1
|
Bhattacharya S, Xu L, Arrué L, Bartels T, Thompson D. Conformational Selection of α-Synuclein Tetramers at Biological Interfaces. J Chem Inf Model 2024; 64:8010-8023. [PMID: 39377660 PMCID: PMC11523075 DOI: 10.1021/acs.jcim.4c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Controlling the polymorphic assemblies of α-synuclein (αS) oligomers is crucial to reroute toxic protein aggregation implicated in Parkinson's disease (PD). One potential mediator is the interaction of αS tetramers with cell membranes, which may regulate the dynamic balance between aggregation-prone disordered monomers and aggregation-resistant helical tetramers. Here, we model diverse tetramer-cell interactions and compare the structure-function relations at the supramolecular-biological interface with available experimental data. The models predict preferential interaction of compact αS tetramers with highly charged membrane surfaces, which may further stabilize this aggregation-resistant conformer. On moderately charged membranes, extended structures are preferred. In addition to surface charge, curvature influences tetramer thermodynamic stability and aggregation, with potential for selective isolation of tetramers via regio-specific interactions with strongly negatively charged micelles that screen further aggregation. Our modeling data set highlights diverse beneficial nano-bio interactions to redirect biomolecule assembly, supporting new therapeutic approaches for PD based on lipid-mediated conformational selection and inhibition.
Collapse
Affiliation(s)
- Shayon Bhattacharya
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Liang Xu
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Lily Arrué
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Tim Bartels
- UK
Dementia Research Institute, University
College London, London WC1E6BT, U.K.
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
2
|
Marín I. Emergence of the Synucleins. BIOLOGY 2023; 12:1053. [PMID: 37626939 PMCID: PMC10451939 DOI: 10.3390/biology12081053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
This study establishes the origin and evolutionary history of the synuclein genes. A combination of phylogenetic analyses of the synucleins from twenty-two model species, characterization of local synteny similarities among humans, sharks and lampreys, and statistical comparisons among lamprey and human chromosomes, provides conclusive evidence for the current diversity of synuclein genes arising from the whole-genome duplications (WGDs) that occurred in vertebrates. An ancestral synuclein gene was duplicated in a first WGD, predating the diversification of all living vertebrates. The two resulting genes are still present in agnathan vertebrates. The second WGD, specific to the gnathostome lineage, led to the emergence of the three classical synuclein genes, SNCA, SNCB and SNCG, which are present in all jawed vertebrate lineages. Additional WGDs have added new genes in both agnathans and gnathostomes, while some gene losses have occurred in particular species. The emergence of synucleins through WGDs prevented these genes from experiencing dosage effects, thus avoiding the potential detrimental effects associated with individual duplications of genes that encode proteins prone to aggregation. Additional insights into the structural and functional features of synucleins are gained through the analysis of the highly divergent synuclein proteins present in chondrichthyans and agnathans.
Collapse
Affiliation(s)
- Ignacio Marín
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), 46010 Valencia, Spain
| |
Collapse
|
3
|
The Interplay between α-Synuclein and Microglia in α-Synucleinopathies. Int J Mol Sci 2023; 24:ijms24032477. [PMID: 36768798 PMCID: PMC9916729 DOI: 10.3390/ijms24032477] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Synucleinopathies are a set of devastating neurodegenerative diseases that share a pathologic accumulation of the protein α-synuclein (α-syn). This accumulation causes neuronal death resulting in irreversible dementia, deteriorating motor symptoms, and devastating cognitive decline. While the etiology of these conditions remains largely unknown, microglia, the resident immune cells of the central nervous system (CNS), have been consistently implicated in the pathogenesis of synucleinopathies. Microglia are generally believed to be neuroprotective in the early stages of α-syn accumulation and contribute to further neurodegeneration in chronic disease states. While the molecular mechanisms by which microglia achieve this role are still being investigated, here we highlight the major findings to date. In this review, we describe how structural varieties of inherently disordered α-syn result in varied microglial receptor-mediated interactions. We also summarize which microglial receptors enable cellular recognition and uptake of α-syn. Lastly, we review the downstream effects of α-syn processing within microglia, including spread to other brain regions resulting in neuroinflammation and neurodegeneration in chronic disease states. Understanding the mechanism of microglial interactions with α-syn is vital to conceptualizing molecular targets for novel therapeutic interventions. In addition, given the significant diversity in the pathophysiology of synucleinopathies, such molecular interactions are vital in gauging all potential pathways of neurodegeneration in the disease state.
Collapse
|
4
|
Grønnemose AL, Østerlund EC, Otzen DE, Jørgensen TJD. EGCG has Dual and Opposing Effects on the N-terminal Region of Self-associating α-synuclein Oligomers. J Mol Biol 2022; 434:167855. [PMID: 36240861 DOI: 10.1016/j.jmb.2022.167855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/11/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Oligomers of the protein α-synuclein (α-syn) are thought to be a major toxic species in Parkinson's disease, particularly through their ability to permeabilize cell membranes. The green tea polyphenol epigallocatechin gallate (EGCG) has been found to reduce this ability. We have analyzed α-syn oligomer dynamics and interconversion by H/D exchange monitored by mass spectrometry (HDX-MS). Our results show that the two oligomers OI and OII co-exist in equilibrium; OI is a multimer of OII and its dissociation can be followed by HDX-MS by virtue of the correlated exchange of the N-terminal region. Urea destabilizes the α-syn oligomers, dissociating OI to OII and monomers. Oligomers exposed to EGCG undergo Met oxidation. Intriguingly, EGCG induces an oxidation-dependent effect on the structure of the N-terminal region. For the non-oxidized N-terminal region, EGCG increases the stability of the folded structure as measured by a higher level of protection against H/D exchange. In contrast, protection is clearly abrogated in the Met oxidized N-terminal region. Having a non-oxidized and disordered N-terminal region is known to be essential for efficient membrane binding. Therefore, our results suggest that the combined effect of a structural stabilization of the non-oxidized N-terminal region and the presence of a disordered oxidized N-terminal region renders the oligomers less cytotoxic by decreasing the ability of the N-terminal region to bind to cell membranes and facilitate their permeabilization.
Collapse
Affiliation(s)
- Anne Louise Grønnemose
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Department of Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Eva Christina Østerlund
- Department of Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| | - Thomas J D Jørgensen
- Department of Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| |
Collapse
|
5
|
Jadavi S, Canepa E, Diaspro A, Canale C, Relini A, Dante S. α-Synuclein interacts differently with membranes mimicking the inner and outer leaflets of neuronal membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183814. [PMID: 34774499 DOI: 10.1016/j.bbamem.2021.183814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022]
Abstract
The toxicity of α-synuclein (α-syn), the amyloidogenic protein responsible for Parkinson's disease, is likely related to its interaction with the asymmetric neuronal membrane. α-Syn exists as cytoplasmatic and as extracellular protein as well. To shed light on the different interactions occurring at the different α-syn localizations, we have here modelled the external and internal membrane leaflets of the neuronal membrane with two complex lipid mixtures, characterized by phase coexistence and with negative charge confined to either the ordered or the disordered phase, respectively. To this purpose, we selected a five-component (DOPC/SM/DOPE/DOPS/chol) and a four-component (DOPC/SM/GM1/chol) lipid mixtures, which contained the main membrane lipid constituents and exhibited a phase separation with formation of ordered domains. We have compared the action of α-syn in monomeric form and at different concentrations (1 nM, 40 nM, and 200 nM) with respect to lipid systems with different composition and shape by AFM, QCM-D, and vesicle leakage experiments. The experiments coherently showed a higher stability of the membranes composed by the internal leaflet mixture to the interaction with α-syn. Damage to membranes made of the external leaflet mixture was detected in a concentration-dependent manner. Interestingly, the membrane damage was related to the fluidity of the lipid domains and not to the presence of negatively charged lipids.
Collapse
Affiliation(s)
- Samira Jadavi
- Nanoscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genova, Italy; Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Ester Canepa
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Alberto Diaspro
- Nanoscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genova, Italy; Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Claudio Canale
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy
| | - Annalisa Relini
- Department of Physics, University of Genova, Via Dodecaneso 33, 16146 Genova, Italy.
| | - Silvia Dante
- Materials Characterization Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
6
|
Bisi N, Feni L, Peqini K, Pérez-Peña H, Ongeri S, Pieraccini S, Pellegrino S. α-Synuclein: An All-Inclusive Trip Around its Structure, Influencing Factors and Applied Techniques. Front Chem 2021; 9:666585. [PMID: 34307295 PMCID: PMC8292672 DOI: 10.3389/fchem.2021.666585] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (αSyn) is a highly expressed and conserved protein, typically found in the presynaptic terminals of neurons. The misfolding and aggregation of αSyn into amyloid fibrils is a pathogenic hallmark of several neurodegenerative diseases called synucleinopathies, such as Parkinson’s disease. Since αSyn is an Intrinsically Disordered Protein, the characterization of its structure remains very challenging. Moreover, the mechanisms by which the structural conversion of monomeric αSyn into oligomers and finally into fibrils takes place is still far to be completely understood. Over the years, various studies have provided insights into the possible pathways that αSyn could follow to misfold and acquire oligomeric and fibrillar forms. In addition, it has been observed that αSyn structure can be influenced by different parameters, such as mutations in its sequence, the biological environment (e.g., lipids, endogenous small molecules and proteins), the interaction with exogenous compounds (e.g., drugs, diet components, heavy metals). Herein, we review the structural features of αSyn (wild-type and disease-mutated) that have been elucidated up to present by both experimental and computational techniques in different environmental and biological conditions. We believe that this gathering of current knowledge will further facilitate studies on αSyn, helping the planning of future experiments on the interactions of this protein with targeting molecules especially taking into consideration the environmental conditions.
