofunctionalized tip is then used to map cognate target molecules on a sample surface or to study biophysical parameters of interaction with the target molecules. The functionality of tip-bound sensor molecules is greatly enhanced if they are linked via a thin, flexible polymer chain. In a typical scheme of tip functionalization, reactive groups are first generated on the tip surface, a bifunctional cross-linker is then attached with one of its two reactive ends, and finally the probe molecule of interest is coupled to the free end of the cross-linker. Unfortunately, the most popular functional group generated on the tip surface is the amino group, while at the same time, the only useful coupling functions of many biomolecules (such as antibodies) are also NH2 groups. In the past, various tricks or detours were applied to minimize the undesired bivalent reaction of bifunctional linkers with adjacent NH2 groups on the tip surface. In the present study, an uncompromising solution to this problem was found with the help of a new cross-linker (“acetal-PEG-NHS”) which possesses one activated carboxyl group and one acetal-protected benzaldehyde function. The activated carboxyl ensures rapid unilateral attachment to the amino-functionalized tip, and only then is the terminal acetal group converted into the amino-reactive benzaldehyde function by mild treatment (1% citric acid, 1–10 min) which does not harm the AFM tip. As an exception, AFM tips with magnetic coating become demagnetized in 1% citric acid. This problem was solved by deprotecting the acetal group before coupling the PEG linker to the AFM tip. Bivalent binding of the corresponding linker (“aldehyde-PEG-NHS”) to adjacent NH2 groups on the tip was largely suppressed by high linker concentrations. In this way, magnetic AFM tips could be functionalized with an ethylene diamine derivative of ATP which showed specific interaction with mitochondrial uncoupling protein 1 (UCP1) that had been purified and reconstituted in a mica-supported planar lipid bilayer.
Collapse
Affiliation(s)
- Linda Wildling
- Institute of Biophysics, J. Kepler University, Altenberger Str. 69, A-4040 Linz, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Horejs C, Gollner H, Pum D, Sleytr UB, Peterlik H, Jungbauer A, Tscheliessnig R. Atomistic structure of monomolecular surface layer self-assemblies: toward functionalized nanostructures. ACS NANO 2011; 5:2288-2297. [PMID: 21375257 DOI: 10.1021/nn1035729] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The concept of self-assembly is one of the most promising strategies for the creation of defined nanostructures and therefore became an essential part of nanotechnology for the controlled bottom-up design of nanoscale structures. Surface layers (S-layers), which represent the cell envelope of a great variety of prokaryotic cells, show outstanding self-assembly features in vitro and have been successfully used as the basic matrix for molecular construction kits. Here we present the three-dimensional structure of an S-layer lattice based on tetrameric unit cells, which will help to facilitate the directed binding of various molecules on the S-layer lattice, thereby creating functional nanoarrays for applications in nanobiotechnology. Our work demonstrates the successful combination of computer simulations, electron microscopy (TEM), and small-angle X-ray scattering (SAXS) as a tool for the investigation of the structure of self-assembling or aggregating proteins, which cannot be determined by X-ray crystallography. To the best of our knowledge, this is the first structural model at an amino acid level of an S-layer unit cell that exhibits p4 lattice symmetry.
Collapse
Affiliation(s)
- Christine Horejs
- Department for Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
17
|
Li Y, Wang J, Xing C, Wang Z, Wang H, Zhang B, Tang J. Molecular Recognition Force Spectroscopy Study of the Specific Lectin and Carbohydrate Interaction in a Living Cell. Chemphyschem 2011; 12:909-12. [DOI: 10.1002/cphc.201001008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/29/2011] [Indexed: 01/06/2023]
|
18
|
Jutz G, Böker A. Bionanoparticles as functional macromolecular building blocks – A new class of nanomaterials. POLYMER 2011. [DOI: 10.1016/j.polymer.2010.11.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Sierra-Sastre Y, Dayeh SA, Picraux ST, Batt CA. Epitaxy of Ge nanowires grown from biotemplated Au nanoparticle catalysts. ACS NANO 2010; 4:1209-1217. [PMID: 20128609 DOI: 10.1021/nn901664r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Semiconductor nanowires (NWs) are being actively investigated due to their unique functional properties which result from their quasi-one-dimensional structure. However, control over the crystallographic growth direction, diameter, location, and morphology of high-density NWs is essential to achieve the desirable properties and to integrate these NWs into miniaturized devices. This article presents evidence for the suitability of a biological templated catalyst approach to achieve high-density, epitaxial growth of NWs via the vapor-liquid-solid (VLS) mechanism. Bacterial surface-layer protein lattices from Deinococcus radiodurans were adsorbed onto germanium substrates of (111), (110), and (100) crystallographic orientations and used to template gold nanoparticles (AuNPs) of different diameters. Orientation-controlled growth of GeNWs was achieved from very small size (5-20 nm) biotemplated AuNP catalysts on all of the substrates studied. Biotemplated GeNWs exhibited improved morphologies, higher densities (NW/microm(2)), and more uniform length as compared to GeNWs grown from nontemplated AuNPs on the substrate surfaces. The results offer an integrated overview of the interplay of parameters such as catalyst size, catalyst density, substrate crystallographic orientation, and the presence of the protein template in determining the morphology and growth direction of GeNWs. A comparison between templated and nontemplated growth provides additional insight into the mechanism of VLS growth of biotemplated NWs.
Collapse
Affiliation(s)
- Yajaira Sierra-Sastre
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
20
|
An HH, Kim JH, Lee JH, Kwon DH, Kim HS, Kim YH, Yoon CS. Interaction of a solid supported liquid-crystalline phospholipid membrane with physical vapor deposited metal atoms. Chem Commun (Camb) 2010; 46:9238-40. [DOI: 10.1039/c0cc03253k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett 2009; 32:341-50. [PMID: 19943180 DOI: 10.1007/s10529-009-0173-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/03/2009] [Accepted: 11/03/2009] [Indexed: 10/20/2022]
Abstract
Methods for the preparation of carrier-free insoluble enzymes are reviewed. The technology of cross-linked enzyme aggregates has now been applied to a range of synthetically useful activities. Fusion proteins are also gaining momentum because they allow a relatively selective aggregation or even a specific self-assembly of the desired enzyme activity into insoluble particles in the absence of potentially denaturing chemicals required for precipitation and cross-linking. Recycling of insoluble protein particles for multiple rounds of batchwise reaction has been demonstrated in selected biotransformations. However, for application in a fully continuous biocatalytic process, low resistance to mechanical stress and high compressibility are issues for consideration on carrier-free enzyme particles.
Collapse
|
22
|
Tang J, Ebner A, Kraxberger B, Leitner M, Hykollari A, Kepplinger C, Grunwald C, Gruber HJ, Tampé R, Sleytr UB, Ilk N, Hinterdorfer P. Detection of metal binding sites on functional S-layer nanoarrays using single molecule force spectroscopy. J Struct Biol 2009; 168:217-22. [DOI: 10.1016/j.jsb.2009.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/02/2009] [Accepted: 02/05/2009] [Indexed: 11/25/2022]
|
23
|
Abstract
Integral membrane proteins are important biological macromolecules with structural features and functionalities that make them attractive targets for nanotechnology. I provide here a broad review of current activity in nanotechnology related to membrane proteins, including their application as nanoscale sensors, switches, components of optical devices and as templates for self-assembled arrays.
Collapse
|