Collapse
Affiliation(s)
- Nicolò Bisi
- BioCIS, CNRS, Université Paris Saclay, Châtenay-Malabry Cedex, France
| | - Lucia Feni
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milan, Italy
| | - Kaliroi Peqini
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milan, Italy
| | - Helena Pérez-Peña
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Sandrine Ongeri
- BioCIS, CNRS, Université Paris Saclay, Châtenay-Malabry Cedex, France
| | | | - Sara Pellegrino
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
7
|
Braun T, Stehle J, Kacprzak S, Carl P, Höfer P, Subramaniam V, Drescher M. Intracellular Protein-Lipid Interactions Studied by Rapid-Scan Electron Paramagnetic Resonance Spectroscopy. J Phys Chem Lett 2021; 12:2471-2475. [PMID: 33663214 PMCID: PMC7957861 DOI: 10.1021/acs.jpclett.0c03583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Protein-membrane interactions play key roles in essential cellular processes; studying these interactions in the cell is a challenging task of modern biophysical chemistry. A prominent example is the interaction of human α-synuclein (αS) with negatively charged membranes. It has been well-studied in vitro, but in spite of the huge amount of lipid membranes in the crowded environment of biological cells, to date, no interactions have been detected in cells. Here, we use rapid-scan (RS) electron paramagnetic resonance (EPR) spectroscopy to study αS interactions with negatively charged vesicles in vitro and upon transfection of the protein and lipid vesicles into model cells, i.e., oocytes of Xenopus laevis. We show that protein-vesicle interactions are reflected in RS spectra in vitro and in cells, which enables time-resolved monitoring of protein-membrane interaction upon transfection into cells. Our data suggest binding of a small fraction of αS to endogenous membranes.
Collapse
Affiliation(s)
- Theresa
S. Braun
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Juliane Stehle
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Sylwia Kacprzak
- Bruker BioSpin
GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Patrick Carl
- Bruker BioSpin
GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Peter Höfer
- Bruker BioSpin
GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | - Vinod Subramaniam
- Vrije
Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Malte Drescher
- Department
of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
8
|
Cholak E, Bugge K, Khondker A, Gauger K, Pedraz-Cuesta E, Pedersen ME, Bucciarelli S, Vestergaard B, Pedersen SF, Rheinstädter MC, Langkilde AE, Kragelund BB. Avidity within the N-terminal anchor drives α-synuclein membrane interaction and insertion. FASEB J 2020; 34:7462-7482. [PMID: 32277854 DOI: 10.1096/fj.202000107r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022]
Abstract
In the brain, α-synuclein (aSN) partitions between free unbound cytosolic and membrane bound forms modulating both its physiological and pathological role and complicating its study due to structural heterogeneity. Here, we use an interdisciplinary, synergistic approach to characterize the properties of aSN:lipid mixtures, isolated aSN:lipid co-structures, and aSN in mammalian cells. Enabled by the isolation of the membrane-bound state, we show that within the previously described N-terminal membrane anchor, membrane interaction relies both on an N-terminal tail (NTT) head group layer insertion of 14 residues and a folded-upon-binding helix at the membrane surface. Both binding events must be present; if, for example, the NTT insertion is lost, the membrane affinity of aSN is severely compromised and formation of aSN:lipid co-structures hampered. In mammalian cells, compromised cooperativity results in lowered membrane association. Thus, avidity within the N-terminal anchor couples N-terminal insertion and helical surface binding, which is crucial for aSN membrane interaction and cellular localization, and may affect membrane fusion.
Collapse
Affiliation(s)
- Ersoy Cholak
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Kimmie Gauger
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Pedraz-Cuesta
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Saskia Bucciarelli
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Annette Eva Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Bhasne K, Jain N, Karnawat R, Arya S, Majumdar A, Singh A, Mukhopadhyay S. Discerning Dynamic Signatures of Membrane-Bound α-Synuclein Using Site-Specific Fluorescence Depolarization Kinetics. J Phys Chem B 2020; 124:708-717. [PMID: 31917569 DOI: 10.1021/acs.jpcb.9b09118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
α-Synuclein is an intrinsically disordered protein that adopts an α-helical structure upon binding to the negatively charged lipid membrane. Binding-induced conformational change of α-synuclein plays a crucial role in the regulation of synaptic plasticity. In this work, we utilized the fluorescence depolarization kinetics methodology to gain the site-specific dynamical insights into the membrane-bound α-synuclein. We took advantage of the nonoccurrence of Cys in α-synuclein and created single-Cys variants at different sites for us to be able to label it with a thiol-active fluorophore. Our fluorescence depolarization results reveal the presence of three dynamically distinct types of motions of α-synuclein on POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)) small unilamellar vesicles (SUVs): (i) the (local) wobbling-in-cone motion of the fluorophore on the subnanosecond timescale, (ii) the backbone segmental mobility on the nanosecond timescale, and (iii) a slow depolarization component with a characteristic long rotational correlation time (∼60 ns) that is independent of the residue position. This characteristic timescale could potentially arise due to global tumbling of the protein-membrane complex, the global reorientation of only the protein within the membrane, and/or the translation diffusion of the protein on the curved membrane surface that could result in fluorescence depolarization due to the angular displacement of the transition dipole. In order to discern the molecular origin of the characteristic long rotational correlation time, we then carried our depolarization experiments varying the curvature of the membrane and varying the binding affinity by changing the lipid headgroup. These experiments revealed that the long rotational correlation time primarily arises due to the translational diffusion of α-synuclein on the curved membrane surface with a diffusion coefficient of ∼8.7 × 10-10 m2/s. The site-specific fluorescence depolarization methodology will find broad application in quantifying diffusion of a wide range of membrane-associated proteins involved in functions and diseases.
Collapse
Affiliation(s)
- Karishma Bhasne
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Neha Jain
- Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Rishabh Karnawat
- Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Shruti Arya
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Anupa Majumdar
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Anubhuti Singh
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Biological Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India.,Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) , Mohali 140306 , India
| |
Collapse
|
10
|
Rocha S, Kumar R, Horvath I, Wittung-Stafshede P. Synaptic vesicle mimics affect the aggregation of wild-type and A53T α-synuclein variants differently albeit similar membrane affinity. Protein Eng Des Sel 2019; 32:59-66. [PMID: 31566224 PMCID: PMC6908820 DOI: 10.1093/protein/gzz021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/19/2019] [Accepted: 07/01/2019] [Indexed: 11/28/2022] Open
Abstract
α-Synuclein misfolding results in the accumulation of amyloid fibrils in Parkinson's disease. Missense protein mutations (e.g. A53T) have been linked to early onset disease. Although α-synuclein interacts with synaptic vesicles in the brain, it is not clear what role they play in the protein aggregation process. Here, we compare the effect of small unilamellar vesicles (lipid composition similar to synaptic vesicles) on wild-type (WT) and A53T α-synuclein aggregation. Using biophysical techniques, we reveal that binding affinity to the vesicles is similar for the two proteins, and both interact with the helix long axis parallel to the membrane surface. Still, the vesicles affect the aggregation of the variants differently: effects on secondary processes such as fragmentation dominate for WT, whereas for A53T, fibril elongation is mostly affected. We speculate that vesicle interactions with aggregate intermediate species, in addition to monomer binding, vary between WT and A53T, resulting in different consequences for amyloid formation.
Collapse
Affiliation(s)
- Sandra Rocha
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Ranjeet Kumar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Istvan Horvath
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
11
|
Nepal B, Leveritt J, Lazaridis T. Membrane Curvature Sensing by Amphipathic Helices: Insights from Implicit Membrane Modeling. Biophys J 2019; 114:2128-2141. [PMID: 29742406 DOI: 10.1016/j.bpj.2018.03.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/24/2018] [Accepted: 03/14/2018] [Indexed: 01/09/2023] Open
Abstract
Sensing and generation of lipid membrane curvature, mediated by the binding of specific proteins onto the membrane surface, play crucial roles in cell biology. A number of mechanisms have been proposed, but the molecular understanding of these processes is incomplete. All-atom molecular dynamics simulations have offered valuable insights but are extremely demanding computationally. Implicit membrane simulations could provide a viable alternative, but current models apply only to planar membranes. In this work, the implicit membrane model 1 is extended to spherical and tubular membranes. The geometric change from planar to curved shapes is straightforward but insufficient for capturing the full curvature effect, which includes changes in lipid packing. Here, these packing effects are taken into account via the lateral pressure profile. The extended implicit membrane model 1 is tested on the wild-types and mutants of the antimicrobial peptide magainin, the ALPS motif of arfgap1, α-synuclein, and an ENTH domain. In these systems, the model is in qualitative agreement with experiments. We confirm that favorable electrostatic interactions tend to weaken curvature sensitivity in the presence of strong hydrophobic interactions but may actually have a positive effect when those are weak. We also find that binding to vesicles is more favorable than binding to tubes of the same diameter and that the long helix of α-synuclein tends to orient along the axis of tubes, whereas shorter helices tend to orient perpendicular to it. Adoption of a specific orientation could provide a mechanism for coupling protein oligomerization to tubule formation.
Collapse
Affiliation(s)
- Binod Nepal
- Department of Chemistry, City College of New York, New York, New York
| | - John Leveritt
- Department of Chemistry, Newman University, Wichita, Kansas
| | - Themis Lazaridis
- Department of Chemistry, City College of New York, New York, New York; Graduate Programs in Chemistry, Biochemistry, and Physics, The Graduate Center, City University of New York, New York, New York.
| |
Collapse
|
12
|
O'Leary EI, Lee JC. Interplay between α-synuclein amyloid formation and membrane structure. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2019; 1867:483-491. [PMID: 30287222 PMCID: PMC6445794 DOI: 10.1016/j.bbapap.2018.09.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/08/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Amyloid formation is a pathological hallmark of many neurodegenerative diseases, including Alzheimer's, Parkinson's, and Huntington's. While it is unknown how these disorders are initiated, in vitro and cellular experiments confirm the importance of membranes. Ubiquitous in vivo, membranes induce conformational changes in amyloidogenic proteins and in some cases, facilitate aggregation. Reciprocally, perturbations in the bilayer structure can be induced by amyloid formation. Here, we review studies in the last 10 years describing α-synuclein (α-syn) and its interactions with membranes, detailing the roles of anionic and zwitterionic lipids in aggregation, and their contribution to Parkinson's disease. We summarize the impact of α-syn - comparing monomeric, oligomeric, and fibrillar forms - on membrane structure, and the effect of membrane remodeling on amyloid formation. Finally, perspective on future studies investigating the interplay between α-syn aggregation and membranes is discussed. This article is part of a Special Issue entitled: Amyloids.
Collapse
Affiliation(s)
- Emma I O'Leary
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Jennifer C Lee
- Laboratory of Protein Conformation and Dynamics, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
13
|
Abstract
The past few years have resulted in an increased awareness and recognition of the prevalence and roles of intrinsically disordered proteins and protein regions (IDPs and IDRs, respectively) in synaptic vesicle trafficking and exocytosis and in overall synaptic organization. IDPs and IDRs constitute a class of proteins and protein regions that lack stable tertiary structure, but nevertheless retain biological function. Their significance in processes such as cell signaling is now well accepted, but their pervasiveness and importance in other areas of biology are not as widely appreciated. Here, we review the prevalence and functional roles of IDPs and IDRs associated with the release and recycling of synaptic vesicles at nerve terminals, as well as with the architecture of these terminals. We hope to promote awareness, especially among neuroscientists, of the importance of this class of proteins in these critical pathways and structures. The examples discussed illustrate some of the ways in which the structural flexibility conferred by intrinsic protein disorder can be functionally advantageous in the context of cellular trafficking and synaptic function.
Collapse
Affiliation(s)
- David Snead
- From the Department of Biochemistry, Weill Cornell Medicine, New York, New York 10021
| | - David Eliezer
- From the Department of Biochemistry, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
14
|
Fallah MA, Hauser K. Immobilization approaches can affect protein dynamics: a surface-enhanced infrared spectroscopic study on lipid–protein interactions. Biomater Sci 2019; 7:3204-3212. [DOI: 10.1039/c9bm00140a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Near-field detection of SEIRA reveals that surface immobilization alters conformational properties of α-synuclein.
Collapse
Affiliation(s)
| | - Karin Hauser
- Department of Chemistry
- University of Konstanz
- 78457 Konstanz
- Germany
| |
Collapse
|
15
|
Xu L, Bhattacharya S, Thompson D. On the ubiquity of helical α-synuclein tetramers. Phys Chem Chem Phys 2019; 21:12036-12043. [DOI: 10.1039/c9cp02464f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The stability of oligomers linearly increases from dimers to octamers, but assembly of oligomers larger than tetramers requires high activation energies.
Collapse
Affiliation(s)
- Liang Xu
- Department of Physics
- Bernal Institute
- University of Limerick
- V94 T9PX
- Ireland
| | | | - Damien Thompson
- Department of Physics
- Bernal Institute
- University of Limerick
- V94 T9PX
- Ireland
| |
Collapse
|
16
|
Cattani J, Braun T, Drescher M. Probing Alpha-Synuclein Conformations by Electron Paramagnetic Resonance (EPR) Spectroscopy. Methods Mol Biol 2019; 1948:247-260. [PMID: 30771183 DOI: 10.1007/978-1-4939-9124-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy in combination with site-directed spin labeling is ideally suited to study structure, dynamics, and interactions of intrinsically disordered proteins as alpha-synuclein.Here we describe all steps required for a corresponding study: the spin labeling procedure, sample preparation, spectroscopic experimental procedure, and data analysis.
Collapse
Affiliation(s)
- Julia Cattani
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Theresa Braun
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
17
|
AlQahtani AD, Al-mansoori L, Bashraheel SS, Rashidi FB, Al-Yafei A, Elsinga P, Domling A, Goda SK. Production of “biobetter” glucarpidase variants to improve drug detoxification and antibody directed enzyme prodrug therapy for cancer treatment. Eur J Pharm Sci 2019; 127:79-91. [DOI: 10.1016/j.ejps.2018.10.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/01/2018] [Accepted: 10/15/2018] [Indexed: 11/27/2022]
|
18
|
Iyer A, Claessens MMAE. Disruptive membrane interactions of alpha-synuclein aggregates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:468-482. [PMID: 30315896 DOI: 10.1016/j.bbapap.2018.10.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/14/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
Alpha synuclein (αS) is a ~14 kDa intrinsically disordered protein. Decades of research have increased our knowledge on αS yet its physiological function remains largely elusive. The conversion of monomeric αS into oligomers and amyloid fibrils is believed to play a central role of the pathology of Parkinson's disease (PD). It is becoming increasingly clear that the interactions of αS with cellular membranes are important for both αS's functional and pathogenic actions. Therefore, understanding interactions of αS with membranes seems critical to uncover functional or pathological mechanisms. This review summarizes our current knowledge of how physicochemical properties of phospholipid membranes affect the binding and aggregation of αS species and gives an overview of how post-translational modifications and point mutations in αS affect phospholipid membrane binding and protein aggregation. We discuss the disruptive effects resulting from the interaction of αS aggregate species with membranes and highlight current approaches and hypotheses that seek to understand the pathogenic and/or protective role of αS in PD.
Collapse
Affiliation(s)
- Aditya Iyer
- Membrane Enzymology Group, University of Groningen, Groningen 9747 AG, The Netherlands
| | | |
Collapse
|
19
|
Choi TS, Han JY, Heo CE, Lee SW, Kim HI. Electrostatic and hydrophobic interactions of lipid-associated α-synuclein: The role of a water-limited interfaces in amyloid fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1854-1862. [DOI: 10.1016/j.bbamem.2018.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
|
20
|
Sung Y, Eliezer D. Structure and dynamics of the extended-helix state of alpha-synuclein: Intrinsic lability of the linker region. Protein Sci 2018; 27:1314-1324. [PMID: 29663556 PMCID: PMC6032355 DOI: 10.1002/pro.3426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/25/2022]
Abstract
The Parkinson's protein alpha-synuclein binds to synaptic vesicles in vivo and adopts a highly extended helical conformation when binding to lipid vesicles in vitro. High-resolution structural analysis of alpha-synuclein bound to small lipid or detergent micelles revealed two helices connected by a non-helical linker, but corresponding studies of the vesicle-bound extended-helix state are hampered by the size and heterogeneity of the protein-vesicle complex. Here we employ fluorinated alcohols (FAs) to induce a highly helical aggregation-resistant state of alpha-synuclein in solution that resembles the vesicle-bound extended-helix state but is amenable to characterization using high-resolution solution-state NMR. Analysis of chemical shift, NOE, coupling constant, PRE and relaxation measurements shows that the lipid-binding domain of alpha-synuclein in FA solutions indeed adopts a single continuous helix and that the ends of this helix do not come into detectable proximity to each other. The helix is well ordered in the center, but features an increase in fast internal motions suggestive of helix fraying approaching the termini. The central region of the helix exhibits slower time scale motions that likely result from flexing of the highly anisotropic structure. Importantly, weak or missing short- and intermediate-range NOEs in the region corresponding to the non-helical linker of micelle-bound alpha-synuclein indicate that the helical structure in this region of the protein is intrinsically unstable. This suggests that conversion of alpha-synuclein from the extended-helix to the broken-helix state represents a functionally relevant structural transition.
Collapse
Affiliation(s)
- Yoon‐Hui Sung
- Department of Biochemistry and Program in Structural BiologyWeill Cornell MedicineNew YorkNew York
| | - David Eliezer
- Department of Biochemistry and Program in Structural BiologyWeill Cornell MedicineNew YorkNew York
| |
Collapse
|
21
|
Fakhree MA, Nolten IS, Blum C, Claessens MMAE. Different Conformational Subensembles of the Intrinsically Disordered Protein α-Synuclein in Cells. J Phys Chem Lett 2018; 9:1249-1253. [PMID: 29474083 PMCID: PMC5857923 DOI: 10.1021/acs.jpclett.8b00092] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/23/2018] [Indexed: 05/27/2023]
Abstract
The intrinsically disordered protein α-synuclein (αS) is thought to play an important role in cellular membrane processes. Although in vitro experiments indicate that this initially disordered protein obtains structure upon membrane binding, NMR and EPR studies in cells could not single out any conformational subensemble. Here we microinjected small amounts of αS, labeled with a Förster resonance energy transfer (FRET) pair, into SH-SY5Y cells to investigate conformational changes upon membrane binding. Our FRET studies show a clear conformational difference between αS in the cytosol and when bound to small vesicles. The identification of these different conformational subensembles inside cells resolves the apparent contradiction between in vitro and in vivo experiments and shows that at least two different conformational subensembles of αS exist in cells. The existence of conformational subensembles supports the idea that αS can obtain different functions which can possibly be dynamically addressed with changing intracellular physicochemical conditions.
Collapse
|
22
|
Fallah MA, Gerding HR, Scheibe C, Drescher M, Karreman C, Schildknecht S, Leist M, Hauser K. Simultaneous IR-Spectroscopic Observation of α-Synuclein, Lipids, and Solvent Reveals an Alternative Membrane-Induced Oligomerization Pathway. Chembiochem 2017; 18:2312-2316. [PMID: 28980756 DOI: 10.1002/cbic.201700355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 12/15/2022]
Abstract
The intrinsically disordered protein α-synuclein (αS), a known pathogenic factor for Parkinson's disease, can adopt defined secondary structures when interacting with membranes or during fibrillation. The αS-lipid interaction and the implications of this process for aggregation and damage to membranes are still poorly understood. Therefore, we established a label-free infrared (IR) spectroscopic approach to allow simultaneous monitoring of αS conformation and membrane integrity. IR showed its unique sensitivity for identifying distinct β-structured aggregates. A comparative study of wild-type αS and the naturally occurring splicing variant αS Δexon3 yielded new insights into the membrane's capability for altering aggregation pathways.
Collapse
Affiliation(s)
- Mohammad A Fallah
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Hanne R Gerding
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Christian Scheibe
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Malte Drescher
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Christiaan Karreman
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Stefan Schildknecht
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Marcel Leist
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| |
Collapse
|
23
|
Lee JH, Ying J, Bax A. Nuclear Magnetic Resonance Observation of α-Synuclein Membrane Interaction by Monitoring the Acetylation Reactivity of Its Lysine Side Chains. Biochemistry 2016; 55:4949-59. [PMID: 27455358 PMCID: PMC5015657 DOI: 10.1021/acs.biochem.6b00637] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
interaction between α-synuclein (αS) protein and
lipid membranes is key to its role in synaptic vesicle homeostasis
and plays a role in initiating fibril formation, which is implicated
in Parkinson’s disease. The natural state of αS inside
the cell is generally believed to be intrinsically disordered, but
chemical cross-linking experiments provided evidence of a tetrameric
arrangement, which was reported to be rich in α-helical secondary
structure based on circular dichroism (CD). Cross-linking relies on
chemical modification of the protein’s Lys Cε amino groups, commonly by glutaraldehyde, or by disuccinimidyl glutarate
(DSG), with the latter agent preferred for cellular assays. We used
ultra-high-resolution homonuclear decoupled nuclear magnetic resonance
experiments to probe the reactivity of the 15 αS Lys residues
toward N-succinimidyl acetate, effectively half the
DSG cross-linker, which results in acetylation of Lys. The intensities
of both side chain and backbone amide signals of acetylated Lys residues
provide direct information about the reactivity, showing a difference
of a factor of 2.5 between the most reactive (K6) and the least reactive
(K102) residue. The presence of phospholipid vesicles decreases reactivity
of most Lys residues by up to an order of magnitude at high lipid:protein
stoichiometries (500:1), but only weakly at low ratios. The decrease
in Lys reactivity is found to be impacted by lipid composition, even
for vesicles that yield similar αS CD signatures. Our data provide
new insight into the αS–bilayer interaction, including
the pivotal state in which the available lipid surface is limited.
Protection of Lys Cε amino groups by αS–bilayer
interaction will strongly impact quantitative interpretation of DSG
cross-linking experiments.
Collapse
Affiliation(s)
- Jung Ho Lee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States
| |
Collapse
|
24
|
Iyer A, Roeters SJ, Schilderink N, Hommersom B, Heeren RMA, Woutersen S, Claessens MMAE, Subramaniam V. The Impact of N-terminal Acetylation of α-Synuclein on Phospholipid Membrane Binding and Fibril Structure. J Biol Chem 2016; 291:21110-21122. [PMID: 27531743 PMCID: PMC5076520 DOI: 10.1074/jbc.m116.726612] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 11/29/2022] Open
Abstract
Human α-synuclein (αS) has been shown to be N terminally acetylated in its physiological state. This modification is proposed to modulate the function and aggregation of αS into amyloid fibrils. Using bacterially expressed acetylated-αS (NTAc-αS) and endogenous αS (Endo-αS) from human erythrocytes, we show that N-terminal acetylation has little impact on αS binding to anionic membranes and thus likely not relevant for regulating membrane affinity. N-terminal acetylation does have an effect on αS aggregation, resulting in a narrower distribution of the aggregation lag times and rates. 2D-IR spectra show that acetylation changes the secondary structure of αS in fibrils. This difference may arise from the slightly higher helical propensity of acetylated-αS in solution leading to a more homogenous fibril population with different fibril structure than non-acetylated αS. We speculate that N-terminal acetylation imposes conformational restraints on N-terminal residues in αS, thus predisposing αS toward specific interactions with other binding partners or alternatively decrease nonspecific interactions.
Collapse
Affiliation(s)
- Aditya Iyer
- From the Nanoscale Biophysics Group, FOM Institute AMOLF, Amsterdam, the Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede
| | - Steven J Roeters
- the Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam
| | - Nathalie Schilderink
- the Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede
| | - Bob Hommersom
- the BioImaging MS Group, FOM Institute AMOLF, Amsterdam, The Netherlands
| | - Ron M A Heeren
- the BioImaging MS Group, FOM Institute AMOLF, Amsterdam, The Netherlands, the M4I, The Maastricht MultiModal Molecular Imaging Institute, University of Maastricht, and
| | - Sander Woutersen
- the Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam,
| | | | - Vinod Subramaniam
- From the Nanoscale Biophysics Group, FOM Institute AMOLF, Amsterdam, the Nanobiophysics Group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, the Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
25
|
Baylon JL, Vermaas JV, Muller MP, Arcario MJ, Pogorelov TV, Tajkhorshid E. Atomic-level description of protein-lipid interactions using an accelerated membrane model. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1858:1573-83. [PMID: 26940626 PMCID: PMC4877275 DOI: 10.1016/j.bbamem.2016.02.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/19/2016] [Accepted: 02/20/2016] [Indexed: 01/03/2023]
Abstract
Peripheral membrane proteins are structurally diverse proteins that are involved in fundamental cellular processes. Their activity of these proteins is frequently modulated through their interaction with cellular membranes, and as a result techniques to study the interfacial interaction between peripheral proteins and the membrane are in high demand. Due to the fluid nature of the membrane and the reversibility of protein-membrane interactions, the experimental study of these systems remains a challenging task. Molecular dynamics simulations offer a suitable approach to study protein-lipid interactions; however, the slow dynamics of the lipids often prevents sufficient sampling of specific membrane-protein interactions in atomistic simulations. To increase lipid dynamics while preserving the atomistic detail of protein-lipid interactions, in the highly mobile membrane-mimetic (HMMM) model the membrane core is replaced by an organic solvent, while short-tailed lipids provide a nearly complete representation of natural lipids at the organic solvent/water interface. Here, we present a brief introduction and a summary of recent applications of the HMMM to study different membrane proteins, complementing the experimental characterization of the presented systems, and we offer a perspective of future applications of the HMMM to study other classes of membrane proteins. This article is part of a Special Issue entitled: Membrane proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Javier L Baylon
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology.
| | - Josh V Vermaas
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology.
| | - Melanie P Muller
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology; College of Medicine.
| | - Mark J Arcario
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology; College of Medicine.
| | - Taras V Pogorelov
- Beckman Institute for Advanced Science and Technology; School of Chemical Sciences; Department of Chemistry; National Center for Supercomputing Applications.
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology; Beckman Institute for Advanced Science and Technology; College of Medicine; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
| |
Collapse
|
26
|
Wang C, Zhao C, Li D, Tian Z, Lai Y, Diao J, Liu C. Versatile Structures of α-Synuclein. Front Mol Neurosci 2016; 9:48. [PMID: 27378848 PMCID: PMC4913103 DOI: 10.3389/fnmol.2016.00048] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
α-Synuclein (α-syn) is an intrinsically disordered protein abundantly distributed in presynaptic terminals. Aggregation of α-syn into Lewy bodies (LB) is a molecular hallmark of Parkinson’s disease (PD). α-Syn features an extreme conformational diversity, which adapts to different conditions and fulfills versatile functions. However, the molecular mechanism of α-syn transformation and the relation between different structural species and their functional and pathogenic roles in neuronal activities and PD remain unknown. In this mini-review, we summarize the recent discoveries of α-syn structures in the membrane-bound state, in cytosol, and in the amyloid state under physiological and pathological conditions. From the current knowledge on different structural species of α-syn, we intend to find a clue about its function and toxicity in normal neurons and under disease conditions, which could shed light on the PD pathogenesis.
Collapse
Affiliation(s)
- Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai, China
| | - Chunyu Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai, China
| | - Dan Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai, China
| | - Zhiqi Tian
- Department of Cancer Biology, College of Medicine, University of CincinnatiCincinnati, OH, USA; Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of the Education School of Life Science, Xi'an Jiaotong UniversityXi'an, China
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University Stanford, CA, USA
| | - Jiajie Diao
- Department of Cancer Biology, College of Medicine, University of Cincinnati Cincinnati, OH, USA
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|
27
|
Eichmann C, Campioni S, Kowal J, Maslennikov I, Gerez J, Liu X, Verasdonck J, Nespovitaya N, Choe S, Meier BH, Picotti P, Rizo J, Stahlberg H, Riek R. Preparation and Characterization of Stable α-Synuclein Lipoprotein Particles. J Biol Chem 2016; 291:8516-27. [PMID: 26846854 DOI: 10.1074/jbc.m115.707968] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Indexed: 01/11/2023] Open
Abstract
Multiple neurodegenerative diseases are caused by the aggregation of the human α-Synuclein (α-Syn) protein. α-Syn possesses high structural plasticity and the capability of interacting with membranes. Both features are not only essential for its physiological function but also play a role in the aggregation process. Recently it has been proposed that α-Syn is able to form lipid-protein particles reminiscent of high-density lipoproteins. Here, we present a method to obtain a stable and homogeneous population of nanometer-sized particles composed of α-Syn and anionic phospholipids. These particles are called α-Syn lipoprotein (nano)particles to indicate their relationship to high-density lipoproteins formed by human apolipoproteins in vivo and of in vitro self-assembling phospholipid bilayer nanodiscs. Structural investigations of the α-Syn lipoprotein particles by circular dichroism (CD) and magic angle solid-state nuclear magnetic resonance (MAS SS-NMR) spectroscopy establish that α-Syn adopts a helical secondary structure within these particles. Based on cryo-electron microscopy (cryo-EM) and dynamic light scattering (DLS) α-Syn lipoprotein particles have a defined size with a diameter of ∼23 nm. Chemical cross-linking in combination with solution-state NMR and multiangle static light scattering (MALS) of α-Syn particles reveal a high-order protein-lipid entity composed of ∼8-10 α-Syn molecules. The close resemblance in size between cross-linked in vitro-derived α-Syn lipoprotein particles and a cross-linked species of endogenous α-Syn from SH-SY5Y human neuroblastoma cells indicates a potential functional relevance of α-Syn lipoprotein nanoparticles.
Collapse
Affiliation(s)
| | | | - Julia Kowal
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | | | - Juan Gerez
- Institute of Biochemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Xiaoxia Liu
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | | | | | - Senyon Choe
- Structural Biology Laboratory, The Salk Institute, La Jolla, California 92037 and
| | | | - Paola Picotti
- Institute of Biochemistry, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Henning Stahlberg
- Center for Cellular Imaging and NanoAnalytics, Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Roland Riek
- From the Laboratory of Physical Chemistry and Structural Biology Laboratory, The Salk Institute, La Jolla, California 92037 and
| |
Collapse
|
28
|
Kumar P, Segers-Nolten IMJ, Schilderink N, Subramaniam V, Huber M. Parkinson's Protein α-Synuclein Binds Efficiently and with a Novel Conformation to Two Natural Membrane Mimics. PLoS One 2015; 10:e0142795. [PMID: 26588454 PMCID: PMC4654490 DOI: 10.1371/journal.pone.0142795] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/27/2015] [Indexed: 01/11/2023] Open
Abstract
Binding of human α-Synuclein, a protein associated with Parkinson’s disease, to natural membranes is thought to be crucial in relation to its pathological and physiological function. Here the binding of αS to small unilamellar vesicles mimicking the inner mitochondrial and the neuronal plasma membrane is studied in situ by continuous wave and pulsed electron paramagnetic resonance. Local binding information of αS spin labeled by MTSL at positions 56 and 69 respectively shows that also helix 2 (residues 50–100) binds firmly to both membranes. By double electron-electron resonance (DEER) on the mutant spin labeled at positions 27 and 56 (αS 27/56) a new conformation on the membrane is found with a distance of 3.6 nm/ 3.7 nm between residues 27 and 56. In view of the low negative charge density of these membranes, the strong interaction is surprising, emphasizing that function and pathology of αS could involve synaptic vesicles and mitochondria.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Physics, Huygens-Kammerlingh-Onnes Laboratory, Leiden University, Leiden, The Netherlands
| | - Ine M. J. Segers-Nolten
- Nanobiophysics, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Nathalie Schilderink
- Nanobiophysics, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Vinod Subramaniam
- Nanobiophysics, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
- FOM Institute AMOLF, Amsterdam, The Netherlands
| | - Martina Huber
- Department of Physics, Huygens-Kammerlingh-Onnes Laboratory, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
29
|
Shi Z, Sachs JN, Rhoades E, Baumgart T. Biophysics of α-synuclein induced membrane remodelling. Phys Chem Chem Phys 2015; 17:15561-8. [PMID: 25665896 PMCID: PMC4464955 DOI: 10.1039/c4cp05883f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
α-Synuclein is an intrinsically disordered protein whose aggregation is a hallmark of Parkinson's disease. In neurons, α-synuclein is thought to play important roles in mediating both endo- and exocytosis of synaptic vesicles through interactions with either the lipid bilayer or other proteins. Upon membrane binding, the N-terminus of α-synuclein forms a helical structure and inserts into the hydrophobic region of the outer membrane leaflet. However, membrane structural changes induced by α-synuclein are still largely unclear. Here we report a substantial membrane area expansion induced by the binding of α-synuclein monomers. This measurement is accomplished by observing the increase of membrane area during the binding of α-synuclein to pipette-aspirated giant vesicles. The extent of membrane area expansion correlates linearly with the density of α-synuclein on the membrane, revealing a constant area increase induced by the binding per α-synuclein molecule. The area expansion per synuclein is found to exhibit a strong dependence on lipid composition, but is independent of membrane tension and vesicle size. Fragmentation or tubulation of the membrane follows the membrane expansion process. However, contrary to BAR domain proteins, no distinct tubulation-transition density can apparently be identified for α-synuclein, suggesting a more complex membrane curvature generation mechanism. Consideration of α-synuclein's membrane binding free energy and biophysical properties of the lipid bilayer leads us to conclude that membrane expansion by α-synuclein results in thinning of the bilayer. These membrane thinning and tubulation effects may underlie α-synuclein's role in mediating cell trafficking processes such as endo- and exocytosis.
Collapse
Affiliation(s)
- Zheng Shi
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|
30
|
Vermaas JV, Baylon JL, Arcario MJ, Muller MP, Wu Z, Pogorelov TV, Tajkhorshid E. Efficient Exploration of Membrane-Associated Phenomena at Atomic Resolution. J Membr Biol 2015; 248:563-82. [PMID: 25998378 PMCID: PMC4490090 DOI: 10.1007/s00232-015-9806-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/30/2015] [Indexed: 12/24/2022]
Abstract
Biological membranes constitute a critical component in all living cells. In addition to providing a conducive environment to a wide range of cellular processes, including transport and signaling, mounting evidence has established active participation of specific lipids in modulating membrane protein function through various mechanisms. Understanding lipid-protein interactions underlying these mechanisms at a sufficiently high resolution has proven extremely challenging, partly due to the semi-fluid nature of the membrane. In order to address this challenge computationally, multiple methods have been developed, including an alternative membrane representation termed highly mobile membrane mimetic (HMMM) in which lateral lipid diffusion has been significantly enhanced without compromising atomic details. The model allows for efficient sampling of lipid-protein interactions at atomic resolution, thereby significantly enhancing the effectiveness of molecular dynamics simulations in capturing membrane-associated phenomena. In this review, after providing an overview of HMMM model development, we will describe briefly successful application of the model to study a variety of membrane processes, including lipid-dependent binding and insertion of peripheral proteins, the mechanism of phospholipid insertion into lipid bilayers, and characterization of optimal tilt angle of transmembrane helices. We conclude with practical recommendations for proper usage of the model in simulation studies of membrane processes.
Collapse
Affiliation(s)
- Josh V. Vermaas
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Javier L. Baylon
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Mark J. Arcario
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Melanie P. Muller
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Zhe Wu
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Taras V. Pogorelov
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Emad Tajkhorshid
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| |
Collapse
|
31
|
Abstract
In the present chapter, we discuss the key findings on αsyn (α-synuclein) oligomers from a biophysical point of view. Current structural methods cannot provide a high-resolution structure of αsyn oligomers due to their size, heterogeneity and tendency to aggregate. However, a low-resolution structure of a stable αsyn oligomer population is emerging based on compelling data from different research groups. αsyn oligomers are normally observed during the formation of amyloid fibrils and we discuss how they are connected to this process. Another important topic is the interaction of αsyn oligomers and membranes, and we will discuss the evidence which suggests that this interaction might be essential in the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Finally, we present a remarkable example of how small molecules are able to stabilize non-amyloid oligomers and how this might be a potential strategy to inhibit the inherent toxicity of αsyn oligomers. A major challenge is to link the very complex oligomerization pathways seen in clever experiments in vitro with what actually happens in the cell. With the tremendous developments in optical microscopy in mind, we believe that it will be possible to make this link very soon.
Collapse
|
32
|
Vermaas JV, Tajkhorshid E. Conformational heterogeneity of α-synuclein in membrane. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:3107-17. [PMID: 25135664 PMCID: PMC4194229 DOI: 10.1016/j.bbamem.2014.08.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 12/13/2022]
Abstract
α-Synuclein (αS) is a natively disordered protein in solution, thought to be involved in the fusion of neurotransmitter vesicles to cellular membranes during neurotransmission. Monomeric αS has been previously characterized in two distinct membrane-associated conformations: a broken-helix structure, and an extended helix. By employing atomistic molecular dynamics and a novel membrane representation with significantly enhanced lipid mobility (HMMM), we investigate the process of spontaneous membrane binding of αS and the conformational dynamics of monomeric αS in its membrane-bound form. By repeatedly placing helical αS monomers in solution above a planar lipid bilayer and observing their spontaneous association and its spontaneous insertion into the membrane during twenty independent unbiased simulations, we are able to characterize αS in its membrane-bound state, suggesting that αS has a highly variable membrane insertion depth at equilibrium. Our simulations also capture two distinct states of αS, the starting broken-helix conformation seen in the micelle bound NMR structures, and a semi-extended helix. Analysis of lipid distributions near αS monomers indicates that the transition to a semi-extended helix is facilitated by concentration of phosphatidyl-serine headgroups along the inner edge of the protein. Such a lipid-mediated transition between helix-turn-helix and extended conformations of αS may also occur in vivo, and may be important for the physiological function of αS.
Collapse
Affiliation(s)
- Josh V Vermaas
- Beckman Institute for Advanced Science and Technology, Department of Biochemistry, College of Medicine, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- Beckman Institute for Advanced Science and Technology, Department of Biochemistry, College of Medicine, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
33
|
Snead D, Eliezer D. Alpha-synuclein function and dysfunction on cellular membranes. Exp Neurobiol 2014; 23:292-313. [PMID: 25548530 PMCID: PMC4276801 DOI: 10.5607/en.2014.23.4.292] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/15/2014] [Accepted: 11/16/2014] [Indexed: 11/19/2022] Open
Abstract
Alpha-synuclein is a small neuronal protein that is closely associated with the etiology of Parkinson's disease. Mutations in and alterations in expression levels of alpha-synuclein cause autosomal dominant early onset heredity forms of Parkinson's disease, and sporadic Parkinson's disease is defined in part by the presence of Lewy bodies and Lewy neurites that are composed primarily of alpha-synuclein deposited in an aggregated amyloid fibril state. The normal function of alpha-synuclein is poorly understood, and the precise mechanisms by which it leads to toxicity and cell death are also unclear. Although alpha-synuclein is a highly soluble, cytoplasmic protein, it binds to a variety of cellular membranes of different properties and compositions. These interactions are considered critical for at least some normal functions of alpha-synuclein, and may well play critical roles in both the aggregation of the protein and its mechanisms of toxicity. Here we review the known features of alpha-synuclein membrane interactions in the context of both the putative functions of the protein and of its pathological roles in disease.
Collapse
Affiliation(s)
- David Snead
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
34
|
Shabestari MH, Wolfs CJAM, Spruijt RB, van Amerongen H, Huber M. Exploring the structure of the 100 amino-acid residue long N-terminus of the plant antenna protein CP29. Biophys J 2014; 106:1349-58. [PMID: 24655510 DOI: 10.1016/j.bpj.2013.11.4506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/14/2013] [Accepted: 11/27/2013] [Indexed: 12/01/2022] Open
Abstract
The structure of the unusually long (∼100 amino-acid residues) N-terminal domain of the light-harvesting protein CP29 of plants is not defined in the crystal structure of this membrane protein. We studied the N-terminus using two electron paramagnetic resonance (EPR) approaches: the rotational diffusion of spin labels at 55 residues with continuous-wave EPR, and three sets of distances with a pulsed EPR method. The N-terminus is relatively structured. Five regions that differ considerably in their dynamics are identified. Two regions have low rotational diffusion, one of which shows α-helical character suggesting contact with the protein surface. This immobile part is flanked by two highly dynamic, unstructured regions (loops) that cover residues 10-22 and 82-91. These loops may be important for the interaction with other light-harvesting proteins. The region around residue 4 also has low rotational diffusion, presumably because it attaches noncovalently to the protein. This section is close to a phosphorylation site (Thr-6) in related proteins, such as those encoded by the Lhcb4.2 gene. Phosphorylation might influence the interaction with other antenna complexes, thereby regulating the supramolecular organization in the thylakoid membrane.
Collapse
Affiliation(s)
| | - Cor J A M Wolfs
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | - Ruud B Spruijt
- Laboratory of Biophysics, Wageningen University, Wageningen, The Netherlands
| | | | - Martina Huber
- Department of Molecular Physics, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
35
|
Grey M, Dunning CJ, Gaspar R, Grey C, Brundin P, Sparr E, Linse S. Acceleration of α-synuclein aggregation by exosomes. J Biol Chem 2014; 290:2969-82. [PMID: 25425650 PMCID: PMC4317028 DOI: 10.1074/jbc.m114.585703] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exosomes are small vesicles released from cells into extracellular space. We have isolated exosomes from neuroblastoma cells and investigated their influence on the aggregation of α-synuclein, a protein associated with Parkinson disease pathology. Using cryo-transmission electron microscopy of exosomes, we found spherical unilamellar vesicles with a significant protein content, and Western blot analysis revealed that they contain, as expected, the proteins Flotillin-1 and Alix. Using thioflavin T fluorescence to monitor aggregation kinetics, we found that exosomes catalyze the process in a similar manner as a low concentration of preformed α-synuclein fibrils. The exosomes reduce the lag time indicating that they provide catalytic environments for nucleation. The catalytic effects of exosomes derived from naive cells and cells that overexpress α-synuclein do not differ. Vesicles prepared from extracted exosome lipids accelerate aggregation, suggesting that the lipids in exosomes are sufficient for the catalytic effect to arise. Using mass spectrometry, we found several phospholipid classes in the exosomes, including phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol, and the gangliosides GM2 and GM3. Within each class, several species with different acyl chains were identified. We then prepared vesicles from corresponding pure lipids or defined mixtures, most of which were found to retard α-synuclein aggregation. As a striking exception, vesicles containing ganglioside lipids GM1 or GM3 accelerate the process. Understanding how α-synuclein interacts with biological membranes to promote neurological disease might lead to the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Marie Grey
- From the Departments of Physical Chemistry
| | - Christopher J Dunning
- the Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, SE-22100 Lund, Sweden and the Center for Neurodegenerative Science, Biochemistry and Structural Biology, and
| | - Ricardo Gaspar
- From the Departments of Physical Chemistry, Biochemistry and Structural Biology, and
| | | | - Patrik Brundin
- the Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, SE-22100 Lund, Sweden and the Center for Neurodegenerative Science, The Van Andel Research Institute, Grand Rapids, Michigan 49503
| | - Emma Sparr
- From the Departments of Physical Chemistry,
| | - Sara Linse
- Biochemistry and Structural Biology, and
| |
Collapse
|
36
|
Robotta M, Gerding HR, Vogel A, Hauser K, Schildknecht S, Karreman C, Leist M, Subramaniam V, Drescher M. Alpha-synuclein binds to the inner membrane of mitochondria in an α-helical conformation. Chembiochem 2014; 15:2499-502. [PMID: 25209675 DOI: 10.1002/cbic.201402281] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Indexed: 12/15/2022]
Abstract
The human alpha-Synuclein (αS) protein is of significant interest because of its association with Parkinson's disease and related neurodegenerative disorders. The intrinsically disordered protein (140 amino acids) is characterized by the absence of a well-defined structure in solution. It displays remarkable conformational flexibility upon macromolecular interactions, and can associate with mitochondrial membranes. Site-directed spin-labeling in combination with electron paramagnetic resonance spectroscopy enabled us to study the local binding properties of αS on artificial membranes (mimicking the inner and outer mitochondrial membranes), and to evaluate the importance of cardiolipin in this interaction. With pulsed, two-frequency, double-electron electron paramagnetic resonance (DEER) approaches, we examined, to the best of our knowledge for the first time, the conformation of αS bound to isolated mitochondria.
Collapse
Affiliation(s)
- Marta Robotta
- Department of Chemistry and Biology, Konstanz Research School Chemical Biology (KoRS-CB) and the Zukunftskolleg, University of Konstanz, 78457 Konstanz (Germany)
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Braun AR, Lacy MM, Ducas VC, Rhoades E, Sachs JN. α-Synuclein-induced membrane remodeling is driven by binding affinity, partition depth, and interleaflet order asymmetry. J Am Chem Soc 2014; 136:9962-72. [PMID: 24960410 PMCID: PMC4105054 DOI: 10.1021/ja5016958] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We have investigated
the membrane remodeling capacity of the N-terminal
membrane-binding domain of α-synuclein (α-Syn100). Using fluorescence correlation spectroscopy and vesicle clearance
assays, we show that α-Syn100 fully tubulates POPG
vesicles, the first demonstration that the amphipathic helix on its
own is capable of this effect. We also show that at equal density
of membrane-bound protein, α-Syn has dramatically reduced affinity
for, and does not tubulate, vesicles composed of a 1:1 POPG:POPC mixture.
Coarse-grained molecular dynamics simulations suggested that the difference
between the pure POPG and mixture results may be attributed to differences
in the protein’s partition depth, the membrane’s hydrophobic
thickness, and disruption of acyl chain order. To explore the importance
of these attributes compared with the role of the reduced binding
energy, we created an α-Syn100 variant in which we
removed the hydrophobic core of the non-amyloid component (NAC) domain
and tested its impact on pure POPG vesicles. We observed a substantial
reduction in binding affinity and tubulation, and simulations of the
NAC-null protein suggested that the reduced binding energy increases
the protein mobility on the bilayer surface, likely impacting the
protein’s ability to assemble into organized pretubule structures.
We also used simulations to explore a potential role for interleaflet
coupling as an additional driving force for tubulation. We conclude
that symmetry across the leaflets in the tubulated state maximizes
the interaction energy of the two leaflets and relieves the strain
induced by the hydrophobic void beneath the amphipathic helix.
Collapse
Affiliation(s)
- Anthony R Braun
- Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | | | | | |
Collapse
|
38
|
Gould N, Mor DE, Lightfoot R, Malkus K, Giasson B, Ischiropoulos H. Evidence of native α-synuclein conformers in the human brain. J Biol Chem 2014; 289:7929-34. [PMID: 24474688 DOI: 10.1074/jbc.c113.538249] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
α-Synuclein aggregation is central to the pathogenesis of several brain disorders. However, the native conformations and functions of this protein in the human brain are not precisely known. The native state of α-synuclein was probed by gel filtration coupled with native gradient gel separation, an array of antibodies with non-overlapping epitopes, and mass spectrometry. The existence of metastable conformers and stable monomer was revealed in the human brain.
Collapse
Affiliation(s)
- Neal Gould
- From the Departments of Pediatrics and Pharmacology, The Children's Hospital of Philadelphia Research Institute and
| | | | | | | | | | | |
Collapse
|
39
|
Jain N, Bhasne K, Hemaswasthi M, Mukhopadhyay S. Structural and dynamical insights into the membrane-bound α-synuclein. PLoS One 2013; 8:e83752. [PMID: 24376740 PMCID: PMC3869795 DOI: 10.1371/journal.pone.0083752] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/07/2013] [Indexed: 12/31/2022] Open
Abstract
Membrane-induced disorder-to-helix transition of α-synuclein, a presynaptic protein, has been implicated in a number of important neuronal functions as well as in the etiology of Parkinson’s disease. In order to obtain structural insights of membrane-bound α-synuclein at the residue-specific resolution, we took advantage of the fact that the protein is devoid of tryptophan and incorporated single tryptophan at various residue positions along the sequence. These tryptophans were used as site-specific markers to characterize the structural and dynamical aspects of α-synuclein on the negatively charged small unilamellar lipid vesicles. An array of site-specific fluorescence readouts, such as the spectral-shift, quenching efficiency and anisotropy, allowed us to discern various features of the conformational rearrangements occurring at different locations of α-synuclein on the lipid membrane. In order to define the spatial localization of various regions of the protein near the membrane surface, we utilized a unique and sensitive indicator, namely, red-edge excitation shift (REES), which originates when a fluorophore is located in a highly ordered micro-environment. The extent of REES observed at different residue positions allowed us to directly identify the residues that are localized at the membrane-water interface comprising a thin (∼ 15 Å) layer of motionally restrained water molecules and enabled us to construct a dynamic hydration map of the protein. The combination of site-specific fluorescence readouts allowed us to unravel the intriguing molecular details of α-synuclein on the lipid membrane in a direct model-free fashion. Additionally, the combination of methodologies described here are capable of distinguishing subtle but important structural alterations of α-synuclein bound to different negatively charged lipids with varied head-group chemistry. We believe that the structural modulations of α-synuclein on the membrane could potentially be related to its physiological functions as well as to the onset of Parkinson’s diseases.
Collapse
Affiliation(s)
- Neha Jain
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Karishma Bhasne
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - M. Hemaswasthi
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Samrat Mukhopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER), Mohali, India
- * E-mail:
| |
Collapse
|
40
|
Hydration dynamics as an intrinsic ruler for refining protein structure at lipid membrane interfaces. Proc Natl Acad Sci U S A 2013; 110:16838-43. [PMID: 24082088 DOI: 10.1073/pnas.1307678110] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Knowing the topology and location of protein segments at water-membrane interfaces is critical for rationalizing their functions, but their characterization is challenging under physiological conditions. Here, we debut a unique spectroscopic approach by using the hydration dynamics gradient found across the phospholipid bilayer as an intrinsic ruler for determining the topology, immersion depth, and orientation of protein segments in lipid membranes, particularly at water-membrane interfaces. This is achieved through the site-specific quantification of translational diffusion of hydration water using an emerging tool, (1)H Overhauser dynamic nuclear polarization (ODNP)-enhanced NMR relaxometry. ODNP confirms that the membrane-bound region of α-synuclein (αS), an amyloid protein known to insert an amphipathic α-helix into negatively charged phospholipid membranes, forms an extended α-helix parallel to the membrane surface. We extend the current knowledge by showing that residues 90-96 of bound αS, which is a transition segment that links the α-helix and the C terminus, adopt a larger loop than an idealized α-helix. The unstructured C terminus gradually threads through the surface hydration layers of lipid membranes, with the beginning portion residing within 5-15 Å above the phosphate level, and only the very end of C terminus surveying bulk water. Remarkably, the intrinsic hydration dynamics gradient along the bilayer normal extends to 20-30 Å above the phosphate level, as demonstrated with a peripheral membrane protein, annexin B12. ODNP offers the opportunity to reveal previously unresolvable structure and location of protein segments well above the lipid phosphate, whose structure and dynamics critically contribute to the understanding of functional versatility of membrane proteins.
Collapse
|
41
|
Wietek J, Haralampiev I, Amoussouvi A, Herrmann A, Stöckl M. Membrane bound α-synuclein is fully embedded in the lipid bilayer while segments with higher flexibility remain. FEBS Lett 2013; 587:2572-7. [PMID: 23831067 DOI: 10.1016/j.febslet.2013.06.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/28/2013] [Accepted: 06/25/2013] [Indexed: 12/15/2022]
Abstract
Cellular pathways involving α-synuclein (αS) seem to be causative for development of Parkinson's disease. Interactions between αS and lipid membranes appear to be important for the physiological function of the protein and influence the pathological aggregation of αS leading to the formation of amyloid plaques. Upon membrane binding the unstructured αS folds into amphipathic helices. In our work we characterized the penetration depth and probed the local environment of Trp-residues introduced along the αS sequence. We could show that while the entire helix is well embedded in the lipid bilayer, segments with a shallower penetration and supposable higher flexibility exist.
Collapse
Affiliation(s)
- Jonas Wietek
- Department of Biology, Faculty of Mathematics and Natural Sciences I, Humboldt University Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | | | | | | | | |
Collapse
|
42
|
Alderson TR, Markley JL. Biophysical characterization of α-synuclein and its controversial structure. INTRINSICALLY DISORDERED PROTEINS 2013; 1:18-39. [PMID: 24634806 PMCID: PMC3908606 DOI: 10.4161/idp.26255] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 12/16/2022]
Abstract
α-synuclein, a presynaptic protein of poorly defined function, constitutes the main component of Parkinson disease-associated Lewy bodies. Extensive biophysical investigations have provided evidence that isolated α-synuclein is an intrinsically disordered protein (IDP) in vitro. Subsequently serving as a model IDP in numerous studies, α-synuclein has aided in the development of many technologies used to characterize IDPs and arguably represents the most thoroughly analyzed IDP to date. Recent reports, however, have challenged the disordered nature of α-synuclein inside cells and have instead proposed a physiologically relevant helical tetramer. Despite α-synuclein's rich biophysical history, a single coherent picture has not yet emerged concerning its in vivo structure, dynamics, and physiological role(s). We present herein a review of the biophysical discoveries, developments, and models pertinent to the characterization of α-synuclein's structure and analysis of the native tetramer controversy.
Collapse
Affiliation(s)
- T Reid Alderson
- Biochemistry Department; University of Wisconsin-Madison; Madison, WI USA
| | - John L Markley
- Biochemistry Department; University of Wisconsin-Madison; Madison, WI USA ; National Magnetic Resonance Facility at Madison; University of Wisconsin-Madison; Madison, WI USA
| |
Collapse
|
43
|
Schildknecht S, Gerding HR, Karreman C, Drescher M, Lashuel HA, Outeiro TF, Di Monte DA, Leist M. Oxidative and nitrative alpha-synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. J Neurochem 2013; 125:491-511. [PMID: 23452040 DOI: 10.1111/jnc.12226] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/21/2013] [Accepted: 02/21/2013] [Indexed: 12/22/2022]
Abstract
Alpha-synuclein (ASYN) is a major constituent of the typical protein aggregates observed in several neurodegenerative diseases that are collectively referred to as synucleinopathies. A causal involvement of ASYN in the initiation and progression of neurological diseases is suggested by observations indicating that single-point (e.g., A30P, A53T) or multiplication mutations of the gene encoding for ASYN cause early onset forms of Parkinson's disease (PD). The relative regional specificity of ASYN pathology is still a riddle that cannot be simply explained by its expression pattern. Also, transgenic over-expression of ASYN in mice does not recapitulate the typical dopaminergic neuronal death observed in PD. Thus, additional factors must contribute to ASYN-related toxicity. For instance, synucleinopathies are usually associated with inflammation and elevated levels of oxidative stress in affected brain areas. In turn, these conditions favor oxidative modifications of ASYN. Among these modifications, nitration of tyrosine residues, formation of covalent ASYN dimers, as well as methionine sulfoxidations are prominent examples that are observed in post-mortem PD brain sections. Oxidative modifications can affect ASYN aggregation, as well as its binding to biological membranes. This would affect neurotransmitter recycling, mitochondrial function and dynamics (fission/fusion), ASYN's degradation within a cell and, possibly, the transfer of modified ASYN to adjacent cells. Here, we propose a model on how covalent modifications of ASYN link energy stress, altered proteostasis, and oxidative stress, three major pathogenic processes involved in PD progression. Moreover, we hypothesize that ASYN may act physiologically as a catalytically regenerated scavenger of oxidants in healthy cells, thus performing an important protective role prior to the onset of disease or during aging.
Collapse
Affiliation(s)
- Stefan Schildknecht
- Department of Biology, Doerenkamp-Zbinden Chair for In vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Nath A, Rhoades E. A flash in the pan: dissecting dynamic amyloid intermediates using fluorescence. FEBS Lett 2013; 587:1096-105. [PMID: 23458258 DOI: 10.1016/j.febslet.2013.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/21/2013] [Accepted: 02/22/2013] [Indexed: 12/15/2022]
Abstract
Several widespread and severe degenerative diseases are characterized by the deposition of amyloid protein aggregates in affected tissues. While there is great interest in the complete description of the aggregation pathway of the proteins involved, a molecular level understanding is hindered by the complexity of the self-assembly process. In particular, the early stages of aggregation, where dynamic, heterogeneous and often toxic intermediates are populated, are resistant to high-resolution structural characterization. Fluorescence spectroscopy is a powerful and versatile tool for such analysis. In this review, we survey its application to provide residue-specific information about amyloid intermediate states for three selected proteins: IAPP, α-synuclein, and tau.
Collapse
Affiliation(s)
- Abhinav Nath
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | | |
Collapse
|
45
|
Yap TL, Velayati A, Sidransky E, Lee JC. Membrane-bound α-synuclein interacts with glucocerebrosidase and inhibits enzyme activity. Mol Genet Metab 2013; 108:56-64. [PMID: 23266198 PMCID: PMC3552326 DOI: 10.1016/j.ymgme.2012.11.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 11/15/2012] [Indexed: 01/31/2023]
Abstract
Mutations in GBA, the gene encoding glucocerebrosidase, the lysosomal enzyme deficient in Gaucher disease increase the risk for developing Parkinson disease. Recent research suggests a relationship between glucocerebrosidase and the Parkinson disease-related amyloid-forming protein, α-synuclein; however, the specific molecular mechanisms responsible for association remain elusive. Previously, we showed that α-synuclein and glucocerebrosidase interact selectively under lysosomal conditions, and proposed that this newly identified interaction might influence cellular levels of α-synuclein by either promoting protein degradation and/or preventing aggregation. Here, we demonstrate that membrane-bound α-synuclein interacts with glucocerebrosidase, and that this complex formation inhibits enzyme function. Using site-specific fluorescence and Förster energy transfer probes, we mapped the protein-enzyme interacting regions on unilamellar vesicles. Our data suggest that on the membrane surface, the glucocerebrosidase-α-synuclein interaction involves a larger α-synuclein region compared to that found in solution. In addition, α-synuclein acts as a mixed inhibitor with an apparent IC(50) in the submicromolar range. Importantly, the membrane-bound, α-helical form of α-synuclein is necessary for inhibition. This glucocerebrosidase interaction and inhibition likely contribute to the mechanism underlying GBA-associated parkinsonism.
Collapse
Affiliation(s)
- Thai Leong Yap
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Arash Velayati
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States
- Corresponding authors. Ellen Sidransky, 35 Convent Drive, Room 1A213, Bethesda, MD, 20892. Fax: +1-301-402-6438. Jennifer C. Lee, 50 South Drive, Room 3513, Bethesda, MD, 20892. Fax: +1-301-402-3404. and
| | - Jennifer C. Lee
- Laboratory of Molecular Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
- Corresponding authors. Ellen Sidransky, 35 Convent Drive, Room 1A213, Bethesda, MD, 20892. Fax: +1-301-402-6438. Jennifer C. Lee, 50 South Drive, Room 3513, Bethesda, MD, 20892. Fax: +1-301-402-3404. and
| |
Collapse
|
46
|
Alpha-synuclein pore forming activity upon membrane association. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2876-83. [DOI: 10.1016/j.bbamem.2012.07.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 07/09/2012] [Accepted: 07/11/2012] [Indexed: 01/31/2023]
|
47
|
Mizuno N, Varkey J, Kegulian NC, Hegde BG, Cheng N, Langen R, Steven AC. Remodeling of lipid vesicles into cylindrical micelles by α-synuclein in an extended α-helical conformation. J Biol Chem 2012; 287:29301-11. [PMID: 22767608 DOI: 10.1074/jbc.m112.365817] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein (αS) is a protein with multiple conformations and interactions. Natively unfolded in solution, αS accumulates as amyloid in neurological tissue in Parkinson disease and interacts with membranes under both physiological and pathological conditions. Here, we used cryoelectron microscopy in conjunction with electron paramagnetic resonance (EPR) and other techniques to characterize the ability of αS to remodel vesicles. At molar ratios of 1:5 to 1:40 for protein/lipid (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol), large spherical vesicles are converted into cylindrical micelles ~50 Å in diameter. Other lipids of the same charge (negative) exhibit generally similar behavior, although bilayer tubes of 150-500 Å in width are also produced, depending on the lipid acyl chains. At higher protein/lipid ratios, discoid particles, 70-100 Å across, are formed. EPR data show that, on cylindrical micelles, αS adopts an extended amphipathic α-helical conformation, with its long axis aligned with the tube axis. The observed geometrical relationship between αS and the micelle suggests that the wedging of its long α-helix into the outer leaflet of a membrane may cause curvature and an anisotropic partition of lipids, leading to tube formation.
Collapse
Affiliation(s)
- Naoko Mizuno
- Laboratory of Structural Biology, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Maltsev AS, Ying J, Bax A. Impact of N-terminal acetylation of α-synuclein on its random coil and lipid binding properties. Biochemistry 2012; 51:5004-13. [PMID: 22694188 PMCID: PMC3383124 DOI: 10.1021/bi300642h] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
![]()
N-Terminal acetylation of α-synuclein (aS), a protein
implicated
in the etiology of Parkinson’s disease, is common in mammals.
The impact of this modification on the protein’s structure
and dynamics in free solution and on its membrane binding properties
has been evaluated by high-resolution nuclear magnetic resonance and
circular dichroism (CD) spectroscopy. While no tetrameric form of
acetylated aS could be isolated, N-terminal acetylation resulted in
chemical shift perturbations of the first 12 residues of the protein
that progressively decreased with the distance from the N-terminus.
The directions of the chemical shift changes and small changes in
backbone 3JHH couplings are
consistent with an increase in the α-helicity of the first six
residues of aS, although a high degree of dynamic conformational disorder
remains and the helical structure is sampled <20% of the time.
Chemical shift and 3JHH data
for the intact protein are virtually indistinguishable from those
recorded for the corresponding N-terminally acetylated and nonacetylated
15-residue synthetic peptides. An increase in α-helicity at
the N-terminus of aS is supported by CD data on the acetylated peptide
and by weak medium-range nuclear Overhauser effect contacts indicative
of α-helical character. The remainder of the protein has chemical
shift values that are very close to random coil values and indistinguishable
between the two forms of the protein. No significant differences in
the fibrillation kinetics were observed between acetylated and nonacetylated
aS. However, the lipid binding properties of aS are strongly impacted
by acetylation and exhibit distinct behavior for the first 12 residues,
indicative of an initiation role for the N-terminal residues in an
“initiation–elongation” process of binding to
the membrane.
Collapse
Affiliation(s)
- Alexander S Maltsev
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | | | | |
Collapse
|
49
|
|
50
|
Robotta M, Hintze C, Schildknecht S, Zijlstra N, Jüngst C, Karreman C, Huber M, Leist M, Subramaniam V, Drescher M. Locally Resolved Membrane Binding Affinity of the N-Terminus of α-Synuclein. Biochemistry 2012; 51:3960-2. [DOI: 10.1021/bi300357a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marta Robotta
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Christian Hintze
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Stefan Schildknecht
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Niels Zijlstra
- Nanobiophysics,
MESA+ Institute
for Nanotechnology and MIRA Institute for Biomedical Technology and
Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands
| | - Christian Jüngst
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Christiaan Karreman
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Martina Huber
- Leiden Institute of Physics, University of Leiden, P.O. Box 9504, 2300 RA Leiden,
The Netherlands
| | - Marcel Leist
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| | - Vinod Subramaniam
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
- Nanobiophysics,
MESA+ Institute
for Nanotechnology and MIRA Institute for Biomedical Technology and
Technical Medicine, University of Twente, 7500 AE Enschede, The Netherlands
| | - Malte Drescher
- Departments of Chemistry and
Biology, Konstanz Research School Chemical Biology, and Zukunftskolleg, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|